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Abstract

The Goldreich-Goldwasser-Halevi(GGH)’s signature scheme from Crypto
’99 is cryptanalyzed, which is based on the well-known lattice problem. We
mount a chosen message attack on the signature scheme, and show the sig-
nature scheme is vulnerable to the attack. We collects n lattice points that are
linearly independent each other, and constructs a new basis that generates a
sub-lattice of the original lattice. The sub-lattice is shown to be sufficient to
generate a valid signature. Empirical results are presented to show the effec-
tiveness of the attack. Finally, we show that the cube-like parameter used for
the private-key generation is harmful to the security of the scheme.
Keywords : Public-key cryptography, Lattice, Closest Vector Problem, GGH’s
Cryptosystem, Chosen message attack

1 Introduction

Recent researches found that Closest Vector Problem(CVP) and Shortest Vector
Problem(SVP) may be useful in the public-key cryptography. The CVP was shown
by van Emde Boas to be NP-hard in 1981[7]. In 1996, Ajtai introduced a function
that is provably one-way if approximating the shortest non-zero vector(SVP) in a
lattice is hard in the worst case, and invented a public-key cryptosystem using the
lattice problem[1, 2].

Being motivated by Ajtai’s work, Goldreich, Goldwasser, and Halevi proposed
a public-key cryptosystem using lattice reduction problems[4]. Their cryptosystem
shed light on the possibility of new cryptosystems based neither on the factoriza-
tion nor on the discrete logarithm problems. Even better, their cryptosystem is
superior to existing schemes in that it encrypts a message and writes a signature
in O n2 operations, while RSA encrypts a message in O n3 operations for se-
curity parameter n, at the expense of key sizes. The speed gain obtained by long
key sizes looks quite attractive for the upcoming high speed network environments
such as ATM(Asynchronous Transfer Mode). Also, it has a novel property that it
can process an analogue signal. In [6], their encryption scheme was attacked and
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P. Nguyen showed that it would be dangerous to use a dimension less than 400
even though we fix the flow, which limits our interests in the encryption scheme.
P. Nguyen’s attack depends on two weeknesses: one is that the error vectors are
always quite shorter than the vectors in the lattice, and the other is the regular
form of the error vectors. These two weeknesses do not appear in GGH’s signature
scheme. Thus, their signature scheme still works well. As far as we know, there
has not been any published challenge on GGH’s signature scheme.

In this paper, we cryptanalyze the GGH’s public-key signature scheme, of
which security depends on the approximability of the close lattice point within
a bound. A key observation of the cryptanalysis is that for a message which con-
sists of small elements, a signing oracle returns as a signature a lattice point whose
Euclidean length is short. Properly collected n lattice points with a signing ora-
cle may be used as a new basis for the lattice. Unfortunately, randomly collected
n lattice points do not make the same lattice as that generated from the public or
private basis, but they are likely to generate a sparser lattice than the original one.
The second observation is that we do not have to use the same lattice as the lat-
tice generated from the public or private-key to write a valid signature. That is,
we can make use of the sub-lattice as a private-key. Especially, we show that in
case of a private basis with non-zero cube-like parameter, the original private ba-
sis can be completely restored(The cube-like parameter represents how cube-like a
private basis is. A private basis is generated as R k I rand l , where k is the
cube-like parameter.).

Set of real numbers and set of integers are denoted by R and Z, respectively in
this paper. We denote real numbers by small Greek letters and integers by lower-
case letters such as i j k . Column vectors are denoted by bold-face lowercase
(e.g. b, c, e etc.), and matrices are denoted by capital letters (e.g. B H R, etc.), all
of which are n n matrices.

2 Brief Survey of GGH’s Public-key Cryptosystem

GGH’s cryptosystem encrypts a message by encoding it into u L and adding a
small noise to u, where L is the carefully selected lattice. Decryption is the process
to eliminate the added noise from the lattice point and decode the result.

Before we summarize the GGH’s cryptosystem, let’s define the lattice.

Definition 1 (Lattice) Given a set of n linearly independent column vectors in Rn,
B b1 bn , we define the lattice spanned by the basis B as the set of all linear
combinations of the bi’s with integral coefficients, namely

L B
i

kibi : ki Z for all i

One of the important facts about lattice is that all the bases of a given lattice
have the same determinant.
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Definition 2 (Orthogonality Defect) Let B be a non-singular n n matrix. Then
the orthogonality defect of B is defined as

orth-defect B i bi

det B

where bi is the Euclidean norm of the i’th column in B.

