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Veri�er are computationally bounded, we show a one-round (i.e. Veri�er speaks and

then Prover answers) witness-indistinguishable interactive proof for NP with poly-

logarithmic communication complexity.

A major application of our main result, resolving an open problem posed by Micali,

is that we show how to check in an e�cient manner and without any additional

interaction, the correctness of the output of any remote procedure call (i.e. any

polynomial-time computation) based on the computational assumption. That is, one

can ask any polynomial-time untrusted machine to execute an arbitrary code of our

choice and give back the result. We will ask the untrusted machine to work just a

little bit longer than to just execute the code, but we show how the untrusted machine

can then produce not only the answer but also a very short and easily veri�able

certi�cate. The untrusted machine can send us back both the alleged output of the

remote procedure call and the certi�cate. The guarantee is that we can very easily

check the certi�cate and the output (without re-doing the computation!) and if the

output of the remote procedure call is correct, then the certi�cate will always be

accepted. However, no polynomial-time cheating machine can fool us in accepting a

certi�cate for any incorrect output with more than negligible error probability.
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1 Introduction

Under a computational assumption, and assuming that both Prover and Veri�er are

computationally bounded, we show a one-round (i.e. Veri�er speaks and then Prover

answers) witness-indistinguishable interactive proof for NP with poly-logarithmic

communication complexity. More formally, our one-round interactive proof (argu-

ment) has the following properties:

� Perfect Completeness: On a common input x 2 L for any L in NP if Prover is

given a witness as a private input, it convinces Veri�er (i.e. Veri�er accepts)

with probability one.

� Computational Soundness: If x 62 L, no poly-time cheating Prover can make

the Veri�er accept except with negligible probability.

� Protocol is Short: the communication complexity (of both messages) is poly-

logarithmic in the length of the proof.

� Witness-indistinguishability: The interactive proof is witness indistinguishable:

if there is more than one witness for x 2 L then for any two witnesses no poly-

time cheating Veri�er can distinguish with non-negligible success probability

which witness was given to the Prover as a private input.

Our result improves upon best previous results on short computationally-sound proofs

(arguments) of Micali [20] and of Kilian [15, 16] which required either three messages

of interaction or the assumption of the existence of a random oracle. Our result

also improves the communication-complexity of one-round witness-indistinguishable

arguments (\Zaps") of Dwork and Naor [7] which required polynomial communication

complexity in the length of the proof. One important di�erence between our protocol

and the one in [7] is that our protocol is private-coin protocol1 where as the Dwork

and Naor protocol is public-coin.

A major corollary of our result is that we show how to check in an e�cient manner

and without any additional interaction, the correctness of the output of any poly-

nomial time remote procedure call. That is, if Alice requests Bob to execute some

remote code and give back the result, Alice can provide Bob (along with the code) a

very short public-key and receive back from Bob not only the result of the execution

1Private-coin protocol is the one where Veri�er tosses coins but keeps them secret from the prover,

whereas public-coin protocols are the ones where Veri�er can publish its coin-ips.
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but also a very short and easily2 veri�able certi�cate that the output was computed

correctly. We stress that our scheme for veri�able remote procedure call is round-

optimal: there is only one message from Alice to Bob (i.e. the procedure call and

public key) and only one message back from Bob to Alice (with the output of the

procedure call and the certi�cate of correctness). Our scheme guarantees that if Bob

follows the protocol then Alice always accepts the output, but if the claimed output

is incorrect Bob can not construct a certi�cate which Alice will accept, except with

negligible probability. The public key and the certi�cate are only of poly-logarithmic

size and can be constructed by Bob in polynomial time and veri�ed by Alice in poly-

logarithmic time. This resolves the major open problem posed Micali in the theory

of short computationally-sound proofs [20], namely, that they exist with only one

round of interaction under a complexity assumption. This also improves the works

of [20, 15, 16, 24] and also of Erg�un, Kumar and Rubinfeld [12] who consider this

problem for a restricted case of languages in NP with additional algebraic properties.

It is interesting to point out that the proof of our main result also shows that

the heuristic approach of Biehl, Meyer and Wetzel [4] of combining Probabilistically

Checkable Proofs of Arora et al [2] with Single-Database Private Information Re-

trieval of Kushilevitz and Ostrovsky [18] and of Cachin, Micali and Stadler [6] is

valid, though with additional steps both in the protocol and in its proof of security.

More speci�cally, our main result uses a novel combinatorial technique to prove com-

putational soundness of our interactive proof and we believe this proof technique is

of independent interest.

Our result also has an interesting connection to the PCP theorem [2]. Recall

that, in the PCP setting, the Prover must send to the Veri�er (or alternatively \write

down") an entire proof. Subsequently, the Veri�er needs to read only a few bits of

this proof at random in order to check its validity. Notice that the communication

complexity in this case is large { polynomial in the running time bound { since the

entire PCP proof has to be sent. Furthermore, even though the Veri�er is interested

in reading only a few bits, she must count all the received proof bits in order to decide

which bits to read. In our setting, the Veri�er asks her question �rst and the dishonest

Prover may make his answers dependent on the Veri�er's question. Nevertheless,

we show that even if the dishonest but computationally bounded Prover answers

adaptively to the Veri�er's message, he can not cheat the Veri�er with non-negligible

probability. Moreover, the length of this answer is dramatically shorter than the PCP

proof.

