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Abstract

We consider two possible notions of authenticity for symmetric encryption schemes, namely
integrity of plaintexts and integrity of ciphertexts, and relate them to the standard notions of privacy
for symmetric encryption schemes by presenting implications and separations between all notions
considered. We then analyze the security of authenticated encryption schemes designed by \generic
composition," meaning making black-box use of a given symmetric encryption scheme and a given
MAC. Three composition methods are considered, namely Encrypt and MAC plaintext,MAC-then-

encrypt, and Encrypt-then-MAC. For each of these, and for each notion of security, we indicate
whether or not the resulting scheme meets the notion in question assuming the given symmetric
encryption scheme is secure against chosen-plaintext attack and the given MAC is unforgeable
under chosen-message attack. We provide proofs for the cases where the answer is \yes" and
counter-examples for the cases where the answer is \no."
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1 Introduction

We use the term authenticated encryption scheme to refer to a transform whose goal is to provide both

privacy and authenticity of the encapsulated data. Practitioners have been designing such schemes for

a long time. (Early e�orts were typically based on adding \redundancy" to the message before CBC

encrypting, while modern designs combine MACs with standard block cipher modes of operation.)

Theoretical recognition of authenticated encryption as a goal in its own right is more recent but

growing quickly (cf. [5, 13, 11]). We are lead, even if belatedly, to acknowledge authenticity as an

important addition to the list of security goals of a symmetric encryption scheme.1

Contributions in brief. The �rst part of this paper formalizes several di�erent possible notions

of authenticity for symmetric encryption schemes, and integrates them into the existing mosaic of

notions of security for symmetric encryption by relating them to the main existing notions of privacy,

via implications and separations in the style of [3]. The second part of this paper is motivated

by emerging standards such as [14] which design authenticated encryption schemes by what we call

\generic composition"| we analyze, with regard to meeting the previous notions, several generic

composition methods. Let us now look at these items in more detail.

1.1 Relations among notions

We consider the symmetric setting (i.e. private key). Privacy goals for symmetric encryption schemes

include indistinguishability [10] and non-malleability [8], each of which can be considered under ei-

ther chosen-plaintext or chosen-ciphertext attack, leading to four notions of security we abbreviate

IND-CPA, IND-CCA, NM-CPA, NM-CCA.2 De�nitions can be provided following [2]. (Their encryp-

tion oracle based template can be used to \lift" de�nitions for the asymmetric setting to the symmetric

setting.) The relations among these notions are well-understood [2, 9]. (These papers state results for

the asymmetric setting, but as noted in [3] it is an easy exercise to transfer them to the symmetric

setting. Details can be found in [12].)

We consider two notions of integrity |we use the terms authenticity and integrity interchangeably|

for symmetric encryption schemes. INT-PTXT |integrity of plaintexts| requires that it be com-

putationally infeasible to produce a ciphertext decrypting to a message which the sender had never

encrypted, while INT-CTXT |integrity of ciphertexts| requires that it be computationally infeasi-

ble to produce a ciphertext not previously produced by the sender, regardless of whether or not the

underlying plaintext is \new." (In both cases, the adversary is allowed a chosen-message attack.) The

�rst of these notions is the more natural security requirement while the interest of the second, stronger

notion is perhaps more in the implications we now discuss.

These notions of authenticity are by themselves quite disjoint from the notions of privacy; for

example a scheme could achieve INT-CTXT yet be sending the message in the clear. To make for

useful comparisons, we consider each notion of authenticity coupled with IND-CPA, the weakest notion

of privacy; namely the notions on which we focus for comparison purposes are INT-PTXT^ IND-CPA

and INT-CTXT ^ IND-CPA. (Read \^" as \and".)

Figure 1 shows the graph of relations between these notions and the above-mentioned older ones,

in the style of [2]. An \implication" A! B means that every symmetric encryption scheme meeting

notion A also meets notion B. A \separation" A 6! B means there exists a symmetric encryption

1 An authenticated encryption scheme, at least in the symmetric setting which we consider for the bulk of this paper,

is simply a symmetric encryption scheme meeting this additional goal. So from the security point of view we need only

talk of symmetric encryption and add authenticity to the list of its goals.
2 To avoid a blowup in the number of notions, we are restricting attention to what we consider the main ones.

Chosen-ciphertext attack here means the adaptive kind [16], denoted CCA2 in [3]; we will not consider the non-adaptive

kind [15]. We will also not consider distinctions between adaptive and non-adaptive access to encryption oracles [12].
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INT-CTXT ^ IND-CPA IND-CCA NM-CCA

INT-PTXT ^ IND-CPA IND-CPA NM-CPA

3.2 [3, 9]

3.1

easy [8]

easy

3.4

[3]3.3

Figure 1: Relations among notions of symmetric encryption: An arrow denotes an implication

while a barred arrow denotes a separation. The full arrows are relations proved in this paper, annotated

with the number of the corresponding Proposition or Theorem, while dotted arrows are reminders of

existing relations, annotated with citations to the papers establishing them.

scheme meeting notion A but not notion B. (This under the minimal assumption that some scheme

meeting notion A exists since otherwise the question is moot.) Only a minimal set of relations is

explicitly indicated; the relation between any two notions can be derived from the shown ones. (For

example IND-CCA does not imply INT-CTXT ^ IND-CPA because otherwise, by following arrows,

we would get IND-CCA ! INT-PTXT ^ IND-CPA contradicting a stated separation.) The dotted

lines are reminders of existing relations while the numbers annotating the dark lines are pointers to

Propositions or Theorems in this paper.

A few points may be worth highlighting. Integrity of ciphertexts |even when coupled only with

the weak privacy requirement IND-CPA| emerges as the most powerful notion. Not only does it imply

security against chosen-ciphertext attack, but it is strictly stronger than this notion. Non-malleability

|whether under chosen-plaintext or chosen-ciphertext attack| does not imply any type of integrity.

The intuitive reason is that non-malleability only prevents the generation of ciphertexts whose plain-

texts are meaningfully related to those of some challenge ciphertexts, while integrity requires it to be

hard to generate ciphertexts of new plaintexts even if these are unrelated to plaintexts underlying any

existing ciphertexts.

INT-PTXT is considered in [5] and INT-CTXT in [13, 11]. The implication INT-CTXT^IND-CPA!

IND-CCA was independently observed in [13] and the same paper also de�nes some variants of

INT-CTXT which we do not consider.

1.2 Analysis of generic composition

There are many possible approaches to the design of authenticated encryption schemes. As indicated

above, the earliest designs were based on adding \redundancy" to the message before encrypting with

some block cipher mode of operation. Attacks were found on many of these designs. Enciphering

(rather than encrypting) after adding randomness and redundancy can, however, be proven to yield a

scheme meeting INT-CTXT^ IND-CPA [5]. Some more speci�c constructions can be found in [13, 11].

We focus in this paper on a much simpler and better known method which we call \generic

composition:" simply combine a standard symmetric encryption scheme with a MAC in some way.

There are a few possible ways to do it, and our goal is to analyze and compare their security. The

motivation is practical. We will argue that notwithstanding the alternatives, it is this \obvious"

method which |as often the case in practice| remains the most pragmatic from the point of view of

performance and security architecture design.

Generic composition. Assume we are given a symmetric encryption scheme SE speci�ed by an
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Composition Method Privacy Integrity Non-Malleability

IND-CPA IND-CCA INT-PTXT INT-CTXT NM-CPA NM-CCA

Encrypt and MAC plaintext insecure insecure secure insecure insecure insecure

MAC-then-encrypt secure insecure secure insecure insecure insecure

Encrypt-then-MAC secure secure secure secure secure secure

Figure 2: Summary of security results for the composed authenticated encryption schemes under the

assumption that the given encryption scheme is IND-CPA and the given MAC is unforgeable.

encryption algorithm E and a decryption algorithm D. (Typically this will be a block cipher mode of

operation.) Also assume we are given a message authentication scheme MA speci�ed by a tagging

algorithm T and a tag verifying algorithm V and meeting some appropriate notion of unforgeability

under chosen-message attack. (Possibilities include the CBC-MAC, HMAC [1], or UMAC [7].) We

want to \compose" (meaning, appropriately combine) these to create an authenticated encryption

scheme meeting either INT-CTXT ^ IND-CPA or INT-PTXT ^ IND-CPA.