Definition 3 (Dual Orthogonality Defect) Let B be a non-singular n n matrix.
Then the dual orthogonality defect of B is defined as

orth-defect* B i b̂i

det B 1 det B i b̂i

where b̂i is the Euclidean norm of the i’th row in B 1.

The dual orthogonality defect plays a crucial role in the security of GGH’s
cryptosystem.

GGH’s cryptosystem uses two bases B and R of the same full rank lattice in Zn,
and a positive real number . Here, B has a high dual orthogonality defect, whereas
R has a low dual orthogonality defect. B is the public-key, and R plays a role
as the private-key in their settings. Refer to [4] how B R are generated.

The ciphertext corresponding to an encoded plaintext v is obtained by comput-
ing c Bv e, where e is a randomly chosen vector from Rn whose each entry
has zero-mean and variance 2. Deciphering is performed by evaluating T R 1c ,
where T B 1R is a unimodular matrix.

They also provided a public-key digital signature scheme. Their scheme signs
a vector u in Rn by finding a lattice point v that is sufficiently close to the vector.
The lattice point is represented as a linear combination of the columns of B, and
the verifier can verify the signature by comparing and the distance between the
message vector and the vector v.

To sign a message s, we encode the message into u Rn by an encoding
function Enc s u. Now, a lattice point near u is easily found by computing
v T R 1u , where T B 1R R 1 is a private-key. A signature is verified by
computing Euclidean distance of Bv u and comparing it with . If the distance
is shorter than , the signature is regarded valid, otherwise not. must be care-
fully determined, since it takes greatly effect both on the security of the signature
scheme and on the verification error probability.

3 Cryptanalysis of GGH’s Signature Scheme

3.1 Idea: Sub-lattice Attack

We begin with the simple fact that a GGH’s signing oracle returns a sufficiently
close lattice vector for a given random vector u Rn. For a vector u Rn whose
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element ranges from k to k, the signing oracle gives a signature, or a lattice
point of which Euclidean distance from u is smaller than the public value . In
this setting, we mount the chosen message attack against the signature scheme by
providing many short messages and collecting the results. The collected signatures
can be used to construct a new private basis, even though they are likely to generate
a different lattice from the lattice generated from the original public-key or the
private-key. More exactly, they have large probability to make a sub-lattice of the
original lattice. Even though the newly constructed basis spans only a subset of the
original lattice, we can still utilize it as a private-key. Using the new basis, we can
write a valid signature for an arbitrary message.

Define the “error vector”

e H 1u H 1u

and RoundH u H H 1u , where H is an n n basis of a lattice. Then the
distance between u and RoundH u is He , the Euclidean norm of the vector He.
Clearly, the i’th entry i in e is less than or equal to 1/2 for all i, because of the
rounding-off. Thus, we would prefer to the sub-lattice whose elements are small
enough to make He smaller than .

The effort to find another basis H can be taken by gathering many short signa-
tures. Intuitively, submitting a short random vector u to a signing oracle gives us a
short lattice point.

Now, the problem how short the vector must be is solved. Given a message
u, a signing oracle returns v B 1R R 1u , and the cryptanalysist can collect
many signatures Bv R R 1u . Note that if u is carefully selected, the vector
d R 1u will consist of almost 0’s except one or a few 1’s. Then, the signature
of the u is either exactly one of the columns of R or a sum of a few columns of R,
the private basis. From now on, sum of several vectors ri means

n

i 1

ci ri where ci 0 1

where n portions of ci’s are 1 for a small constant .
With n signatures collected in this way, we can construct a new basis, though

the basis is likely to generate the sub-lattice of L R rather than L R itself.
To make d R 1u have almost 0’s and only a few of 1’s, we must constrain

the range of elements of u. We use the Hoeffding bound. Let’s denote the i’th entry
in d and u by i and i respectively. Also, we denote the i j’th element in R 1 by

i j, and the maximum L norm of the rows in R 1 by n, where will be
roughly estimated by any randomly generated basis with the maximum entry size
of R and its cube-like parameter.

