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1 Introduction

The introduction of \zero-knowledge interactive proofs" [GMRa] was shortly followed by its best

known application: smartcard based identi�cation [FiSh]. Whereas in a zero-knowledge interactive

proof a prover's goal is to prove membership in a language, in an identi�cation protocol a prover's

goal is to prove who he/she is. In [FFS] the notion of \zero knowledge proofs of knowledge" was

developed and the following paradigm for identi�cation was suggested: Let L be a hard language in

NP. Each user Alice is to be identi�ed with an x 2 L for which she knows a short \witness" w that

x 2 L. (Naturally, L should posses enough structure that it is possible to choose pairs (x;w) with

respect to which the problem remains intractable). Then, to identify herself Alice would prove to

the system manager (veri�er) that she \knows" w using a zero-knowledge proof of knowledge. In

particular, [FiSh] explicitly proposes to apply the above paradigm to the \quadratic residuosity"

language as follows.

Example: A user A may be associated with a composite integer n and a square x 2 Z�
n for which

he knows a square root mod n. (E.g, A may secretly choose y and set x = y2 mod n.) Then, when

he wants to be identi�ed (as in a remote log in), A gives a zero-knowledge proof that she knows

a square root y of x as follows [GMRa]: prover A sends a random r and returns w = r2 mod n

to the veri�er; the veri�er ips a coin b and sends it to A; A returns z = ryb =
p
wxb mod n. If

z2 = wxb mod n then the veri�er accepts else it rejects. By the zero-knowledge property, an enemy

who listens (or even is the veri�er itself) cannot falsely identify itself as A at a later time.

The protocol of [FiSh] is a more e�cient variant of this basic protocol which appeared in [GMRa] to

prove membership in the quadratic residuosity language. Other identity protocols were proposed

subsequently (e.g. [GQ,Sch]), following the same paradigm, each focusing on better and better

round/message complexity. This paradigm was especially promoted as useful for smart-card ap-

plications. Namely, a smart-card holding the witness w, would be able to convince a prover of its

identity over the network by utilizing a zero knowledge proof of knowledge of w.

1.1 Resettability

A interesting question raised by [CGGM] is what happens to the above paradigm if an adversary

is able to run several identi�cation protocols (in the role of a veri�er) with the same prover, each

time being able to reset the prover to the same internal state including the same random tape. Is

the above paradigm still secure, or can now the veri�er adversary learn enough to impersonate the

prover later on?

The answer is that any zero-knowledge proof of knowledge (and thus all proofs of identity �a

la Fiat-Shamir [FiSh]), are by de�nition completely breakable in the resttable model. Indeed, in

a proof of knowledge, the prover is de�ned to \know a secret" exactly when this secret can be

extracted by a polynomial time algorithm (the \extractor") which is allowed to run the protocol

with the prover rewinding it a polynomial number of times (i.e resetting the prover to initial

conditions with the same coins a polynomial number of times). We illustrate this for the example

above.

Example Revisited: Assume that in the example above the prover is forced to execute twice with

the same coins r the basic protocol. Then, by sending b = 0 in the �rst execution and b = 1 in the

second execution, the veri�er learns both r and xr and thus trivially extracts x, a square root of

y mod n. Notice that the enemy needs not even be a veri�er, it su�ces that he has access to the

smartcard and is able to reset this twice to the same state, feed it messages, and get the replies.
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Is this a real security concern? We believe it is. Resetting or restoring the computational state

of a device is particularly simple in case the device consists of a smartcard which the enemy can

capture and experiment with. If the card is manufactured with secure hardware, the enemy may

not be able to read its secret content, but it could disconnect its battery so as to restore the card's

secret internal content to some initial state, and then re-insert the battery and use it with that

state a number of times. If the smart card implements a zero-knowledge prover for ID purposes,

then such an active enemy may impersonate the prover later on.

Other scenarios in which such an attack can be realized is if an enemy is able to force a crash

on the device executing the prover algorithm, in order to force it to resume computation after the

crash in an older \computational spot", thereby forcing it to essentially reset itself.

Resettable zero-knowledge. The new concept of \resettable zero-knowledge interactive proofs

" has been proposed by [CGGM] to address the resettability attack during a zero knowledge pro-

tocol. A protocol was de�ned to be \resettable zero knowledge" if it remains zero knowledge even

when the veri�er can run the protocol a polynomial number of times, each time resetting the

prover to the same initial conditions and the same random coins. It is shown in [CGGM] how to

prove membership in any NP language in resettable zero-knowledge. These results are however

proofs of membership and not proofs of knowledge. (As indicated above, proofs of knowledge are

by de�nition impossible in a resettable setting.) Thus they do not su�ce to implement the Fiat-

Shamir paradigm of proving identity by proving knowledge of a witness in the resettable setting.

In [CGGM] a pointer to future work (this paper) promised to develop alternative paradigms for

identity protocols in the resettable setting. This is one of the contributions of this work.

1.2 Notions of security

First we give a de�nition of security for identity protocols in a resettable setting. We distinguish

between two types of resettable attacks CR1 (Concurrent-Reset-1) and CR2 (Concurrent-Reset-

2). In a CR1 attack, Vicky (the adversary) may concurrently run many identity protocols with

the prover Alice resetting Alice to initial conditions and interleaving executions, hoping to learn

enough to be able to impersonate Alice in a future time. Later, Vicky will try to impersonate Alice,

trying to identify herself as Alice to Bob (the veri�er). We will say that an ID scheme is secure in

the CR1 setting if the probability that Vicky succeeds is negligible.

In a CR2 attack, Vicky, while trying to impersonate Alice (i.e attempting to identify herself as

Alice to Bob the veri�er), may concurrently run many identity protocols (in the veri�er's role) with

the real prover Alice, resetting Alice to initial conditions and interleaving executions. We will say

that an ID scheme is secure in the CR2 setting if the probability that Vicky succeeds is negligible.

Clearly, a CR1 attack is a special case of a CR2 attack.

Session Id's to Avoid Woman-in-the-middle. A de�nition of security in the CR1 setting is

straightforward: Vicky wins if she can make the veri�er Bob accept. In the CR2 setting Vicky

can make the veri�er accept by simply being the woman-in-the-middle, passing messages back

and forth between Bob and Alice. The de�nitional issues are now much more complex because

the woman-in-the-middle \attack" is not really an attack and the de�nition must exclude it. We

address them based on de�nitional ideas from [BR, BPR], speci�cally by assigning session-id's to

each completed execution of an ID protocol, which the prover must generate and the veri�er accept

at the completion of the execution. (The idea of session ids actually goes back to Bellare, Petrank,

Racko� and Rogaway, 1996.) A successful on-line attack of Vicky on an ID scheme is de�ned as

one having a session-id which is di�erent from all past session-id's. As in the woman-in-the-midde

attack, if the same session-id will be generated between Vicky and Bob as the one between Alice
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and Bob, it will not qualify as a successful on-line attack. We argue that introducing session-id's

makes complete sense in practically any use of identi�cation protocol as identi�cation is almost

always a prelude to secure sessions.

An analogy. An analogy with chosen-ciphertext attacks in encryption is useful to understand the

distinction between the CR1 and CR2 settings, and helps explain why we consider the line we have

drawn between them to be natural. View the decryption oracle provided to an adversary attacking

an encryption scheme as the analogue of the access to prover instances given to the adversary

above. View the response that the encryption adversary must provide to the challenge ciphertext

as the analogue of the interaction that the adversary above must have with the veri�er. Then the

IND-CCA1 setting of Naor and Yung [NY2], allowing access to the decryption oracle only prior

to the appearance of the challenge, is the analogue of our CR1 setting; the IND-CCA2 setting of

Racko� and Simon [RS] allowing access to the decryption oracle even after the appearance of the

challenge, is the analogue of our CR2 setting. In IND-CCA2 setting the adversary can trivially win

by querying its decryption oracle with the challenge ciphertext; the analogue is that our adversary

could make the veri�er accept by playing \man in the middle". The de�nitional \�x" of the IND-

CCA2 setting is to simply disallow this one query. The �x in the identi�cation setting is less trivial;

it is via the use of session ids discussed above.

1.3 Three Paradigms for Achieving Secure Resettable identi�cation

As we explained above, the standard proof of knowledge based paradigm fails to provide identi�ca-

tion in the resettable setting. In that light, it may not be clear how to even prove the existence of

a solution to the problem. Perhaps surprisingly however, not only can the existence of solutions be

proven under the minimal assumption of a one-way function, but even simple and e�cient solutions

can be designed.