Below are the composition methods we consider. We call them \generic" because the algorithms of

the authenticated encryption scheme appeal to the given ones as black-boxes only. (After we present

the results we will explain why this is important.) In each case Ke is a key for encryption and Km is

a key for message authentication|

| Encrypt and MAC plaintext: EKe;Km(M) = EKe(M)kTKm(M).3 Namely, encrypt the plaintext

and append a MAC of the plaintext. \Decrypt+verify" is performed by �rst decrypting to get

the plaintext and then verifying the tag.

| MAC-then-encrypt: EKe;Km(M) = EKe(MkTKm(M)). Namely, append a MAC to the plaintext

and then encrypt them together. \Decrypt+verify" is performed by �rst decrypting to get the

plaintext and candidate tag, and then verifying the tag.

| Encrypt-then-MAC: EKe;Km(M) = CkTKm(C) where C = EKe(M). Namely, encrypt the plain-

text to get a ciphertext C and append a MAC of C. \Decrypt+verify" is performed by �rst

verifying the tag and then decrypting C. This is the method of the Internet RFC [14].

Here E is the encryption algorithm of the authenticated encryption scheme while the \decrypt+verify"

process speci�es a decryption algorithm D. The latter will either return a plaintext or a special symbol

indicating that it considers the ciphertext unauthentic.

Security results. Figure 2 summarizes what we show about the security of the three composite

authenticated encryption schemes. Entries in this table have the following meaning:

| Secure: The composite encryption scheme in question is proven to meet the security requirement

in question, assuming only that the component encryption scheme meets IND-CPA and the

message authentication scheme is unforgeable under chosen-message attack.

| Insecure: There exists some symmetric encryption scheme and some message authentication

scheme such that each is secure when taken individually, but when they are used as components

under the composition method in question, the resulting authenticated encryption scheme does

not meet the security requirement in question.

3 Here (and everywhere in this paper) \k" denotes an operation that combines several strings into one in such a way

that the constituent strings are uniquely recoverable from the �nal one. (If lengths of all strings are �xed and known,

concatenation will serve the purpose.)
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As we can see from Figure 2, the encrypt-then-MAC method of [14] is secure from all points of view,

making it a good choice for a standard.

The use of a generic composition method secure in the sense above is advantageous | as compared

to the other methods to achieve authenticated encryption that we have discussed| from the point

of view both of performance and of security architecture. The performance bene�t arises from the

presence of fast MACs such as UMAC [7] using which the cost of authenticated encryption is essentially

the cost of encryption. The architectural bene�ts arise from the stringent notion of security being used.

To be secure, the composition must be secure for all possible secure instantiations of its constituent

primitives. (If it is secure for some instantiations but not others, we declare it insecure.) An application

can thus choose a symmetric encryption scheme and a message authentication scheme independently

(these are usually already supported by existing security analyses) and then appeal to some �xed

and standard composition technique to combine them. No tailored security analysis of the composed

scheme is required.

In Section 4 we state formal theorems to support the above claims, providing quantitative bounds

for the positive results, and counter-examples with attacks for the negative result.

Quantitative results and comparisons. Above we have discussed our results at a qualitative

level. Each result also has a quantitative counterpart; these are what our theorems actually state

and prove. These \concrete security" analyses enable a designer to estimate the security of the

authenticated encryption scheme in terms of that of its components. All the reductions in this paper

are tight, meaning there is little to no loss of security.

2 De�nitions

We present de�nitions for symmetric encryption, �rst specifying the syntax |meaning what kinds

of algorithms make up the scheme| and then specifying formal security measures using a concrete

framework which permits quantitative security assessments. Associated to each scheme and each

notion of security is an advantage function that measures the maximum possible success probability

of an adversary as a function of the resources it invests in the attack. Security as we have discussed

it in Section 1 can be interpreted as the requirement that the corresponding advantage function is

negligible as a function of the security parameter for an adversary of polynomial resources.

De�nition 2.1 [Sntax of symmetric encryption [2]] A symmetric encryption scheme SE = (K; E ;

D) consists of three algorithms as follows:

� The key generation algorithm K is randomized. It returns a key K; we write K
R

 K.

� The encryption algorithm E could be randomized or stateful. It takes the key K and a plaintext

M to return a ciphertext C; we write C
R

 EK(M).

� The decryption algorithm D is deterministic. It takes the key K and a string C to return either

the corresponding plaintext M or the symbol ?; we write x DK(C) where x 2 f0; 1g
� [ f?g.

We require that DK(EK(M)) =M for all M 2 f0; 1g�.

For brevity, we often omit the word \symmetric" and just say \encryption scheme." An authenticated

encryption scheme is syntactically identical to an encryption scheme as de�ned above; we will use the

term only to emphasize cases where we are targeting both privacy and authenticity. Now we address

these two security goals.

Privacy is measured via indistinguishability in the \left-or-right" model of [2]. We now recall their

de�nition, which is for privacy under chosen-plaintext attacks. The adversary is allowed queries of

the form (x0; x1) where these are equal-length messages. Two games are considered. In the �rst,
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each query is responded to by encrypting the left message; in the second, it is the right message.

Formally, we de�ne the left-or-right oracle EK(LR(�; �; b)), where b 2 f0; 1g, to take input (x0; x1) and

do the following: if b = 0 it computes C  EK(x0) and returns C; else it computes C  EK(x1) and

returns C. (It is understood that the oracle picks any coins that E might need if E is randomized, or

updates its state appropriately if E is stateful.) We consider an encryption scheme to be \good" if a

\reasonable" adversary cannot obtain \signi�cant" advantage in distinguishing the cases b = 0 and

b = 1 given access to the oracle.

To model chosen-ciphertext attacks we allow the adversary to also have access to a decryption

oracle. Note that if the adversary queries the decryption oracle at a ciphertext output by the left-or-

right oracle, then it can obviously easily win the game. Therefore, we disallow it from doing so. Any

other query is permissible.

De�nition 2.2 [Privacy of a Symmetric Encryption Scheme [2]] Let SE = (K; E ;D) be a

symmetric encryption scheme. Let b be a bit. Let Acpa be an adversary that has access to the oracle

EK(LR(�; �; b)) and let Acca be an adversary that has access to the oracles EK(LR(�; �; b)) and DK(�).

Now, we consider the following experiments:

Experiment Expind-cpa
SE (A; b)

K
R

 K

x A
EK(LR(�;�;b))
cpa

Return x

Experiment Expind-cca
SE (A; b)

K
R

 K

x A
EK(LR(�;�;b));DK(�)
cca

Return x

Above it is mandated that Acca never queries DK(�) on a ciphertext C output by the EK(LR(�; �; b))

oracle, and that the two messages queried of EK(LR(�; �; b)) always have equal length. We de�ne the

advantage of Acpa, and the advantage of Acca, respectively, via

Adv
ind-cpa
SE (Acpa) = Pr

h
Exp

ind-cpa
SE (Acpa; 1) = 1

i
� Pr

h
Exp

ind-cpa
SE (Acpa; 0) = 1

i

Advind-cca
SE (Acca) = Pr

h
Expind-cca

SE (Acca; 1) = 1
i
� Pr

h
Expind-cca

SE (Acca; 0) = 1
i
:

We de�ne the advantage function of the scheme for privacy under chosen-plaintext attacks, and the

advantage function of the scheme for privacy under chosen-ciphertext attacks, respectively, as follows.