2By very short and easily veri�able, we mean that the size of the public-key/certi�cate as well

as generation/veri�cation time is a product of two quantities: a �xed polynomial in the security

parameter and a factor polylogarithmic in the running time of the actual remote procedure call.
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Our main result has several implications including a di�erent method of reducing

the error in one-round two-prover interactive proofs with small communication com-

plexity. Our proof also has implications to generalized PIR protocols where the user

asks for many bits and wishes to know if there exists any database which is consistent

with all the answers. We discuss these and other implications after the proof of our

main result.

2 Preliminaries

First, we recall some of the terminology and tools that we will use in our construction.

For de�nitions and further discussion see the references provided. We use standard

notions of expected polynomial-time computations, polynomial indistinguishability,

negligible fractions and hybrid arguments (see, for example, Yao [25]) and the notion

of witness indistinguishability [11].

We will use Single Database Private Information Retrieval (PIR) protocols �rst

proposed by Kushilevitz and Ostrovsky [18] and further improved (to essentially op-

timal communication complexity) by Cachin, Micali and Stadler [6]. (In the setting

of multiple non-communicating copies of the database, PIR was originally de�ned by

Chor et al [5].) Recall that Single Database PIR are private-coin protocols between

a user and a database where the database has an n-bit string D and a user has an

index 1 � i � n. Assuming some computational (hardness) assumption [18, 6, 9], the

user forms a PIR question to the database based on index i and a security parameter3

k which database answers. The answer can be \decrypted" by the user to correctly

learn the ith bit of D. The key property is that i remains hidden from the honest

but curious database. That is, for any two indices i and j, the PIR encodings of i

and j are computationally indistinguishable (can not be distinguished in polynomial

time except with negligible probability, denoted as �PIR.) PIR(cc; u; db) denotes any

one-round single database PIR protocol with communication complexity cc(n; k), the

running time u(n; k) of the user (to both generate the question and decode the answer

from the database), and the running time db(n; k) of the database (db(n; k) must be

polynomial in n and k.)

We remark that by the standard hybrid argument, polynomially long vectors of

PIR queries are also indistinguishable with slight degradation in error probability.

3By k = k(�), we denote a su�ciently large security parameter, i.e. k(�) is a function of n such that

for su�ciently large n, the error probability is negligible. In PIR implementations ([18, 6]) depending

on particular computational assumptions, k(n) is typically assumed to be either logO(1)(n) or n� for

� > 0.
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We also point out that both [18] and [6] are one-round protocols, unlike [19]. We will

also use Secure-PIR (SPIR) protocols in a single database setting (see Gertner et al

[13] and Kushilevitz and Ostrovsky [18]) and one-round SPIR protocol (based on any

1-round PIR protocol and one-round OT) of Naor and Pinkas [21]. The latter result

shows how to convert any PIR protocol to a SPIR protocol using one call to PIR and

an additive polylogarithmic overhead in communication.

We will use Probabilistically Checkable Proofs (PCP) of Arora et al [2] and 3-

query PCP proofs of H�astad [14] as well as holographic PCP proofs of Babai et al

[3] and Polischuk and Spielman [22]. Recall that an NP language L is in (�PCP ; k)

PCP if there is a probabilistic polynomial time Veri�er V that reads at most k bits

of this proof such that the following two conditions hold: for every string x 2 L

there is a polynomially long \proof" (which, given a witness, can be constructed

in polynomial time) that V will always accept. For every string x
0 62 L there is

no \proof" string (even among those constructible in exponential time) that V will

accept with probability greater than �pcp (probability is over the choice of V 's coin ips

only). Additionally, we will use the Zero-Knowledge PCP of Kilian et al [17] which

guarantees that as long as the veri�er does not read more than polylogarithmically

many bits in the proof, it remains ZK.

3 Problem statements and Our results

We state our problem in two settings, the setting of proving an NP statement and

the setting of e�cient veri�cation of remote procedure calls.

In the setting of proving an NP statement, both prover and veri�er are probabilis-

tic poly-time machines. They both receive as common input (i.e. on their work-tapes)

an input x and a security parameter k. Since x is given on the work-tape of the ver-

i�er, we do not charge the length of x as part of communication complexity, nor do

we charge the time required to read x, as it is given before the protocol begins. The

prover receives (if x 2 L) an additional private input of witness w that x 2 L. Wlog,

we assume that jwj � jxj (the interesting case, of course, is when jwj >> jxj).