This is done in part by returning to some earlier paradigms. Zero-knowledge proofs of knowl-

edge and identi�cation are so strongly linked in contemporary cryptography that it is sometimes

forgotten that these in fact replaced earlier identi�cation techniques largely due to the e�ciency

gains they brought. In considering a new adversarial setting it is thus natural to �rst return to

older paradigms and see whether they can be \lifted" to the resettable setting. We propose in

particular signature and encryption based solutions for resettable identi�cation and prove them

secure in both the CR1 and the CR2 settings. We then return to the zero-knowledge ideas and

provide a new paradigm based on zero-knowledge proofs of membership (as opposed to proofs of

knowledge).

The basic idea of the signature based paradigm is that Alice convinces Bob that she is Alice,

by being \able to" sign random documents of Bob's choice. This is known (folklore) to yield a

secure identi�cation scheme in the serial non-reset setting of [FFS] as long as the signature scheme

is secure in the sense of [GMRi], and also known to be secure in the concurrent non-reset setting

[BCK]. But it fails in general to be secure in the resettable setting because an adversary can obtain

signatures of di�erent messages under the same prover coins. What we show is that the paradigm

yields secure solutions in the resettable setting if certain special kinds of signature schemes are used.

(The signing algorithm should be deterministic and stateless.) In the CR1 setting the basic protocol

under this condition su�ces. The CR2 setting is more complex and we need to modify the protocol

to include \challenges" sent by the prover. Since signature schemes with the desired properties

exist (and even e�cient ones exist) we obtain both resettable identi�cation schemes proven secure

under minimal assumptions for both the CR1 and the CR2 settings, and also obtain some e�cient

speci�c protocols.
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In the encryption based paradigm, Alice convinces Bob she is Alice, by being \able to" de-

crypt ciphertexts which Bob created. While the basic idea goes back to symmetric authentica-

tion techniques of the seventies, modern treatments of this paradigm appeared more recently in

[DDN1, DDN2, BCK, DNS] but did not consider reset attacks. We show that under an appropriate

condition on the encryption scheme |namely that it be secure against chosen-ciphertext attacks|

a resettable identi�cation protocol can be obtained. As before the simple solution for the CR1

settings needs to be modi�ed before it will work in the CR2 setting.

In the zero-knowledge proofs of membership paradigm, Alice convinces Bob she is Alice, by

being \able to" prove membership in a hard language language L, rather than by proving she has

a witness for language L. She does so by employing a resettable zero-knowledge proof of language

membership for L as de�ned in [CGGM] . Both Alice and Bob will need to have a public-key

to enable the protocol. Alice's public-key de�nes who she is, and Bob's public-key enables him

to verify her identity in a secure way. We adopt the general protocol for membership in NP

languages of [CGGM] for the purpose of identi�cation. The identi�cation protocols are constant

round. What makes this work is the fact that the protocol for language membership (x 2 L)

being zero-knowledge implies \learning nothing" about x in a very strong sense | a veri�er cannot

subsequently convince anyone else that x 2 L with non-negligible probability. We note that while

we can make this approach work using resettable zero-knowledge proofs, it does not seem to work

using resettable witness-indistinguishable or witness-hiding proofs.

1.4 Comparison with existing work

We clarify that the novel feature of our work is the consideration of reset attacks. However our

settings are de�ned in such a way that the traditional concurrent attacks as considered by [BR, DNS]

and others are incorporated, so that security against these attacks is achieved by our protocols.

In the setting of [FFS], the adversary �rst gets to interact with prover instances, but one by

one, meaning serially, and without reset; then in a second phase, it tries to convince the veri�er to

accept. Our CR1 setting is an extension of this in which the adversary's capabilities are enhanced

in two ways: it can query the prover instances concurrently, and it can reset them. In the setting

of [BR] and succeeding works, concurrency is already allowed, both in querying prover instances

and in being allowed to access these concurrently with the veri�er, but reset is not considered. Our

CR2 setting is thus an extension of their setting to allow reset attacks. However we also somewhat

simplify their framework by restricting ourselves to identi�cation, not identi�cation combined with

session key distribution, and to unilateral identi�cation as opposed to mutual.

2 Security of identi�cation protocols

The adversary model here |allowing reset attacks in a concurrent execution setting| is the

strongest model for identi�cation considered to date. It is convenient to de�ne two versions of

the model: Concurrent-Reset-1 (CR1) and Concurrent-Reset-2 (CR2). While both models allow

concurrent reset attacks on provers, in CR1 |which models smartcard based identi�cation and

extends the setting of [FFS]| the adversary is allowed access to provers only prior to its attempt

to convince the veri�er to accept, while in CR2 |which models network or \Internet" based identi-

�cation and extends the setting of [BR]| the adversary maintains access to the provers even while

trying to convince the veri�er to accept. The split enables us to take an incremental approach

both to the de�nitions and to the design of protocols, considering �rst the simpler CR1 setting and

then showing how to lift the ideas to the more complex CR2 setting. In this section we present
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Prover Veri�er
pk; sk ; Coins: RP pk ; Coins: RV

msg1
-

msg2
�

...
msgm(k)�1

�

msgm(k)
-

Output: sidP
Output: decision 2 faccept; rejectg

and: sidV

(pk; sk)  ID(keygen; k) | Randomized process to generate a public key pk and matching secret
key sk

msg2j+1  ID(prvmsg; sk;msg1k � � �msg2j ;RP ) | (1 � 2j + 1 � m(k)) Next prover message as a
function of secret key, conversation pre�x and coins RP

msg2j  ID(vfmsg; pk;msg1k � � � kmsg2j�1;RV ) | (2 � 2j � m(k) � 1) Next veri�er message as a
function of public key, conversation pre�x and coins RV

sidP  ID(prvsid; sk;msg1k � � � kmsgm(k);RP ) | Prover's session id as a function of secret key, full
conversation and coins

sidV kdecision  ID(vfend; pk;msg1k � � � kmsgm(k);RV ) | Veri�er session id and decision (accept or
reject) as a function of public key, full conversation and coins

Figure 1: The prover sends the �rst and last messages in an m(k)-move identi�cation protocol at

the end of which the veri�er outputs a decision and each party optionally outputs a session id. The

protocol description function ID speci�es all processes associated to the protocol.

de�nitions for both settings by appropriately adapting and extending [FFS] for the CR1 case and

[BR, BPR] for the CR2 case.

Notation. If A(�; �; : : :) is a randomized algorithm then y  A(x1; x2; : : : ;R) means y is assigned

the unique output of the algorithm on inputs x1; x2; : : : and coins R, while y  A(x1; x2; : : :) is

shorthand for �rst picking R at random (from the set of all strings of some appropriate length)

and then setting y  A(x1; x2; : : : ;R). If x1; x2; : : : are strings then x1kx2k � � � denotes an encoding

under which the constituent strings are uniquely recoverable. It is assumed any string x can be

uniquely parsed as an encoding of some sequence of strings. The empty string is denoted ".

The identification problem being considered. We are considering unilateral identi�cation.

(One party, the prover, wants to identify itself to another party, the veri�er. The other possibility

is multilateral identi�cation in which both parties want to identify themselves to each other.) We

are in a public-key setting, also called the asymmetric setting. (The prover's public key is known

to the veri�er. Other possibilities are that the identi�cation is based on shared keys, also called the

symmetric setting, or involves a trusted authentication server, the so-called three party setting.) In

some contexts |notably that of authenticated session-key exchange in a concurrent setting| the

identi�cation problem has been called the entity authentication problem. It is the same problem.

Syntax of identification protocols. An identi�cation protocol proceeds as depicted in

Figure 1. The prover has a secret key sk whose matching public key pk is held by the veri�er.

(In practice the prover might provide its public key, and the certi�cate of this public key, as part
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of the protocol, but this is better slipped under the rug in the model.) Each party computes its

next message as a function of its keys, coins and the current conversation pre�x. The number of

moves m(k) is odd so that the �rst and last moves belong to the prover. (An identi�cation protocol

is initiated by the prover who at the very least must provide a request to be identi�ed.) At the

end of the protocol the veri�er outputs a decision to either accept or reject. Each party may also

output a session id. (Sessions ids are relevant in the CR2 setting but can be ignored for the CR1

setting.) A particular protocol is described by a (single) protocol description function ID which

speci�es how all associated processes |key generation, message computation, session id or deci-

sion computation| are implemented. (We say that ID is for the CR1 setting if sidP = sidV = ",

meaning no session ids are generated.) The second part of Figure 1 shows how it works: the �rst

argument to ID is a keyword |one of keygen, prvmsg, vfmsg, prvsid, vfend| which invokes the

subroutine responsible for that function on the other arguments.