For any t; qe; qd; � � 0,

Adv
ind-cpa
SE (t; qe; �) = max

Acpa

fAdv
ind-cpa
SE (Acpa)g Advind-ccaSE (t; qe; qd; �) = max

Acca

fAdvind-ccaSE (Acca)g

where the maximum is over all Acpa; Acca with \time complexity" t, each making at most qe queries

to the EK(LR(�; �; b)) oracle, totaling at most � bits, and, in the case of Acca, also making at most qd
queries to the DK(�) oracle.

The advantage function is the maximum probability that the security of the scheme SE can be com-

promised by an adversary using the indicated resources. The \time complexity" is the worst case total

execution time of the experiment, plus the size of the code of the adversary, in some �xed RAM model

of computation. We stress that the the total execution time of the experiment includes the time of all

operations in the experiment, including the time for key generation and the computation of answers to

oracle queries. This convention for measuring time complexity is used for all de�nitions in this paper.

We de�ne non-malleability not directly as per [8] or even [3], but via the equivalent indistin-

guishability under parallel chosen-ciphertext attack characterization of [6]. This is mainly in order to

facilitate the concrete security measurements which, under the more direct de�nitions, require more

parameters. The notations ~EK(LR(�; �; b)) and ~DK(�) denote similar oracles to those in De�nition 2.2

except that the individual inputs (except for the bit b) and outputs are vectors of strings.
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De�nition 2.3 [Non-Malleability of a Symmetric Encryption Scheme [6]] Let SE = (K; E ;D)

be a symmetric encryption scheme. Let b be a bit. Let Acpa = (Acpa1
; Acpa2

) be an adversary that

has access to the oracle ~EK(LR(�; �; b)) and let Acca = (Acca1
; Acca2) be an adversary that has access

to the oracles ~EK(LR(�; �; b)) and ~DK(�). Now, we consider the following experiments:

Experiment Expnm-cpa
SE (Acpa; b)

K
R

 K

(~c; s) A
~EK(LR(�;�;b))
cpa1

~p ~DK(~c)
x Acpa2

(~p;~c; s)
Return x

Experiment Expnm-cca
SE (Acca; b)

K
R

 K

(~c; s) A
~EK(LR(�;�;b)); ~DK(�)
cca1

~p ~DK(~c)
x Acca2(~p;~c; s)
Return x

Above it is mandated that the vector ~c output by Acpa1
does not contain any of the ciphertexts output

by the ~EK(LR(�; �; b)) oracle, and that the pairs of messages queried of ~EK(LR(�; �; b)) are always of

equal length. We de�ne the advantage of Acpa, and the advantage of Acca, respectively, via

Adv
nm-cpa
SE (Acpa) = Pr

h
Exp

nm-cpa
SE (Acpa; 1) = 1

i
� Pr

h
Exp

nm-cpa
SE (Acpa; 0) = 1

i

Advnm-ccaSE (Acca) = Pr
�
Expnm-cca

SE (Acca; 1) = 1
�
� Pr

�
Expnm-cca

SE (Acca; 0) = 1
�
:

We de�ne the advantage function of the scheme for non-malleability under chosen-plaintext attacks,

and the advantage function of the scheme for non-malleability under chosen-ciphertext attacks, respec-

tively, as follows. For any t; qe; qd; � � 0,

Adv
nm-cpa
SE (t; qe; �) = max

Acpa

fAdv
nm-cpa
SE (Acpa)g Advnm-ccaSE (t; qe; qd; �) = max

Acca

fAdvnm-ccaSE (Acca)g

where the maximum is over all Acpa; Acca with time complexity t, each making at most qe queries to

the ~EK(LR(�; �; b)) oracle, totaling at most � bits, and, in the case of Acca, also making at most qd
queries to the ~DK(�) oracle.

Now we specify security de�nitions for integrity (authenticity) of a symmetric encryption scheme. The

model is similar to that used for message authentication except that the messages are no longer in the

clear, but speci�ed implicitly via ciphertexts. The adversary is allowed to mount a chosen-message

attack on the scheme, modeled by giving it access to an encryption oracle EK(�). Success is measured

by its ability to make the decryption oracle output a new plaintext rather than reject by outputting

?. To capture this, we introduce an oracle D�
K
(�) de�ned as follows:

Oracle D�
K
(C)

If DK(C) 6= ?, then return 1.

Else return 0.

The adversary A is given access to this oracle (but not to the decryption oracle itself). It is considered

successful if it can make the oracle accept a ciphertext query C that was not \legitimately produced"

(i.e. D�
K
(C) = 1). There are two possible restrictions for a valid ciphertext C. One convention is

to consider an adversary A successful if the plaintext corresponding to C was never queried of the

encryption oracle. A scheme secure in this manner is said to preserve the integrity of plaintexts. The

other convention is to consider A successful if it simply submits a new valid ciphertext C. A scheme

secure in this manner is said to preserve the integrity of ciphertexts.

De�nition 2.4 [Integrity of an Authenticated Encryption Scheme] Let SE = (K; E ;D) be a

symmetric encryption scheme, and let D�
K
(�) be as de�ned above. Let Aptxt and Actxt be adversaries

each of which has access to two oracles: EK(�) and D
�
K
(�). Consider the following experiments:
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Experiment Expint-ptxt
SE (Aptxt)

K
R

 K

If A
EK(�);D�

K
(�)

ptxt makes a query C to

the oracle D�K(�) such that
{ D�K(C) returns 1, and

{ M
def
= DK(C) was never a query to EK(�)

then return 1 else return 0.

Experiment Expint-ctxt
SE (Actxt)

K
R

 K

If A
EK (�);D�

K
(�)

ctxt makes a query C to
the oracle D�K(�) such that

{ D�K(C) returns 1, and
{ C was never a response of EK(�)

then return 1 else return 0.

We de�ne the advantage of Aptxt, advantage of Actxt, and the advantage function of the scheme for

integrity of plaintexts and ciphertexts, respectively, as follows. For any t; qe; qd; � � 0, let

Adv
int-ptxt
SE (Aptxt) = Pr

h
Exp

int-ptxt
SE (Aptxt) = 1

i

Adv
int-ptxt
SE (t; qe; qd; �) = max

Aptxt

fAdv
int-ptxt
SE (Aptxt)g

Adv
int-ctxt
SE (Actxt) = Pr

�
Expint-ctxt

SE (Actxt) = 1
�

Advint-ctxtSE (t; qe; qd; �) = max
Actxt

fAdvint-ctxtSE (Actxt)g

where the maximum is over all Aptxt, Actxt with time complexity t, each making at most qe queries

to the oracle EK(�) and at most qd queries to the oracle D�
K
(�) such that the sum of the lengths of all

oracle queries is at most � bits.

A scheme is said to meet a notion such as IND-CPA, IND-CCA, NM-CPA, NM-CCA, INT-PTXT,

or INT-CTXT if the advantage |measured as de�ned above for the notion in question| of any

polynomial time adversary is negligible. For the purpose of this de�nition, it is assumed that there is

some implicit security parameter as a function of which these measurements are made.

3 Relations among notions

In this section we state the formal versions of the results summarized in Figure 1. We begin with the

implications and then move to the separations. All proofs are in Appendix B. The �rst implication,

below, is a triviality:

Theorem 3.1 [INT-CTXT) INT-PTXT] Let SE be an encryption scheme. For any t; qe; qd; � � 0,

Adv
int-ptxt
SE (t; qe; qd; �) � Advint-ctxt

SE (t; qe; qd; �) :

The next implication is more interesting:

Theorem 3.2 [INT-CTXT ^ IND-CPA ) IND-CCA] Let SE be an encryption scheme. For any

t; qe; qd; � � 0,

Advind-ccaSE (t; qe; qd; �) � 2 �Advint-ctxt
SE (t; qe; qd; �) +Adv

ind-cpa
SE (t; qe; �) :

We use the following approach to show separations. To show that a security notion A, for instance,

does not imply a security notion B, we construct a scheme SE that can be proven secure under the

notion A but not under the notion B. Of course, the statement that A 6) B is vacuously and un-

interestingly true if there does not exist any scheme secure under the notion A in the �rst place. So we

make the minimal assumption whenever we show a separation A 6) B that there exists some scheme

secure under the notion A.

