
A preliminary version of this paper appears in Advances in Cryptology – ASIACRYPT ’00, Lecture
Notes in Computer ScienceVol. ??, T. Okamoto ed., Springer-Verlag, 2000. This is the full version.

Authenticated Encryption: Relations among notions

and analysis of the generic composition paradigm

Mihir Bellare
∗

Chanathip Namprempre
†

September 25, 2000

Abstract

We consider two possible notions of authenticity for symmetric encryption schemes, namely
integrity of plaintexts and integrity of ciphertexts, and relate them to the standard notions of
privacy for symmetric encryption schemes by presenting implications and separations between
all notions considered. We then analyze the security of authenticated encryption schemes de-
signed by “generic composition,” meaning making black-box use of a given symmetric encryption
scheme and a given MAC. Three composition methods are considered, namely Encrypt-and-
MAC, MAC-then-encrypt, and Encrypt-then-MAC. For each of these, and for each notion of
security, we indicate whether or not the resulting scheme meets the notion in question assuming
the given symmetric encryption scheme is secure against chosen-plaintext attack and the given
MAC is unforgeable under chosen-message attack. We provide proofs for the cases where the
answer is “yes” and counter-examples for the cases where the answer is “no.”

Keywords: Symmetric encryption, message authentication, authenticated encryption, concrete
security.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in
part by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and Engineering.

†Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-mail: meaw@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/cnamprem. Supported
in part by grants of first author.

1

Contents

1 Introduction 3
1.1 Relations among notions . 3
1.2 Analysis of generic composition . 4
1.3 Related work . 6

2 Definitions 7
2.1 Syntax of (symmetric) encryption schemes . 7
2.2 Privacy of symmetric encryption schemes . 8
2.3 Integrity of symmetric encryption schemes . 10
2.4 Message authentication schemes . 11
2.5 Notation for adversary execution . 12

3 Relations among notions of symmetric encryption 13

4 Security of the Composite Schemes 17
4.1 Encrypt-and-MAC . 18
4.2 MAC-then-Encrypt . 21
4.3 Encrypt-then-MAC . 24

References 28

2

1 Introduction

We use the term authenticated encryption scheme to refer to a shared-key based transform whose
goal is to provide both privacy and authenticity of the encapsulated data. In such a scheme the
encryption process applied by the sender takes the key and a plaintext to return a ciphertext, while
the decryption process applied by the receiver takes the same key and a ciphertext to return either
a plaintext or a special symbol indicating that it considers the ciphertext invalid or unauthentic.

The design of such schemes has attracted a lot of attention historically. The early schemes
were typically based on adding “redundancy” to the message before CBC encrypting, and many of
these schemes were broken. Today authenticated encryption schemes continue to be the target of
design and standardization efforts. A popular modern design paradigm is to combine MACs with
standard block cipher modes of operation.

The goal of symmetric encryption is usually viewed as privacy, but an authenticated encryption
scheme is simply a symmetric encryption scheme meeting additional authenticity goals. The first
part of this paper formalizes several different possible notions of authenticity for symmetric encryp-
tion schemes, and integrates them into the existing mosaic of notions by relating them to the main
known notions of privacy for symmetric encryption, via implications and separations in the style
of [3]. The second part of this paper is motivated by emerging standards such as [17] which design
authenticated encryption schemes by what we call “generic composition” of encryption and MAC
schemes. We analyze, with regard to meeting the previous notions, several generic composition
methods. Let us now look at these items in more detail.

1.1 Relations among notions

Privacy goals for symmetric encryption schemes include indistinguishability and non-malleability,
each of which can be considered under either chosen-plaintext or (adaptive) chosen-ciphertext
attack, leading to four notions of security we abbreviate IND-CPA, IND-CCA, NM-CPA, NM-CCA.
(The original definitions were in the asymmetric setting [12, 10, 20] but can be “lifted” to the
symmetric setting using the encryption oracle based template of [2]). The relations among these
notions are well-understood [3, 11]. (These papers state results for the asymmetric setting, but as
noted in [3] it is an easy exercise to transfer them to the symmetric setting.)

We consider two notions of integrity (we use the terms authenticity and integrity interchange-
ably) for symmetric encryption schemes. INT-PTXT (integrity of plaintexts) requires that it be
computationally infeasible to produce a ciphertext decrypting to a message which the sender had
never encrypted, while INT-CTXT (integrity of ciphertexts) requires that it be computationally
infeasible to produce a ciphertext not previously produced by the sender, regardless of whether or
not the underlying plaintext is “new.” (In both cases, the adversary is allowed a chosen-message
attack.) The first of these notions is the more natural security requirement while the interest of
the second, stronger notion is perhaps more in the implications we discuss below.

These notions of authenticity are by themselves quite disjoint from the notions of privacy; for
example, sending the message in the clear with an accompanying (strong) MAC achieves INT-CTXT
but no kind of privacy. To make for useful comparisons, we consider each notion of authenticity
coupled with IND-CPA, the weakest notion of privacy; namely the notions on which we focus
for comparison purposes are INT-PTXT ∧ IND-CPA and INT-CTXT ∧ IND-CPA. (Read “∧” as
“and”.)

Figure 1 shows the graph of relations between these notions and the above-mentioned older
ones in the style of [3]. An “implication” A → B means that every symmetric encryption scheme
meeting notion A also meets notion B. A “separation” A 6→ B means that there exists a symmetric
encryption scheme meeting notion A but not notion B. (This under the minimal assumption that

3

INT-CTXT ∧ IND-CPA IND-CCA NM-CCA

INT-PTXT ∧ IND-CPA IND-CPA NM-CPA3.2[3, 11]3.1easy[10]easy3.4[3]3.3

Figure 1: Relations among notions of symmetric encryption: An arrow denotes an implica-
tion while a barred arrow denotes a separation. The full arrows are relations proved in this paper,
annotated with the number of the corresponding Proposition or Theorem, while dotted arrows are
reminders of existing relations, annotated with citations to the papers establishing them.

some scheme meeting notion A exists since otherwise the question is moot.) Only a minimal set
of relations is explicitly indicated; the relation between any two notions can be derived from the
shown ones. (For example, IND-CCA does not imply INT-CTXT ∧ IND-CPA because otherwise,
by following arrows, we would get IND-CCA → INT-PTXT ∧ IND-CPA contradicting a stated
separation.) The dotted lines are reminders of existing relations while the numbers annotating the
dark lines are pointers to Propositions or Theorems in this paper.

A few points may be worth highlighting. Integrity of ciphertexts —even when coupled only
with the weak privacy requirement IND-CPA— emerges as the most powerful notion. Not only
does it imply security against chosen-ciphertext attack, but it is strictly stronger than this notion.
Non-malleability —whether under chosen-plaintext or chosen-ciphertext attack— does not imply
any type of integrity. The intuitive reason is that non-malleability only prevents the generation of
ciphertexts whose plaintexts are meaningfully related to those of some challenge ciphertexts, while
integrity requires it to be hard to generate ciphertexts of new plaintexts even if these are unrelated
to plaintexts underlying any existing ciphertexts. Finally, INT-PTXT ∧ IND-CPA does not imply
INT-CTXT ∧ IND-CPA.

1.2 Analysis of generic composition

There are many possible ways to design authenticated encryption schemes. We focus in this paper
on “generic composition:” simply combine a standard symmetric encryption scheme with a MAC
in some way. There are a few possible ways to do it, and our goal is to analyze and compare
their security. (The motivation, as we will argue, is that these “obvious” methods, as often the
case in practice, remain the most pragmatic from the point of view of performance and security
architecture design.)

Generic composition. Assume we are given a symmetric encryption scheme SE specified by
an encryption algorithm E and a decryption algorithm D. (Typically this will be a block cipher
mode of operation.) Also assume we are given a message authentication scheme MA specified by
a tagging algorithm T and a tag verifying algorithm V and meeting some appropriate notion of
unforgeability under chosen-message attack. (Possibilities include the CBC-MAC, HMAC [1], or
UMAC [7]). We want to “compose” (meaning, appropriately combine) these to create an authenti-
cated encryption scheme meeting either INT-CTXT∧ IND-CPA or INT-PTXT∧ IND-CPA. Below
are the composition methods we consider. We call them “generic” because the algorithms of the
authenticated encryption scheme appeal to the given ones as black-boxes only. (After we present
the results we will explain why this is important.) In each case Ke is a key for encryption and

4

Composition Method Privacy Integrity

IND-CPA IND-CCA NM-CPA INT-PTXT INT-CTXT

Encrypt-and-MAC insecure insecure insecure secure insecure

MAC-then-encrypt secure insecure insecure secure insecure

Encrypt-then-MAC secure insecure insecure secure insecure

Figure 2: Summary of security results for the composed authenticated encryption schemes under the
assumption that the given encryption scheme is IND-CPA and the given MAC is weakly unforgeable.

Composition Method Privacy Integrity

IND-CPA IND-CCA NM-CPA INT-PTXT INT-CTXT

Encrypt-and-MAC insecure insecure insecure secure insecure

MAC-then-encrypt secure insecure insecure secure insecure

Encrypt-then-MAC secure secure secure secure secure

Figure 3: Summary of security results for the composed authenticated encryption schemes under
the assumption that the given encryption scheme is IND-CPA and the given MAC is strongly
unforgeable.

Km is a key for message authentication— We consider the following ways of “composing” them
in order to create an authenticated encryption scheme meeting either INT-CTXT ∧ IND-CPA or
INT-PTXT ∧ IND-CPA.

— Encrypt-and-MAC: EKe,Km(M) = EKe(M)‖TKm(M).1 Namely, encrypt the plaintext and ap-
pend a MAC of the plaintext. “Decrypt+verify” is performed by first decrypting to get the
plaintext and then verifying the tag.

— MAC-then-encrypt: EKe,Km(M) = EKe(M‖TKm(M)). Namely, append a MAC to the plaintext
and then encrypt them together. “Decrypt+verify” is performed by first decrypting to get the
plaintext and candidate tag, and then verifying the tag.

— Encrypt-then-MAC: EKe,Km(M) = C‖TKm(C) where C = EKe(M). Namely, encrypt the plain-
text to get a ciphertext C and append a MAC of C. “Decrypt+verify” is performed by first
verifying the tag and then decrypting C. This is the method of Internet RFC [17].

Here E is the encryption algorithm of the authenticated encryption scheme while the “decrypt+verify”
process specifies a decryption algorithm D. The latter will either return a plaintext or a special
symbol indicating that it considers the ciphertext unauthentic.