THEOREM 1 Assuming the existence of a one-round PIR(cc; db; u) scheme there

exists a (P,V) one-round proof with perfect completeness and computational soundness

such that the communication complexity is O(logO(1) jwj � cc(jwjO(1)
; k)), the prover's

running time is O(jwjO(1)+db(jwjO(1)
; k)), and the veri�er's running time is O(logO(1) jwj�

u(jwjO(1)
; k)).

If we use the Cachin et al implementation of PIR which is based on the �-hiding

assumption [6], and k = logO(1) jxj for su�ciently long x, then we can achieve both
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poly-logarithmic communication complexity and poly-logarithmic veri�er computa-

tion time:

COROLLARY 1 Assuming that the �-hiding assumption holds, for any � > 0 there

exists a (P,V) one-round proof with perfect completeness and computational soundness

such that for x su�ciently long, the total communication complexity is O(logO(1) jwj),

the prover's running time is jwjO(1) and the veri�er's running time is O(logO(1) jwj).

If we use the Kushilevitz and Ostrovsky implementation of PIR based on the

quadratic residuosity assumption [18], and k = jxj� for � > 0 and x su�ciently long,

then we get the following:

COROLLARY 2 Assuming that the quadratic residuosity assumption holds, for any

� > 0 there exists a (P,V) one-round with perfect completeness and computational sound-

ness such that, for x su�ciently long, the total communication complexity is jwj�, the

prover's running time is jwjO(1) and veri�er's running time is jwj�.

We remark that using holographic proofs of [3, 22], we can make the running times

of the prover in the above theorem and in both corollaries almost linear.

We also show how we can add the witness-indistinguishability property to our low-

communication complexity protocol by combining Zero-Knowledge PCP [17]) with

one-round SPIR protocols [13, 18, 21]. More formally we have the following theorem.

THEOREM 2 Assuming the existence of a one-round PIR(cc; db; u) scheme there ex-

ists a (P,V) one-round witness-indistinguishable proof with perfect completeness and com-

putational soundness such that the communication complexity isO(logO(1) jwj�cc(jwjO(1)
; k)),

the prover's running time is O(jwjO(1) + db(jwjO(1)
; k)), and the veri�er's running time is

O(logO(1) jwj � u(jwjO(1)
; k)).

Our second setting is that of veri�cation of any remote procedure call. Here, Alice

has a remote procedure call � (P is some arbitrary program with an arbitrary input)

and a polynomial bound t on the running time. Alice generates a public key-private

key pair, keeps the private key to herself, and sends the public-key, � and t to Bob.

Bob executes y  � for at most t steps (y is de�ned as ? if the program � did

not terminate in t steps). Using the public-key, Bob also computes a string c that

certi�es that y is correct and sends c and y back to Alice. Alice using her private-

key decides to either accept or reject y. We call this a correct veri�cation scheme

if two conditions hold: if Bob follows the protocol then Alice always accepts and no
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polynomial time-bounded cheating Bob' can �nd a certi�cate for any incorrect y0 on

which Alice will accept, except with negligible probability. Clearly, Alice must take

the time to send � to Bob and to read y. Wlog, we assume jyj = j�j < t. However,

if jyj << t, the question of fast veri�cation of y becomes important. We show that

Alice can do this in an e�cient manner:

THEOREM 3 Assuming the existence of a one-round PIR(cc; db; u) scheme, there

exists a correct veri�cation scheme for any remote procedure call (�; t) such that the

running time for Bob is O(tO(1) + db(tO(1)
; k)), the sizes of the public key, private key,

and certi�cate are all O(logO(1)
t � cc(tO(1)

; k)), and the running time of Alice is O(jyj+

logO(1)
t � u(tO(1)

; k)) .

We stress that Theorem 3 holds for any one-round implementation of PIR protocol.

For example, if we use Cachin et al implementation of PIR which is based on the

�-hiding assumption [6], and k = logO(1)
t for su�ciently large t, then we achieve

poly-logarithmic bounds for the veri�cation of y. We remark again that using the

holographic proofs of [3, 22], we can make Bob's running time in the above theorem

almost linear. Combining, we achieve:

COROLLARY 3 Assuming that the �-hiding assumption holds, for any � > 0, there

exists a correct veri�cation scheme for any remote procedure call (�; t) such that for t

su�ciently large, the running time for Bob is O(t1+�), the sizes of the public key, private

key, and certi�cate are all O(logO(1)
t), and the running time for Alice is O(jyj+logO(1)

t).

We can obtain another corollary of Theorem 3 by combining it with single-

database PIR implementation based on quadratic residuosity assumption [18]:

COROLLARY 4 Assuming that the quadratic residuosity assumption holds, for any

� > 0, there exists a correct veri�cation scheme for any remote procedure call (�; t) such

that, for t su�ciently large, the running time of Bob is O(t1+�), the sizes of the public

key, private key, and certi�cate are all O(t�), and the running time for Alice is O(jyj+ t
�).