Proposition 3.3 [IND-CCA 6) INT-PTXT] Given a symmetric encryption scheme SE , we can con-

struct a symmetric encryption scheme SE 0 such that, for any t; qe; qd; � � 0,

Advind-cca
SE 0 (t; qe; qd; �) � Advind-cca

SE (t; qe; qd; �) (1)

but for some t0

Adv
int-ptxt
SE 0

(t0; 0; 1; 2) = 1 : (2)
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Proposition 3.4 [INT-PTXT ^ IND-CPA 6) NM-CPA] Given a symmetric encryption scheme SE ,

we can construct a symmetric encryption scheme SE 0 such that, for any tp; ti; q; qe; qd; �p; �i � 0,

Adv
ind-cpa
SE 0

(tp; q; �p) � Adv
ind-cpa
SE (tp; q; �p) (3)

Adv
int-ptxt
SE 0

(ti; qe; qd; �i) � Adv
int-ptxt
SE (ti; qe; qd; �i) (4)

but for some t0

Adv
nm-cpa
SE 0

(t0; 1; 1) � 1�Adv
ind-cpa
SE 0

(t0; 1; 1) : (5)

4 Security of the Composite Schemes

We now present the formal security results of the composite schemes as summarized in Figure 2. The

theorems are presented in their full quantitative form and are phrased in terms of the de�nitions of

Section 2. Their proofs can be found in Appendix B. De�nition for message authentication schemes

which we use below can be found in Appendix A.

Throughout this section, SE = (Ke; E ;D) is a given symmetric encryption scheme,MA = (Km;T ;V)

is a given message authentication scheme, and SE = (K; E ;D) is a composite scheme. The as-

sumption that a given encryption scheme SE is secure corresponds, intuitively, to assuming that

Adv
ind-cpa
SE (t; q; �) is small for \reasonably high" values of their argument parameters. Similarly, for a

secure MAC schemeMA, we assume that AdvMA(t; qt; qv; �) is small for large parameters. We wish

to assess the privacy of SE under chosen-plaintext and chosen-ciphertext attacks, its non-malleability,

and its integrity given these assumptions. A claim of security for SE under some security measure

corresponds to an upper bound on the corresponding advantage function, provided as a function of

the given advantage functions of the given schemes SE and MA. A claim of insecurity under some

measure corresponds to a lower bound on the advantage function of SE under this measure. The

presentation below is method by method, and in each case we begin by specifying the method in more

detail.

We make the simplifying assumption that D never returns ?. It can take any string as input, and

the output is always some string. (This is without loss of generality because we can modify D so that

instead of returning ? it just returns some default message. Security under chosen-plaintext attack is

una�ected.) However, D can and will return ? at times and this is crucial for integrity.

Encrypt and MAC Plaintext. The composite scheme is de�ned as follows:

Algorithm K

Ke
R

 Ke

Km
R

 Km

Return hKe;Kmi

Algorithm EhKe;Kmi(M)
C 0  EKe(M)
�  TKm(M)
C  C 0k�

Return C

Algorithm DhKe;Kmi(C)
Parse C as C 0k�

M  DKe(C
0)

v  VKm(M; �)
If v = 1, return M

else return ?.

This composition method does not preserve privacy because the MAC could reveal information about

the plaintext. The simplest illustration of this is to consider the case where the message authentication

scheme is deterministic. (Most practical ones are, in fact, deterministic, including CBC-MAC and

HMAC.) In that case, an adversary can use the MAC present in the ciphertext of the composite

scheme to see whether the same message has been encrypted twice, something which should not be

possible if the scheme is to meet a strong notion of privacy like security in the left-or-right model.

The proof of Proposition 4.1 makes this more precise. It considers an arbitrary symmetric en-

cryption scheme and an arbitrary but deterministic message authentication scheme, and then presents

10



an adversary attacking the privacy of the corresponding encrypt and MAC plaintext scheme. This

adversary uses minimal resources: just two chosen plaintexts, each one bit long, and time complexity

t enough to cover two applications each of the encryption and tagging functions. It is successful unless

the message authentication scheme is very weak in terms of integrity, so for all practical purposes

the success probability of our attack is one. (The term AdvMA(t; 1; 1; 1) measures the probability of

breaking the MAC using a chosen-message attack consisting of a single, one-bit message, and should be

viewed as essentially zero.) The proof can be found in Appendix B. We present the formal statement

of this result below.

Proposition 4.1 [Encrypt and MAC plaintext method is insecure under IND-CPA and IND-CCA]

Let SE be a symmetric encryption scheme, and let MA be a deterministic message authentication

scheme. Let SE be the composite scheme obtained from these by the encrypt and MAC plaintext

composition method. For any t � t0 |where t0 is a small value speci�ed in the proof| we have

Adv
ind-cpa
SE

(t; 2; 2) � 1�AdvMA(t; 1; 1; 1) (6)

Advind-cca
SE

(t; 2; 0; 2) � 1�AdvMA(t; 1; 1; 1) : (7)

Proposition 4.1 justi�es the claim that the encrypt and MAC plaintext method does not preserve

privacy. In general, privacy of the encrypt and MAC plaintext method will be compromised whenever

the MAC reveals partial information about the plaintext, for example, outputs some part of it.

This composition method also fails in general to provide integrity of ciphertexts. This is because

there are secure encryption schemes with the property that a ciphertext can be modi�ed without

changing its decryption. When such an encryption scheme is used as the base symmetric encryption

scheme, an adversary can query the encryption oracle, modify part of the response, and still submit

the result to the veri�cation oracle as a valid ciphertext. This attack is possible regardless of the

assumption on the MAC.

The following proposition makes this more precise. It says that as long as a secure symmetric

encryption scheme SE exists, there also exists another secure symmetric encryption scheme SE 0 such

that the composite scheme formed by encrypt and MAC plaintext based on SE 0 and the given MAC

scheme can be attacked in terms of integrity of ciphertexts.

Proposition 4.2 [Encrypt and MAC plaintext method is insecure under INT-CTXT]

Let SE = (Ke; E ;D) andMA = (Km;T ;V) be a symmetric encryption scheme and a message authen-

tication scheme, respectively. We can construct a symmetric encryption scheme SE 0 based on SE such

that, for large enough t and for any q; � � 0,

Adv
ind-cpa
SE (t; q; �) = Adv

ind-cpa
SE 0

(t; q; �)

but for some t0,

Advint-ctxt
SE

(t0; 1; 1; l + 1) = 1

where SE is a composite scheme constructed via the encrypt and MAC plaintext composition method

based on the schemesMA and SE 0, and l is the length of a ciphertext of the scheme SE .

The �rst equation says that the modi�ed scheme SE 0 is still secure against chosen-plaintext attack,

having preserved the security of SE. The second equation says that there is an attack on the composite

scheme with regard to integrity of ciphertexts.

Proposition 4.3 [Encrypt and MAC plaintext method is insecure under NM-CPA and NM-CCA]

11



Let SE be a composite scheme obtained via the encrypt and MAC plaintext composition method.

Then, for large enough t1; t2; q1; q2; q
0
2; �1 and �2, we have

Adv
nm-cpa
SE

(t1; q1; �1) � Adv
ind-cpa
SE

(t1; q1; �1)

Advnm-cca
SE

(t2; q2; q
0
2; �2) � Adv

nm-cpa
SE

(t2; q2; �2) :

The �rst equation, together with Proposition 4.1, imply that the encrypt and MAC plaintext com-

position method is insecure under NM-CPA. Similarly, the second equation, together with the �rst,

imply that this composition method is insecure under NM-CCA.

Nevertheless, the encrypt and MAC plaintext composition method does preserve integrity of plain-

texts, in the sense that it inherits the integrity of the MAC in a direct way, with no degradation in

security. This is independent of the symmetric encryption scheme: whether the latter is secure or not

does not a�ect the integrity of the composite scheme.

