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Abstract

We show that choosing an RSA modulus with a small difference of its prime factors
yields improvements on the small private exponent attacks of Wiener and Boneh-Durfee.
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1 Introduction

Let n be the modulus of an RSA key pair, i.e. a product of two large primes p, q. Let ∆ = |p−q|
be the prime difference of n. We will assume that the bitsizes of the primes are equal, hence
equal to half the bitsize of n, so that the prime difference is at most as large as n1/2. We
note that when the primes are generated randomly and independently, then with overwhelming
probability the prime difference will indeed be of the size of n1/2. So in practice one can easily
avoid small prime differences.

It is common knowledge amongst cryptologists that a too small prime difference makes RSA
insecure. Namely, then Fermat’s factoring technique can be applied. Standards sometimes
mention this and consequently require a certain condition on ∆ (e.g. ANSI X9.31 Sections 4.1.2
and C.3, see [ANSI], requiring that the two primes differ in the first 100 bits). On this matter the
more popular applied cryptography handbooks however are inadequate (such as [MvOV, Note
8.8(ii)]) or even ignorant (such as [Sc, Section 19.3]), while these books (the first one more clear
than the last one) do warn against the much more sophisticated attacks suitable for extremely
large prime differences, such as elliptic curve factoring.

When ∆ < n1/4 (in fact we mean ∆ < cn1/4 for a c that is constant compared to n, but now
and in the sequel we will ignore such constants), then the Fermat factoring technique gives an
almost instantaneous result. As we did not find such an (almost trivial) quantitative result in
the literature (however, see [Si]), we spend a few lines on it in Section 3.

Let e, d be the public and private exponents of the RSA key pair, which we assume to be
reduced modulo φ(n) (the Euler totient function). Another well known attack on RSA, described
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by Wiener [W] (see also [VvT]), uses continued fractions, and applies when the private exponent
d is small. In particular, Wiener shows that RSA is insecure if d < n1/4. This result has recently
been improved by Boneh and Durfee [BD1], [BD2], who (heuristically but practically) use LLL

to show that RSA is insecure whenever d < n1−1/
√

2 = n0.292.... They conjecture that the right
bound below which RSA is insecure is d < n1/2 (apart from an epsilon).

It is the main theme of this note to show that these results of Wiener and Boneh and Durfee
can easily be improved under the condition that the prime difference ∆ is essentially smaller
than its generic size of n1/2. When the prime difference gets as small as n1/4 (below which
Fermat factoring already shows that RSA is insecure), our bounds for d below which RSA is
insecure reach the conjectured n1/2 for Wiener’s attack, and even reach n for the Boneh and
Durfee attack. Consequently, checking the size of the prime difference becomes more important
if one wants to generate key pairs with small private exponents, e.g. to improve performance of
private key operations.

More specifically, let ∆ = nβ for β ∈ 〈1
4
, 1

2
〉 (which is the proper range for β, as argued

above), and let d = nδ. In Section 4 we show how Wiener’s attack using continued fractions is
effective whenever δ < 3

4
− β (in contrast to Wiener’s δ < 1

4
). We feel that our improvement

to Wiener’s attack will also go through for the extended Wiener attack as described by Verheul
and Van Tilborg [VvT], but we did not investigate this in detail.

In Section 5 we show how the first result of Boneh and Durfee [BD1], that RSA is insecure
when δ < 7

6
− 1

3

√
7, can be improved to δ < 1

6
(4β + 5) − 1

3

√
(4β + 5)(4β − 1). Finally in

Section 6 we show how the second result of Boneh and Durfee [BD2], that RSA is insecure when

δ < 1− 1
2

√
2, can be improved to δ < 1−

√
2β − 1

2
, but under the condition δ > 2− 4β. Note

that these bounds equal the corresponding ones of Boneh and Durfee when β = 1
2
. The second

bound is better, but holds only when β > 3
8
. The first bound approaches δ < 1 as β approaches

1
4
.

Our main result, superseding all the others, is now given some status.