Security results. Figure 2 and Figure 3 summarize the security results for the three composite
authenticated encryption schemes. (We omit NM-CCA since it is equivalent to IND-CCA). Figure 2
shows the results assuming that the base MAC is weakly unforgeable while Figure 3 shows the
results assuming that the MAC is strongly unforgeable. Weak unforgeability is the standard notion
[4]— it should be computationally infeasible for the adversary to find a message-tag pair in which
the message is “new,” even after a chosen-message attack. Strong unforgeability requires that it
be computationally infeasible for the adversary to find a new message-tag pair even after a chosen-

1 Here (and everywhere in this paper) “‖” denotes an operation that combines several strings into one in such a
way that the constituent strings are uniquely recoverable from the final one. (If lengths of all strings are fixed and
known, concatenation will serve the purpose.)

5

message attack. (The message does not have to be new as long as the output tag was not previously
attached to this message by the legitimate parties.) We note that any pseudorandom function is a
strongly unforgeable MAC, and most practical MACs seem to be strongly unforgeable. Therefore,
analyzing the composition methods under this notion is a realistic and useful approach. Entries in
the above tables have the following meaning:

— Secure: The composite encryption scheme in question is proven to meet the security requirement
in question, assuming only that the component encryption scheme meets IND-CPA and the
message authentication scheme is unforgeable under chosen-message attack.

— Insecure: There exists some IND-CPA secure symmetric encryption and some message authen-
tication scheme unforgeable under chosen-message attack such that the composite scheme based
on them does not meet the security requirement in question.

As we can see from Figure 3, the encrypt-then-MAC method of [17] is secure from all points of
view, making it a good choice for a standard.

The use of a generic composition method secure in the sense above is advantageous from the
point of view both of performance and of security architecture. The performance benefit arises from
the presence of fast MACs such as HMAC [1] and UMAC [7, 8] . The architectural benefits arise
from the stringent notion of security being used. To be secure, the composition must be secure for
all possible secure instantiations of its constituent primitives. (If it is secure for some instantiations
but not others, we declare it insecure.) An application can thus choose a symmetric encryption
scheme and a message authentication scheme independently (these are usually already supported
by existing security analyses) and then appeal to some fixed and standard composition technique
to combine them. No tailored security analysis of the composed scheme is required.

In Section 4 we state formal theorems to support the above claims, providing quantitative
bounds for the positive results, and counter-examples with attacks for the negative result.

Quantitative results and comparisons. Above we have discussed our results at a qualitative
level. Each result also has a quantitative counterpart; these are what our theorems actually state
and prove. These “concrete security” analyses enable a designer to estimate the security of the
authenticated encryption scheme in terms of that of its components. All the reductions in this
paper are tight, meaning there is little to no loss of security.

1.3 Related work

The notions IND-CCA, NM-CCA were denoted IND-CCA2 and NM-CCA2, respectively, in [3].
The chosen-ciphertext attacks here are the adaptive kind [20]. Consideration of non-adaptive
chosen-ciphertext attacks [18] leads to two more notions, denoted IND-CCA1 and NM-CCA1 by
[3], who worked out the relations between six notions of privacy, these two and the four we consider
here. (Their results hold for both the asymmetric and the symmetric settings, as mentioned before.)
Three additional notions of privacy are considered and related to these six by [15]. In this paper, we
have for simplicity avoided consideration of all the possible notions of privacy, focusing instead on
what we consider the (four) main ones and their relations to the notions of authenticity. Relations
of the remaining notions of privacy to the notions of authenticity considered here can be easily
worked out.

Authenticity of an encryption scheme has been understood as a goal by designers for many
years. The first formalization of which we are aware is that of [5]. (Early versions of their work
date to 1998.) The notion they formalized was INT-CTXT. The formalization of INT-PTXT
we use here seems to be new. In independent and concurrent work (both papers were submitted
to FSE00) Katz and Yung [16] formalize INT-CTXT plus two other notions of authenticity not

6

considered here. They also observe the implication INT-CTXT ∧ IND-CPA→ IND-CCA.
Generic composition is one of many approaches to the design of authenticated encryption

schemes. Two more general approaches are “encryption with redundancy” —append redundancy
to the message before encrypting, the latter typically with some block cipher mode of operation—
and “encode then encipher” [5] —add randomness and redundancy and then encipher rather than
encrypt. As indicated above, attacks have been found on many encrypt with redundancy schemes.
Encode then encipher, however, can be proven to work [5] —meaning yields schemes achieving
INT-CTXT ∧ IND-CPA— but requires a variable-input length pseudorandom permutation, which
can be relatively expensive to construct. In addition, there are many specific schemes. One such
scheme is the RPC mode of [16] but it is computation and space inefficient compared to the generic
composition methods. (Processing an n-block plaintext requires (1+c)n block cipher computations
and results in a ciphertext of this many blocks, where c ≥ 0.3.) Another scheme is the elegant
IACBC mode of Jutla [14] which uses n + O(log n) block cipher operations to process an n-block
plaintext. Implementation and testing would be required to compare its speed with that of generic
composition methods that use fast MACs (cf. [1, 7, 8]).

Authenticated encryption is not the only approach to achieving security against chosen-ciphertext
attacks. Direct approaches yielding more compact schemes have been provided by Desai [9].

2 Definitions

We present definitions for symmetric encryption following [2], first specifying the syntax —meaning
what kinds of algorithms make up the scheme— and then specifying formal security measures.
Associated with each scheme, each notion of security and each adversary is an advantage function
that measures the success probability of this adversary as a function of the security parameter. We
define asymptotic notions of security result by asking this function to be negligible for adversaries of
time complexity polynomial in the security parameter. Concrete security assessments are made by
associating to the scheme another advantage function that for each value of the security parameter
and given resources for an adversary returns the maximum, over all adversaries limited to the given
resources, of the success probability.

The concrete security assessments are important in practical applications— block cipher based
schemes have no associated asymptotics. Hence, we provide concrete security assessments for
all positive results (implications or proofs that composition methods meet some notion of secu-
rity). For simplicity, however, negative results (separations or counter-examples) are phrased in
the asymptotic style. (Concrete security statements are, however, easily derived from the proofs.)

2.1 Syntax of (symmetric) encryption schemes

A (symmetric) encryption scheme SE = (K, E ,D) consists of three algorithms. The randomized
key generation algorithm K takes input a security parameter k ∈ N and returns a key K; we write
K

R← K(k). The encryption algorithm E could be randomized or stateful. It takes the key K

and a plaintext M to return a ciphertext C; we write C R← EK(M). (If randomized, it flips coins
anew on each invocation. If stateful, it uses and then updates a state that is maintained across
invocations.) The decryption algorithm D is deterministic and stateless. It takes the key K and a
string C to return either the corresponding plaintext M or the symbol ⊥; we write x ← DK(C)
where x ∈ {0, 1}∗ ∪ {⊥}. We require that DK(EK(M)) = M for all M ∈ {0, 1}∗. An authenticated
encryption scheme is syntactically identical to an encryption scheme as defined above; we will use
the term only to emphasize cases where we are targeting authenticity goals.

7

2.2 Privacy of symmetric encryption schemes

We measure indistinguishability via the “left-or-right” model of [2]. Define the left-or-right en-
cryption oracle EK(LR(·, ·, b)), where b ∈ {0, 1}, to take input (x0, x1) and do the following: if
b = 0 it computes C ← EK(x0) and returns C; else it computes C ← EK(x1) and returns C. (It
is understood that the oracle picks any coins that E might need if E is randomized, or updates its
state appropriately if E is stateful.) The adversary makes oracle queries of the form (x0, x1) con-
sisting of two equal length messages and must guess the bit b. We consider an encryption scheme
to be “good” if a “reasonable” adversary cannot obtain “significant” advantage in distinguishing
the cases b = 0 and b = 1 given access to the oracle. To model chosen-ciphertext attacks we allow
the adversary to also have access to a decryption oracle. Note that if the adversary queries the
decryption oracle at a ciphertext output by the left-or-right oracle, then it can obviously easily win
the game. Therefore, we disallow it from doing so. Any other query is permissible.

Definition 2.1 (Indistinguishability of a Symmetric Encryption Scheme [2]) Let SE =
(K, E ,D) be a symmetric encryption scheme. Let b ∈ {0, 1} and k ∈ N. Let Acpa be an adversary
that has access to one oracle and let Acca be an adversary that has access to two oracles. Now, we
consider the following experiments:

Experiment Expind-cpa-b
SE,Acpa

(k)

K
R← K(k)

x← A
EK(LR(·,·,b))
cpa (k)

Return x

Experiment Expind-cca-b
SE,Acca

(k)
K

R← K(k)
x← A

EK(LR(·,·,b)),DK(·)
cca (k)

Return x

Above it is mandated that Acca never queries DK(·) on a ciphertext C output by the EK(LR(·, ·, b))
oracle, and that the two messages queried of EK(LR(·, ·, b)) always have equal length. We define
the advantages of the adversaries via

Advind-cpa
SE,Acpa

(k) = Pr
[

Expind-cpa-1
SE,Acpa

(k) = 1
]
− Pr

[
Expind-cpa-0

SE,Acpa
(k) = 1

]
Advind-cca

SE,Acca
(k) = Pr

[
Expind-cca-1

SE,Acca
(k) = 1

]
− Pr

[
Expind-cca-0

SE,Acca
(k) = 1

]
.

We define the advantage functions of the scheme as follows. For any integers t, qe, qd, µe, µd,

Advind-cpa
SE (k, t, qe, µe) = max

Acpa

{Advind-cpa
SE,Acpa

(k)}

Advind-cca
SE (k, t, qe, qd, µe, µd) = max

Acca

{Advind-cca
SE,Acca

(k)}

where the maximum is over all Acpa, Acca with time-complexity t, each making to the EK(LR(·, ·, b))
oracle at most qe queries the sum of whose lengths is at most µe bits, and, in the case of Acca, also
making to the DK(·) oracle at most qd queries the sum of those lengths is at most µd bits. The
scheme SE is said to be IND-CPA secure —resp. IND-CCA secure— if the function Advind-cpa

SE,A (·)
—resp. Advind-cca

SE,A (·)— is negligible for any adversary A whose time-complexity is polynomial
in k.

We discuss some important conventions. The time-complexity mentioned above is the worst case
total execution time of the experiment, plus the size of the code of the adversary, in some fixed
RAM model of computation. We stress that the the total execution time of the experiment is more
than the running time of the adversary. It includes the time of all operations in the experiment,
including the time for key generation and the computation of answers to oracle queries. Thus, when

8

the time complexity is polynomially bounded, so are all the other parameters. This convention for
measuring time complexity and other resources of an adversary is used for all definitions in this
paper.