Completeness. Naturally, a correct execution of the protocol (meaning one in the absence of
an adversary) should lead the veri�er to accept. To formalize this \completeness" requirement
we consider an adversary-free execution of the protocol ID which proceeds as described in the
following experiment:

(pk; sk) ID(keygen; k) ; Choose tapes RP ; RV at random
msg1  ID(prvmsg; sk; ";RP )
For j = 1 to bm(k)=2c do

msg2j  ID(vfmsg; pk;msg1k � � � kmsg2j�1;RV )
msg2j+1  ID(prvmsg; sk;msg1k � � � kmsg2j ;RP )

EndFor

sidP  ID(prvsid; sk;msg1k � � � kmsgm(k);RP )
sidV kdecision ID(vfend; pk;msg1k � � � kmsgm(k);RV )

The completeness condition is that, in the above experiment, the probability that sidP = sidV and

decision = accept is one. (The probability is over the coin tosses of ID(keygen; k) and the random

choices of RP ; RV .) As always, the requirement can be relaxed to only ask for a probability close

to one.

Experiments and settings. Fix an identi�cation protocol description function ID and an ad-

versary I. Associated to them are two experiments. Experimentid-srID;I(k), depicted in Figure 2, is

used to de�ne the security of ID in the CR1 setting. (In this context it is understood that ID
is for the CR1 setting, meaning does not produce session ids.) Experimentid-crID;I(k), depicted in

Figure 3, is used to de�ne the security of ID in the CR2 setting. The experiments give the adver-

sary appropriate access to prover instance oracles Prover1;Prover2; : : : and a single veri�er oracle,

let it query these subject to certain restrictions imposed by the experiment, and then determine

whether it \wins". The interface to the prover instance oracles and the veri�er oracle (which, in the

experiment, are implicit, never appearing by name) is via oracle queries; the experiment enumerates

the types of queries and shows how answers are provided to them.

Each experiment begins with some initializations which include choosing of the keys. Then

the adversary is invoked on input the public key. A WakeNewProver query activates a new prover

instance Proverp by picking a random tape Rp for it. (A random tape for a prover instance is

chosen exactly once and all messages of this prover instance are then computed with respect to

this tape. The tape of a speci�c prover instance cannot be changed, or \reset", once chosen.)

A Send(prvmsg; i; x) query |viewed as sent to prover instance Proveri| results in the adversary

being returned the next prover message computed as ID(prvmsg; sk; x;Ri). (It is assumed that x =

msg1k � � � kmsg2j is a valid conversation pre�x, meaning contains an even number of messages 2j <

m(k), else the query is not valid.) Resetting is captured by allowing arbitrary (valid) conversation
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Experimentid-srID;I(k) | Execution of protocol ID with adversary I and security parameter k in the
CR1 setting

Initialization:

(1) (pk; sk) ID(keygen; k) // Pick keys via randomized key generation algorithm //

(2) Choose tape RV for veri�er at random ; CV  0 // Coins and message counter for veri�er //

(3) p 0 // Number of active prover instances //

Execute adversary I on input pk and reply to its oracle queries as follows:

� When I makes query WakeNewProver // Activate a new prover instance //

(1) p p+ 1 ; Pick a tape Rp at random ; Return p

� When I makes query Send(prvmsg; i;msg1k � � � kmsg2j) with 0 � 2j < m(k) and 1 � i � p

(1) If CV 6= 0 then Return ? // Interaction with prover instance allowed only before inter-
action with veri�er begins //

(2) msg2j+1  ID(prvmsg; sk;msg1k � � � kmsg2j ;Ri)

(3) Return msg2j+1

� When I makes query Send(vfmsg;msg1k � � � kmsg2j�1) with 1 � 2j � 1 � m(k)

(1) CV  CV +2

(2) If 2j < CV then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 < m(k)�1 then msg2j  ID(vfmsg; pk;msg1k � � � kmsg2j�1;RV ) ; Return msg2j

(4) If 2j�1=m(k) then decision ID(vfend; pk;msg1k � � � kmsg2j ;RV )

(5) Return decision

Did I win? When I has terminated set WinI = true if decision = accept.

Figure 2: Experiment describing execution of identi�cation protocol ID with adversary I and

security parameter k in the CR1 setting.

pre�xes to be queried. (For example the adversary might try msg1kmsg2 for many di�erent values

of msg2, corresponding to successively resetting the prover instance to the point where it receives

the second protocol move.) Concurrency is captured by the fact that any activated prover instances

can be queried.

A Send(vfmsg; x) query is used to invoke the veri�er on a conversation pre�x x and results in the

adversary being returned either the next veri�er message computed as ID(vfmsg;pk; x;RV ) |this

when the veri�er still has a move to make| or the decision computed as ID(vfend;pk; x;RV ) |

this when x corresponds to a full conversation. (Here RV was chosen at random in the experiment

initialization step. It is assumed that x = msg1k � � � kmsg2j�1 is a valid conversation pre�x, meaning

contains an odd number of messages 1 � 2j � 1 � m(k), else the query is not valid.) Unlike a

prover instance, resetting the (single) veri�er instance is not allowed. (Our signature and encryption

based protocols are actually secure even if veri�er resets are allowed, but since the practical need

to consider this attack is not apparent, the de�nition excludes it.) This is enforced explicitly in

the experiments via the veri�er message counter CV . We now come to the di�erence in the two

settings:

CR1 setting: The adversary's actions are divided into two phases. In the �rst phase it interacts with

the prover instances, not being allowed to interact with the veri�er; in the second phase it is denied

access to the prover instances and tries to convince the veri�er to accept. Experimentid-srID;I(k)
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Experimentid-crID;I(k) | Execution of protocol ID with adversary I and security parameter k in the
CR2 setting

Initialization:

(1) (pk; sk) ID(keygen; k) // Pick keys via randomized key generation algorithm //

(2) Choose tape RV for veri�er at random ; CV  0 // Coins and message counter for veri�er //

(3) p 0 // Number of active prover instances //

Execute adversary I on input pk and reply to its oracle queries as follows:

� When I makes query WakeNewProver // Activate a new prover instance //

(1) p p+ 1 ; SIDp  ; ; Pick a tape Rp at random ; Return p

� When I makes query Send(prvmsg; i;msg1k � � � kmsg2j) with 0 � 2j < m(k) and 1 � i � p

(1) msg2j+1  ID(prvmsg; sk;msg1k � � � kmsg2j ;Ri) ; s msg2j+1

(2) If 2j+1=m(k) then

sid ID(prvsid; sk;msg1k � � � kmsg2j+1;Ri) ; s sksid

SIDi  SIDi [ fsidg

(3) Return s

� When I makes query Send(vfmsg;msg1k � � � kmsg2j�1) with 1 � 2j � 1 � m(k)

(1) CV  CV +2

(2) If 2j < CV then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 < m(k)�1 then msg2j  ID(vfmsg; pk;msg1k � � � kmsg2j�1;RV ) ; Return msg2j

(4) If 2j�1=m(k) then sidV kdecision ID(vfend; pk;msg1k � � � kmsg2j ;RV ) ;
Return sidV kdecision

Did I win? When I has terminated set WinI = true if either of the following are true:

(1) decision = accept and sidV 62 SID1 [ � � � [ SIDp.

(2) There exist 1 � a < b � p with SIDa \ SIDb 6= ;

Figure 3: Experiment describing execution of identi�cation protocol ID with adversary I and

security parameter k in the CR2 setting.

enforces this by returning ? in reply to a Send(prvmsg; i; x) unless CV = 0.

CR2 setting: The prover instances and the veri�er instance are available simultaneously to the

adversary. In particular it can relay message back and forth between them.

What's a win? In the CR1 setting it is easy to say what it should mean for the adversary to

\win:" it should make the veri�er instance accept. The parameter WinI is set accordingly in

Experimentid-srID;I(k). What it means for the adversary to \win" is less clear in the CR2 setting

because here there is one easy way for the adversary to make the veri�er accept: play \man in the

middle" between the veri�er and some prover instance, relaying messages back and forth between

them until the veri�er accepts. Yet, it is clear that this is not really an attack; there is no harm in the

veri�er accepting under these conditions since in fact it was actually talking to the prover. Rather

this example highlights the fact that the de�nitional issues of the second setting are signi�cantly

more challenging than those of the �rst setting: how exactly do we say what it means for the

adversary to win? Luckily, however, this problem has already been solved. The �rst proposed

de�nition, due to Bellare and Rogaway [BR], is based on the idea of \matching conversations" and
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corresponds to a very stringent security requirement. Another possible de�nition is that of [BPR]

which uses the idea of \matching session ids." (The idea goes back to Bellare, Petrank, Racko�

and Rogaway, 1996.) We will use the latter de�nitional approach.