Observation

Let p, q be large primes of about the same size, and let n = pq. Let ∆ = |p − q|. Let e, d be
integers > 1 and < φ(n), satisfying ed ≡ 1 (mod φ(n)). Put ∆ = nβ and d = nδ.
Given only n and e, the factors p, q of n and the number d can be recovered efficiently whenever

2− 4β < δ < 1−
√

2β − 1
2

or δ < 1
6
(4β + 5)− 1

3

√
(4β + 5)(4β − 1).

The relevant regions for δ and β are visualized in Figure 1 below. Note that the ANSI X9.31
Standard ([ANSI]) requires β > 1

2
− 100

log2 n
and δ > 1

2
, which is strong enough to resist our attack,

but for smaller bitsizes (such as 1024, see the big dot in Figure 1) leaves only a small margin.

Boneh and Durfee present heuristics to support their conjecture that the bound for δ below
which RSA may be proved insecure is 1

2
. The same heuristic argument shows in our situation

that the bound for δ, as a function of β, below which RSA may be proved insecure, is 3
2
−2β. As

this bound is an elegant function, is 1 at β = 1
4
, and is 1

2
at β = 1

2
, we are tempted to conjecture

it as the true bound (whatever that means).

For implementations of RSA key pair generation we recommend to build in a check for
δ + 2β > 7

4
, say. This is always much stronger than the ANSI X9.31 requirements, is very easy
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Figure 1: Regions for β and δ for which RSA is shown to be insecure.
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to implement, and will only in extremely rare cases imply a performance loss because a key pair
is to be rejected.

A suggestion for further work is to investigate whether the ideas of Coppersmith [C2] can
be used to improve on the bounds of Boneh and Durfee [BD1], [BD2] in the situation where the
high bits of p and q are known but not necessarily equal. Another suggestion is to investigate
the possible improvements to our results when e = nα for an α that is less than 1. Yet another
suggestion is to investigate the effects on small private exponent attacks of p/q being close to
some rational number (other than 1) with small numerator and denominator.

2 A lemma

A key role in all our arguments is played by the following simple lemma.

Lemma If n = pq and ∆ = p− q then

0 < p + q − 2n1/2 <
∆2

4n1/2
.

Proof. We have ∆2 = (p + q)2 − 4n = (p + q − 2n1/2)(p + q + 2n1/2), hence p + q − 2n1/2 > 0
and

p + q − 2n1/2 =
∆2

p + q + 2n1/2
<

∆2

4n1/2
.

�

3 The Fermat factoring attack

In this section we show that when ∆ < n1/4 (or a bit larger than that), Fermat’s method of
factoring n is very efficient. To be precise, we show that the complexity of Fermat factoring is
O( ∆2

n1/2 ). See also [Si].

Let n = pq with p, q primes with p > q, and with difference ∆ = p − q < n1/2. We assume
that n is known, but that p and q are not. In Fermat factoring we try to find positive integers
x, y (other than x = n + 1, y = n − 1), such that 4n = x2 − y2. If we succeed, then we put
p = 1

2
(x+y) and q = 1

2
(x−y), which are integers > 1 satisfying pq = n. Hence we have factored

n. To find such x, y we simply try x = d2n1/2e, d2n1/2e+ 1, d2n1/2e+ 2, . . . , until x2 − 4n is a
square.

We study the number of values for x that have to be tried as a function of the prime difference
∆. As for each x only a small computation has to be done, this number is a good measure for
the complexity of Fermat factoring. This number is x + 1− d2n1/2e, which is approximately

x− 2n1/2 = p + q − 2n1/2 <
∆2

4n1/2
,

by the Lemma from Section 2. It follows immediately that when ∆ < cn1/4 then the number of
tries is at most 1

4
c2. When c is a (small) constant, this is independent of n (and not too large),

and thus factoring n is trivial if, say, ∆ < 1000n1/4.
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4 Extending the Wiener attack

We now proceed to study the attack formulated by Wiener [W], which applies when the private
exponent d is less than n1/4, and we show that it can be extended from δ < 1

4
to δ < 3

4
− β.