We remark that the above theorems also hold even if � is a probabilistic compu-

tation. Moreover, the coin-ips of Bob can be made witness-indistinguishable, similar

to Theorem 2.
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4 Constructions

First, we describe our construction for Theorem 1. Recall that the Prover is given x

and a witness w. Let jPCP (x;w)j = N be H�astad's 3-query PCP proof that x 2 L

[14]. We remark that the use of of Hastad's version of PCP is not essential in our

construction, and we can replace it with any holographic proof [3, 22] that achieves

negligible error probability, and improve the running time of the prover to be nearly

linear. We choose to use Hastad's version of PCP to simplify the presentation of our

main theorem. However, we stress that permuting PCP queries is essential in our

proof.

V : For j = 1; : : : ; log2N do:

� Choose (i1; i2; i3)j 2 [1; N ] according to Hastad's

PCP Veri�er.

� Choose a random permutation �j over fi1; i2; i3g.

Let (i0
1
; i

0
2
; i

0
3
)j = �j(i1; i2; i3).

� Compute 3 independent PIR encodings of i0
1
; i

0
2
; i

0
3

PIRj(i
0
1
) PIRj(i

0
2
) PIRj(i

0
3
) (i.e. 3 queries for re-

trieval from N -bit database, each having its own PIR

independent encoding and decoding keys)

V ! P : For 1 � j � log2N send PIRj(i
0
1
) PIRj(i

0
2
) PIRj(i

0
3
)

P ! V : Prover computes Hastad PCP proof on (x;w) treats it as

an N -bit database, evaluates 3 log2N PIR queries received

from the veri�er and sends the PIR answers back to the

Veri�er.

V : For 1 � j � log2N PIR-decode the answers to PIRj(i
0
1
),

PIRj(i
0
2
), PIRj(i

0
3
), apply �

�1

j to get the answers to

(i1; i2; i3)j. If for all 1 � j � log2N , Hastad's PCP veri�er

accepts on answers to PCP queries (i1; i2; i3)j then accept,

else reject.

In the construction of Theorem 3 simply note that Prover can write down the

trace of the execution of the procedure call, which serves as a witness that the output

is correct, and the same construction applies. The corollaries 2, 1, and 3 follow from
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our construction by simply by plugging in the appropriate implementation of PIR

protocols.

Next, we describe the construction of Theorem 2, which also achieves witness-

indistinguishability. We shall use Zero-Knowledge PCP and one-round SPIR. Again,

we denote jZKPCP (w; x)j = N (recall that N is polynomial in jwj). This time

by j we denote O(logO(1)
N) queries needed by ZKPCP to achieve negligible error

probability while maintaining super-logarithmic bound on the number of bits needed

to be read by the ZKPCP veri�er to break the Zero-Knowledge property of the PCP

[17].

V : Choose i1; : : : ; ij 2 [1; N ] according to ZKPCP Veri�er;

Choose a random permutation � over fi1; : : : ; ijg; Let

(i0
1
; : : : ; i

0
j) = �(i1; : : : ; ij); Compute j independent SPIR

encodings SPIR1(i
0
1
); : : : ; SPIRj(i;j ) (i.e. j queries for

retrieval from N -bit database, each having its own inde-

pendent PIR encoding and decoding keys);

V ! P : Send SPIR1(i
0
1
); : : : ; SPIRj(i

0
j).

P ! V : Prover computes ZKPCP proof on (x;w) and treats it as

an N -bit database, evaluates j received SPIR queries on it

and sends SPIR answers back to the Veri�er.

V : Decode j SPIR answers to SPIR1(i
0
1
); : : : ; SPIRj(i

0
j), ap-

ply ��1 to get the answers to i1; : : : ; ij queries and check

if ZKPCP veri�er accepts on answers to i1; : : : ; ij. If so

accept, else reject.

5 Proof of Theorem 1

In order to prove Theorem 1, we need to prove completeness and soundness. We will

prove them in that order.

The proof of completeness follows from our construction, i.e. there exist algo-

rithms for C and (honest) S such that for every triple f; x; y where f is a polynomial

time computation, there is a certi�cate which is the set of correct answers for every

query set from a PCP veri�er. The PIR encoding of this query set can be e�ciently

computed by C. Similarly, the correct PCP answers to the query set and their PIR

encoding can also be computed e�ciently by S. There are logO(1)
n PIR queries each
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of which can be encoded in the [6] construction using logO(1)
n bits giving a total

communication complexity of logO(1)
n bits both in the query and the response.

The intuition of the soundness proof is that even though a cheating server may

use a di�erent proof string for each query response, we can construct an \emulator"

algorithm for this server that ips its coins independent of the server and the PIR

encoded queries, selects one \proof" string according to some probability distribution,

and responds to queries honestly according to this string. Most of the work in the

proof will be in showing that the induced distribution on the query responses from

the emulator is close to that of the server and hence the error bounds of the PCP

theorem apply with some small slack. Recall that N is the length of the PCP proof

string and let [N ] represent f1; 2; : : : ; Ng. �PCP is the acceptance error of the PCP

veri�er using l queries and �PIR is the error probability of the PIR scheme used.