View a session id shared between a prover instance and the veri�er as a \connection name,"

enabling the veri�er to di�erentiate between di�erent prover instances. It is not secret, and in

particular will be given to the adversary. (In setting one, even though there are many prover

instances, a session id is not necessary to di�erentiate them from the point of view of the veri�er

because only one prover instance can interact with the veri�er at any time.) In the absence of an

adversary, the session ids output by a prover instance and the veri�er at the end of their interaction

must be the same, but with high probability no two di�erent prover instances should have the same

session id, since otherwise the veri�er cannot tell them apart. Victory for the adversary now

will correspond to making the veri�er accept with a session id not held by any prover instance.

(We also declare the adversary victorious if it \confuses" the veri�er by managing to make two

di�erent prover instances output the same session id.) The parameter WinI is set accordingly in

Experimentid-crID;I(k). Session ids are public in the sense that the adversary gets to see those created

by any instances with which it interacts.

Definitions of security. The experiments indicate under what conditions adversaries are de-

clared to \win." The de�nition of the protocol is responsible for ensuring that both parties reject

a received conversation pre�x if it is inconsistent with their coins. It is also assumed that the

adversary never repeats an oracle query. We can now provide de�nitions of security for protocol

ID.

De�nition 2.1 [Security of an ID protocol in the CR1 setting] Let ID be an identi�cation

protocol description for the CR1 setting. Let I be an adversary (called an impersonator in this

context) and let k be the security parameter. The advantage of impersonator I is

Advid-cr1
ID;I (k) = Pr [WinI = true ]

where the probability is with respect to Experimentid-srID;I(k). Protocol ID is said to be polynomially-

secure in the CR1 setting if Advid-cr1
ID (�) is negligible for any impersonator I of time-complexity

polynomial in k.

We adopt the convention that the time-complexity t(k) of an adversary I is the execution time of the

entire experiment Experimentid-srID;I(k), including the time taken for initialization, computation of

replies to adversary oracle queries, and computation of WinI . We also de�ne the query-complexity

q(k) of I as the number of Send(prvmsg; �; �) queries made by I in Experimentid-srID;I(k). It is always

the case that q(k) � t(k) so an adversary of polynomial time-complexity has polynomial query-

complexity. These de�nitions and conventions can be ignored if polynomial-security is the only

concern, but simplify concrete security considerations to which we will pay some attention later.

De�nition 2.2 [Security of an ID protocol in the CR2 setting] Let ID be an identi�cation

protocol description. Let I be an adversary (called an impersonator in this context) and let k be

the security parameter. The advantage of impersonator I is

Advid-cr2
ID;I (k) = Pr [WinI = true ]

where the probability is with respect to Experimentid-crID;I(k). Protocol ID is said to be polynomially-

secure in the CR2 setting if Advid-cr2
ID (�) is negligible for any impersonator I of time-complexity

polynomial in k.

We adopt the same conventions regarding time and query complexity as above.
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(pk; sk) DS(keygen; k) | Generate public key pk and matching secret key sk

sig DS(sign; sk;msg) | Compute signature of message msg

decision DS(verify; pk;msg; sig) | Verify that sig is a valid signature of msg (accept or reject)

Figure 4: The digital signature scheme description DS describes all functionalities associated to

the signature scheme.

Identification as a prelude to secure sessions and the role of session keys. Iden-

ti�cation is hardly an end in itself: an entity goes through an identi�cation process in order to

then conduct some transaction that is allowed only to this entity. For example, you �rst identify

yourself to the ATM machine and then withdraw cash. As this example indicates we imagine the

transaction as an exchange between prover and veri�er taking place after the veri�er has accepted

in the identi�cation protocol. In the smartcard setting (setting one) this picture is valid because

once identi�cation is completed, an adversary cannot step in. (Your card is in the ATM machine

and until it is removed the adversary is cut o�.) In the Internet setting (setting two) however,

identi�cation by itself is largely useless because an adversary can \hijack" the ensuing session,

meaning impersonate the prover in the transaction ows that follow the identi�cation, by simply

waiting for the veri�er to accept and then sending its own messages to the veri�er. To have secure

transactions, some information from the identi�cation process must be used to authenticate ows

in the transaction. This information is usually a session key. Identi�cation without session key

exchange is for practical purposes hardly useful in setting two, which is why previous works such

as [BR, BPR] have looked at the problems in combination. In this paper however our focus is the

new issues raised by reset attacks and in order to get a better understanding of them in setting

two we simplify by decoupling the identi�cation and the session key exchange. Our protocols can

be modi�ed to also distribute a session key.

The need for multiple prover instances. Could we simplify the model by providing only a

single prover-instance oracle? The answer is no. We can give an example protocol that is secure if

the adversary can access only a single prover instance, but is insecure if the adversary can access

polynomially-many prover instances.

3 Primitives used and their security

Our protocols make use of signature schemes satisfying some special properties, and of standard

chosen-ciphertext secure encryption schemes. This section recalls the necessary background.

3.1 Stateless digital signature schemes

Signature schemes. A digital signature scheme is speci�ed by a description function DS, which,
as indicated in Figure 4, speci�es how keys are generated, how messages are signed, and how

candidate signatures are veri�ed. (As usual it is required that true signatures |meaning those

generated by DS(sign; sk; �)| always successfully pass the veri�cation test.) The key generation

algorithm is probabilistic and the veri�cation algorithm is deterministic. The signature algorithm

merits a separate discussion which will come later.

Security of a signature scheme. The usual de�nition of security against chosen-message

attack is adopted [GMRi].
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De�nition 3.1 [Security of a digital signature scheme] Let DS be a digital signature scheme

description, F an adversary (called a forger in this context) having access to an oracle, and k the

security parameter. De�ne

ExperimentdsDS;F (k)

(pk; sk) DS(keygen; k) ; WinF  false

(msg; sig) FDS(sign;sk;�)(pk)

If DS(verify;pk;msg; sig) = accept and F never made oracle query msg

then WinF  true

The advantage of forger F is

Advds
DS;F (k) = Pr [WinF = true ]

where the probability is with respect to ExperimentdsDS;F (k). Digital signature scheme DS is said

to be polynomially-secure if Advds
DS(�) is negligible for any forger F of time-complexity polynomial

in k.

The time-complexity t(k) of adversary F is de�ned as the execution time of ExperimentdsDS;F (k),

as with previous de�nitions.

State and randomization in signing. The signing algorithm DS(sign; sk; �) might be stateful

(and possibly randomized); randomized but not stateful; or deterministic and stateless. We label

a scheme in this regard according to the attribute of its signing algorithm, meaning the scheme

is referred to as stateful (resp. stateless, randomized, deterministic) if the signing algorithm is

stateful (resp. stateless, randomized, deterministic). The di�erence is important to the application

to identi�cation so we detail it. In a stateful scheme |this is called \history dependent" in some

works [GMRi]| the signer maintains some state information state across invocations of the signing

procedure. When a message is received, the signer ips some coins; then produces a signature as

a function of state, the coins ipped, the message and the keys; then updates state as a function

of the coins and message; �nally stores state so that it is available at the next invocation of the

signing procedure. In a randomized but stateless scheme, the signing algorithm ips coins upon

each invocation, but no global state is maintained across invocations. In the simplest case the

signing algorithm is not randomized (ie. deterministic) and not stateful (ie. stateless). It associates

to any message a unique signature.

De�nition 3.1 applies regardless of whether the signing procedure is stateful or stateless, ran-

domized or deterministic. But we stress that the oracle DS(sign; sk; �) provided to the forger F

in De�nition 3.1 is responsible for implementing any statefulness or randomization in the signing

process and does so as described above. In particular, if the scheme is randomized, fresh coins are

picked and used upon each invocation of the oracle; if the scheme is stateful, the oracle maintains

and updates the state. (In particular the adversary has no way to force the oracle to reuse a

particular set of coins for two signatures. This will be important later.)

The basic versions of the schemes of [GMRi, BeMi, NY1, Ro] are (randomized and) stateful. The

more e�cient schemes of [DwNa, CD] are also (randomized and) stateful. Examples of (randomized

but) stateless schemes are those of [GHR, CS2]. Although there seem to be few schemes that are

\naturally" stateless, deterministic and secure, any signature scheme can be made stateless and

deterministic while preserving security. A well-known transformation |attributed in [GMRi] to

Goldreich and Levin| transforms a stateful scheme into a (randomized but) stateless one by using

a binary tree structure. A stateless signing algorithm can be derandomized |while preserving

statelessness and security| via the following (folklore) trick: the secret key is expanded to include

a key K specifying an instance FK of a family of pseudorandom functions [GGM], and to sign
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(pk; sk) AE(keygen; k) | Generate public key pk and matching secret key sk

ctxt AE(enc; pk;msg) | Compute encryption of message msg

out  AE(dec; pk; sk;ctxt) | The decryption procedure takes the public key, secret key and a
ciphertext ctxt and returns out which is either a message msg or the special symbol ? to indicate
it considered the ciphertext invalid.