Wiener’s attack works as follows. By the definition of e, d there exists a positive integer k
such that ed− kφ(n) = 1. We write this as

e

φ(n)
− k

d
=

1

φ(n)d
. (1)

We know only n and e, and not p, q, φ(n), d or k. However, we do know that φ(n) = n+1−p−q,
and that p, q are of the size of n1/2. So actually φ(n) is relatively close to n, and this is what
Wiener exploits: (1) shows that the unknown fraction k

d
is a good approximation to e

φ(n)
, hence

to e
n
, which we do know. Thus we can use the continued fraction expansion of e

n
to compute

good candidates for k
d

relatively fast.

To improve on this, we first notice that the error caused by replacing φ(n) by n is by far
the dominating part of

∣∣ e
n
− k

d

∣∣. Then we notice that n + 1− 2n1/2 is a better approximation to
φ(n) than n is. We have not found this information used anywhere in the literature. We find
this somewhat surprising, but not too much, since in the general situation the upper bounds
|n−φ(n)| < 3n1/2 and |(n+1− 2n1/2)−φ(n)| < n1/2 hold (approximately), and their difference
is in the constant only. So the improvement seems not to be too important. However, for us
it will be crucial to have the best available approximation to φ(n), as this is where we get the
improvements from.

So by n + 1− φ(n) = p + q and using the Lemma from Section 2 we find

0 < (n + 1− 2n1/2)− φ(n) <
∆2

4n1/2
.

As a result we have from (1), and using e < φ(n), that∣∣∣∣ e

n + 1− 2n1/2
− k

d

∣∣∣∣ < e

∣∣∣∣ 1

n + 1− 2n1/2
− 1

φ(n)

∣∣∣∣ +

∣∣∣∣ e

φ(n)
− k

d

∣∣∣∣
< φ(n)

|(n + 1− 2n1/2)− φ(n)|
(n + 1− 2n1/2)φ(n)

+
1

φ(n)d

<
1

φ(n)

(
∆2

4n1/2
+

1

d

)
.

Now we certainly may assume that φ(n) > 3
4
n, and n > 8d. Hence, using ∆ = nβ and d = nδ

we have ∣∣∣∣ e

n + 1− 2n1/2
− k

d

∣∣∣∣ <
1

3
n2β−3/2 +

4

3nd
<

1

3
n2β−3/2 +

1

6n2δ
,

and when we now take 2β − 3
2

< −2δ, i.e. δ < 3
4
− β, then we obtain∣∣∣∣ e

n + 1− 2n1/2
− k

d

∣∣∣∣ <
1

2d2
.

So if the condition δ < 3
4
−β holds, then k

d
is a convergent from the continued fraction expansion

of e
n+1−2n1/2 , and we can find it efficiently. As is well known, knowledge of d makes it easy to

factor n. This proves our claim. In the Appendix we present an example.
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5 Extending the Boneh and Durfee attack, I

Boneh and Durfee [BD1], [BD2] describe an improvement of Wiener’s attack that shows that
RSA is insecure when δ < 1 − 1

2

√
2 = 0.292 . . ., unconditionally. In [BD1] they give full details

for the somewhat weaker result with the bound δ < 7
6
− 1

3

√
7 = 0.284 . . ., which has a much

simpler proof. Full details for their stronger attack are given in [BD2].

In this section we will show how to extend the weaker result of [BD1] to the case of small
prime difference. In the next section we will do the same for the stronger result of [BD2]. Our
claim in this section is that RSA is insecure whenever δ < 1

6
(4β + 5)− 1

3

√
(4β + 5)(4β − 1).