Pr i 1 2 2exp
1 4

2n k n 2 n (1)

where i j i j j and i k.
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Pr i 3 2 2exp
9 4

2n k n 2 (2)

where is set to a very small value such as 10 10.
If we limit k such that it satisfies equation (1) and (2), i will be composed of

almost 0’s and number of 1’s, and entries whose absolute values are greater than
1 will be occured with probability. By giving a random vector whose element
ranges from k to k to a signing oracle, we can extract either exactly one of the
columns of R or a sum of a several columns of R.

To get a numerical sense, consider the parameters n 140 5 10 10

1 30. Evaluating the equation (1), (2) yields k 6 and k 7, respectively.
However, the effective value of k in the experiment is twice as large as those
values.

Let H be the newly constructed basis. To write a signature, we need another
matrix, that is T B 1R, the unimodular matrix. But in our case, we can construct
T B 1H . Our T is not a unimodular matrix, but it is composed of only integer
elements. This is because L H is a sub-lattice of L B (sometimes, L B itself),
and H’s determinant(equally, the volume of the parallelepied of L H ) is the integer
multiple of B’s determinant(the volume of the parallelepied of L B ). Now, we can
write a signature for any message with the newly generated private-key, H T .
For a message m, the distance between m and the signature T H 1m is expressed
in the following equation.

m BT H 1m m H H 1m H H 1m H 1m He

To make He much smaller, we can apply a lattice reduction algorithm like
LLL reduction to H[5].

It is high time to estimate the distance between the message and the signature
that is written by H T .

Let’s denote L1 norm of i-th row in R and that in H by Ri and Hi, respectively.
Every column of our newly constructed basis H is constructed from the vector
d R 1u that has less than or equal to number of 1’s and at least one 1.
For the worst case analysis, we assume that d consists of exactly number of 1’s.
Under the assumption of unform distribution of 1 in d, we can obtain

Hi Ri

Thus,

He Re (3)

As seen in the equation (3), a signature generated with H T is times far-
ther from the message than the signature generated with R T is. Equation (3),
however, is the worst case estimation for the distance between a message and its
corresponding signature. As stated previously, d has less than or equal to number
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of 1’s. Furthermore, many of them contain only one 1. Thus, the distance in
the experiment is much nearer than that in the above estimation.

3.2 Description of the Procedure

We describe the cryptanalyzing procedure of GGH’s signature scheme that finds
H , a basis for a sub-lattice of L R and T .

Algorithm 1
Input : A signing oracle , a signature verification box V , A public-key B ,
q: the trade-off parameter between the running time and the quality of H .
Output : A new private-key H T

1. Perform a lattice reduction algorithm such as LLL reduction to B, and let the
result B.

2. Compute bi , the Euclidean distance of every column of B and assign the
smallest one .

3. Sort bi with decreasing order according to bi and store the sorted index to
p i .

4. H B, c 1.

5. Do the following loop until q columns of H are replaced.

(a) Generate a random vector u, of which elements are uniformly dis-
tributed over k k , where k is determined by equation (1)(2).

(b) Evaluate a signature v u by submitting the u to the signing oracle
.

(c) Check whether the signature v is zero-vector. If so, goto step (a).

(d) Check whether the signature v is valid. If not, goto step (a).

(e) If Bv is larger than or equal to , goto step (a).

(f) Check whether B obtained by substituting the p c -th column of H
with Bv forms a basis. That is, check whether the rank of B is n or not.

(g) If B forms a basis, then let H B , and increase c by one.

(h) If not, then B H .

6. Apply the Lattice reduction algorithm to H .

7. Compute T B 1H .

The parameter q determines when the algorithm stops. The more columns are
substitued, the lower the probability for B to remain fully ranked is. Because we
replaced longer columns first, a few remaining columns will not degrade the quality
of H .
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Writing a signature with H T for an encoded message m is the same as
that with R T . For a message m to be signed, a signer generates the signature
v T H 1m . The signature is verified by comparing with m Bv He .
Instead of using the Babai’s round off algorithm to get the lattice point near the
message, we can use his nearest plane algorithm to decrease more distance between
the signature generated by H and the message[3].

Let’s consider a signing oracle that refuses to sign a short message. Though
the signer would get suspicious having to sign a small vector u whose elements
range from k to k, we can still attack by generating a random v, having her sign
u Bv u, and removing v from the signature, where u is the very message
that ranges from k to k. With the technique, the encoding function that maps a
message into a long vector does not frustrate our attack.