Figure 5: The asymmetric encryption scheme description AE describes all functionalities associated
to the encryption scheme.

message msg compute Rmsg = FK(msg) and use Rmsg as the coins for the signing algorithm.

Combining this with Rompel's result [Ro] implies:

Proposition 3.2 If there exists a one-way function then there exists a stateless, determinstic

polynomially-secure digital signature scheme.

This addresses the \theoretical" question of the existence of stateless, deterministic signature

schemes by indicating they exist under the minimal possible complexity assumption. The next

question |on the \practical" side| is about the cost of available solutions. The most e�cient

known signature schemes that are provably-secure under standard |meaning non-random oracle|

assumptions are those of [GHR, CS2]. These schemes are randomized but stateless. Derandom-

ization is cheap if properly implemented: Instantiate the pseudorandom function used in the de-

randomization process discussed above with a block cipher, and the impact on the cost of signing

|already involving public key operations| is negligible. In this way we get e�cient, stateless, de-

terministic signature schemes that are provably polynomially-secure under standard assumptions.

(One can also consider the earlier schemes of [DwNa, CD] but they are less e�cient than those of

[GHR, CS2] and also are stateful. Making a stateful scheme stateless seems to be more costly than

derandomizing an already stateless scheme.)

3.2 CCA2-secure Encryption schemes

Encryption schemes. An asymmetric encryption scheme is speci�ed by a description function

AE , which as indicated, in Figure 5, speci�es how keys are generated, how messages are encrypted,

and how ciphertexts are decrypted. (As usual it is required that if ciphertext ctxt is generated

via AE(enc;pk;msg) then AE(dec;pk; sk;ctxt) returns msg.) The key generation and encryption

algorithms are probabilistic while the decryption algorithm is deterministic.

Security of an encryption scheme. We require indistinguishability against chosen-ciphertext

attack. The version of the de�nition we adopt, from [BBM], allows the adversary multiple \test"

message pairs rather than a single one, and was shown by them to be polynomially equivalent to the

more standard formuation of [RS]. De�ne LR(msg0;msg1; b) = msgb for any equal-length strings

msg0;msg1 and bit b.

De�nition 3.3 [Security of an encryption scheme under chosen-ciphertext attack] Let

AE be an asymmetric encryption scheme description. Let E be an adversary (called an eavesdropper

in this context) having access to two oracles, the �rst taking as input any two strings of equal length

and the second any string. Let k be the security parameter. De�ne
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Experimentlr-ccaAE;E(k)

(pk; sk) AE(keygen; k) ; WinE  false

cb
R f0; 1g // Random challenge bit //

gb EAE(enc;pk;LR(�;�;cb));AE(dec;pk;sk;�)(pk) // Eavesdropper's guess bit //

If gb = cb and AE(dec;pk; sk; �) was never called on a ciphertext

returned by AE(enc;pk; LR(�; �;cb))
then WinE  true

The advantage of eavesdropper E is

Advds
AE;E(k) = 2 � Pr [WinE = true ]� 1

where the probability is with respect to Experimentlr-ccaAE ;E(k). Asymmetric encryption scheme AE is
said to be polynomially-secure ifAdvlr-cca

AE (�) is negligible for any eavesdropper E of time-complexity

polynomial in k.

We call AE(enc;pk; LR(�; �;cb)) the \lr-encryption oracle" where \lr" stands for \left or right."

The most e�cient scheme proven to meet this notion under a standard assumption is that of

[CS1].

4 CR1-secure Identi�cation protocols

Three paradigms are illustrated: signature based, encryption based, and zero-knowledge based.

4.1 A signature based protocol

This section assumes knowledge of background in digital signatures as summarized in Section 3.1.

Signature based identification. A natural identi�cation protocol is for the veri�er to issue

a random challenge chV and the prover respond with a signature of chV computed under its

secret key sk. (Pre�x the protocol with an initial start move by the prover to request start of an

identi�cation process, and you have a three move protocol.) This simple protocol can be proven

secure in the serial, non-resettable (ie. standard smartcard) setting of [FFS] as long as the signature

scheme meets the notion of security of [GMRi] provided in De�nition 3.1. (This result seems to be

folklore.) The same protocol has also been proven to provide authentication in the concurrent, non-

resettable (ie. standard network) setting [BCK]. (The intuition in both cases is that the only thing

an adversary can do with a prover oracle is feed it challenge strings and obtain their signatures,

and if the scheme is secure against chosen-message attack this will not help the adversary forge a

signature of a challenge issued by the veri�er unless it guesses the latter, and the probability of the

last event can be made small by using a long enough challenge.) This protocol is thus a natural

candidate for identi�cation in the resettable setting.

However this protocol does not always provide security in the resettable setting. The intuition

described above breaks down because resetting allows an adversary to obtain the signatures of

di�erent messages under the same set of coins. (It can activate a prover instance and then query

it repeatedly with di�erent challenges, thereby obtaining their signatures with respect to a �xed

set of coin tosses.) As explained in Section 3.1, this is not covered by the usual notion of a chosen-

message attack used to de�ne security of signature schemes in [GMRi]. And indeed, for many

signature schemes it is possible to forge the signature of a new message if one is able to obtain the

signatures of several messages under one set of coins. Similarly, if the signing algorithm is stateful,

resetting allows an adversary to make the prover release several signatures computed using one
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Prover Veri�er
pk; sk ; Coins: RP = " pk ; Coins: RV = chV

start
-

chV
�

sig DS(sign; sk;chV )
sig

-

Output: decision = DS(verify; pk;chV ; sig)

ID(keygen; k) = DS(keygen; k) | ID has same key generation process as DS

ID(prvmsg; sk; x;RP ) where jRP j = 0

{ Parse x as msg1k � � � kmsgl
{ If l 62 f0; 2g then Return ?
{ If l = 0 then Return start

{ If jmsg2j 6= vcl(k) then Return ?
{ chV  msg2 ; sig DS(sign; sk;chV )
{ Return sig

ID(prvsid; sk; x;RP ) where jRP j = 0

{ Return "

ID(vfmsg; pk; x;RV ) where jRV j = vcl (k)

{ Parse x as msg1k � � � kmsgl
{ If l 6= 1 then Return ?
{ chV  RV

{ Return chV

ID(vfend; pk; x;RV ) where jRV j = vcl(k)

{ Parse x as msg1k � � � kmsgl
{ If l 6= 3 or msg2 6= RV then Return ?
{ chV  msg2 ; sig msg3

{ decision DS(verify; pk;chV ; sig)
{ Return "kdecision

Figure 6: Reset-secure identi�cation protocol ID for the CR1 setting based on a deterministic,

stateless digital signature scheme DS: Schematic followed by full protocol description.

value of the state variable |e�ectively, the prover does not get a chance to update its state is it

expects to| again leading to the possibility of forgery on a scheme secure in the standard sense.

The solution is simple: restrict the signature scheme to be stateless and deterministic. Section 3.1

explains how signatures schemes can be imbued with these attributes so that stateless, deterministic

signature schemes are available.

Protocol and security. Let DS be a deterministic, stateless signature scheme. Figure 6

illustrates the ows of the associated identi�cation protocol ID and then provides the protocol

description. (The latter includes several checks omitted in the picture but important for security

against resets.) A parameter of the protocol is the length vcl(k) of the veri�er's random challenge.

The prover is deterministic and has random tape " while the veri�er's random tape is chV . Refer

to De�nition 2.1 and De�nition 3.1 for the meanings of terms used in the theorem below, and to

Section A.1 for the proof.

Theorem 4.1 [Concrete security of the signature based ID scheme in the CR1 setting]

Let DS be a deterministic, stateless signature scheme, let vcl(�) be a polynomially-bounded func-

tion, and let ID be the associated identi�cation scheme as per Figure 6. If I is an adversary of

time-complexity t(�) and query-complexity q(�) attacking ID in the CR1 setting then there exists

a forger F attacking DS such that

Advid-cr2
ID;I (k) � Advds

DS;F (k) +
q(k)

2vcl(k)
: (1)

Furthermore F has time-complexity t(k) and makes at most q(k) signing queries in its chosen-
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message attack on DS.

This immediately implies the following:

Corollary 4.2 [Polynomial-security of the signature based ID scheme in the CR1 setting]

Let DS be a deterministic, stateless signature scheme, let vcl(k) = k, and let ID be the associated

identi�cation scheme as per Figure 6. If DS is polynomially-secure then ID is polynomially-secure

in the CR1 setting.

Corollary 4.2 together with Proposition 3.2 imply:

Corollary 4.3 [Existence of an ID scheme polynomially-secure in the CR1 setting] As-

sume there exists a one-way function. Then there exists an identi�cation scheme that is polynomially-

secure in the CR1 setting.