At the heart of the method of Boneh and Durfee is the idea to look at the equation ed −
kφ(n) = 1 modulo e, and to approximate φ(n) again by n (or n+1). Actually Boneh and Durfee
take into consideration gcd(p−1, q−1), but for simplicity we will ignore that. So with A = n+1
as (known) approximation of φ(n) and s = p + q as the (unknown) error of this approximation,
they have an upper bound |s| < e1/2 (note that e is approximately equal to n, again we freely
ignore constants), and so they want to solve the small inverse problem

(−k)(A− s) ≡ 1 (mod e), |s| < e1/2, |k| < eδ.

Then they use LLL to solve this problem. Note that we take the signs of k and s opposite from
[BD1].

Heuristics easily show that the small inverse problem has a unique solution when δ < 1
2
,

which then can be used to break RSA. This leads Boneh and Durfee to the belief that this is
the true bound for δ below which RSA is insecure.

As we have seen above in extending the Wiener attack, in the case of a small prime difference
we have a better approximation to φ(n), namely n+1−d2n1/2e. So if we take A = n+1−d2n1/2e,
then we can take s = p + q − d2n1/2e, for which by the Lemma of Section 2 we have the much
better upper bound

|s| < ∆2

4n1/2
< e2β−1/2

(ignoring constants and using e ≈ n). Clearly this is trivial when β ≤ 1
4
, but in that case we

have the very efficient Fermat factoring method available. So we assume β > 1
4
. Then we have

to solve the following small inverse problem:

(−k)(A− s) ≡ 1 (mod e), |s| < e2β−1/2, |k| < eδ.

As the values of δ and β are not known, in practical applications upper bounds for them
have to be guessed.

The same heuristics used by Boneh and Durfee show that this version of the small inverse
problem has a unique solution when δ < 3

2
− 2β. This is why we are tempted to believe that

this is the true bound for δ below which RSA is insecure.

We now briefly describe the method of Boneh and Durfee to solve the small inverse problem.
Let f(x, y) = x(A + y) − 1. Then we want to solve f(x0, y0) ≡ 0 (mod e), |x0| < eδ, |y0| <
e2β−1/2. This is done, following an idea of Coppersmith [C1], by constructing polynomials that
have (x0, y0) as root modulo em for some m, and then to make Z-linear combinations of those

6



polynomials, to find a few of them with small coefficients. When the coefficients are small
enough, then a result of Howgrave-Graham [HG] shows that (x0, y0) actually is a root of f(x, y)
over Z.

The polynomials to start from are the so-called x-shifts gi,k(x, y) = xif(x, y)kem−k and y-
shifts hj,k(x, y) = yjf(x, y)kem−k, for k = 0, . . . ,m, i = 0, . . . ,m − k, j = 0, . . . , t, for some t.
With X = eδ, Y = e2β−1/2 we now take the polynomials gi,k(xX, yY ), hj,k(xX, yY ), and study
the lattice spanned by their coefficient vectors. All lattice vectors now correspond to polynomials
with (x0, y0) as root modulo em, and the theory of lattice basis reduction can be applied to yield
both theoretical results about the existence of such polynomials with small coefficients, and
practical results on how to efficiently find them. The result of [HG] now shows that this actually
yields polynomials of which (x0, y0) is a root over Z. When two such independent polynomials
have been found, their resultant will most probably have a factor x − x0 or y − y0, which can
easily be found.

All we now have to do to solve this variant of the small inverse problem is to work through the
arguments of [BD1, Section 4] with for Y the new value e2β−1/2. We assume that the reader has
this paper available, as in the sequel we merely indicate the changes we make to its arguments,
in order to avoid copying lots of details from Boneh and Durfee’s papers.

In order to guarantee the existence of short enough vectors in the lattice, a condition on the
determinant and the dimension has to be fulfilled. For the determinant of the lattice with only
x-shifts, which has dimension w = 1

2
m2 + o(m2), we find

det x = e( 1
4
+ 1

3
δ+ 1

3
β+o(1))m3

,

so when we take no y-shifts at all, the condition detx < emw to be fulfilled (up to a negligible
constant) leads to the condition 1

4
+ 1

3
δ + 1

3
β < 1

2
. This is just δ < 3

4
−β as in Wiener’s extended

attack, presented in Section 4.