Let I1; I2; : : : ; Il be random variables representing the l queries over [N ] asked by

the veri�er V and B1; : : : ; Bl be the random variables representing the decoded bit

responses of the server. Let P i1:::il
b1:::bl

= Pr [B1 = b1 : : : Bl = bljI1 = i1; : : : ; Il = il] be the

probability distribution of the server's responses to queries where the choice is over

the server's coin ips and PIR-encodings.

Given the distribution P i1:::il
b1:::bl

, we will construct an emulator algorithm which prob-

abilistically (using its own coin ips and independent of the server and queries) chooses

a proof string and answers the queries according to this string. Furthermore, the dis-

tribution induced on the emulator's responses by this choice of string will be close to

P
i1:::il
b1:::bl

. We will show that the PCP error bound applies to the emulator's responses

and thence that the error bound will also apply to the server's responses but with

some additional slack. Let the emulator have a probability distribution Q on N -bit

strings and let ~B1 : : :
~Bl be random variables representing the bits of the proof string

chosen according to Q. Q induces a probability distribution on the emulator's re-

sponses to queries. Denote this induced distribution by ~P i1:::il
b1:::bl

= Pr [ ~B1 = b1 : : :
~Bl =

bljI1 = i1; : : : ; Il = il]. De�ne �S := maxi1:::il;b1:::bl jP
i1:::il
b1:::bl

� ~P i1:::il
b1:::bl
j. First, we note that

the emulator's probability of acceptance by the PCP veri�er is bounded by �PCP .

CLAIM 1 Pr [V (I1; : : : ; Il; ~B1 : : :
~Bl) = 1] � �PCP .

Proof: Pr [V (I1; : : : ; Il; ~B1 : : :
~Bl) = 1] =

P
D2f0;1gN Pr [V (I1; : : : ; Il; dI1 : : :Il) = 1jD =

d]Pr [D = d] where dIj denotes the Ij-th bit of d. From the PCP Theorem, for all d,

Pr [V (I1; : : : ; Il; dI1 : : :Il) = 1] � �PCP . Applying this to the previous equation we get,

Pr [V (I1; : : : ; Il; ~B1 : : :
~Bl) = 1] �

P
D2f0;1gN �PCPPr [D = d] = �PCP :

Next, we note that the server's probability of acceptance by the Veri�er is close

to that of the emulator.
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LEMMA 1 Pr [V (I1; : : : ; Il;B1 : : :Bl) = 1] � �PCP + 2l�S.

Proof: From the PCP Theorem, Pr [V (I1; : : : ; Il; ~B1 : : :
~Bl) = 1] � �PCP . Let i1; : : : ; il 2

[N ] be query instances and b1 : : : bl be bit strings. Using conditional probabilities we

can express the LHS as a sum over all query instances and response bit strings. Using

j ~P i1:::il
b1:::bl

� P
i1:::il
b1:::bl
j � �S and collapsing the sums we get, Pr [V (I1; : : : ; Il;B1 : : :Bl) =

1] � Pr [V (I1; : : : ; Il; ~B1 : : :
~Bl) = 1] + �S

P
I1:::Il

P
b1:::bl

� �PCP + 2l�S:

Next, we show the existence of an emulator whose response distribution is close

to the server's. Note mere proof of existence su�ces.

LEMMA 2 There exists an \emulator" algorithm such that �S � �PIR � 2
O(l log l).

For clarity of exposition, we write the proof using only 3-tuple queries and provide the

calculation for l > 3 queries at the end. First, we make a simple claim which follows

from the fact that the client chooses a random permutation of the 3-query, hence the

server strategy has to be oblivious of the order of elements within the 3-tuple. Thus,

wlog. we only need to consider the distributions P i;j;k where 1 � i < j < k � N .

CLAIM 2 For all permutations � on f1; 2; 3g and all 3-tuples i1; i2; i3, and all decodings

b1; b2; b3, P
i1;i2;i3
b1;b2;b3

= P
i�(1);i�(2);i�(3)

b�(1);b�(2);b�(3)
.

We want an emulator whose probability distribution Q overN -bit strings is consis-

tent with the distribution of the server's responses. Formally, if Q
[N ]ji1i2i3
b1b2b3

is the prob-

ability distribution induced by Q on indices i1; i2; i3, then we want 8i1; i2; i3; b1; b2; b3
Q

[N ]ji1;i2;i3
b1b2b3

= P
i1i2i3
b1b2b3

to be true. What we will actually show that there is a emulator

for which this is true with small error, i.e. maxi1i2i3;b1b2b3jQ
[N ]ji1i2i3
b1b2b3

�P i1i2i3
b1b2b3
j � �S. To

show the existence of such an emulator, we write out the equations that the above

equality implies on the actual proof strings that Q is over.