This means that we can prove the existence of an identi�cation protocol secure in the CR1 setting

under the minimal complexity assumption of a one-way function.

4.2 An encryption based protocol

Encryption based identification. The idea is simple: the prover proves its identity by proving

its ability to decrypt a ciphertext sent by the veri�er. This basic idea goes back to early work in en-

tity authentication where the encryption was usually symmetric (ie. private-key based). These early

protocols however had no supporting de�nitions or analysis. The �rst \modern" treatment is that of

[DDN1, DDN2] who considered the paradigm with regard to provding deniable authentication and

identi�ed non-malleability under chosen-cihphertext attack |equivalently, indistinguishability un-

der chosen-ciphertext attack [BDPR, DDN2]| as the security property required of the encryption

scheme. Results of [BCK, DNS, DDN1, DDN2] imply that the protocol is a secure identi�cation

scheme in the concurrent non-reset setting, but reset attacks have not been considered before.

Protocol and security. Let AE be an asymmetric encryption scheme polynomially-secure

against chosen-ciphertext attack. Figure 7 illustrates the ows of the associated identi�cation

protocol ID and then provides the protocol description. A parameter of this protocol is the length

vcl(k) of the veri�er's random challenge. The veri�er sends the prover a ciphertext formed by

encrypting a random challenge, and the prover identi�es itself by correctly decrypting this to send

the veri�er back the challenge. The prover is deterministic, having random tape ". We make the

coins Re used by the encryption algorithm explicit, so that the veri�er's random tape consists of the

challenge |a random string of length vcl(k) where vcl is a parameter of the protocol| and coins

su�cient for one invokation of the encryption algorithm. Refer to De�nition 2.1 and De�nition 3.3

for the meanings of terms used in the theorem below, and to Section A.2 for the proof.

Theorem 4.4 [Concrete security of the encryption based ID scheme in the CR1 setting]

Let AE be an asymmetric encryption scheme, let vcl(�) a polynomially-bounded function, and let

ID be the associated identi�cation scheme as per Figure 7. If I is an adversary of time-complexity

t(�) and query-complexity q(�) attacking ID in the CR1 setting then there exists an eavesdropper

E attacking AE such that

Advid-cr2
ID;I (k) � Advlr-cca

AE ;E(k) +
2q(k) + 2

2vcl(k)
: (2)

Furthermore E has time-complexity t(k), makes one query to its lr-encryption oracle, and at most

q(k) queries to its decryption oracle.
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Prover Veri�er
pk; sk ; Coins: RP = " pk ; Coins: RV = chV kRe

start
-

ctxt AE(enc; pk;chV ;Re)
ctxt

�

ptxt AE(dec; sk;ctxt)
ptxt

-

If chV = ptxt

then decision accept else decision reject

Output: decision

ID(keygen; k) = AE(keygen; k) | ID has same key generation process as AE

ID(prvmsg; sk; x;RP ) where RP = "

{ Parse x as msg1k � � � kmsgl
{ If l 62 f0; 2g then Return ?
{ If l = 0 then Return start

{ ctxt msg2 ; ptxt AE(dec; sk;ctxt)
{ If jptxtj 6= vcl(k) then Return ?
{ Return ptxt

ID(prvsid; sk; x;RP ) where RP = "

{ Return "

ID(vfmsg; pk; x;RV )

{ Parse RV as chV kRe with jchV j = vcl(k)
{ Parse x as msg1k � � � kmsgl
{ If l 6= 1 then Return ?
{ ctxt AE(enc; pk;chV ;Re)
{ Return ctxt

ID(vfend; pk; x;RV )

{ Parse RV as chV kRe with jchV j = vcl (k)
{ Parse x as msg1k � � � kmsgl
{ If l 6= 3 then Return ?
{ ptxt msg3 ; sid chV
{ If ptxt = chV
then decision accept else decision reject

{ Return "kdecision

Figure 7: Reset-secure identi�cation protocol ID for the CR1 setting based on a chosen-ciphertext

attack secure asymmetric encryption scheme AE: Schematic followed by full protocol description.

This immediately implies the following:

Corollary 4.5 [Polynomial-security of the encryption based ID scheme in the CR1 set-

ting] Let AE be an asymmetric encryption scheme, let vcl(k) = k, and let ID be the associated

identi�cation scheme as per Figure 7. If AE is polynomially-secure against chosen-ciphertext attack

then ID is polynomially-secure in the CR1 setting.

4.3 A zero-knowledge based protocol

As we discussed in the Introduction the idea of [FFS] of proving identity by employing a zero

knowledge proof of knowledge has been the accepted paradigm for identi�cation protocols in the

smartcard setting. Unfortunately, as we indicated, in the resettable setting this paradigm cannot

work.

Resetable Zero Knowledge Based Identity. We thus instead propose the following paradigm.

Let L be a hard NP language for which there is no known e�cient procedures for membership test-

ing but for which there exists a randomized generating algorithm G which outputs pairs (x;w),

where x 2 L and w is an NP-witness that x 2 L. (The distribution according to which (x;w) is
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generated should be one for which it is hard to tell whether x 2 L or not). Each user Alice will run

G to get a pair (x;w) and will then publish x as its public key. To prove her identity Alice will run

a resettable zero-knowledge proof that x 2 L.
Protocol. To implement the above idea we need resettable zero-knowledge proofs for L. For

this we turn to the work of [CGGM]. In [CGGM] two resettable zero-knowledge proofs for any

NP language are proposed: one which takes a non-constant number of rounds and works against

a computationally unbounded prover, and one which only takes a constant number of rounds and

works against computationally bounded provers (i.e argument) and requires the veri�ers to have

published public-keys which the prover can access. We propose to utilize the latter, for e�ciency

sake. Thus, to implement the paradigm, we require both prover and veri�er to have public-keys

accessible by each other. Whereas the prover's public key is x whose membership in L it will

prove to the veri�er, the veri�er's public key in [CGGM] is used for specifying a perfectly private

computationally binding commitment scheme which the prover must use during the protocol. (Such

commitment schemes exist based for example on the strong hardness of Discrete Log Assumption.)

Security. We briey outline how to prove that the resulting ID protocol is secure in the CR1

setting. Suppose not, and that after launching a CR1 attack, an imposter can now falsely identify

himself with a non-negligible probability. Then, we will construct a polynomial time algorithm A

to decide membership in L. On input x, A �rst launches the o�-line resetting attack using x as the

public key and the simulator { which exists by the zero-knowledge property { to obtain views of the

protocol execution. (This requires that the simulator be black-box, but this is true in the known

protocols.) If x 2 L, this view should be identical to the view obtained during the real execution,

in which case a successful attack will result, which is essentially a way for A to �nd a language

membership proof. If x not in L, then by the soundness property of a zero-knowledge proof, no

matter what the simulator outputs, it will not be possible to prove membership in L.

5 CR2-secure Identi�cation protocols

The protocols of Section 4 are not secure in the CR2 setting. We show how the same paradigms

can be applied to yield modi�ed protocols that are secure in the CR2 setting.

5.1 A signature based protocol

The signature based protocol of Figure 6 which we proved secure in the CR1 setting is not secure

in the CR2 setting, even in the absence of reset attacks, since there are no session ids. Indeed,

if an adversary activates two prover instances and plays the role of the veri�er with each, then

both accept with the same session id, so the adversary wins as per our de�nition. In fact any

identi�cation protocol in which the session ids have length O(log k) is not polynomially-secure in

the CR2 setting.

We modify the protocol of Figure 6 by having the prover select a random \challenge" and sign

the concatenation of this with the veri�er's challenge. The session id (for both the prover and the

veri�er) is the concatenation of the two challenges. (This protocol is related to the signature based

MT-authenticator of [BCK].) We will prove that this protocol is secure in the CR2 setting.