Including the y-shifts, reasoning as in [BD1, Section 4], we find for the contribution of the
y-shifts to the determinant that

det y = e( 1
4
+ 1

2
δ+β)tm2+(β− 1

4
)t2m+o(tm2).

The condition detx dety < emw, with the dimension w = 1
2
m2 + tm + o(m2), now leads to the

condition (
−1

4
+

1

3
δ +

1

3
β

)
m2 +

(
−3

4
+

1

2
δ + β

)
tm +

(
β − 1

4

)
t2 < 0.

The left hand side is minimal for t =
3
4
− 1

2
δ−β

2β− 1
2

m, and substituting this, we find as condition (after

clearing 4β − 1 as denominator, which is positive)

16β2 + 8β − 15 + (16β + 20)δ − 12δ2 < 0.

This is equivalent to δ < 1
6
(4β + 5)− 1

3

√
(4β + 5)(4β − 1), and thus we have proved our claim.

Note that for β = 1
2

we recover Boneh and Durfee’s result δ < 7
6
− 1

3

√
7, which should not

come as a surprise. For β ↓ 1
4

we find that our condition approaches δ < 1, which clearly is best
possible.

7



6 Extending the Boneh and Durfee attack, II

In [BD2, Section B.3], Boneh and Durfee describe how they improved their result δ < 7
6
− 1

3

√
7

to δ < 1− 1
2

√
2. We will now follow their arguments with, as in the previous section, Y = e2β−1/2

instead of Y = e1/2, and again we only indicate changes to the arguments of [BD2]. Our aim is

to show that RSA is insecure whenever 2− 4β < δ < 1−
√

2β − 1
2
.

Lemma B.5 from [BD2] can be improved to My being geometrically progressive with the
obvious parameter choice (m2m, e, m, δ + 2β − 1

2
, 2β − 3

2
,−1, 1, b) for some b. Here conditions

(i), (ii) and (iii) of Definition B.1 are easily checked, but condition (iv) causes some trouble.
Namely, b should satisfy b(δ + 2β − 1

2
)− 1 ≥ 0 and b(2β − 3

2
) + 1 ≥ 0, and these conditions are

contradictory when δ < 2− 4β. So we must assume δ > 2− 4β, and then we can take b = 2
3−4β

.

The optimal choice for t is t =
3
2
−δ−2β

2β− 1
2

m. We have

My(k, `, k, `) = em+(δ+2β−3/2)k+(2β−1/2)`,

hence by our choice for t we have that (k, `) ∈ S if and only if ` ≤
3
2
−δ−2β

2β− 1
2

k. It follows that

w′ = |S| =

( 3
2
− δ − 2β

4β − 1
+ o(1)

)
m2,

and thus

w =

(
1

2
+ o(1)

)
m2 + w′ =

(
1− δ

4β − 1
+ o(1)

)
m2.

A direct but somewhat tedious computation, closely following [BD2, Section B.3], leads to

det(L′
y) = e

(
1
12

9−4(δ+2β)2

4β−1
+o(1)

)
m3

.

A final computation then shows that the condition det(L1) = detx det(L′
y) < emw, with detx as

in the previous section, is equivalent to δ < 1−
√

2β − 1
2
, which proves our claim.

We note that for β = 1
2

we recovered Boneh and Durfee’s result δ < 1 − 1
2

√
2, as expected.