Another convention, also used throughout this paper, is that the length of a query M0,M1 to a
left-or-right encryption oracle is defined as |M0|. (This equals |M1| since the messages must have
the same length.) In other words, it is the length of one of the messages. This convention is used
in measuring the parameter µe.

The advantage function is the maximum probability that the security of the scheme SE can
be compromised by an adversary using the indicated resources, and is used for concrete security
analyses.

We will not use definitions of non-malleability as per [10, 3] but instead use the equivalent
indistinguishability under parallel chosen-ciphertext attack characterization of [6]. This facilitates
our proofs and analyses and also facilitates concrete security measurements. The notation ~DK(·)
denotes the algorithm which takes input a vector ~c = (c1, . . . , cn) of ciphertexts and returns the
corresponding vector ~p = (DK(c1), . . . ,DK(cn)) of plaintexts.

Definition 2.2 (Non-Malleability of a Symmetric Encryption Scheme [6]) Let SE =
(K, E ,D) be a symmetric encryption scheme. Let b ∈ {0, 1} and k ∈ N. Let Acpa = (Acpa1

, Acpa2
)

be an adversary that has access to one oracle and let Acca = (Acca1
, Acca2) be an adversary that

has access to two oracles. Now, we consider the following experiments:

Experiment Expnm-cpa-b
SE,Acpa

(k)

K
R← K(k)

(~c, s)← A
EK(LR(·,·,b))
cpa1

(k)
~p← ~DK(~c)
x← Acpa2

(~p,~c, s)
Return x

Experiment Expnm-cca-b
SE,Acca

(k)
K

R← K(k)
(~c, s)← A

EK(LR(·,·,b)),DK(·)
cca1 (k)

~p← ~DK(~c)
x← Acca2(~p,~c, s)
Return x

Above it is mandated that the vector ~c output by Acpa1
or Acca1

does not contain any of the
ciphertexts output by the EK(LR(·, ·, b)) oracle, that the pairs of messages queried of EK(LR(·, ·, b))
are always of equal length, and that Acca does not query DK(·) on an output of EK(LR(·, ·, b)). We
define the advantages of the adversaries via

Advnm-cpa
SE,Acpa

(k) = Pr
[

Expnm-cpa-1
SE,Acpa

(k) = 1
]
− Pr

[
Expnm-cpa-0

SE,Acpa
(k) = 1

]
Advnm-cca

SE,Acca
(k) = Pr

[
Expnm-cca-1

SE,Acca
(k) = 1

]
− Pr

[
Expnm-cca-0

SE,Acca
(k) = 1

]
.

We define the advantage functions of the scheme as follows. For any integers t, qe, qd, µe, µd,

Advnm-cpa
SE (k, t, qe, µe) = max

Acpa

{Advnm-cpa
SE,Acpa

(k)}

Advnm-cca
SE (k, t, qe, qd, µe, µd) = max

Acca

{Advnm-cca
SE,Acca

(k)}

where the maximum is over all Acpa, Acca with time-complexity t, each making to the EK(LR(·, ·, b))
oracle at most qe queries the sum of whose lengths is at most µe bits, and, in the case of Acca, also
making to the DK(·) oracle at most qd queries the sum of whose lengths is at most µd bits. The
scheme SE is said to be NM-CPA secure —resp. NM-CCA secure— if the function Advnm-cpa

SE,A (·)
—resp. Advnm-cca

SE,A (·)— is negligible for any adversary A whose time complexity is polynomial
in k.

9

2.3 Integrity of symmetric encryption schemes

Now we specify security definitions for integrity (authenticity) of a symmetric encryption scheme
SE = (K, E ,D). It is convenient to define an algorithm D∗K(·) as follows:

Algorithm D∗K(C)
If DK(C) 6= ⊥, then return 1.

Else return 0.

We call this the verification algorithm or verification oracle. The model is similar to that used for
message authentication except that the messages are no longer in the clear, but specified implicitly
via ciphertexts. The adversary is allowed to mount a chosen-message attack on the scheme, modeled
by giving it access to an encryption oracle EK(·). It also has oracle access to the verification oracle.
It is successful if it makes the verification oracle accept a ciphertext that was not “legitimately
produced.” There are two possible interpretations of the phrase in quotes. One is to consider the
ciphertext illegitimate —meaning consider the adversary successful— if the corresponding plaintext
was never queried of the encryption oracle. A scheme in which it is computationally infeasible for
the adversary to achieve this type of success is said to preserve the integrity of plaintexts. The other
possibility is to consider the ciphertext illegitimate —meaning consider the adversary successful—
if the ciphertext was never returned by the encryption oracle, even if the corresponding plaintext
was queried of the encryption oracle. A scheme in which it is computationally infeasible for the
adversary to achieve this type of success is said to preserve the integrity of ciphertexts.

Definition 2.3 (Integrity of an Authenticated Encryption Scheme) Let SE = (K, E ,D) be
a symmetric encryption scheme. Let k ∈ N, and let Aptxt and Actxt be adversaries each of which
has access to two oracles. Consider the following experiments:

Experiment Expint-ptxt
SE,Aptxt

(k)
K

R← K(k)

If AEK(·),D∗K(·)
ptxt (k) makes a query C to

the oracle D∗K(·) such that
– D∗K(C) returns 1, and
– M def= DK(C) was never a query to EK(·)

then return 1 else return 0.

Experiment Expint-ctxt
SE,Actxt

(k)
K

R← K(k)

If AEK(·),D∗K(·)
ctxt (k) makes a query C to

the oracle D∗K(·) such that
– D∗K(C) returns 1, and
– C was never a response of EK(·)

then return 1 else return 0.

We define the advantages of the adversaries via

Advint-ptxt
SE,Aptxt

(k) = Pr
[

Expint-ptxt
SE,Aptxt

(k) = 1
]

Advint-ctxt
SE,Actxt

(k) = Pr
[

Expint-ctxt
SE,Actxt

(k) = 1
]

We define the advantage functions of the scheme as follows. For any integers t, qe, qd, µe, µd,

Advint-ptxt
SE (k, t, qe, qd, µe, µd) = max

Aptxt

{Advint-ptxt
SE,Aptxt

(k)}

Advint-ctxt
SE (k, t, qe, qd, µe, µd) = max

Actxt

{Advint-ctxt
SE,Actxt

(k)}

where the maximum is over all Aptxt, Actxt with time-complexity t, each making to the oracle
EK(·) at most qe queries the sum of whose lengths is at most µe bits, and each making to the
D∗K(·) oracle t most qd queries the sum of whose lengths is at most µ bits. The scheme SE
is said to be INT-PTXT secure —resp. INT-CTXT secure— if the function Advint-ptxt

SE,A (·) —
resp. Advint-ctxt

SE,A (·)— is negligible for any adversary A whose time-complexity is polynomial in k.

10

2.4 Message authentication schemes

A message authentication scheme MA = (K, T ,V) consists of three algorithms. The randomized
key generation algorithm K takes input a security parameter k ∈ N and returns a key K; we write
K

R← K(k). The tagging algorithm T could be either randomized or stateful. It takes the key
K and a message M to return a tag σ; we write σ R← TK(M). The verification algorithm V is
deterministic. It takes the key K, a message M , and a candidate tag σ for M to return a bit v;
we write v ← VK(M,σ). We require that VK(M, TK(M)) = 1 for all M ∈ {0, 1}∗. The scheme is
said to be deterministic if the tagging algorithm is deterministic and verification is done via tag
re-computation. We sometimes call a message authentication scheme a MAC, and also sometimes
call the tag σ a MAC.

Security for message authentication considers an adversary F who is allowed a chosen-message
attack, modeled by allowing it access to an oracle for TK(·). F is “successful” if it can make the
verifying oracle VK(·, ·) accept a pair (M,σ) that was not “legitimately produced.” There are
two possible conventions with regard to what “legitimately produced” can mean, leading to two
measures of advantage. The “standard” measure is that the message M is “new,” meaning F
never made query M of its tagging oracle. We call this type of forgery a weak forgery. (This is
the measure of [4] which in turn is an adaptation to the symmetric case of the notion of security
for digital signatures of [13].) A more stringent measure considers the adversary successful even
if the message is not new, as long as the tag is new. This type of strong forgery means that the
adversary wins as long as σ was never returned by the tagging oracle in response to query M . In
the following definition, we use the acronyms WUF-CMA and SUF-CMA respectively for weak and
strong unforgeability against chosen-message attacks.

Definition 2.4 (Message Authentication Scheme Security) Let MA = (K, T ,V) be a mes-
sage authentication scheme. Let k ∈ N, and let Fw and Fs be adversaries that have access to two
oracles. Consider the following experiment:

Experiment Expwuf−cma
MA,Fw

(k)
K

R← K(k)
If F TK(·),VK(·,·)

w (k) makes a query (M,σ)
to the oracle VK(·, ·) such that

– VK(M,σ) returns 1, and
– M was never queried to

the oracle TK(·),
then return 1 else return 0.

Experiment Expsuf−cma
MA,Fs

(k)
K

R← K(k)
If F TK(·),VK(·,·)

s (k) makes a query (M,σ)
to the oracle VK(·, ·) such that

– VK(M,σ) returns 1, and
– σ was never returned by the

oracle TK(·) in response to query M ,
then return 1 else return 0.

We define the advantages of the forgers via

Advwuf-cma
MA,Fw

(k) = Pr
[

Expwuf−cma
MA,Fw

(k) = 1
]

Advsuf-cma
MA,Fs

(k) = Pr
[

Expsuf−cma
MA,Fs

(k) = 1
]

We define the advantage functions of the scheme as follows. For any integers t, qt, qv, µt, µv,

Advwuf-cma
MA (k, t, qt, qv, µt, µv) = max

Fw

{Advwuf-cma
MA,Fw

(k)}

Advsuf-cma
MA (k, t, qt, qv, µt, µv) = max

Fs

{Advsuf-cma
MA,Fs

(k)}

where the maximum is over all Fw, Fs with time complexity t, making at most qt oracle queries to
TK(·) the sum of whose lengths is at most µt bits, and making at most qv oracle queries to VK(·, ·)

11

the sum of whose lengths is at most µv bits. The scheme MA is said to be WUF-CMA secure
—resp. SUF-CMA secure— if the function Advwuf-cma

MA,F (·) —resp. Advsuf-cma
MA,F (·)— is negligible for

any forger F whose time complexity is polynomial in k.