Theorem 4.4 [Encrypt and MAC plaintext method is secure under INT-PTXT]

Let SE = (Ke; E ;D) be a symmetric encryption scheme, letMA = (Km;T ;V) be a message authenti-

cation scheme, and let SE be the encryption scheme obtained from SE andMA via the encrypt and

MAC plaintext composition method. For any t; qe; qd; � � 0, the following holds:

Adv
int-ptxt
SE

(t; qe; qd; �) � AdvMA(t; qe; qd; �) :

MAC-then-Encrypt. The composite scheme is de�ned as follows:

Algorithm K

Ke
R

 Ke

Km
R

 Km

Return hKe;Kmi

Algorithm EhKe;Kmi(M)
�  TKm(M)
C  EKe(Mk�)
Return C

Algorithm DhKe;Kmi(C)
M 0  DKe(C)
Parse M 0 as Mk�
v  VKm(M; �)
If v = 1, return M

else return ?.

This composition method does not preserve the integrity of ciphertexts for the same reason as in the

case of the encrypt and MAC plaintext method. In fact, the same attack described in the proof of

Proposition 4.2 is also e�ective here.

In terms of privacy against chosen-ciphertext attacks, this composition method also fails. The

reason is the same as before: one can query two messages to the left-or-right encryption oracle, modify

part of the response, submit the result to the decryption oracle as a valid query, and completely

determine whether the given encryption oracle is a left or a right one. Proposition 4.5 states the

implication of this attack, which is presented in Appendix B, more precisely.

Proposition 4.5 [MAC-then-encrypt method is insecure under IND-CCA and INT-CTXT]

Let SE = (Ke; E ;D) andMA = (Km;T ;V) be a symmetric encryption scheme and a message authen-

tication scheme, respectively. We can construct a symmetric encryption scheme SE 0 based on SE such

that, for large enough t and for any q; � � 0,

Adv
ind-cpa
SE (t; q; �) = Adv

ind-cpa
SE 0

(t; q; �)

but for some tp and ti,

Advind-cca
SE

(tp; 1; 1; l + 1) = 1

Advint-ctxt
SE

(ti; 1; 1; l + 1) = 1

where SE is a composite scheme constructed via the MAC-then-encrypt composition method based

on the schemesMA and SE 0, and l is the length of a ciphertext of the scheme SE .
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The �rst equation says that the modi�ed scheme SE 0 is still secure, having preserved the security

of SE . The last two equations say that there are attacks on the composite scheme with regard to

chosen-ciphertext privacy and integrity of ciphertexts, respectively.

Proposition 4.6 [MAC-then-encrypt method is insecure under NM-CPA]

Let SE = (Ke; E ;D) andMA = (Km;T ;V) be a symmetric encryption scheme and a message authen-

tication scheme, respectively. We can construct a symmetric encryption scheme SE 0 based on SE such

that, for large enough t and for any q; � � 0,

Adv
ind-cpa
SE 0

(t; q; �) � Adv
ind-cpa
SE (t; q; �)

but for some t0,

Adv
nm-cpa
SE

(t0; 1; 1) � 1�Adv
ind-cpa
SE0

(t0; 1; 1)

where SE is a composite scheme constructed via the MAC-then-encrypt composition method based

onMA and SE 0.

Proposition 4.7 [MAC-then-encrypt method is insecure under NM-CCA]

Let SE be a composite scheme obtained via the MAC-then-encrypt composition method. Then, for

large enough t; qe; qd; and �, we have

Advnm-cca
SE

(t; qe; qd; �) � Advind-cca
SE

(t; qe; qd; �) :

The equation above, together with Proposition 4.5, imply that the MAC-then-encrypt composition

method is insecure under NM-CCA.

Nevertheless, the MAC-then-encrypt composition method does preserve both privacy against

chosen-plaintext attack and integrity of plaintexts as stated in the following theorem.

Theorem 4.8 [MAC-then-encrypt method is secure under INT-PTXT and IND-CPA]

Let MA = (Km;T ;V) be a message authentication scheme, and let SE = (Ke; E ;D) be a symmetric

encryption scheme secure against chosen-plaintext attacks. Let SE be the encryption scheme obtained

from SE andMA via the MAC-then-encrypt composition method. For any ti; tp; q; qe; qd; �i; �p � 0,

the following holds:

Adv
int-ptxt
SE

(ti; qe; qd; �i) � AdvMA(ti; qe; qd; �i) (8)

Adv
ind-cpa
SE

(tp; q; �p) � Adv
ind-cpa
SE (tp; q; �p) (9)

Encrypt-then-MAC. The composite scheme is de�ned as follows:

Algorithm K

Ke
R

 Ke

Km
R

 Km

Return hKe;Kmi

Algorithm EhKe;Kmi(M)
C 0  EKe(M)
� 0  TKm(C

0)
C  C 0k� 0

Return C

Algorithm DhKe;Kmi(C)
Parse C as C 0k� 0

M  DKe(C
0)

v  VKm(C
0; � 0)

If v = 1, return M

else return ?.

The following theorem implies that the encrypt-then-MAC composition method yields a secure

authenticated encryption scheme. For brevity, we do not state explicitly in the theorem that this

composition method is also secure under NM-CPA and NM-CCA because it follows directly from the

results proven in [3], i.e. that IND-CCA implies NM-CPA and NM-CCA.
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Theorem 4.9 [Encrypt-then-mac method is secure under IND-CPA, IND-CCA, INT-PTXT, and

INT-CTXT]

Let SE = (Ke; E ;D) be a symmetric encryption scheme, letMA = (Km;T ;V) be a message authen-

tication scheme, and let SE be the authenticated encryption scheme obtained from SE andMA via

the encrypt-then-MAC composition method. For any set of parameters all � 0, the following holds:

Adv
int-ptxt
SE

(t1; q1; q
0
1; �1) � AdvMA(t1; q1; q

0
1; �1) (10)

Advint-ctxt
SE

(t2; q2; q
0
2; �2) � AdvMA(t2; q2; q

0
2; �2) (11)

Adv
ind-cpa
SE

(t3; q3; �3) � Adv
ind-cpa
SE (t3; q3; �3) (12)

Advind-cca
SE

(t4; q4; q
0
4; �4) � 2 �AdvMA(t4; q4; q

0
4; �4) +Adv

ind-cpa
SE (t4; q4; �4) (13)
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A De�nitions for Message Authentication Schemes

De�nition A.1 [Message Authentication Scheme] A message authentication scheme MA =

(K;T ;V) consists of three algorithms as follows:

� The key generation algorithm K is randomized. It returns a key K; we write K
R

 K.

� The tagging algorithm T could be either randomized or stateful. It takes the key K and a message

M to return a tag �; we write �
R

 TK(M).

� The veri�cation algorithm V is deterministic. It takes the key K, a message M , and a candidate

tag � for M to return a bit v; we write v  VK(M;�).

We require that VK(M;TK(M)) = 1 for all M 2 f0; 1g�. The scheme is said to be deterministic if the

tagging algorithm is deterministic and veri�cation is done via tag re-computation. We sometimes call

a message authentication scheme a MAC, and also sometimes call the tag � a MAC.

Security for message authentication considers an adversary F who is allowed a chosen-message attack,

modeled by allowing it access to an oracle for TK(�). F is \successful" if it can make the verifying oracle

VK(�; �) accept a pair (M;�) that was not \legitimately produced." There are two possible conventions

with regard to what \legitimately produced" can mean, leading to two measures of advantage. The

\standard" measure is that the message M is \new," meaning F never made query M of its tagging

oracle. A more stringent measure considers the adversary successful even if the message is not new,

as long as the tag is new. This type of strong forgery means that the adversary wins as long as � was

never returned by the tagging oracle in response to query M . We use only this strong notion in this

paper as reected in the de�nition below.