Further, the upper bound δ < 1−
√

2β − 1
2

and the lower bound δ > 2− 4β are contradictory

when β ≤ 3
8

(or, equivalently, δ ≥ 1
2
). The exact regions for δ and β covered by the bounds of

this and the previous sections are shown in Figure 1.
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Appendix Examples

An example for the extended Wiener attack

As an example let us take for n the 201 digit number

n = 1 00000 00000 00000 00000 00000 00000 00000 00000 00107 67242 \
83535 54480 74805 52394 71435 44456 91504 57929 40521 29531 \
31145 92588 49187 63903 86483 43076 03736 97739 12905 05518 \
23109 11765 96502 73528 89266 92223 96247 82220 51558 89979 ,

and for e the 199 digit number

e = 3577 28738 31168 83468 50061 72494 91494 67592 77183 21983 \
42055 05185 69067 45276 16806 40387 24497 92548 46438 84258 \
58859 31908 14322 25357 44998 46915 22809 19771 84669 56259 \
50405 61478 87159 75354 13286 66146 64695 96872 98105 35189 .
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The first 200 partial quotients of e
n

are

[0, 27, 1, 20, 1, 4, 5, 1, 15, 1, 1, 1, 2, 1, 3, 1, 1, 29, 1, 2, 1, 1, 2, 1, 1,
2, 1, 2, 3, 2, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2400, 7, 2, 1, 46, 1, 1, 3, 1, 1, 1,
11, 1, 16, 54, 1, 1, 1, 1, 7, 1, 1, 10, 1, 1, 1, 7, 19, 9, 1, 10, 3, 1, 3, 1, 1,
1, 1, 1, 1, 30, 1, 2, 1, 19, 5, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 4, 25, 1,
3, 1, 3, 1, 1, 7, 1, 14, 1, 5, 6, 8, 2, 4, 4, 5, 3, 2, 6, 1, 13, 2, 2, 1, 14,
1, 4, 1, 9, 3, 8, 7, 2, 9, 6, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 41, 2, 6, 6, 6,
3, 2, 1, 2, 1, 230, 8, 12, 5, 1, 3, 1, 1, 99, 1, 4, 5, 2, 7, 5, 4, 1, 16, 1, 4,
40, 1, 3, 4, 1, 4, 1, 2, 1, 1, 6, 1, 1, 4, 5, 4, 4, 3, 5, 2, 8, 1, 9, 1, 1, 10, . . .],

and we see no extraordinarily large one, so Wiener’s attack as such will not give a result here.
More partial quotients are not useful, since the 200th convergent already has a denominator
that is much larger than n1/4.

The first 200 partial quotients of e
n+1−2n1/2 are

[0, 27, 1, 20, 1, 4, 5, 1, 15, 1, 1, 1, 2, 1, 3, 1, 1, 29, 1, 2, 1, 1, 2, 1, 1,
2, 1, 2, 3, 2, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2400, 7, 2, 1, 46, 1, 1, 3, 1, 1, 1,
11, 1, 16, 54, 1, 1, 1, 1, 7, 1, 1, 10, 1, 1, 1, 7, 19, 9, 1, 10, 3, 1, 3, 1, 1,
1, 1, 1, 1, 30, 1, 2, 1, 19, 5, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 4, 25, 1,
3, 1, 3, 1, 1, 7, 1, 14, 2, 7, 1, 11, 4, 1, 3, 1, 1, 1, 3, 3, 8, 1, 4, 1, 2,
2, 2, 2, 1, 1, 1, 1, 1, 5, 22, 1, 2, 4, 1, 22, 1, 4, 2, 1, 15, 1, 1, 10, 4, 66,
6, 3, 3, 2, 2, 36, 1, 1, 1, 1, 48, 2, 2, 13, 1, 1, 1, 2, 1, 10, 2, 1, 1, 2, 5,
1, 29, 1, 12, 1, 56, 11, 147867491, 1, 3, 4, 2, 1, 1, 1, 1, 6, 3, 1, 3, 1, 2, 1, 5, 1, . . .].

Now we see a large partial quotient, namely the 183th. The 182th convergent thus is an extremely
good approximation to e

n+1−2n1/2 , and is a good candidate for k
d
. It is

k = 125 47153 83488 39464 72356 53791 25074 48077 45478 \
97673 89403 81525 94977 41329 89005 11062 90778 92359 ,

d = 3507 44921 81144 35074 49218 11443 50744 92181 14435 \
07449 21811 44350 74492 18114 43507 44921 81144 00389 ∗,

and indeed with these k and d it is easy to factor n, as we will leave for the reader to show as
an exercise.