It is easy to show that any pseudorandom function (PRF) is a SUF-CMA-secure (determinstic)
message authentication scheme. Assuming the underlying block cipher is a PRF, the CBC-MAC
based on it is known to be a PRF [4, 19] hence is a SUF-CMA-secure MAC. Many practical MACs
such as HMAC [1] also seem to be SUF-CMA-secure. For the sequel it is useful to note that any
scheme which is SUF-CMA-secure is also WUF-CMA-secure.

Theorem 2.5 (SUF-CMA → WUF-CMA) Let MA be a message authentication scheme. If
MA is SUF-CMA secure, then it is WUF-CMA secure as well. Concretely,

Advwuf-cma
MA (k, t, qt, qv, µt, µv) ≤ Advsuf-cma

MA (k, t, qt, qv, µt, µv) .

Proof of Theorem 2.5: This is true because a valid weak forgery is also a valid strong forgery.
In particular, a tag corresponding to a new message is clearly a new tag for that message. Here are
the details.

We associate with any forger Fw mounting an attack against the schemeMA under the WUF-CMA
notion a forger Fs mounting an attack against the scheme under the SUF-CMA notion such that

Advwuf-cma
MA,Fw

(k) ≤ Advsuf-cma
MA,Fs

(k)

and Fs uses the same amount of resources as Fs does. Then, Theorem 2.5 follows.

In this case, we simply set the adversary Fs to be exactly the same as Fw. To see why this works,
let (M,σ) be the winning forgery made by Fw, namely a query to the verification oracle VK(·, ·)
such that this oracle returns 1 and M was never queried to the tagging oracle TK(·). Clearly, since
the tagging oracle never receives a query M , it cannot have returned σ as a response to a query
M . So (M,σ) is a valid strong forgery, and thus, Fs achieves its goal.

2.5 Notation for adversary execution

In reductions we will often have one adversary A′ executing another adversary A. Adversary A′

will maintain the execution state of A. Whenever A makes an oracle query, A′ will stop A, itself
return a reply to this oracle query, and then continue running A. We will write code for A′ which
will contain things of the form:

For i = 1, . . . , qe do
When A makes oracle query xi

[Some code computing a value yi]
A⇐ yi

EndWhile
A⇒ b

The notation A ⇐ yi means that A is being provided the value yi in response to its oracle query
xi. It is assumed here that A makes a total of qe queries. The notation A ⇒ b means that A is
returning a value b.

12

3 Relations among notions of symmetric encryption

In this section, we state the formal versions of the results summarized in Figure 1 and provide
proofs. We begin with the implications and then move to the separations. The first implication,
below, is a triviality.

Theorem 3.1 (INT-CTXT→ INT-PTXT) Let SE be an encryption scheme. If SE is INT-CTXT
secure, then it is INT-PTXT secure as well. Concretely,

Advint-ptxt
SE (k, t, qe, qd, µe, µd) ≤ Advint-ctxt

SE (k, t, qe, qd, µe, µd) .

Proof of Theorem 3.1: This is true because an adversary that violates integrity of plaintexts
of a scheme SE = (K, E ,D) also violates integrity of ciphertexts of the same scheme. Here are the
details.

We associate with any adversary A mounting an attack against integrity of plaintexts of SE an
adversary A′ mounting an attack against integrity of ciphertexts of the scheme such that

Advint-ptxt
SE,A (k) ≤ Advint-ctxt

SE,A′ (k)

and A′ uses the same amount of resources as A does. Then, Theorem 3.1 follows.

In this case, we simply set the adversary A′ to be exactly the same as A. To see why this works, let
C be a winning query made by A in Expint-ptxt

SE,A (k), namely a query to D∗K(·) such that this oracle
returns 1 but

M
def= DK(C)

was never queried to the oracle EK(·). We claim that C was never an output of the oracle EK(·)
in Expint-ctxt

SE,A (k). This is true by the unique decryptablity of a symmetric encryption scheme: the
only possible message that could result in an output of C from EK(·) is M . So A′ achieves its goal
with the same probability that A achieves its goal.

The next implication is more interesting.

Theorem 3.2 (INT-CTXT ∧ IND-CPA → IND-CCA) Let SE be an encryption scheme. If
SE is INT-CTXT secure and IND-CPA secure, then it is IND-CCA secure. Concretely,

Advind-cca
SE (k, t, qe, qd, µe, µd) ≤ 2 ·Advint-ctxt

SE (k, t, qe, qd, µe, µd) + Advind-cpa
SE (k, t, qe, µe) .

Proof of Theorem 3.2: Let SE = (K, E ,D) be a symmetric encryption scheme. To any adversary
A attacking the scheme in the IND-CCA sense we associate two adversaries, Ac which attacks SE
in the INT-CTXT sense, and Ap which attacks SE in the IND-CPA sense, so that

Advind-cca
SE,A (k) ≤ 2 ·Advint-ctxt

SE,Ac
(k) + Advind-cpa

SE,Ap
(k) , (1)

and furthermore, if A runs in time t using qe encryption and qd decryption queries totaling µe, µd

bits respectively, then Ac runs in time t using qe encryption and qd verification queries totaling
µe, µd bits respectively, and Ap runs in time t using qe encryption queries tataling µe bits. Then,
Theorem 3.2 follows.

The two adversaries Ac and Ap will use A to achieve their goals. Specifically, Ac whose goal is to
submit a new valid ciphertext query to the oracle D∗ will simply use A’s query to the oracle D as

13

its own. Thus, if A can form a valid ciphertext query, so will Ac. Similarly, Ap whose goal is to
figure out whether the left or the right message has been encrypted will directly use A’s ability to
do so. Lacking access to a decryption oracle, however, it will simply return ⊥ when A asks for a
decryption. This strategy works overall mainly because, regardless of whether A can form a valid
ciphertext, at least one of the two adversaries will benefit.

The constructions for Ac and Ap are as follows. Refer to the end of Section 2 for the notation
A⇐ · and A⇒ ·.

Adversary AEK(·),D∗K(·)
c (k)

b′
R← {0, 1}

For i = 1, . . . , qe + qd do
When A makes a query Mi,0,Mi,1

to its left-or-right encryption oracle do
A⇐ EK(Mi,b′).

When A makes a query Ci

to its decryption oracle do
v ← D∗K(Ci)
If v = 0,

then A⇐ ⊥,
else stop.

Adversary AEK(LR(·,·,b))
p (k)

For i = 1, . . . , qe + qd do
When A makes a query Mi,0,Mi,1

to its left-or-right encryption oracle do
A⇐ EK(LR(Mi,0,Mi,1, b))

When A makes a query Ci

to its decryption oracle do
A⇐ ⊥

A⇒ b′

Return b′

We will now prove Equation (1). Let Pr [·] denote the probability in Expind-cca-b
SE,A (k) where b ∈

{0, 1} and let b′ denote the bit output by A in this experiment. Let E denote the event that A
makes at least one valid decryption oracle query, i.e. a query C such that DK(C) 6= ⊥. Let Prp [·]
denote the probability in Expind-cpa-b

SE,Ap
(k) and let Prc [·] denote the probability in Expint-ctxt

SE,Ac
(k).

We claim

Pr
[
b′ = b ∧ E

]
≤ Pr [E]

= Prc [Ac succeeds]

= Advint-ctxt
SE,Ac

(k) (2)

and

Pr
[
b′ = b ∧ ¬E

]
≤ Prp

[
b′ = b

]
=

1
2
Advind-cpa

SE,Ap
(k) +

1
2
. (3)

We finish the proof given this and then return to the justification. We have

1
2
Advind-cca

SE,A (k) +
1
2

= Pr
[
b′ = b

]
= Pr

[
b′ = b ∧ E

]
+ Pr

[
b′ = b ∧ ¬E

]
≤ Advint-ctxt

SE,Ac
(k) +

1
2
Advind-cpa

SE,Ap
(k) +

1
2
.

Some algebraic manipulation leads to Equation (1).

We now justify the claimed inequalities (2) and (3) by analyzing each of them in turn.

To justify the inequality (2), we observe that Ac simulates A in the exact same environment as
that of the experiment Expind-cca-b

SE,A (k). Therefore, if A submits a valid ciphertext as a decryption

14

query (i.e. the event E occurs), Ac uses this ciphertext as a query to its verification oracle, and
so Equation (2) follows. (Once this ciphertext has been submitted Ac stops and of course the
simulation is then no longer accurate but that doesn’t matter.) Similarly, for the inequality (3),
when event E does not occur, Ap simulates A in the exact same environment as that of the
experiment Expind-cca-b

SE,A (k). Therefore, if A is able to guess the correct bit b′ = b, so will Ap, and
Equation (3) follows. This concludes the proof for Equation (1).

Note that here we rely on the assumption that A never queries its decryption oracle on an output
of its EK(LR(·, ·, b)) oracle. Otherwise, A could query its decryption oracle with a valid ciphertext
C, meaning event E would occur, yet there would be no win for Ac because the simulation would
have lead it to query its own encryption oracle on the message which is the decryption of C.

To justify the claimed resource complexities of Ac and Ap, we note that each of Ac and Ap uses the
same number of queries as that of A (Ac to its EK(·) and D∗K(·) oracles and Ap to its EK(LR(·, ·, b))
oracle). For time complexity, we simply note that we measure the time for each entire experiment.
Therefore, Equation (1) leads to Theorem 3.2. We omit details.

We use the approach of [3] to show separations. Namely, to show that a security notion A does not
imply a security notion B, we construct a scheme SE that meets notion A but for which we can
exhibit an attack showing that it does not meet notion B. Of course, the statement that A 6→ B
is vacuously and un-interestingly true if there does not exist any scheme secure under the notion
A in the first place. So we make the minimal assumption whenever we show a separation A 6→ B
that there exists some scheme secure under the notion A, and obtain SE by modifying this given
scheme.

We note that the scheme SE may be artificial. But the point we are making is that it is not
possible to prove A→ B, and even an artificial example is enough for that.

Proposition 3.3 (IND-CCA 6→ INT-PTXT) Given a symmetric encryption scheme SE which
is IND-CCA secure, we can construct a symmetric encryption scheme SE which is also IND-CCA
secure but is not INT-PTXT secure.

Proof of Proposition 3.3: Let SE = (K, E ,D) be the given symmetric encryption scheme. We
define the scheme SE such that SE is IND-CCA secure but is not INT-PTXT secure. The idea is
simple. A certain known string (or strings) will be viewed by D as valid and decrypted to certain
known messages, so that forgery is easy. But these “ciphertexts” will never be produced by the
encryption algorithm so privacy will not be affected. Here are the details.