Now, we estimate the algorithm’s running time. First, we approximate the
number of repetitions of the main loop. We must consider the probability for B to
remain fully ranked after substituting Bv for one of its columns, bc. Assume the
matrix U obtained by substituting zero column vector with one of columns of U ,
which is R 1B . If we transform U into echelon form, every i-th column has a
non-zero i-th entry except one column, which is a zero column vector. Thus, when
we replace the zero column with a new vector d R 1u that has only 0’s and
number of 1’s, d would make U be fully ranked with high probability if the i-th
element of d is not zero. Thus, if we assume that number of 1’s are uniformly
distributed in d, the probability for one of 1 to hit the i-th position is n.

Within the loop 4, the most time consuming part is an operation to check
whether the resultant matrix is fully ranked or not, and it takes O n3 . Finally,
we get the average running time of our algorithm.

O
n4

(4)

3.3 Empirical Results

In this section, we show empirical results of our attack. To get the empirical results,
we used the LiDIA package[8]. In the experiments, we let l 4, the entry size of R
and the cube-like parameter l 1 n . To generate the public basis from R,
we performed 2n number of mixing steps, where each step is performed by a uni-
modular matrix whose all elements in its diagonal are 1 and one of its columns is
composed of 1 0 1 . The column has a bias toward 0 and Pr[1] = Pr[-1] = 1/7.
These parameter settings are the same as those of [4]. The messages are uniformly
distributed in the range of 200 200 .

Figure 1 - 4 show for 2 30 , distances between 100 messages and corre-
sponding signatures with H and R for dimensions 80, 100, 120 and 140. For dimen-
sion 80 and 100 with k 10, the algorithm found the same basis as R. With k 15,
the distances between the signatures with H and the messages are short enough for
the signatures to be regarded as valid ones, though they are rather longer than those
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Figure 1: Quality of signatures generated with H , Dimension = 80

Figure 2: Quality of signatures generated with H , Dimension = 100
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Figure 3: Quality of signatures generated with H , Dimension = 120

Figure 4: Quality of signatures generated with H , Dimension = 140
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(Dimension, k, rc) pc AD(H)/AD(R) Det(H)/Det(R) (B R, H R)
(80, 10, 80) 2534 1 1 (0.33e49, 1)
(80, 15, 80) 563 2.53 0.24e15 (0.33e49, 0.19e31)

(100, 10, 99) 1991 1 1 (0.13e84, 0.45e12)
(100, 15, 100) 289 1.71 673 (0.13e84, 0.66e21)
(120, 12, 120) 1633 1.09 2 (0.34e120, 3857.66)
(120, 15, 120) 183 2.24 0.12e15 (0.34e120, 0.64e39)
(140, 12, 137) 1145 1.07 16 (0.14e172, 0.61e10)
(140, 15, 140) 787 1.49 36 (0.14e172, 0.21e21)

Table 1: Summary of the experiments

Figure 5: Cardinalities of M H k for varying parameters

with R. With k 10 or k 12, signatures with H cannot be discriminated from the
signatures with R.

Table 1 summarizes various metrics regarding the quality of signatures gener-
ated with H . In the table, AD(B) is the average distance from the messages and the
signatures generated by the basis B, and Det(B) is the determinant of B. rc and pc
is the number of replaced columns in each trial and the number of messages con-
sumed, respectively. We didn’t count messages that derive signatures to be zero.
B R means the orthogonality defect ratio between B and R, and H R means that
between H and R, where both B and R are LLL-reduced.

From these empirical results, we can conclude that the new basis obtained in
the way of section 3 has enough quality to generate a signature that is sufficiently
close to the submitted message.

Finally, figure 5 shows that the cardinality of
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M H k column S H column k

has a light-tailed distribution. The light-tailed distribution means that almost
every columns of H are those of R and only a few columns are sum of several
columns of R. This property of M H k takes a positive effect not only on the
quality of the signature with H , but also on the restoration of the private basis in
the attack of the signature scheme, which will be described in the following section.

3.4 Complete Restoration of the Private Basis R

In this section, we show that with a rectangular private basis, the signature scheme
may reveal its private basis. Regardless of the cube-like parameter, we can attack
the signature scheme by the sub-lattice, and we showed by experiment that it gener-
ates the basis with enough quality. However, as pointed in [4], non-zero cube-like
parameter is preferable to zero cube-like parameter, because that much increases
the dual orthogonality defect ratio of public basis and private basis. In this section,
we show that we can completely restore the original private basis R if the signature
system uses the non-zero cube-like parameter.