Construct matrix A with 23
�
N

3

�
rows and 2N columns as follows: the rows of A

are labeled by the di�erent query-response tuples r
ijk
b1;b2;b3

and the columns are labeled

by the 2N possible N -bit strings. Let B be the vector of 8
�
N

3

�
of values P

i;j;k
b1;b2;b3

from

the server's strategy. Let x be the probability vector with 2N entries where xi is the

probability that the i-th N bit string is chosen as the database. To prove Lemma 2,

it is enough to show that the system Ax = B can be solved for the probability vector

x. Any such solution can be used for the distribution Q.

For clarity, we label the 8
�
N

3

�
rows of matrix A in lexicographic order over the tu-

ples and in increasing order of weight over bit strings r123
000
; r

123

001
; r

123

010
; r

123

100
; r

123

011
: : : r

N�2;N�1;N
111

11



and the 2N columns of matrix A by subsets of [N ] enumerated in lexicographic or-

der. That is, let ;; f1g; f2g; : : : ; fNg; f1; 2g; f1; 3g; : : : ; fN � 1; Ng; : : : ; f1; : : : ; Ng

represent the labels of the columns of A in order. Now we can describe how the

elements of A can be �lled: let I = r
i;j;k
b1b2b3

be the label of the row in question and let

R
i;j;k
b1b2b3

be the actual vector. Let J � f1; : : : ; Ng be the label of the column, then set

A[I; J ] = 1 if DJ [I] = 0, i.e. if the J -th string has a zero in its I-th position. Clearly,

if there is a solution x which is a probability distribution on N -bit strings, then the

emulator using this distribution can generate the same distribution as the server on

query-response tuples.

In order to prove that a solution exists, we now de�ne a series of row transfor-

mations on A in lexicographic order. For the �rst row R
123

000
there is no change. For

the next row, r123
001

, we add the previous row to this one. That is, the second row

with label r123
001

is now R
123

000
+ R

123

001
. De�ne Ri;j

0;0 as the N bit vector which is de�ned

as: R
i;j
0;0[l] = 1 if the l-th column label contains i and j. Note that R

i;j;k
0:0:0 and R

i;j;k
0;0;1

can not both be 1 in any index. Hence, the row with label r123
001

has the row R
12

00
.

Next, for the row with label r123
010

, we add the row labeled r
123

000
to get the row R

13

00
and

similarly, for the row labeled r
123

100
. Finally, for the rows labeled r

123

011
we add the rows

labeled r
123

000
, r123

001
and r123

010
. De�ning Ri

0
as the vector with 1 in all the positions where

the i-th bit is 1, we note that the row labeled r
123

011
has the row R

1

0
. Analogously, we

transform the rows labeled r
123

101
to R

2

0
and r

123

110
to R

3

0
. Finally, the row labeled r

123

111

can be transformed to the all 1's vector by adding to it all the previous rows. Next

in the lexicographic order are the rows labeled r
124

000
through r

124

111
. We follow the same

procedure outlined above for these rows to get the rows R124

000
; : : : ; R

4

0
;1. Since every

one of the 8
�
N

3

�
rows in the matrix has a label of one of these forms we can carry out

this procedure for all the rows of A to give us a new matrix A
0.

In order that the solutions to the system Ax = B remain unchanged when we

transformed A to A
0, we have to perform the same set of row operations on B. To

start with, consider B123

001
. To be consistent with A, we add B

123

001
to give B

123j12
00 .

Similarly, we add B
123

000
to B

123

010
. Let this sum be called B

123j13
00 and analogously for

B
123j23
00 . Next, for B123

011
, we add B

123

000
; B

123

001
and B

123

010
to get B

123j1
0 . Similarly, we get

B
123j2
0 and B

123j3
0 . Finally, replace B

123

111
by the sum of all the eight quantities i.e.P

b1b2b3
B

123

b1b2b3
. Follow this procedure for all the values of B to give a new vector B0.

CLAIM 3 The systems Ax = B and Ax
0 = B

0 have exactly the same set of solutions.

Proof: We can write the row transformations that we have performed as a matrix T

that left multiplies both sides. Since we have performed the same transformations on

B as on A, we get TAx = TB. Trivially, T is an invertible matrix.

12



Now, we proceed to show that the systemA
0
x = B

0 is solvable , i.e. there is at least

one solution which is a probability. As is obvious from the construction of A0, all rows

are duplicated many times. HenceA0 is not full rank and we have to show that B0 is in

the column space ofA0. We do this by collecting all the unique rows and reordering the

rows of matrix A0 so that it becomes upper triangular. Since, we want A0 to be upper

triangular, we must dovetail the row order to the column order that we have already

established. Hence, we list the rows in the following order now: the �rst row will be

the vector R;
; which is the all ones vector. Next, we list in order Ri

0
; i = 1; : : : ; N

(only one copy each). Consider the elements of the row R
1

0
. Recall that the columns

of A0 (as were the columns of A) are labeled as ;; f1g; f2g; : : : ; fNg; f1; 2g; : : :. Hence,