The new scheme SE = (K, E ,D) has the same key generation algorithm as the old scheme and the
following modified encryption and decryption algorithms:

Algorithm EK(M)
C ′ ← EK(M)
C ← 0‖C ′
Return C

Algorithm DK(C)
Parse C as b‖C ′ where b is a bit
If b = 0 then M ← DK(C ′) ; return M
Else return 0

We present an attack on SE , in the form of an adversary A who defeats the integrity of plaintexts
with probability one using resources polynomial in the security parameter k. It works as follows:

Adversary AEK(·),D∗K(·)(k)
Submit query 10 to oracle D∗K(·).

15

We observe that DK(10) = 0, meaning 10 is a valid ciphertext, and it decrypts to a message (namely
0) that the adversary has not queried of its oracle. So

Advint-ptxt

SE,A (k) = 1 .

Also, A makes zero queries to EK(·) and one query to D∗K(·) totalling 2 bits, and is certainly
poly(k)-time.

To prove that SE is IND-CCA secure, it suffices to associate with any poly(k)-time adversary A
attacking SE in the IND-CCA sense a poly(k)-time adversary B attacking SE in the IND-CCA
sense such that

Advind-cca
SE,A (k) ≤ Advind-cca

SE,B (k) .

Adversary B simply simulates A and uses its oracles to answer A’s oracle queries in a straight-
forward manner as follows:

Adversary BEK(LR(·,·,b)),DK(·)(k)
For i = 1, . . . , qe + qd do

When A makes a query Mi,0,Mi,1 to its left-or-right encryption oracle do
A⇐ 0‖EK(LR(Mi,0,Mi,1, b))

When A makes a query Ci to its decryption oracle do
Parse C as bi‖C ′i where bi is a bit
If b = 0 then A⇐ DK(C ′i)
Else A⇐ 0

Return whatever A returns

As the code shows, it is easy for B to break the scheme if A can. Furthermore, the resource usage
of both adversaries are clearly the same.

Proposition 3.4 (INT-PTXT∧IND-CPA 6→ NM-CPA) Given a symmetric encryption scheme
SE which is both INT-PTXT secure and IND-CPA secure, we can construct a symmetric encryp-
tion scheme SE which is also both INT-PTXT secure and IND-CPA secure but is not NM-CPA
secure.

Proof of Proposition 3.4: Let SE = (K, E ,D) be the given symmetric encryption scheme. We
define the scheme SE such that SE is INT-PTXT and IND-CPA secure but is not NM-CPA secure.
The idea is to prepend a redundant bit to ciphertexts. This bit is ignored by D, resulting in the
ability to create two different ciphertexts of the same message, which defeats the non-malleability.
Here are the details.

The new scheme SE = (K, E ,D) has the same key generation algorithm as the old scheme and the
following modified encryption and decryption algorithms:

Algorithm EK(M)
C ← EK(M)
Return 0‖C

Algorithm DK(C)
Parse C as b‖C ′ where b is a bit
M ← DK(C ′) ; return M

To prove that SE is not NM-CPA secure, we present an attack on SE in the form of an adversary
A = (A1, A2) who violates its non-malleability with probability one using resources polynomial in
the security parameter k. It works as follows:

16

Adversary AEK(LR(·,·,b))
1 (k)

C ← EK(LR(0, 1, b))
Parse C as x‖C ′ where x is a bit.
x′ ← x⊕ 1
~c[1]← x′‖C ′

Return (~c, ε)

Adversary A2(~p,~c, s)
If ~p[1] = 0

then return 0
else return 1

A1 queries its left-or-right encryption oracle with the messages 0 and 1 to get a ciphertext C = x‖C ′.
It then creates a vector ~c which has only one component, this being the ciphertext formed by flipping
the first bit of x‖C ′. It outputs ~c together with the empty string ε for state information. A2 has as
input ~p with ~p[1] being DK(~c[1]) = DK(C). It need only see which of the values 0 or 1 the plaintext
~p[1] equals. The adversary is valid because ~c[1] was not an output of the left-or-right encryption
oracle. Clearly this adversary has time-complexity poly(k) and

Advnm-cpa
SE,A (k) = 1 .

To prove that SE is indeed IND-CPA (resp. INT-PTXT) secure, it suffices to associate with any
poly(k)-time adversary Ap (resp. Ac) attacking SE in the IND-CPA (resp. INT-PTXT) sense, a
poly(k)-time adversary Bp (resp. Bc) attacking the SE in the IND-CPA (resp. INT-PTXT) sense,
such that

Advind-cpa

SE,Ap
(k) ≤ Advind-cpa

SE,Bp
(k)

Advint-ptxt

SE,Ac
(k) ≤ Advint-ptxt

SE,Bi
(k) .

The adversaries Bp and Bc work as follows:

Adversary BEK(LR(·,·,b))
p (k)

For i = 1, . . . , qe + qd do
When Ap makes a query (Mi,0,Mi,1)
to its left-or-right encryption oracle do

Ap ⇐ 0‖EK(LR(Mi,0,Mi,1, b))
Return whatever Ap returns.

Adversary BEK(·),D∗K(·)
c (k)

For i = 1, . . . , qt + qv(k) do
When Ac makes a query Mi

to its encryption oracle do
Ac ⇐ 0‖EK(Mi)

When Ac makes a query Ci

to its verification oracle do
Parse Ci as b‖C ′i where b is a bit.
Ac ⇐ D∗K(C ′i).

As the code shows, it is easy for Bp (resp. Bc) to use its own oracle to provide Ap (resp. Ac) with the
answers to the latter’s oracle queries. Thus, Bp (resp. Bc) is successful with the same probability
as Ap (resp. Ac) and furthermore, the resource usage of Bp (resp. Ap) and that of Bc (resp. Ac) is
the same. Therefore, SE is IND-CPA and INT-PTXT secure.

4 Security of the Composite Schemes

We now present the formal security results for the composite schemes as summarized in Figure 2
and Figure 3. Throughout this section, SE = (Ke, E ,D) is a given symmetric encryption scheme
which is IND-CPA secure, MA = (Km, T ,V) is a given message authentication scheme which is
WUF-CMA or SUF-CMA secure, and SE = (K, E ,D) is a composite scheme according to one of

17

Security Weak MAC Strong MAC

Result Reason Result Reason

IND-CPA Insecure Proposition 4.1 Insecure Proposition 4.1

Privacy IND-CCA Insecure IND-CPA insecure and
IND-CCA→ IND-CPA

Insecure IND-CPA insecure and
IND-CCA→ IND-CPA

NM-CPA Insecure IND-CPA insecure and
NM-CPA→ IND-CPA

Insecure IND-CPA insecure and
NM-CPA→ IND-CPA

Integrity INT-PTXT Secure Theorem 4.3 Secure Theorems 4.3 and 2.5

INT-CTXT Insecure Proposition 4.4 Insecure Proposition 4.4

Figure 4: Summary of results for the Encrypt-and-MAC composition method.

the three methods we are considering. The presentation below is method by method, and in each
case we begin by specifying the method in more detail. We then provide a table which summarizes
the results and reasons for them. A reason is either a reference to a theorem, a reference to a
proposition, or a brief line of reasoning saying how the result in question can be derived from
already proved entries of the same table in combination with results from Section 3.

We make the simplifying assumption that D never returns ⊥. It can take any string as input,
and the output is always some string. (This is without loss of generality because we can modify D
so that instead of returning ⊥ it just returns some default message. Security under chosen-plaintext
attack is unaffected.) However, D can and will return ⊥ at times, and this is crucial for integrity.

In presenting a counter-example (meaning a claim that a certain composition method is inse-
cure under some notion of security A) we use the following paradigm. We present a symmetric
encryption scheme SE ′ and a MACMA′ such that SE ′ is IND-CPA secure andMA′ is WUF-CMA
or SUF-CMA secure but we can present an attack on the composite scheme based on them showing
that the composite scheme does not meet notion A. Of course, we make the minimal assump-
tions that some scheme SE that is IND-CPA secure, and some scheme MA that is WUF-CMA or
SUF-CMA secure, exist, since otherwise the claim is vacuous. We construct SE ′ from SE andMA′
from MA.

In some cases the constructions are artificial. But what we want to assess is whether it is possible
to prove that the composite scheme meets notion A assuming only that the constituent encryption
scheme is IND-CPA secure and the constituent MAC scheme is WUF-CMA or SUF-CMA secure,
and a result of the type just explained shows that such a proof is not possible.

4.1 Encrypt-and-MAC

The composite scheme is defined as follows:

Algorithm K(k)
Ke

R← Ke(k)
Km

R← Km(k)
Return 〈Ke,Km〉

Algorithm E〈Ke,Km〉(M)
C ′ ← EKe(M)
τ ← TKm(M)
C ← C ′‖τ
Return C

Algorithm D〈Ke,Km〉(C)
Parse C as C ′‖τ
M ← DKe(C ′)
v ← VKm(M, τ)
If v = 1, return M

else return ⊥.

The results about it are summarized in Figure 4. We now proceed to the theorems and propositions
mentioned there.

18

The Encrypt-and-MAC composition method does not preserve privacy because the MAC could
reveal information about the plaintext. The following makes this precise.

Proposition 4.1 (Encrypt-and-MAC method is not IND-CPA secure) Given a IND-CPA
secure symmetric encryption scheme SE and a WUF-CMA (resp. SUF-CMA) secure message
authentication scheme MA, we can construct a message authentication scheme MA′ such that
MA′ is WUF-CMA (resp. SUF-CMA) secure, but the composite scheme SE formed by the Encrypt-
and-MAC composition method based on SE and MA′ is not IND-CPA secure.

Proof of Proposition 4.1: LetMA = (Km, T ,V) be the given MAC scheme. We define a MAC
schemeMA′ which is the same as the given one except that it prepends the first bit of the message
to the tag. FormallyMA′ = (Km, T ′,V ′) has the same key generation algorithm as the given MAC
scheme and the following tagging and verification algorithms:

Algorithm T ′K(M)
Parse M as x‖M ′ where x is a bit
Return x‖TK(M)

Algorithm V ′K(M,σ)
Parse M as x‖M ′ where x is a bit
Parse σ as s‖σ′ where s is a bit
If x = s and VK(M,σ′) = 1

Then return 1 else return 0

It is easy to see that if MA is WUF-CMA —resp. SUF-CMA— secure then MA′ is WUF-CMA
—resp. SUF-CMA— secure. (The formal proof is omitted.) However if MA′ is used as the
base message authentication scheme in the Encrypt-and-MAC composition method, the resulting
symmetric encryption scheme will fail to achieve IND-CPA because the first bit of the message is
provided to the adversary via the MAC. The adversary can use this to break the scheme in the
IND-CPA sense as follows. It queries its left-or-right encryption oracle E〈Ke,Km〉(LR(·, ·, b)) with
two messages M0,M1 such that the first bit of M0 is 0 and the first bit of M1 is 1. It gets back
ciphertext C = C ′‖τ where τ = T ′Km

(Mb) and C ′ = EKe(xb). It lets s be the first bit of τ . As per
our construction above, s is the first bit of Mb and hence s = b, so the adversary returns s. The
advantage of this adversary is one.