Note that in this example δ ≈ 0.443 > 1
4
, which explains why Wiener’s attack fails, and that

β ≈ 0.292 > 1
4
, indicating that also the Fermat factoring method will be rather inefficient. But

our attack succeeds, since δ is just a little less than 3
4
− β (we did not know this in advance). In

Figure 1 a circle is drawn at the position of (β, δ) for this example.

Note that the first 108 partial quotients of e
n+1−2n1/2 coincide with those of e

n
, and that the

first 182 (up to the large one) coincide with those of e
φ(n)

(known only with hindsight).

∗The repeating numbers 3507449 and 2181144 happen to be the author’s bank account numbers.
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An example for the extended Boneh and Durfee Attack

Next we take as an example for n the same 201 digit number as used above, and for e we take
this time the 200 digit number

e = 57244 79358 36564 84515 29075 96780 01067 19671 24315 73871 \
79961 08242 48083 79435 38065 30972 17276 77453 82992 30049 \
88402 98193 36998 83948 13822 94539 77463 46393 37937 81478 \
01649 75097 88795 93740 99999 17419 29447 85381 95823 58977 .

Now we have to decide on the parameters for applying the method of Boneh and Durfee. We do
not know the true values of δ and β, but the algorithm requires as input values for X and Y , as
well as for m (the highest power of e) and t (the number of y-shifts). So we have to experiment
a bit. It appears that in our situation X = e0.56, Y = e0.085, m = 3, t = 2 gives good results, but
we did not do extensive experiments to find out optimal parameters. The choices of X and Y
suggest that we expect a result in the neighbourhood of δ = 0.56, β = 0.29.

With these parameters and with A = n+1−d2n1/2e we built the 18-dimensional lattice from
the x- and y-shifts, and started looking for a reduced basis. As programming tool we used Pari
v2.0.20beta, see [BBBCO]. This program knows about the concept of partially reduced basis,
which is a type of reduced lattice basis that is reduced in a weaker sense than LLL-reduced, but
can be computed very quickly. We found that these partially reduced bases can be used for the
Boneh and Durfee attack quite well, so this implies a substantial speedup of their method.

In our case of an 18-dimensional lattice with parameters as set above, we reached on our
Pentium 800Mhz PC a result in only 43 seconds. To check the speedup we also computed a
reduced basis in the LLL sense, which took 6 hours.

From the result we took, as in [BD1], resultants of the polynomials corresponding to the
first two partially reduced basis vectors, and tried to factor these resultants. The resultant with
respect to x turned out to have the linear factor y + 15 36705 61801 37046. This suggests that
s = p + q − d2n1/2e = 15 36705 61801 37046, from which a candidate for p + q is easily found.
This indeed leads to the factorisation of n, as we leave to the reader to show.

Alternatively we could have used the resultant with respect to y, which turned out to have
the linear factor

x+ 20 07832 06496 11816 64118 20947 08544 41560 58908 62520 47042 \
27985 53951 42154 41920 75567 76391 98360 14586 54592 06249 69194 89182 .

This suggests that this polynomial is x+k (which it indeed turns out to be), and from knowledge
of k we easily can solve the problem again.

As a check for the reader we give d:

d = 35 07449 21811 44350 74492 18114 43507 44921 81144 35074 49218 \
11443 50744 92181 14435 07449 21811 44350 74492 18114 43507 44921 81393 †.

Note that in this example δ ≈ 0.558 > 1
2
, which explains why the Boneh and Durfee attack (as

any other attack based only on δ, with the heuristic bound δ < 1
2
) would probably fail in this

case, and that β ≈ 0.292 > 1
4
, so that δ + β > 3

4
, indicating that also the extended Wiener

attack will fail. In Figure 1 a circle is drawn at the position of (β, δ) for this example.

†Again featuring the author’s bank account numbers.

11