R
1

0
is of the form 0; 1; : : : whereas R2

0
has the form 0; 0; 1; : : : and so on. Next, we list

in order one copy each of Ri;j
00. Similarly, R1;2

0;0 will have N +1 leading zeros and then

a 1 in the column labeled f1; 2g. One can similarly write the elements of the rows of

the form R
i;j;k
0;0;0. We have accounted for l = 1 +

�
N

1

�
+
�
N

2

�
+
�
N

3

�
rows and by listing

the rows in this order gives an upper triangular part of A0. To preserve equivalence,

we have to reorder the elements of B0 in the same way. The �rst element of B0 is

1. The second element in B
0 (corresponding to row R

1

0
) is P

123j1
0 . Similarly, the next

N �1 elements are P
123j2
0 through P

N�2;N�1;N jN
0 . The next set of elements are P

123j12
00

through P
N�2;N�1;N jN�1;N

00 followed by P 123

000
through P

N�2;N�1;N
000 .

The remaining 8
�
N

3

�
� (1+

�
N

1

�
+
�
N

2

�
+
�
N

3

�
) rows are all duplicates of the rows in

the upper triangle since our transformation fromA to A0 transformed all the rows. For

example, the row R
ij
00 will be repeated N � 2 times, once for every k 2 [N ]; k 6= i 6= j.

Similarly, Ri
0
will be repeated once for every pair j; k 2 [N ]; i 6= j 6= k. This gives us

an easy construction of the left null space LA0 of A0. For every i-th row not in the

upper triangle, we know that it is a duplicate of some j-th row in the upper triangle.

We can construct a vector in LA0 which has a 1 in the i-th position and �1 in the

j-th position. This construction describes all the vectors in LA0 . Now, it is su�cient

that B0 be orthogonal to all the vectors in LA0 , i.e. 8y 2 LA0(y;B0) = 0. By our

construction, every such y has a �1 in one of the �rst t elements and a +1 in one

of the remaining positions. This gives us the following equality constraints between

elements of B0. The duplicates of the rows in A
0 of the form R

i;j
00 give constraints of

the form:

8i; j; k; k0 2 [N ]; i 6= j 6= k 6= k
0
; P

ijk
000 + P

ijk
001 = P

ijk0

000 + P
ijk0

001 :

All the duplicate rows in A
0 of the form R

i
0
give constraints of the form

8i; j; j0; k; k0 2 [N ]; i 6= j 6= j
0 6= k 6= k

0

P
ijk
000 + P

ijk
001 + P

ijk
010 + P

ijk
011 = P

ij0k0

000 + P
ij0k0

001 + P
ij0k0

010 + P
ij0k0

011 :
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Hence, if these constraints are true on B
0 then B

0 is in the column space of A0.

De�ne projections of the probability distributions P i1i2i3 as follows. Let P
i1i2i3ji1i2
b1b2

=

P
i1i2i3
b1b20

+ P
i1i2i3
b1b21

. Similarly, de�ne projections of the form P
i1
0 . The following claim

follows from the assumption of zero error probability for PIR. It says that the server's

response on a particular query index cannot depend on the tuple.

CLAIM 4 Let t be any single query or two query indices and let s and s0 be any three-

query tuples containing t. Then, if �PIR = 0, P sjt = P
s0jt.

By the claim above, projection probabilities are well de�ned. Let P i1;i2 := P
sji1;i2

for any s which contains i1 and i2. Likewise, P
i1 is de�ned analogously.

LEMMA 3 The system A
0
x = B

0 yields a valid set x of probabilities on N -bit strings

when �PIR = 0.

Proof: We have shown above that the system A
0
x = B

0 has a solution when B
0

satis�es the projection constraints above. Indeed, that these constraints are satis�ed

follows immediately from the assumption of zero-error PIR. However, we still have

to ensure that the solutions we have are probabilities. The �rst row ensures that all

the elements of the solution vector sum up to 1. However, it is not obvious that the

elements are non-negative. To see this, we break the solution to the upper triangular

system into blocks. An (i; j) block is a subset of rows consisting of the row R
i;j
00 and

all rows of the form R
ijk
000. Note that P ijk

000 is already non-negative since it is a given

probability. The constraints on P
ij
00 imply that P

ij
00 = P

ijk
000 + P

ijk
001 for all k 6= i 6= j.

Furthermore, the rows R
ij
00 has no common 1 positions with any row except rows of

the form R
ijk
00�. From this we can infer that a non-negative solution exists in this block.

We can follow the same argument for all such (i; j) blocks since they are independent.

Finally, by an analogous argument, it can be shown that the i blocks can be solved

with non-negative solutions as well.

It now remains to consider the case of �PIR > 0. First, we note that permutations

of a query do not give any advantage to the adversary since we chose a random

permutation of any query. However, the projection constraints may not hold exactly,

and hence existence of a solution to A
0
x = B

0 is not a given. A PIR scheme with

�PIR > 0 implies that the projection constraints are satis�ed with error bounded by

�PIR. That is, for example, 8i 6= j 6= k 6= k
0 2 [N ] jP

ijk
000+P

ijk
001�(P

ijk0

000 +P
ijk0

001 )j � �PIR.