Since both IND-CCA and NM-CPA imply IND-CPA, this means that this composition method is
also neither IND-CCA nor NM-CPA secure.

The next proposition makes a somewhat stronger statement. Not only do there exists schemes
for which the Encrypt-and-MAC method fails to provide IND-CPA, but it will fail to be so for
most of the commonly defined MACs, including CBC-MAC and HMAC, because the latter are
deterministic. When the MAC is deterministic, an adversary can use the MAC present in the
ciphertext of the composite scheme to see whether the same message has been encrypted twice,
something which should not be possible if the scheme is to meet a strong notion of privacy like
IND-CPA.

Proposition 4.2 (Encrypt-and-MAC method is IND-CPA insecure for any determin-
istic MAC) Let SE be a IND-CPA secure symmetric encryption scheme, and let MA be a
deterministic WUF-CMA or SUF-CMA secure message authentication scheme. Then, the compos-
ite scheme SE obtained from SE and MA by the Encrypt-and-MAC composition method is not
IND-CPA secure.

Proof of Proposition 4.2: We describe an attack on the privacy of SE . Recall that as per
Definition 2.1 the adversary has access to the left-or-right encryption oracle E〈Ke,Km〉(LR(·, ·, b)).
In this case, given messages M0,M1, the oracle returns EKe(mb)‖TKm(Mb). The attack is described
by the following adversary:

19

Adversary AE〈Ke,Km〉(LR(·,·,b))(k)
C0‖σ0 ← E〈Ke,Km〉(LR(0, 0, b))
C1‖σ1 ← E〈Ke,Km〉(LR(0, 1, b))
If σ0 = σ1 then return 0 else return 1

If b = 0, then the determinism of the T function means that σ0 = σ1 so the output of A is 0.
If b = 1, then A outputs 1 unless it happens that the messages 0 and 1 have the same MAC,
namely TKm(0) = TKm(1). But if the latter were true, the message authentication scheme is clearly
insecure: we could query the tagging function at 0 and then forge the MAC of 1. So assuming the
MAC is WUF-CMA-secure we have that SE is not IND-CPA secure.

The Encrypt-and-MAC composition method does preserve integrity of plaintexts. It inherits the
integrity of the MAC in a direct way, with no degradation in security. This is independent of the
symmetric encryption scheme: whether the latter is secure or not does not affect the integrity of
the composite scheme.

Theorem 4.3 (Encrypt-and-MAC method is INT-PTXT secure) Let SE be a symmetric
encryption scheme, let MA be a message authentication scheme, and let SE be the encryption
scheme obtained from SE andMA via the Encrypt-and-MAC composition method. Then, ifMA
is WUF-CMA-secure, then SE is INT-PTXT secure. Concretely,

Advint-ptxt

SE (k, t, qe, qd, µe, µd) ≤ Advwuf-cma
MA (k, t, qe, qd, µe, µd) .

The same is true if the MAC is SUF-CMA-secure, by Theorem 2.5.

Proof of Theorem 4.3: Let SE = (K, E ,D) be the composite encryption scheme constructed via
the Encrypt-and-MAC method from the encryption scheme SE = (Ke, E ,D) and the MAC scheme
MA = (Km, T ,V). We associate with any adversary A attacking SE in the INT-PTXT-sense a
forger F attacking MA in the WUF-CMA-sense such that

Advint-ptxt

SE,A (k) ≤ Advwuf-cma
MA,F (k)

and F uses the same resources as A does. This implies Theorem 4.3.

The forger F uses the adversary A to achieve its goal. It has access to the oracles TKm(·) and
VKm(·, ·) where Km is a random key forMA and will pick a key Ke for the encryption algorithm E .
Using this key and its own oracles, it can simulate the encryption oracle E〈Ke,Km〉(·) and verification
oracle D∗〈Ke,Km〉(·) that A needs, and thus answer A’s oracle queries. In more detail, it works as
follows:

Adversary F TKm (·),VKm (·,·)(k)
Ke

R← Ke(k)
For i = 1, . . . , qe + qd do

When A makes a query Mi to its encryption oracle do
C ′i ← EKe(Mi) ; τi ← TKm(Mi) ; A⇐ C ′i‖τi

When A makes a query Ci to its verification oracle do
Parse Ci as C ′i‖τi ; Mi ← DKe(C ′i) ; vi ← VKm(Mi, τi) ; A⇐ vi

Consider a ciphertext Ci = C ′i‖τi that yields a successful forgery of a new plaintext Mi. This means
that Mi was never queried to E〈Ke,Km〉(·), which implies that F never queried it to TKm(·) either.

20

Therefore, the pair (Mi, τi) is a valid weak forgery, and the above equation is justified. It remains
to justify the claims about the resource parameters used by F . The key thing to remember is that,
as per our definitions, the resources for both adversaries pertain to the entire experiment which
measures their success.

However, the Encrypt-and-MAC composition method fails to provide integrity of ciphertexts. This
is because there are secure encryption schemes with the property that a ciphertext can be modified
without changing its decryption. When such an encryption scheme is used as the base symmetric
encryption scheme, an adversary can query the encryption oracle, modify part of the response, and
still submit the result to the verification oracle as a valid ciphertext. The following proposition
states this result.

Proposition 4.4 (Encrypt-and-MAC method is not INT-CTXT secure) Given a IND-CPA
secure symmetric encryption scheme SE and a WUF-CMA or SUF-CMA secure message authenti-
cation schemeMA, we can construct a symmetric encryption scheme SE ′ such that SE ′ is IND-CPA
secure, but the composite scheme SE formed by the Encrypt-and-MAC composition method based
on SE ′ and MA is not INT-CTXT secure.

Proof of Proposition 4.4: Let SE = (K, E ,D) be the given symmetric encryption scheme. We
define the scheme SE ′ such that SE ′ is IND-CPA secure, but the composite scheme SE is not
INT-CTXT secure. The idea is similar to that in the proof of Proposition 3.4. A redundant bit
prepended to ciphertexts is ignored by D, allowing the adversary to form a new valid ciphertext.
Here are the details.

The new scheme SE ′ = (Ke, E ′,D′) has the same key generation algorithm as that of SE and the
same encryption and decryption algorithms as those of the scheme SE ′ defined in the proof of
Proposition 3.4. Then, we provide the following adversary A attacking the composite scheme SE
constructed based on the schemes SE ′ and MA:

Adversary AE〈Ke,Km〉(·),D
∗
〈Ke,Km〉(·)(k)

C ← E〈Ke,Km〉(0)
Parse C as 0‖C
Submit 1‖C as a query to the oracle D∗〈Ke,Km〉(·).

The ciphertext submitted to D∗〈Ke,Km〉(·) is new, meaning was never output by the encryption oracle
E〈Ke,Km〉(·), because it begins with a 1 while all outputs of E〈Ke,Km〉(·) begin with a 0. Furthermore,
it is valid because the decryption algorithm D′ by definition ignores the first bit of any ciphertext
it is given. Therefore, A violates the integrity of ciphertexts of SE with probability 1. (Note that
this does not violate integrity of plaintexts because the plaintexts underlying ciphertexts 0‖C and
1‖C are the same.) Finally, we note that the proof that the modified scheme SE ′ is still secure
against chosen-plaintext attack is easy and is omitted.

4.2 MAC-then-Encrypt

The composite scheme is defined as follows:

21

Security Weak MAC Strong MAC

Result Reason Result Reason

IND-CPA Secure Theorem 4.5 Secure Theorem 4.5

Privacy IND-CCA Insecure NM-CPA insecure and
NM-CPA→ IND-CCA

Insecure NM-CPA insecure and
NM-CPA→ IND-CCA

NM-CPA Insecure Proposition 4.6 Insecure Proposition 4.6

INT-PTXT Secure Theorem 4.5 Secure Theorems 4.5 and 2.5

Integrity INT-CTXT Insecure IND-CPA secure and
NM-CPA insecure and
INT-CTXT∧IND-CPA
→ NM-CPA

Insecure IND-CPA secure and
NM-CPA insecure and
INT-CTXT∧IND-CPA
→ NM-CPA

Figure 5: Summary of results for the MAC-then-encrypt composition method

Algorithm K(k)
Ke

R← Ke(k)
Km

R← Km(k)
Return 〈Ke,Km〉

Algorithm E〈Ke,Km〉(M)
τ ← TKm(M)
C ← EKe(M‖τ)
Return C

Algorithm D〈Ke,Km〉(C)
M ′ ← DKe(C)
Parse M ′ as M‖τ
v ← VKm(M, τ)
If v = 1, return M

else return ⊥.

The results about it are summarized in Figure 5. We now proceed to the theorems and propositions
mentioned there.

The MAC-then-encrypt composition method preserves both privacy against chosen-plaintext
attack and integrity of plaintexts, as stated in the following theorem.

Theorem 4.5 (MAC-then-encrypt method is both INT-PTXT and IND-CPA secure)
LetMA be a message authentication scheme, and let SE be a symmetric encryption scheme secure
against chosen-plaintext attacks. Let SE be the encryption scheme obtained from SE and MA
via the MAC-then-encrypt composition method. Then, if MA is WUF-CMA secure, then SE is
INT-PTXT secure. Furthermore, if SE is IND-CPA secure, then so is SE . Concretely,

Advint-ptxt

SE (k, t, qe, qd, µe, µd) ≤ Advwuf-cma
MA (k, t, qe, qd, µe, µd)

Advind-cpa

SE (k, t, q, µ) ≤ Advind-cpa
SE (k, t, q, µ+ ql)

where we are assuming that the length of a tag in the scheme MA is l bits.

Proof of Theorem 4.5: Let SE = (K, E ,D) be the composite encryption scheme constructed via
the MAC-then-encrypt method from the encryption scheme SE = (Ke, E ,D) and the MAC scheme
MA = (Km, T ,V). We associate with any adversary A attacking SE in the INT-PTXT-sense a
forger F attacking MA in the WUF-CMA-sense such that

Advint-ptxt

SE,A (k) ≤ Advwuf-cma
MA,F (k)

and F uses the same resources as A does. Then, the first equation of Theorem 4.5 follows.