De�nition A.2 [Message Authentication Scheme Security] LetMA = (K;T ;V) be a message
authentication scheme, and let F be an adversary that has an access to two oracles: TK(�) and VK(�; �).
Consider the following experiment:

Experiment ExpMA(F )

K
R

 K

If F TK(�);VK(�;�) makes a query (M;�) to the oracle VK(�; �) such that
{ VK(M;�) returns 1, and
{ � was never returned by the oracle TK(�) in response to query M

then return 1 else return 0.

We de�ne the advantage of F , and the advantage function of the scheme, respectively, as follows. For

any t; qt; qv; � � 0, let

AdvMA(F ) = Pr [ ExpMA(F ) = 1 ]

AdvMA(t; qt; qv; �) = max
F
fAdvMA(F )g

where the maximum is over all F with time complexity t, making at most qt oracle queries to TK(�)

and at most qv oracle queries to VK(�; �) such that the sum of the lengths of all oracle queries is at

most � bits.

15



B Proofs

Proof of Theorem 3.1: This is true because an adversary that violates integrity of plaintexts of a

scheme SE also violates integrity of ciphertexts of the scheme. In particular, if a forgery C is used in

a successful violation of integrity of plaintexts of a scheme SE = (K; E ;D), then it can also be used

to violate integrity of ciphertexts of SE . The reason is that if M
def
= DK(C) was never queried to the

oracle EK , then the oracle never outputs C as a response. Thus, C is a valid forgery violating integrity

of ciphertexts of SE .

Proof of Theorem 3.2: We prove this theorem by constructing two adversaries, one violating

integrity of ciphertexts of the scheme and the other violating the privacy of the scheme under the

chosen-plaintext attack model. Let Ai be the �rst adversary and Ap be the second. Let A be an

adversary achieving the best possible success in violating the privacy of the scheme under the chosen-

ciphertext attack model, meaning it uses resources at most t; qe; qd; � and advantage Advind-cca
SE (A)

equal to Advind-cca
SE (t; qe; qd; �). The two adversaries Ai and Ap will use A to achieve its goals. The

constructions for Ai and Ap are as follows:

Adversary A
EK(�);D�

K
(�)

i

b0
R

 f0; 1g
For i = 1; : : : ; qe + qd do

When A makes a query Mi;M
0
i

to the oracle EK(LR(�; �; b)) do
If b0 = 0,

then A EK(Mi),
else A EK(M

0
i).

When A makes a query Ci

to the oracle DK(�) do
v  D�K(Ci)
If v = 0,

then A ?,
else stop.

Adversary A
EK (LR(�;�;b))
p

For i = 1; : : : ; qe + qd do

When A makes a query Mi;M
0
i

to the oracle EK(LR(�; �; b)) do
A EK(LR(Mi;M

0
i ; b))

When A makes a query Ci

to the oracle DK(�) do
A ?

A! b0

Return b0

We will prove that

2 �Advint-ctxt
SE (Ai) +Adv

ind-cpa
SE (Ap) � Advind-cca

SE (A) (14)

Consider the experiment Expind-cca
SE (A; b) where the bit b is chosen at random. Let E denote an event

that A makes at least one valid decryption oracle query, i.e. DK(C) 6= ?. We relate the probability
that A makes a correct guess (i.e. outputs a correct bit b0 = b) to its advantage as follows:

Pr [A outputs b0 = b ] = Pr [ b0 = 1 ^ b = 1 ] + Pr [ b0 = 0 ^ b = 0 ]

= Pr [ b0 = 1 j b = 1 ]Pr [ b = 1 ] + Pr [ b0 = 0 j b = 0 ]Pr [ b = 0 ]

=
1

2
(1� Pr [ b0 = 1 j b = 0 ]) +

1

2
(Pr [ b0 = 1 j b = 1 ])

=
1

2
Advind-ccaSE (A) +

1

2
(15)

Now we analyze the event that A outputs a correct guess in our experiment. First, we know that

Pr
�
A outputs b0 = b

�
= Pr

�
A outputs b0 = b ^ E

�
+ Pr

�
A outputs b0 = b ^ :E

�
(16)
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Second, we claim that the following inequalities hold:

Pr
�
A outputs b0 = b ^ E

�
� Pr [ E ] = Pr [ Ai succeeds ]

= Advint-ctxtSE (Ai) (17)

Pr
�
A outputs b0 = b ^ :E

�
� Pr

�
Ap outputs b

0 = b
�

=
1

2
Adv

ind-cpa
SE (Ap) +

1

2
(18)

Substituting quantities on the right hand side of Equation (16) with quantities from inequalities (17)

and (18), we obtain

Pr [A outputs b0 = b ] � Advint-ctxt
SE (Ai) +

1
2
Adv

ind-cpa
SE (Ap) +

1
2

Then, applying Equation (15) and some algebraic manipulation leads to Equation (14). We now

justify the claimed inequalities (17) and (18) by analyzing each of them in turn. To justify the

inequality (17), we observe that Ai simulatesA in the exact same environment as that of the experiment

Expind-cca
SE (A; b). Therefore, if A submits a valid ciphertext as a decryption query (i.e. the event E

occurs), Ai can then use this ciphertext as a query to its veri�cation oracle, and so Equation (17)

follows. Similarly for the inequality (18), when event E does not occur, Ap simulates A in the exact

same environment as that of the experiment Expind-cca
SE (A; b). Therefore, if A is able to guess the

correct bit b0 = b, so will Ap, and Equation (18) follows. This concludes the proof for Equation (14).

Note that here we rely on the assumption that A never queries the decryption oracle on an output of

its oracle EK(LR(�; �; b)). Without this assumption, Ap would need to memorize its responses to A's

encryption queries and then compare them to every decryption query Ci submitted by A. It does so

hoping that it can return a correct message M whose encryption is Ci. However, with all its e�orts,

Ap will not be able to return the correct message since it does not know if the left or the right message

the oracle has encrypted during the experiment to obtain Ci.

To justify the message complexity of Ai and Ap, we note that each of Ai and Ap uses the same number

of queries as that of A (Ai to its EK(�) and D
�
K
(�) oracles and Ap to its EK(LR(�; �; b)) oracle). For

time complexity, we simply note that we measure the time for each entire experiment. Therefore,

Equation (14) leads to Theorem 3.2. We omit details.

Proof of Proposition 3.3: Let SE = (K; E ;D) be the given symmetric encryption scheme. We need

to de�ne the scheme SE 0. The idea is simple. A certain known string (or strings) will be viewed by D0

as valid and decrypted to certain known messages, so that forgery is easy. But these \ciphertexts" will

never be produced by the encryption algorithm so privacy will not be a�ected. Here are the details.

The new scheme SE 0 = (K; E 0;D0) has the same key generation algorithm as the old scheme and the

following modi�ed encryption and decryption algorithms:

Algorithm E 0K(M)
C 0  EK(M)
C  0kC 0

Return C

Algorithm D0K(C)
Parse C as bkC 0 where b is a bit
If b = 0 then M  DK(C

0) ; return M

Else return 0

To justify Equation (2) we present an attack on SE 0, in the form of an adversary A who defeats the
integrity of plaintexts with probability one. It works as follows:

Adversary AE
0

K
(�);D�

0

K
(�)

Submit 10 to D�
0

K(�).
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We observe that D0
K
(10) = 0, meaning 10 is a valid ciphertext, and it decrypts to a message (namely

0) that the adversary has not queried of its oracle. So Adv
int-ptxt
SE0

(A) = 1. Also, A makes zero query

to E 0
K
(�) and one query to D�0

K
(�) totaling 2 bits.