We can obtain the exact R from the approximated H by solving a simultaneous
equation. For the establishment of simultaneous equation, we take advantage of
the fact that the cube-like parameter is 1 n times larger than l. The key
observation is that Bv R R 1u , that is the signature for u is a sum of several
columns of R, and we can observe in a Bv several peaks resulted from the biased
diagonals of R.

As shown in section 3.1, the vector R 1u has only a few 1’s and other large
portions are filled with 0’s. Also, note that the i-th element of the i-th column of R is
biased by the cube-like parameter, while others are not. Thus, by counting the peak
elements of Bv, we can guess how many columns are combined to construct the
signature Bv, and by observing positions of the peaks, we can guess which columns
of R are involved to make a signature. By collecting n-linearly independent pairs
of such Bv, we can establish the following simultaneous equations and recover R
by solving it.

RX H (5)

where X is an n n matrix whose columns are made up of 0 1 and con-
structed from n linearly independent Bv’s by Algorithm 2 and 3.

In this scenario, however, we must not disregard that the number of combined
columns of R to make Bv does matter in the attack. If the number of columns com-
bined exceeds a certain threshold, that is, lots of columns are linearly combined,
we cannot discriminate the peak points in the vector Bv because every elements in
Bv get equally large.
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Following is the worst case approximation for the number of columns to be
combined, x. In the worst case, the biased point is subtracted by xl, while others
are added by xl, where l is the maximum entry size of R. Thus, to make the peak
points still greater than others, following must be satisfied.

l 1 n xl xl

Rewriting the above equation for x, we get

x
1 n

2
(6)

For dimension 100, x 5, for 120, x 6, and for 200, x 8, etc. Equation (6)
is the worst-case approximation for x. Since all elements in R are unformly dis-
tributed in l l except the diagonal, each element in the vector that is made by
summing x number of columns of R up would likely to be around 0 except the peak
points. So, we can set x much larger than the approximated value in equation (6).
Because the permitted x is proportional to of the equation (4), we can attack faster
with a larger x.

Let us describe how to find the peak points. It consists of two phases. One is
finding how many columns of R are combined to be Bv, and the other is searching
the positions where the peaks are located. Followings are those procedures.

First, we describe how columns, the number of columns combined can be
found. By equation (6), we assume that columns is less than 1 n

2 .
Algorithm 2
Input : Bv, l and n
Output : columns

1. Set columns 1 n
2

2. Do the following loop while columns 0

(a) Count the number of elements of Bv whose absolute value is less than
or equal to l columns, and set it to w.

(b) If n w is not equal to columns, then columns columns 1 and goto
step (a).

(c) else return columns n w

3. If columns 0, then output “Bv is not an appropriate vector. Choose another
one.”.

Now, the following procedure outputs positions and polarities of the peaks.
Algorithm 3
Input : columns and Bv
Output : Column vector x x1 x2 xn
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1. i 1 and set x to be a zero vector.

2. Do the following loop while i columns

(a) Find the element m whose absolute value is i-th largest and its position
p in Bv.

(b) if m 0, then set xp 1

(c) else set xp 1

3. return the vector x.

From n linearly independent Bv’s, we can get n linearly independent x’s (equally,
R 1u ’s) and make the matrix X in equation (5). Since X is fully ranked, its in-

verse does exist and we can easily find the exact R from equation (5).
Figure 5 shows that M H k has a light-tailed distribution, and it ensures that

our attack should succeed to restore the private basis. Consequently, the cube-like
parameter is not desirable for the security of GGH’s signature scheme.

4 Conclusion

In the paper, we presented an effective attack against GGH’s signature scheme.
The chosen message attack against the signature scheme uses the fact that a signing
oracle returns a short lattice point for a short message vector and gathering those
lattice points can construct a good basis to write a valid sign. Especially, the cube-
like parameter is shown to be harm for the security of the cryptosystem.

Though we did not present a more efficient way to implement our idea, it can be
refined and improved. We believe that the running time can be reduced by starting
from the null basis, filling columns of it one by one with a short lattice point while
checking whether the lattice point increases the rank of the basis. Also, the attack
has inherently very high parallelism and its running time can be easily improved
by the distributed computing.
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