The forger F uses the adversary A to achieve its goal. It has access to the oracles TKm(·) and
VKm(·, ·) where Km is a random key for MA, and will pick a key Ke for the encryption algorithm

22

E . Using this key and its own oracles, it can simulate the encryption oracle E〈Ke,Km〉(·) and the
verification oracle D∗〈Ke,Km〉(·) that A needs, and thus answer A’s oracle queries. In more detail, it
works as follows:

Adversary F TKm (·),VKm (·,·)(k)
Ke

R← Ke(k)
For i = 1, . . . , qe + qd do

When A makes a query Mi to its encryption oracle do
M ′i ←Mi‖TKm(Mi) ; C ′i ← EKe(M ′i) ; A⇐ C ′i

When A makes a query Ci to its verification oracle do
M ′i ← DKe(Ci) ; Parse M ′i as Mi‖τi ; vi ← VKm(Mi, τi) ; A⇐ vi

Consider a ciphertext Ci that yields a successful forgery of a new plaintext Mi. Since Mi is new,
the pair (Mi, τi) where τi is obtained from appropriately parsing DKe(Ci) as described in the above
algorithm is a valid weak forgery. Thus, the above equation follows. It remains to justify the claims
about the resource parameters used by F . Note that the queries made by F to its tag oracle are
exactly those made by A to its encryption oracle. On the other hand, since the length of a plaintext
is always at most the length of a corresponding ciphertext, the length of a query Mi, τi made by
F to its verification oracle is at most the length Ci of the corresponding query made by A to its
verification oracle.

We now proceed to the proof of the second claim. We associate with any adversary A attacking
SE in the IND-CPA-sense an adversary Ap such that

Advind-cpa

SE,A (k) ≤ Advind-cpa
SE,Ap

(k)

and Ap uses the same resources as A except for an extra ql bits in the total length of its oracle
queries. Then, the second equation of Theorem 4.5 follows.

The adversary Ap uses the adversary A to achieve its goal. It has access to the oracle EKe(LR(·, ·, b))
where Ke is a random key for SE , and will pick a key Km for the tagging algorithm T . Using this
key and its own oracle, it can simulate the left-or-right encryption oracle E〈Ke,Km〉(·) that A needs,
and thus answer A’s oracle queries. In more detail, it works as follows:

Adversary AEKe (LR(·,·,b))
p (k)

Km
R← Km(k)

For i = 1, . . . , q do
When A makes a query (Mi,0,Mi,1) to its left-or-right encryption oracle do

τ0 ← TKm(Mi,0) ; τ1 ← TKm(Mi,1)
M0 ←Mi,0‖τ0 ; M1 ←Mi,1‖τ1
Ci ← EKe(LR(M0,M1, b))
A⇐ Ci

A⇒ b′

Return b′

For each query, Ap computes the tags of both messages queried by A to generate inputs to its
oracle and then lets its oracle decide which input to encrypt. It then outputs A’s guess as its own.
The advantages of Ap and A are the same. It remains to justify the claims about the resource
parameters used by Ap. The length of a query made by Ap to its left-or-right encryption oracle is

23

greater than the length of the corresponding query made by A by the length of the added tag, and
so ql bits are added to the total length of the queries.

The base encryption scheme might be malleable, and this will be inherited by the composite scheme.

Proposition 4.6 (MAC-then-encrypt method is not NM-CPA secure) Given a IND-CPA
secure symmetric encryption scheme SE and a WUF-CMA or SUF-CMA secure message authenti-
cation schemeMA, we can construct a symmetric encryption scheme SE ′ such that SE ′ is IND-CPA
secure, but the composite scheme SE formed by the MAC-then-encrypt composition method based
on SE ′ and MA is not NM-CPA secure.

Proof of Proposition 4.6: Let SE = (Ke, E ,D) be the given symmetric encryption scheme. We
define the scheme SE ′ = (Ke, E ′,D′) as in the proof of Proposition 3.4, namely it has the same key
generation algorithm as SE and the following encryption and decryption algorithms

Algorithm E ′K(M)
C ← EK(M)
Return 0‖C

Algorithm D′K(C)
Parse C as b‖C ′ where b is a bit
M ← DK(C ′) ; return M

Let SE be the scheme obtained by the MAC-then-encrypt composition method based on SE ′ and
MA. It is easy to see that the attack of the proof of Proposition 3.4 applies again to show that SE
is insecure in the NM-CPA sense. Similarly the proof that the SE ′ is IND-CPA is also the same as
in the proof of Proposition 3.4.

Since IND-CCA implies NM-CPA, this composition method is also not IND-CCA secure. Further-
more, the fact that it is IND-CPA secure but not NM-CPA secure implies that it is not INT-CTXT
secure.

4.3 Encrypt-then-MAC

The composite scheme is defined as follows:

Algorithm K(k)
Ke

R← Ke(k)
Km

R← Km(k)
Return 〈Ke,Km〉

Algorithm E〈Ke,Km〉(M)
C ′ ← EKe(M)
τ ′ ← TKm(C ′)
C ← C ′‖τ ′
Return C

Algorithm D〈Ke,Km〉(C)
Parse C as C ′‖τ ′
M ← DKe(C ′)
v ← VKm(C ′, τ ′)
If v = 1, return M

else return ⊥.

The results about it are summarized in Figure 6. We now proceed to the theorems and propositions
mentioned there.

The security results for the two composition methods we have covered so far, i.e. Encrypt-
and-MAC and MAC-then-encrypt, hold whether or not we assume the base MAC scheme to be
weakly or strongly unforgeable. For the Encrypt-and-MAC composition method, however, we have
different security results depending on our assumption about the MAC as indicated in Figure 2
and Figure 3. For clarity, we seperate the results accordingly here.

The following theorem states that the Encrypt-and-MAC composition method is IND-CPA and
INT-PTXT secure assuming that the base MAC scheme is weakly unforgeable.

24

Security Weak MAC Strong MAC

Result Reason Result Reason

IND-CPA Secure Theorem 4.7 Secure Theorem 4.9

Privacy IND-CCA Insecure NM-CPA insecure and
NM-CPA→ IND-CCA

Secure Theorem 4.9

NM-CPA Insecure Proposition 4.6 Secure IND-CCA secure and
IND-CCA→ NM-CPA

INT-PTXT Secure Theorem 4.7 Secure INT-CTXT secure
and INT-CTXT →
INT-PTXT

Integrity INT-CTXT Insecure IND-CPA secure and
NM-CPA insecure and
INT-CTXT∧IND-CPA
→ NM-CPA

Secure Theorem 4.9

Figure 6: Summary of results for the encrypt-then-MAC composition method

Theorem 4.7 (Encrypt-then-MAC method is IND-CPA and INT-PTXT secure) Let
SE be a symmetric encryption scheme, and let MA be a message authentication scheme. Let SE
be the authenticated encryption scheme obtained from SE and MA via the encrypt-then-MAC
composition method. Then, if MA is WUF-CMA secure, then SE is INT-PTXT secure. And if
SE is IND-CPA secure, then so is SE . Concretely,

Advind-cpa

SE (k, t, q, µ) ≤ Advind-cpa
SE (k, t, q, µ)

Advint-ptxt

SE (k, t, qe, qd, µe, µd) ≤ Advwuf-cma
MA (k, t, qe, qd, µe + qel, µd)

where we are assuming that the length of a ciphertext in the scheme SE is l bits more than the
length of the corresponding plaintext.

Proof of Theorem 4.7: Let SE = (K, E ,D) be a composite encryption scheme constructed via
the encrypt-then-MAC method from the encryption scheme SE = (Ke, E ,D) and the MAC scheme
MA = (Km, T ,V). We associate with any adversary A attacking SE in the IND-CPA-sense an
adversary Ap such that

Advind-cpa

SE,A (k) ≤ Advind-cpa
SE,Ap

(k)

and Ap uses the same resources as A does. Then, the first equation of Theorem 4.7 follows.

The adversary Ap uses the adversary A to achieve its goal. It has access to the oracle EKe(LR(·, ·, b))
where Ke is a random key for SE , and will pick a key Km for the tagging algorithm T . Using this
key and its own oracle, it can simulate the left-or-right encryption oracle E〈Ke,Km〉(·) that A needs,
and thus answer A’s oracle queries. In more detail, it works as follows:

Adversary AEKe (LR(·,·,b))
p (k)

Km
R← Km(k)

For i = 1, . . . , q do
When A makes a query (Mi,0,Mi,1) to its left-or-right encryption oracle do

Ci ← EKe(LR(Mi,0,Mi,1, b)) ; τi ← TKm(Ci) ; A⇐ Ci‖τi

25

A⇒ b′

Return b′

Clearly, if A can successfully determine the bit b, so can Ap. Thus, the equation above follows. The
claims about the resource parameters used by Ap are easily checked.

We proceed to the proof of the second claim. We associate with any adversary A attacking integrity
of plaintexts against SE a forger F such that

Advint-ptxt

SE,A (k) ≤ Advwuf-cma
MA,F (k)

and F uses the same resources as A does except for an extra qel bits in the total length of queries
to the tagging oracle. Then, the second equation of Theorem 4.7 follows.

The forger F uses the adverary A to achieve its goal. It has access to the oracles TKm(·) and
VKm(·, ·), and will pick a key Ke for the encryption algorithm. Using this key and its own oracles,
it can simulate the encryption oracle E〈Ke,Km〉(·) and verification oracle D∗〈Ke,Km〉(·) that A needs,
and thus answer A’s oracle queries. In more details, it works as follows:

Adversary F TKm (·),VKm (·,·)(k)
Ke

R← Ke(k)
For i = 1, . . . , qe + qd do

When A makes a query Mi to its encryption oracle do
C ′i ← EKe(Mi) ; τi ← TKm(C ′i) ; A⇐ C ′i‖τi

When A makes a query Ci to its verification oracle do
Parse Ci as C ′i‖τ ′i ; vi ← VKm(C ′i, τ

′
i) ; A⇐ vi

Let Ci = C ′i‖τ ′i be a ciphertext submitted by A to its verification oracle that leads to A’s violating
the integrity of plaintexts of SE and let Mi = DK(C ′i). Then VKm(C ′i, τ

′
i) = 1 and Mi was not

a query of A to its encryption oracle. The unique decryptability of SE means that C ′i was not a
query of F to its tagging oracle, so the query C ′i, τ

′
i made by F to its verification oracle leads to F ’s

making a successful weak forgery. Thus, the equation above follows. It remains to justify the claims
about the resource parameters used by F . When A makes a query M to its encryption oracle, F
queries its tagging oracle on the corresponding ciphertext C and by assumption |C| = l+ |M |, and
this accounts for the extra qel bits in the total length of queries to the tagging oracle.