To justify Equation (1), it suÆces to associate to any adversary A attacking SE 0 an adversary B

attacking SE such that

Advind-ccaSE 0 (A) � Advind-cca
SE (B)

and B has the same resource utilization as A. Adversary B works like this{

Adversary BEK(LR(�;�;b));DK(�)

For i = 1; : : : ; qe + qd do

When A makes a query Mi;M
0
i to its LR-encryption oracle

A 0kEK(LR(Mi;M
0
i ; b))

When A makes a query Ci to its decryption oracle
Parse C as bikC

0
i where bi is a bit

If b = 0 then A DK(C
0
i)

Else A 0
Return whatever A returns

As the code shows it is easy for B to use its own oracles to provide A with the answers to A's oracle

queries. Thus B is successful with the same probability as A.

Proof of Proposition 3.4: Let SE = (K; E ;D) be the given symmetric encryption scheme. We need

to de�ne the scheme SE 0. The idea is simple. A redundant bit prepended to ciphertexts is ignored by

D0, resulting in the ability to create two di�erent ciphertexts of the same message, which defeats the

non-malleability. Here now are the details.

The new scheme SE 0 = (K; E 0;D0) has the same key generation algorithm as the old scheme and the

following modi�ed encryption and decryption algorithms:

Algorithm E 0K(M)
C  EK(M)
Return 0kC

Algorithm D0K(C)
Parse C as bkC 0 where b is a bit
M  DK(C

0) ; return M

To justify Equation (5), we present an attack on SE 0, in the form of an adversary A = (Acpa1
; Acpa2

)

who violates its non-malleability with high probability. It works as follows:

Adversary A
~E0K(LR(�;�;b))
cpa1

~v1  f0g ; ~v2  f1g

~c ~E 0K(LR(~v1; ~v2; b))
For each element c of ~c

Parse c as bkc0

b0  b� 1
~c0  fb0kc0g

Return (~c0; �)

Adversary Acpa2
(~p;~c; s)

If the �rst element of ~p = 0
then return 0
else return 1.

The Acpa
1
part of the adversary A queries its oracle with a pair of vectors with just one element each.

It then ips the �rst bit of the resulting vector of ciphertext and outputs it. Acpa2
then compares

its plaintext input to the known strings (0 and 1). The probability that Acpa2
outputs a wrong

answer is only at most the insecurity of the scheme in terms of chosen-plaintext privacy. This justi�es

Equation (5).
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To justify Equation (3) and Equation (4), it suÆces to associate to any adversary Ap attacking the

privacy of SE 0 an adversary Bp attacking the privacy of SE such that

Adv
ind-cpa
SE 0

(Ap) � Adv
ind-cpa
SE (Bp)

where Bp has the same resource utilization as Ai, and also to associate to any adversary Ai attacking

the integrity of plaintexts of SE 0 and adversary Bi attacking the integrity of plaintexts of SE such

that Bi has the same resource utilization as Ai and

Adv
int-ptxt
SE0

(Ai) � Adv
int-ptxt
SE (Bi)

The adversaries Bp and Bi work as follows:

Adversary B
EK(LR(�;�;b));DK(�)
p

For i = 1; : : : ; qe + qd do

When Ap makes a query (Mi;M
0
i)

to the oracle E 0K(LR(�; �; b))) do
Ap  0kEK(LR(Mi;M

0
i ; b))

When Ap makes a query Ci

to the oracle D0K(�) do
Parse Ci as bkC

0
i where b is a bit.

Ap  DK(C
0
i).

Return whatever Ap returns.

Adversary B
EK (�);D�

K
(�)

i

For i = 1; : : : ; qt + qv do

When Ai makes a query Mi

to the oracle E 0K(�) do
Ai  0kEK(Mi)

When Ai makes a query Ci

to the oracle D�
0

K(�) do
Parse Ci as bkC

0
i where b is a bit.

Ai  D
�
K(C

0
i).

As the code shows it is easy for Bp and Bi to use their own oracles to provide Ap and Ai with the

answers to Ap's and Ai's oracle queries. Thus Bp and Bi are successful with the same probability as

Ap and Ai respectively.

Proof of Proposition 4.1: We describe an attack on the privacy of SE . Recall that as per
De�nition 2.2 the adversary has access to the left-right oracle EhKe;Kmi(LR(�; �; b)). In this case,
given messages x0; x1, the oracle returns EKe(xb)kTKm(xb). The attack is described by the following
adversary:

Adversary AEhKe;Kmi(LR(�;�;b))

C0k�0  EhKe;Kmi(LR(0; 0; b)) // Query left-right oracle with both messages set to 0

C1k�1  EhKe;Kmi(LR(0; 1; b)) // Query left-right oracle with messages (0; 1)
If �1 = �2 then return 0 else return 1

If b = 0, then the determinism of the T function means that �0 = �1 so the output of A is 0. If

b = 1, then A outputs 1 unless it happens that the messages 0 and 1 have the same MAC, namely

TKm(0) = TKm(1). But if the latter were true, the message authentication scheme is clearly insecure:

we could query the tagging function at 0 and then forge the MAC of 1. This can be formalized to

show that the success probability of A is at least 1�AdvMA(t; 1; 1; 1), and Equation (6) follows. We

set t0 to the time complexity of the above adversary. We omit the details.

The same adversary will also succeed in the chosen-ciphertext attack model. (It simply does not use

its decryption oracle.) Therefore, Equation (7) is justi�ed.

Proof of Proposition 4.2: Given an encryption scheme SE = (Ke; E ;D), we de�ne the encryption
scheme SE 0 = (Ke; E

0;D0) to be a scheme with the same key generation algorithm as that of SE
and the same encryption and decryption algorithms as those of the scheme SE 0 de�ned in the proof
of Proposition 3.4. Then, we provide the following adversary A attacking the composite scheme SE
constructed based on the schemes SE 0 andMA:
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Adversary AEhKe;Kmi(�);D
�

hKe;Kmi
(�)

C  EhKe;Kmi(0)

Parse C as 0kC

Submit 1kC as a query to the oracle D
�

hKe;Kmi
(�).

The ciphertext submitted to D
�
hKe;Kmi(�) is new, meaning was never output by the encryption oracle

EhKe;Kmi(�), because it begins with a 1 while all outputs of E hKe;Kmi(�) begin with a 0. Furthermore,

it is valid because the decryption algorithm D0 by de�nition ignores the �rst bit of any ciphertext it

is given. Therefore, A violates the integrity of ciphertexts of SE with probability 1. (Note this A

does not violate integrity of plaintexts because the plaintexts underlying ciphertexts 0kC and 1kC

are the same.) Finally, we note that the proof that the modi�ed scheme SE 0 is still secure against

chosen-plaintext attack is easy and is omitted.

Proof of Proposition 4.3: This follows directly from the implication NM-CPA ) IND-CPA and

the implication NM-CCA) NM-CPA.

Proof of Theorem 4.4: We let A be an adversary achieving the best possible success in violating the

integrity of plaintexts of the scheme SE as de�ned in De�nition 2.4, while using resources t; qe; qd; �.

We will construct a forger F attacking the message authentication schemeMA so that the resources

used by F are at most t; qe; qd; �, and furthermore

Adv
int-ptxt
SE

(A) � AdvMA(F ) : (19)

The theorem follows.

Adversary F has access to the oracles TKm(�) and VKm(�; �) where Km is a random key for MA. It
will pick a key Ke for the encryption algorithm E . Using this key and its own oracles it can simulate
the oracles EhKe;Kmi(�) and D

�
hKe;Kmi(�) that A needs, and thus answer A's oracle queries. In more

detail, it works as follows:

Adversary F TKm (�);VKm(�;�)

Ke
R

 Ke

For i = 1; : : : ; qe + qd do

When A makes a query Mi to its EhKe;Kmi(�) oracle do
C 0
i  EKe(Mi) ; �i  TKm(Mi) ; A C 0

ik�i

When A makes a query Ci to its D
�

hKe;Kmi
(�) oracle do

Parse Ci as C
0
ik�i ; Mi  DKe(C

0
i) ; vi  VKm(Mi; �i) ; A vi

Consider a ciphertext Ci = C 0
i
k�i that yields a successful forgery of a new plaintext Mi. This means

that Mi was never queried to EhKe;Kmi(�), which implies that F never queried it to TKm(�) either.