Protocol and security. Let DS be a deterministic, stateless signature scheme. Figure 8

illustrates the ows of the associated identi�cation protocol ID and then provides the protocol

description. (The latter includes several checks omitted in the picture but important for security

against resets.) Parameters of the protocol are the length vcl(k) of the veri�er's random challenge
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Prover Veri�er
pk; sk ; Coins: RP = chP pk ; Coins: RV = chV

start
-

chV
�

sig DS(sign; sk;chV kchP )
chP ksig

-

Output: sidP = chV kchP

Output: sidV = chV kchP
and: decision = DS(verify; pk;

chV kchP ; sig)

ID(keygen; k) = DS(keygen; k) | ID has same key generation process as DS

ID(prvmsg; sk; x;RP ) where jRP j = pcl(k)

{ Parse x as msg1k � � � kmsgl
{ If l 62 f0; 2g then Return ?
{ If l = 0 then Return start

{ If jmsg2j 6= vcl(k) then Return ?
{ chV  msg2 ; chP  RP

{ sig DS(sign; sk;chV kchP )
{ Return chP ksig

ID(prvsid; sk; x;RP ) where jRP j = pcl (k)

{ Parse x as msg1k � � � kmsgl
{ If l 6= 3 or jmsg2j 6= vcl (k) then Return ?
{ chV  msg2 ; sidP  chV kRP

{ Return sidP

ID(vfmsg; pk; x;RV ) where jRV j = vcl (k)

{ Parse x as msg1k � � � kmsgl
{ If l 6= 1 then Return ?
{ chV  RV

{ Return chV

ID(vfend; pk; x;RV ) where jRV j = vcl(k)

{ Parse x as msg1k � � � kmsgl
{ If l 6= 3 or msg2 6= RV then Return ?
{ Parse msg3 as chP ksig with jchP j = pcl(k)
{ chV  msg2 ; sidV  chV kchP
{ decision DS(verify; pk;chV kchP ; sig)
{ Return (sid; decision)

Figure 8: Reset-secure identi�cation protocol ID for the CR2 setting based on a deterministic,

stateless digital signature scheme DS: Schematic followed by full protocol description.

and the length pcl(k) of the prover's random challenge. The random tape, for each party, is its

challenge. Refer to De�nition 2.2 and De�nition 3.1 for the meanings of terms used in the theorem

below. The proof is similar to that of Theorem 4.1 and is omitted.

Theorem 5.1 [Concrete security of the signature based ID scheme in the CR2 setting]

Let DS be a deterministic, stateless signature scheme, let vcl(�) and pcl (�) be polynomially-bounded

functions, and let ID be the associated identi�cation scheme as per Figure 8. If I is an adversary

of time-complexity t(�) and query-complexity q(�) attacking ID in the CR2 setting then there exists

a forger F attacking DS such that

Advid-cr2
ID;I (k) � Advds

DS;F (k) +
q(k)

2vcl(k)
+
q(k)2 � q(k)

2pcl(k)+1
: (3)

Furthermore F has time-complexity t(k) and makes at most q(k) signing queries in its chosen-

message attack on DS.

As before we get two corollaries:

Corollary 5.2 [Polynomial-security of the signature based ID scheme in the CR2 setting]

Let DS be a deterministic, stateless signature scheme, let vcl(k) = pcl(k) = k, and let ID be
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Prover Veri�er
pk; sk ; Coins: RP = nonceP pk ; Coins: RV = chV kRe

nonceP
-

ctxt AE(enc; pk;nonceP kchV ;Re)
ctxt

�

ptxt AE(dec; pk; sk;ctxt)
Parse ptxt as nonceP kchP

chP
-

If chV = chP
then decision accept else decision reject

Output: sidP = nonceP kchP
Output: sidV = nonceP kchV

and: decision

ID(keygen; k) = AE(keygen; k) | ID has same key generation process as AE

ID(prvmsg; sk; x;RP ) where jRP j = pcl(k)

{ Parse x as msg1k � � � kmsgl
{ If l 62 f0; 2g then Return ?
{ If l = 0 then Return RP

{ ctxt msg2 ; ptxt AE(dec; sk;ctxt)
{ If jptxtj 6= pcl(k)+vcl(k) then Return ?
{ Parse ptxt as nonceP kchP with

jnonceP j = pcl(k) and jchP j = vcl(k)
{ If nonceP 6= RP then Return ?
{ Return chP

ID(prvsid; sk; x;RP ) where jRP j = pcl(k)

{ Parse x as msg1k � � � kmsgl
{ If l 6= 3 then Return ?
{ chP  msg3 ; sid RP kchP
{ If jchP j 6= vcl(k) then Return ?
{ Return sid

ID(vfmsg; pk; x;RV )

{ Parse RV as chV kRe with jchV j = vcl(k)
{ Parse x as msg1k � � � kmsgl
{ If l 6= 1 then Return ?
{ If jmsg1j 6= pcl(k) then Return ?
{ ctxt AE(enc; pk;msg1kchV ;Re)
{ Return ctxt

ID(vfend; pk; x;RV )

{ Parse RV as chV kRe with jchV j = vcl(k)
{ Parse x as msg1k � � � kmsgl
{ If l 6= 3 then Return ?
{ If jmsg1j 6= pcl(k) then Return ?
{ sid msg3kchV
{ If msg3 = chV
then decision accept else decision reject

{ Return (sid; decision)

Figure 9: Reset-secure identi�cation protocol ID for the CR2 setting based on a chosen-ciphertext

attack secure asymmetric encryption scheme AE: Schematic followed by full protocol description.

the associated identi�cation scheme as per Figure 8. If DS is polynomially-secure then ID is

polynomially-secure in the CR2 setting.

Corollary 5.3 [Existence of an ID scheme polynomially-secure in the CR2 setting] As-

sume there exists a one-way function. Then there exists an identi�cation scheme that is polynomially-

secure in the CR2 setting.

5.2 An encryption based protocol

The encryption based protocol of Figure 7 (which we proved secure in the CR1 setting) does not

have session ids, so the discussion above implies that it is not secure in the CR2 setting. Modifying

this protocol to make it secure in the CR2 setting is more tricky than in the case of the signature
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based protocol. The �rst thought is to have the prover pick some random challenge chP and

convey it, in the clear, along with ptxt. Both parties then set their session id to chP kptxt. But
this protocol is insecure. An adversary can modify chP after the prover sends it, and the veri�er

would still accept, but with a session id not shared by any prover instance, so that the adversary

wins. (Modi�cation of chP by the veri�er in the protocol of Figure 8 would lead to the veri�er

rejecting because of the attached signature, but we do not want to use signatures here.) Instead

we have the prover send a nonce (random string) in its �rst move, and have the veri�er encrypt

the concatenation of the prover and veri�er challenges.

Protocol and security. Let AE be an asymmetric encryption scheme polynomially-secure

against chosen-ciphertext attack. Figure 9 illustrates the ows of the associated identi�cation

protocol ID and then provides the protocol description. Parameters of the protocol are the length

vcl(k) of the veri�er's random challenge and the length pcl(k) of the prover's random challenge.

The random tape of the prover is its nonce, and that of the veri�er is its challenge together with

coins Re su�cient for one invokation of the encryption algorithm. Refer to De�nition 2.2 and

De�nition 3.3 for the meanings of terms used in the theorem below. The proof is similar to that of

Theorem 4.4 and is omitted.

Theorem 5.4 [Concrete security of the encryption based ID scheme in the CR2 setting]

Let AE be an asymmetric encryption scheme, let vcl(�) and pcl (�) be polynomially-bounded func-

tions, and let ID be the associated identi�cation scheme as per Figure 9. If I is an adversary of

time-complexity t(�) and query-complexity q(�) attacking ID in the CR2 setting then there exists

an eavesdropper E attacking AE such that

Advid-cr2
ID;I (k) � Advlr-cca

AE;E(k) +
2q(k) + 2

2vcl(k)
+
q(k)2 � q(k)

2pcl(k)
: (4)

Furthermore E has time-complexity t(k), makes one query to its lr-encryption oracle, and at most

q(k) queries to its decryption oracle.

As before we get the corollary:

Corollary 5.5 [Polynomial-security of the encryption based ID scheme in the CR2 set-

ting] Let AE be an asymmetric encryption scheme, let vcl(k) = pcl(k) = k, and let ID be the asso-

ciated identi�cation scheme as per Figure 9. If AE is polynomially-secure against chosen-ciphertext

attack then ID is polynomially-secure in the CR2 setting.
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Adversary FDS(sign;sk;�)(pk) | Forger given signing oracle

Initialization:

(1) Choose RV = chV of length vcl(k) at random ; CV  0 // Coins and message counter for
veri�er //

(2) p 0 // Number of active prover instances //

Execute adversary I on input pk and reply to its oracle queries as follows:

� When I makes query WakeNewProver // Activate a new prover instance //

(1) p p+ 1 ; Rp  " ; Return p

� When I makes query Send(prvmsg; i;msg1k � � � kmsg2j) with 0 � 2j < 3 and 1 � i � p

(1) If CV 6= 0 then Return ?

(2) If 2j = 0 then Return start

(3) If 2j = 2 then // msg1 = start and msg2 is veri�er challenge //

If jmsg2j 6= vcl (k) then Return ?

msg3  DS(sign; sk;msg2) // Invoke signing oracle //

Return msg3

� When I makes query Send(vfmsg;msg1k � � � kmsg2j�1) with 1 � 2j � 1 � 3

(1) CV  CV +2

(2) If 2j < CV then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 = 1 then msg2  chV ; Return msg2

(4) If 2j�1=3 then

sig msg3

decision DS(verify; pk;chV ; sig)

Return "kdecision

Forgery: Return (chV ; sig) // Output of the forger //

Figure 10: Forger F attacking DS, using as subroutine an impersonator I attacking the signature

based ID protocol ID of Figure 6.