However a weakly unforgeable base MAC scheme is not enough to obtain a NM-CPA secure com-
posite scheme under this composition method.

Proposition 4.8 (Encrypt-then-MAC method with a WUF-CMA-secure MAC is not
NM-CPA secure) Given a IND-CPA secure symmetric encryption scheme SE and a WUF-CMA
secure message authentication scheme MA, we can construct a message authentication scheme
MA′ such that MA′ is WUF-CMA secure, but the composite scheme SE formed by the encrypt-
then-MAC composition method based on SE and MA′ is not NM-CPA secure.

Proof of Proposition 4.8: Let MA = (K, T ,V) be the given MAC scheme. We define the
scheme MA′ such that MA′ is WUF-CMA secure, but the composite scheme SE formed by the
encrypt-then-MAC composition method based on SE and MA′ is not NM-CPA secure. The idea
is that a redundant bit appended to the tag that the tagging algorithm generates is ignored by
the verification algorithm V. The resulting MAC scheme will still be WUF-CMA secure, but the
composite encryption scheme will become malleable. Here are the details.

26

The new MAC scheme MA′ = (K, T ′,V ′) has the same key generation algorithm as that of the
original scheme, but its tagging and verifying algorithms are as follows:

Algorithm T ′K(M)
τ ← TK(M)
Return τ‖0

Algorithm V ′K(M, τ)
Parse τ as τ ′‖b where b is a bit.
Return VK(M, τ ′)

To prove that the composite scheme SE constructed from SE and MA′ using encrypt-then-MAC
method is not NM-CPA secure, we present an attack on SE in the form of an adversary A = (A1, A2)
who violates the non-malleability of SE with high probability. It works as follows:

Adversary A
E〈Ke,Km〉(LR(·,·,b))
1 (k)

C ← E〈Ke,Km〉(LR(0, 1, b))
Parse C as C ′‖τ‖x where x is a bit.
x′ ← x⊕ 1
~c[1]← C ′‖τ‖x′

Return (~c, ε)

Adversary A2(~p,~c, s)
If ~p[1] = 0

then return 0
else return 1.

A1 queries its left-or-right encryption oracle with the messages 0 and 1 to get a ciphertext C =
C ′‖τ‖x. It then creates a vector ~c which has only one component, this being the ciphertext formed
by flipping the last bit of C ′‖τ‖x. It outputs ~c together with the empty string ε for state information.
A2 has as input ~p with ~p[1] being D〈Ke,Km〉(~c[1]) = DKe(C ′). It need only see which of the values
0 or 1 the plaintext ~p[1] equals. The adversary is valid because ~c[1] was not an output of the
left-or-right encryption oracle. Clearly this adversary has time-complexity poly(k) and

Advnm-cpa

SE,A (k) = 1 .

The proof that MA′ is WUF-CMA-secure is easy and is omitted.

Furthermore, since IND-CCA and INT-CTXT ∧ IND-CPA imply NM-CPA, this composition
method is neither IND-CCA nor INT-CTXT secure when the base MAC scheme is only assumed
to be weakly unforgeable.

The following theorem implies that the encrypt-then-MAC composition method is IND-CPA,
IND-CCA, NM-CPA, INT-PTXT and INT-CTXT secure assuming a strongly unforgeable base
MAC scheme. For brevity, we do not state explicitly in the theorem that this composition method is
also NM-CPA and NM-CCA secure because it follows directly from the results proven in [3], i.e. that
IND-CCA security implies NM-CPA and NM-CCA security. Also, we do not state explicitly here
that the composition method is INT-PTXT secure since INT-CTXT security implies INT-PTXT
security.

Theorem 4.9 (Encrypt-then-MAC method with a SUF-CMA-secure MAC is INT-
CTXT, IND-CPA, and IND-CCA secure) Let SE be a symmetric encryption scheme, and let
MA be a message authentication scheme. Let SE be the authenticated encryption scheme obtained
from SE and MA via the encrypt-then-MAC composition method. Then, if MA is SUF-CMA
secure, then SE is INT-CTXT secure. If SE is IND-CPA secure, then so is SE . And if we have
both of the previous conditions, then SE is IND-CCA secure. Concretely,

Advind-cpa

SE (k, t, q, µ) ≤ Advind-cpa
SE (k, t, q, µ)

Advint-ctxt
SE (k, t, qe, qd, µe, µd) ≤ Advsuf-cma

MA (k, t, qe, qd, µe + qel, µd)

Advind-cca
SE (k, t, qe, qd, µe, µd) ≤ 2 ·Advsuf-cma

MA (k, t, qe, qd, µe + qel, µd) + Advind-cpa
SE (k, t, qe, µe)

27

where we are assuming that the length of a ciphertext in the scheme SE is l bits more than the
length of the corresponding plaintext.

Proof of Theorem 4.9: The proof of the first claim is the same as the proof of the first claim in
Theorem 4.7 and we omit the details. The third claim is a corollary of Theorem 3.2 and the first
and second claims of Theorem 4.9. It remains to prove the second claim.

We associate with any adversary A attacking SE in the INT-CTXT-sense a forger F such that

Advint-ctxt
SE,A (k) ≤ Advsuf-cma

MA,F (k)

and F uses the same resources as A does. Then, the second equation of Theorem 4.7 follows.

The forger F is the same as the one used to prove that the composite scheme is INT-PTXT secure
assuming that the base MAC scheme is weakly unforgeble, namely the one described in the proof
of the second claim of Theorem 4.7. We need to check that it works here as well. Let Ci = C ′i‖τ ′i
be a ciphertext submitted by A to its verification oracle that leads to A’s violating the integrity
of ciphertexts of SE . Then VKm(C ′i, τ

′
i) = 1, and Ci = C ′i‖τ ′i was not a reply of A’s encryption

oracle. We claim that τ ′i was not a reply to a query C ′i made by F to its tagging oracle. (This
is true because F invokes its tagging oracle to compute replies to encryption oracle queries of A,
and had τ ′i been a reply of the tagging oracle to query C ′i then Ci = C ′i‖τ ′i would have been sent
as a reply to the corresponding encryption oracle query.) This means that C ′i, τ

′
i is a valid strong

forgery. The claims about resources are justified in the same manner as in the proof of the second
claim in Theorem 4.7.

References

[1] M. Bellare, R. Canetti and H. Krawczyk, “Keying hash functions for message authentication,”
Advances in Cryptology – Crypto ’96, Lecture Notes in Computer ScienceVol. 1109, N. Koblitz ed.,
Springer-Verlag, 1996.

[2] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, “A concrete security treatment of symmet-
ric encryption: Analysis of the DES modes of operation,” Proceedings of the 38th Symposium on
Foundations of Computer Science, IEEE, 1997.

[3] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, “Relations among notions of security
for public-key encryption schemes,” Advances in Cryptology – Crypto ’98, Lecture Notes in Computer
ScienceVol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

[4] M. Bellare, J. Kilian, P. Rogaway, “The security of the cipher block chaining message authen-
tication code,” Advances in Cryptology – Crypto ’94, Lecture Notes in Computer ScienceVol. 839,
Y. Desmedt ed., Springer-Verlag, 1994.

[5] M. Bellare and P. Rogaway, “Encode-then-encipher encryption: How to exploit nonces or redun-
dancy in plaintexts for efficient cryptography,” Advances in Cryptology – ASIACRYPT ’00, Lecture
Notes in Computer ScienceVol. ??, T. Okamoto ed., Springer-Verlag, 2000.

[6] M. Bellare and A. Sahai, “Non-Malleable Encryption: Equivalence between Two Notions, and an
Indistinguishability-Based Characterization,” Advances in Cryptology – Crypto ’99, Lecture Notes in
Computer ScienceVol. 1666, M. Wiener ed., Springer-Verlag, 1999.

[7] J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P. Rogaway, “UMAC: Fast and se-
cure message authentication,” Advances in Cryptology – Crypto ’99, Lecture Notes in Computer
ScienceVol. 1666, M. Wiener ed., Springer-Verlag, 1999.

[8] J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P. Rogaway, “Up-
date on UMAC Fast message authentication,” Manuscript, May 2000. Available at
http://www.cs.ucdavis.edu/~rogaway/umac/.

28

[9] A. Desai, “New paradigms for constructing symmetric encryption schemes secure against chosen
ciphertext attack,” Advances in Cryptology – Crypto ’00, Lecture Notes in Computer ScienceVol. 1880,
M. Bellare ed., Springer-Verlag, 2000.

[10] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” Proceedings of the 23rd
Annual Symposium on the Theory of Computing, ACM, 1991.

[11] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” to appear in SIAM J. Comput.
[12] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and System Science,

Vol. 28, 1984, pp. 270-299.
[13] S. Goldwasser, S. Micali and R. Rivest, “A digital signature scheme secure against adaptive

chosen-message attacks,” SIAM Journal of Computing, Vol. 17, No. 2, pp. 281–308, April 1988.
[14] C. Jutla, “Encryption modes with almost free message integrity,” Report 2000/039, Cryptology ePrint

Archive, http://eprint.iacr.org/, August 2000.
[15] J. Katz and M. Yung, “Complete characterization of security notions for probabilistic private-key

encryption,” Proceedings of the 32nd Annual Symposium on the Theory of Computing, ACM, 2000.
[16] J. Katz and M. Yung, “Unforgeable Encryption and Adaptively Secure Modes of Operation,” Fast

Software Encryption ’00, Lecture Notes in Computer ScienceVol. ??, B. Schneier ed., Springer-Verlag,
2000.

[17] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP),” Request for Comments
2406, November 1998.

[18] M. Naor and M. Yung, “Public-key cryptosystems provably secure against chosen ciphertext at-
tacks,” Proceedings of the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

[19] E. Petrank and C. Rackoff, “CBC MAC for real time data sources,” Journal of Cryptology,
Vol. 13, No. 3, 2000, pp. 315–338.

[20] C. Rackoff and D. Simon, “Non-Interactive zero-knowledge proof of knowledge and chosen cipher-
text attack,” Advances in Cryptology – Crypto ’91, Lecture Notes in Computer ScienceVol. 576,
J. Feigenbaum ed., Springer-Verlag, 1991.

29