Therefore, the pair (Mi; �i) is a valid forgery, and Equation (19) is justi�ed. It remains to justify the

claims about the resource parameters used by F . The key thing to remember in verifying that this

works out as claimed is that, as per our de�nitions, the resources for both adversaries pertain to the

entire experiment which measures their success.

Proof of Proposition 4.5: Given an encryption scheme SE = (Ke; E ;D), we de�ne the encryption

scheme SE 0 = (Ke; E
0;D0) to be a scheme with the same key generation algorithm as that of SE

and the same encryption and decryption algorithms as those of the scheme SE 0 de�ned in the proof

of Proposition 3.4. Then, we provide the following adversaries Ap and Ai attacking the composite

scheme SE constructed based on the schemes SE 0 andMA:
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Adversary A
EhKe;Kmi(LR(�;�;b));DhKe;Kmi(�)
p

C  EhKe;Kmi(LR(0; 1; b))
Parse C as b0kC 0 where b0 is a bit.
b00  b0 � 1

M  DhKe;Kmi(b
00kC 0)

If M = 0, then return 0, else return 1.

Adversary A
EhKe;Kmi(�);D

�

hKe;Kmi
(�)

i

C  EhKe;Kmi(0)
Parse C as bkC 0 where b0 is a bit.
b b0 � 1

Submit bkC 0 to D
�

hKe;Kmi
(�)

Since the �rst bit of the ciphertext is ignored, the ciphertext that the adversary has constructed should

still decrypt to the original message, and thus verify to be valid. Therefore, Ap can tell with complete

con�dence which plaintext was encrypted by its left-or-right oracle, and similarly Ai can successfully

submit a new and valid ciphertext to its D
�
hKe;Kmi(�) oracle. Let tp and ti be the total time in each of

the experiments, and Proposition 4.5 follows. The proof that the modi�ed scheme SE 0 is still secure

against chosen-plaintext attack is easy and is omitted.

Proof of Proposition 4.6: Let SE = (Ke; E ;D) be the given symmetric encryption scheme. We

need to de�ne the scheme SE 0 = (Ke; E
0;D0). The idea is simple. A redundant bit prepended to

ciphertexts is ignored by D0, resulting in the ability to create two di�erent ciphertexts of the same

message, which defeats the non-malleability. The proof is, for the most part, the same as that of

Proposition 3.4. Thus, we simply note the following: let t0 be the total time in the experiment, with

this attack, we have Adv
nm-cpa
SE

(t0; 1; 1) � 1 �Adv
ind-cpa
SE

(t0; 1; 1). This, together with the inequality

Adv
ind-cpa
SE

(t0; q; �) � Adv
ind-cpa
SE 0

(t0; q; �) implied by Equation (9), lead to the second equation in

Proposition 4.6. We omit details.

Proof of Proposition 4.7: This follows directly from the implication NM-CCA) IND-CCA.

Proof of Theorem 4.8: Equation (8): Similar to the proof of Theorem 4.4, we prove this theorem
by constructing an adversary F attacking the schemeMA using an adversary A attacking the integrity
of plaintexts SE as follows:

Adversary F TKm (�);VKm(�;�)

Ke
R

 Ke

For i = 1; : : : ; qe + qd do

When A makes a query Mi to its oracle EhKe;Kmi(�) do
M 0

i  MikTKm(Mi)
C 0
i  EKe(M

0
i)

A C 0
i

When A makes a query Ci to its oracle D
�

hKe;Kmi
(�) do

M 0
i  DKe(Ci)

Parse M 0
i as Mik�i.

vi  VKm(Mi; �i)
A vi

Here F executes the encryption algorithm EKe under a random key Ke and invokes its oracles TKm(�)

and VKm(�; �) to respond to the oracle queries of A. Now consider a ciphertext Ci that yields a

successful forgery of a new plaintext Mi. Since Mi is new, the pair (Mi; �i) where �i is obtained from

appropriately parsing DKe
(Ci) as described in the above algorithm is a valid strong forgery. We omit

details.

Proof of Theorem 4.8: Equation (9): We prove this claim by constructing an adversary Ap

attacking the base scheme SE using the adversary A attacking the privacy of SE against chosen-
plaintext attacks. The construction is as follows:
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Adversary A
EKe (LR(�;�;b))
p

Km
R

 Km

For i = 1; : : : ; q do

When A makes a query (Mi;M
0
i) to its oracle do

�1  TKm(Mi) ; �2  TKm(M
0
i)

M1  Mik�1 ; M2  M 0
ik�2

Ci  EKe(LR(M1;M2; b))
A Ci

A! b0

Return b0

Here Ap executes the tagging algorithm T under a random keyKm and invokes its oracle EKe(LR(�; �; b))

to respond to the oracle queries of A. For each query, it computes the tags of both messages queried

by A to generate inputs to its oracle and then lets its oracle decide which input to encrypt. It then

outputs A's guess as its own. Since A is simulated in the exact same environment as that of experi-

ment Exp
ind-cpa
SE

(A; b) where the bit b is chosen at random, if A can guess correctly, so can Ap. The

justi�cation of resource usage is similar to the argument in the proof of Theorem 4.4, and Equation (9)

follows. We omit details.

Proof of Theorem 4.9: Equation (10) and Equation (11): Similar to Theorem 4.4, we prove
the two equations by constructing an adversary F attackingMA using an adversary A that successfully
violates the integrity of either plaintexts or ciphertexts of the scheme SE . F picks a key Ke for the
encryption algorithm, then it simulates A. In more details, it works as follows:

Adversary F TKm (�);VKm(�;�)

Ke
R

 Ke

For i = 1; : : : ; qe + qd do

When A makes a query Mi to its oracle EhKe;Kmi(�) do
C 0
i  EKe(Mi) ; �i  TKm(C

0
i) ; A C 0

ik�i

When A makes a query Ci to its oracle D
�

hKe;Kmi
(�) do

Parse Ci as C
0
ik�

0
i ; vi  VKm(C

0
i; �

0
i ) ; A vi

We analyze this construction in two cases. First, we consider the case where A violates the integrity

of plaintexts of SE . This means that A can submit a ciphertext Ci = C 0
i
k� 0

i
that yields a successful

forgery of a new plaintext Mi. Since a ciphertext can only correspond to at most one message, this

means that C 0
i
is also new. Therefore, the pair (C 0

i
; � 0

i
) is a valid forgery. Second, we consider the

case where A violates the integrity of ciphertexts. This means that A can submit a new ciphertext

Ci = C 0
i
k� 0

i
. The pair (C 0

i
; � 0

i
) is then a valid forgery. The justi�cation of resource usage of F is similar

to that in the proof of Theorem 4.4, and Equation (10) and Equation (11) follow. We omit details.

Proof of Theorem 4.9: Equation (12): We prove this claim by constructing an adversary Ap

attacking the base scheme SE using an adversary A violating the privacy of SE against chosen-plaintext
attacks. This construction works independent of the MAC scheme. The construction in detail is as
follows:

Adversary A
EKe (LR(�;�;b))
p

Km
R

 Km

For i = 1; : : : ; q do

When A makes a query (Mi;M
0
i) to its oracle do

Ci  EKe(LR(Mi;M
0
i ; b)) ; �i  TKm(Ci) ; A Cik�i
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A! b0

Return b0

Here Ap executes the tagging algorithm T under a random keyKm and invokes its oracle EKe(LR(�; �; b))

to respond to the oracle queries of A. One can verify that A is simulated in the exact same environ-

ment as that of experiment Exp
ind-cpa
SE

(A; b) where the bit b is chosen at random. Therefore, if A can

successfully determine the bit b, so can Ap. The justi�cation of resource usage of Ap is similar to that

in the proof of Theorem 4.4, and Equation (12) follows. We omit details.

Proof of Theorem 4.9: Equation (13): This equation is a corollary of Theorem 3.2, Equation (11),

and Equation (12).
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