The following lemma shows that there is a solution ~P that satis�es all the projection

constraints and is close to the given probabilities P .

LEMMA 4 There exists a probability vector ~P i1:::il
b1:::bl

such that the system Ax = ~P is

solvable and maxi1:::il;b1:::bljP
ijk
bibjbk

� ~P ijk
bibjbk
j � 2O(l log l)

�PIR.
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Proof: To create the vector ~P of probabilities we �rst compute �P
ij
00
:= 1

N�2

P
k 6=i6=j

~P
ijkjij
00

where ~P
ijkjk
bibj

:= ~P
ijkjk
bibj0

+ ~P
ijkjk
bibj1

. Similarly, �P i
0
:=

�
N�1

2

��1P
k 6=i6=j

~P
ijkji
0 with ~P

ijkji
0 de-

�ned analogously. We now show how to compute ~P ijk
bibjbk

from these values. There

are 8 values to be calculated ~P
ijk
000 through P

ijk
111. Start with P

ijk
000 = P

ijk
000. Given the

values �P
ij
00

and �P i
0
we can compute all the ~P

ijk
bibjbk

such that they satisfy the projec-

tion constraints exactly as follows. ~P
ijk
001

:= �P
ij
00
� ~P

ijk
000

. Similarly, we can compute
~P ijk
010

:= �P ik
00
� ~P ijk

000
and ~P ijk

100
:= �P jk

00
� ~P ijk

000
. Then, ~P ijk

011
:= �P i

0
� ( ~P ijk

000
+ ~P ijk

001
+ ~P ijk

010
)

and so on. Finally, we have to show that the probabilities ~P are within some � of P .

We can compute the distance by tracing the computation path of these probabilities

above. The error bound depends on the number of queries l asked and so we state

this last bound in terms of l.

CLAIM 5 For any client making l queries, there exists a probability vector ~P satisfying

the projection constraints such that for all i1; : : : ; il and b1 : : : bl, jP
i1:::il
b1:::bl

� ~P i1:::il
b1:::bl
j �

2O(l log l)
�PIR.

This claim completes the proof of Lemma 2. We omit the simple proof for lack of

space.

Proof of Theorem 1: Given a cheating server whose acceptance probability for a

language L 2 NP is � �PCP , using Lemmas 1 and 2, there is an emulator whose

acceptance probability is � �PCP + �PIR � 2
O(l log l). �PCP is already negligible by

assumption. The second term can be made negligible by increasing the security

parameter in the PIR scheme by a poly-logarithmic factor.

6 Extensions and Further results

We briey sketch the proof of Theorem 2. It is straightforward to see that Theorem 2

carries all the properties of Theorem 1 using essentially the same proof (i.e. showing

that one can construct probability distribution on databases which will pass PCP

theorem) but converting the PCP proof into a ZKPCP proof and using PIR instead

of SPIR. To prove witness-indistinguishability, we now assume that the Prover is

honest, and that there is a poly-bounded Veri�er who wants to distinguish witness

w1 from witness w2. SPIR guarantees that the veri�er will not be able to read more

than allowed by our protocol logO(1)
N bits and by the properties of ZKPCP the bits

retrieved are computationally indistinguishable for w1 and w2. Hence, if the Veri�er

can distinguish this violates either SPIR security or the zero-knowledge property of

ZKPCP [17]. This sketch will be elaborated in the full version of the paper.
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The proof of Theorem 1 also has implications for one-round multi-prover proof

systems in the information-theoretic setting. Notice that we show in Theorem 1

how to combine PIR protocols with PCP in one round. In the multi-prover setting,

information-theoretic implementations of PIR are known [5, 1] with small communi-

cation complexity. Our theorem provides an alternative way to reduce the commu-

nication complexity in the multi-prover setting: all provers can write down a PCP

proof on their work tapes, and then the communication complexity is simply the cost

of retrieving poly-logarithmic number of bits using information-theoretically secure

PIR protocols. So far, the best bounds known for retrieving a single bit using info-

theoretic PIR with only two provers is O(N
1
3 ) [5]. Thus, our approach gives an inferior

result to [10]. However, our technique works with any multi-database PIR protocol

and thus an improvement in information-theoretic PIR protocols would improve the

communication complexity in our approach. We remark as an aside that our results

also hold in the setting of universal service provider PIR [8].

Note that our \emulation" technique is not PCP-speci�c. More speci�cally, any

adversary who does not answer PIR queries honestly can be emulated (with small

error) by an algorithm that ips coins independently of the PIR encodings to choose

a database which it then uses to answer the queries honestly.

We also wish to point out that the same Veri�er's message can be used for multiple

proofs to multiple provers, and they all can be checked for correctness (with the same

error probability) without any additional messages from the veri�er. As long as the

Veri�er does not reveal any additional information about his private key or whether

he accepted or rejected each individual input, the error probability holds.
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