[Ro] J. Rompel, \One-Way Functions are Necessary and Su�cient for Secure Signatures," Proceedings

of the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

A Proofs

A.1 Proof of Theorem 4.1

Figure 10 describes the forging algorithm F attacking DS. It runs I as a subroutine, itself re-

sponding to the latter's oracle queries so as to provide a \simulation" of the environment provided

to I in Experimentid-crID;I(k), and eventually outputs a forgery. The forger is not in possession of

the secret key sk which is used by prover instances but can compensate using its access to the

signing oracle. Important to the fact that the time-complexity of F is t(k) |the same as that

of I| are our conventions under which the time measured pertains to the entire experiment. (In

particular the time used by the signing oracle is not an \extra" for the forger since it corresponds

to invocations of the signing algorithm by prover instances in Experimentid-crID;I(k).) It remains to
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verify Equation (1).

We claim that the simulation is \perfect" in the sense that from the point of view of I it is in

Experimentid-crID;I(k). Barring the use of the signing oracle to compute the signatures, the forger

mimics Experimentid-crID;I(k) faithfully, so what we need to check is that the values returned to the

impersonator via the signing oracle are the same as those it would get from prover instances in

Experimentid-crID;I(k), even in the presence of resets. This is true because the signing algorithm is

stateless and deterministic. (Had the signing algorithm been probabilistic or stateful, the signature

returned by a prover instance after a reset would not be obtainable via the signing oracle since

the latter uses fresh coins each time or updates its state in the normal way while the reset prover

instance would reuse signing coins or state.) This claim about the quality of the simulation is used

to erase the distinction between the experiments in the relevant probabilities below.

Let GuessChall be the event that I makes a query Send(prvmsg; p; startkmsg2) in which msg2 =

chV equals the random challenge RV = chV chosen for the veri�er in the initialization phase.

As long as this event does not occur, F does not invoke its signing oracle on its output message

chV , and thus, as per De�nition 3.1, wins if DS(verify;pk;chV ; sig) = accept. We now bound the

advantage of I as follows:

Pr [WinI = true ] = Pr
h
WinI = true ^ GuessChall

i
+ Pr [WinI = true ^ GuessChall ]

= Pr [WinF = true ] + Pr [WinI = true ^ GuessChall ]

� Pr [WinF = true ] + Pr [GuessChall ] :

Now note the probability of GuessChall is at most q(k)=2vcl(k) since we have assumed that the

number of Send(prvmsg; �; �) queries made by I is at most q(k) and no information about RV is

provided during the simulation of Send(prvmsg; �; �) queries. This yields Equation (1) as desired.

A.2 Proof of Theorem 4.4

Figure 11 describes the eavesdropping algorithm E attacking AE. It runs I as a subroutine, itself

responding to the latter's oracle queries so as to provide a \simulation" of the environment provided

to I in Experimentid-crID;I(k). The eavesdropper is not in possession of the secret key sk which is

used by prover instances but can compensate using its access to the decryption oracle. As usual

our conventions on the way time-complexity is measured are important to it being the case that

the time-complexity of E is t(k), the same as that of I. It remains to verify Equation (2).

We claim that the simulation is \perfect" |in the sense that from the point of view of I it is

in Experimentid-crID;I(k)| except for there being no reply made to the very last query of I, this

being its third move message to the veri�er. Indeed, the answers provided to Send(prvmsg; �; �; �)
queries are clearly the same in the simulation as in the real experiment due to invocation of the

same decryption procedure, even though in the real experiment it is directly invoked and in the

simulation it is invoked as an oracle without direct access to the underlying secret key. Now consider

Send(vfmsg; �) queries. Since both ch0 and ch1 are chosen at random, the ciphertext msg2 returned

by the simulated veri�er is formed by encrypting a random string, regardless of the value of the

(unknown to E) challenge bit cb, and this is distributed like the corresponding ciphertext in the

real experiment. In reply to its last query to the veri�er, I would expect to receive the veri�er

decision. This is not provided in the simulation (indeed E does not know how to provide this

since it does not know cb) but this is immaterial since E is in possession of I's guess msg3 at

the challenge and, using this, outputs its own guess bit gb. This claim about the quality of the
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Adversary EAE(enc;pk;LR(�;�;cb));AE(dec;pk;sk;�)(pk) | Eavesdropper given lr-encryption oracle and de-
cryption oracle

Initialization:

(1) CV  0 // Message counter for veri�er, but no coins. //

(2) p 0 // Number of active prover instances //

Execute adversary I on input pk and reply to its oracle queries as follows:

� When I makes query WakeNewProver // Activate a new prover instance //

(1) p p+ 1 ; Pick a tape Rp at random ; Return p

� When I makes query Send(prvmsg; i;msg1k � � � kmsg2j) with 0 � 2j < 3 and 1 � i � p

(1) If CV 6= 0 then Return ?

(2) If 2j = 0 then Return start

(3) If 2j = 2 then // msg1 = start and msg2 is ciphertext //

msg3  AE(dec; sk;msg2) // Invoke decryption oracle //

If jmsg3j 6= vcl (k) then Return ? else Return msg3

� When I makes query Send(vfmsg;msg1k � � � kmsg2j�1) with 1 � 2j � 1 � 3

(1) CV  CV +2

(2) If 2j < CV then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 = 1 then

Let ch0;ch1 be random but distinct strings of length vcl(k)

ctxt  AE(enc; pk; LR(ch0;ch1;cb)) // Invoke lr-encryption oracle on the messages
ch0;ch1 //

msg2  ctxt Return msg2

(4) If 2j�1=3 then

If msg3 = ch0 then gb 0

else If msg3 = ch1 then gb 1

else let gb be a random bit

// The eavesdropper sets its guess bit and terminates. Nothing is returned to I in reply to
this query since it is the last query and the eavesdropper has everything it needs anyway. //

Output: Return gb // Guess bit returned by eavesdropper //

Figure 11: Eavesdropper E attacking AE, using as subroutine an impersonator I attacking the

encryption based ID protocol ID of Figure 7.

simulation is used to erase the distinction between the experiments in the relevant probabilities

below.

Let GuessCiph be the event that I makes a query Send(prvmsg; p; startkmsg2) in which msg2 =

ctxt equals the ciphertext that E obtained via its query to its lr-encryption oracle. As long as

this event does not occur, E does not invoke its decryption oracle on any ciphertext returned by

its lr-encryption oracle, and thus, as per De�nition 3.3, wins if gb = cb. We can lower bound the

probability that E wins as follows:

Pr [WinE = true ] = Pr
h
gb = cb ^ GuessCiph

i

� Pr [ gb = cb ]� Pr [GuessCiph ] : (5)
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On the other hand

Pr [ gb = cb ] = Pr [ gb = cb j WinI = true ] � Pr [WinI = true ]

+ Pr [ gb = cb j WinI 6= true ] � Pr [WinI 6= true ]

= 1 � Pr [WinI = true ] +

�
1

2
� 1

2vcl(k) � 1

�
� (1� Pr [WinI = true ])

=
1

2
� 1

2vcl(k) � 1
+

�
1

2
+

1

2vcl(k) � 1

�
� Pr [WinI = true ] : (6)

Above the 1=(2vcl(k)� 1) represents the probability that I does not correctly decrypt the challenge

ciphertext but, unluckily for us, provides the plaintext ch1�cb. From Equation (6) we get

Pr [WinI = true ] =
2(2vcl(k) � 1)

2vcl(k) + 1
�
�
Pr [ gb = cb ]� 1

2
+

1

2vcl(k) � 1

�

� 2 � Pr [ gb = cb ]� 1 +
2

2vcl(k) + 1
:

Using Equation (5) and the de�nition of the advantage from De�nition 3.3 we get

Pr [WinI = true ] � 2 � (Pr [WinE = true ] + Pr [GuessCiph ])� 1 +
2

2vcl(k) + 1

= Advlr-cca
AE;E(k) + 2 � Pr [GuessCiph ] + 2

2vcl(k) + 1

� Advlr-cca
AE;E(k) + 2 � q(k)

2vcl(k)
+

2

2vcl(k)

= Advlr-cca
AE;E(k) +

2q(k) + 2

2vcl(k)
:

Above we upper bounded Pr [GuessCiph ] by the probability of guessing the underlying plaintext,

using the fact that decryption is assumed unique (meaning ciphertexts of distinct plaintexts are

always distinct). This yields Equation (2) as desired.
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