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Abstract

This paper presents our on-going work, \authentication and key agreement via memo-

rable password." Human-memorable password authentication is not easy to provide over

insecure networks due to the low entropy of the password. A cryptographic protocol,

based on the public-key cryptography, is the most promising solution to this problem.

The protocol nameed AMP is a new password authentication and key agreement pro-

tocol based on the ampli�ed password proof idea. A party commits the high entropy

information and ampli�es her password with that information. She never shows even the

ampli�ed password for the proof, rather she shows the fact of knowing it. Our ampli-

�ed password proof idea is very similar to the zero-knowledge proof in that sense. AMP

mainly provides the password-veri�er based authentication and the Di�e-Hellman based

key agreement, securely and e�ciently. AMP is easy to generalize in any other cyclic

groups. Veri�er-based protocols allow the asymmetric model in which a client possesses

a password, while a server stores its veri�er. AMP is actually the most e�cient protocol

among those protocols. Several variants such as AMPi, AMPn, AMP+ and AMP++

are also proposed. Among them, AMPn provides a pure password-based authentication.

In the end, we give a comparison to the related protocols and discuss several promising

applications on the Internet.

This manuscript is a preliminary version of our paper so that especially the proof story

must be revised and improved. Any comment or suggestion would be always welcome.

The protocols described in this paper were submitted as a contribution to the IEEE

P1363 study group for future PKC standards, Ultimate Solution to Authentication via

Memorable Password [23].
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1 Introduction

Entity authentication is one of the most important security functions. It is necessary for

verifying the identities of the communicating parties when they initiate a connection. This

function is usually provided in combination with a key establishment scheme such as key

transport or key agreement between the parties. For user authentication, three kinds of ap-

proaches exist which may be combined for sophisticated use; knowledge-based authentication,

token-based authentication, and biometric authentication. Among them, the knowledge-based

scheme needs knowledge-proofs so that it is only for human mind (� memory). Actually, it

is the most widely-used method due to the advantages of simplicity, convenience, adaptabil-

ity, mobility, and less hardware requirement. It requires users only to remember and type

in their knowledge such as a password or PIN(personal identi�cation number). Therefore,

users are allowed to move conveniently without carrying hardware tokens; the user knowl-

edge is also useful for unlocking such hardware tokens. However, a complex problem with

this password-only authentication is that a human-memorable password having low entropy

allows malicious guessing attacks. The problem becomes much more critical in an open dis-

tributed environment. A cryptographic protocol is the most promising solution to it.

Password Protocols.
1 Since the �rst scheme, LGSN[25], was introduced in 1989, many

protocols have followed it. Among them, EKE[7] was a great landmark of certi�cate-free

protocols though it gave several strong constraints due to the symmetric encryption of a

public-key. One variant of EKE, DH-EKE[7], introduced the password authentication and

key agreement, and was \enhanced" to A-EKE[8] that was the �rst veri�er-based protocol to

resist a password-�le compromise and to accommodate salt. Note that there is an earlier work

which describes the use of salt[38] but we consider the EKE families as roots. GLNS[15] is

enhanced from LGSN. Due to the ine�ciency and constraints of older schemes, several modi�-

cations and advanced descendents were spawned[37, 1, 36, 16, 21, 18, 19, 34, 39, 17]. However,

some of them have been broken and some are still being cryptanalyzed[2, 13, 31, 9]; most

were inadequate for the security proof due to ad-hoc methods of protecting the password.

In the mean time, OKE was introduced as the �rst provable approach based on the work of

Bellare and Rogaway[26, 3] and was followed by SNAPI[27]. Halevi and Krawczyk's work also

intended a provable approach but their protocol requires users to keep some additional infor-

mation called a public password[17]. Most recently, AuthA and PAK have been introduced

separately[5, 6, 10] and they show the provable approach in this area is getting matured[4].

A family of the password-veri�er based protocol is composed of A-EKE, B-SPEKE, SRP,

GXY, SNAPI-X, AuthA, and PAK-X[8, 19, 39, 22, 27, 6, 10]. The veri�er-based protocols

allow the asymmetric model in which a client possesses a password, while a server stores

1Readers are referred to Figure 7 attached in Appendix of this document. Jablon's work[18] is recommended

as the best tutorial for the password protocol study while Wu's work[39] is the best for the veri�er protocol

study. Bellare and Rogaway's work[3] is the fundamental of the provable approach.
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its veri�er rather than the password itself. A-EKE was the �rst veri�er-based version aug-

mented from DH-EKE[8]. B-SPEKE was augmented from SPEKE which was e�cient without

a veri�er[18, 19]. SRP was e�cient and practical even with a veri�er[39]. GXY was derived

from SRP for agreeing on the Di�e-Hellman exponential[22]. SNAPI-X was augmented from

SNAPI and it was fully provable in the random oracle model[27]. AuthA was newly proposed

but very similar to the previous protocols[6]. PAK-X was enhanced from PAK[10].

Contribution. Our goal is to design a new protocol in a provable manner2, which combines

the following functions securely and e�ciently.

� Password(-veri�er) based authentication[8]

� Di�e-Hellman based key agreement[12]

� Easy generalization [28]

For this purpose, we propose a simple idea called the ampli�ed password proof. In such a

point of view, we name our protocol AMP that stands for Authentication and key agreement

via Memorable Password. Regarding several functional issues, we also present four major

variants of AMP. They are called AMPi, AMPn, AMP+, AMP++. Several minor variants

also can be considered but they are explained implicitly. We compares the e�ciency of all

veri�er-based protocols. Actually, AMP is the most e�cient protocols among the existing

veri�er-based protocols. We also discuss several promising applications for those protocols.

2 AMP Protocol Design

2.1 Preliminaries

Since AMP is typically the two party case, we use Alice and Bob for describing a client and

a server, respectively. Eve indicates an adversary whether she is passive or active. � and �

denotes password and salt, respectively.
:
= means a comparison of two terms, for example,

�
:
= �. Let f0; 1g� denote the set of �nite binary strings and f0; 1g1 the set of in�nite ones.

� implies the empty string. k is our security parameter long enough to prevent brute-forcing

while l(k) � 2k, !(k) � 2
3
k, and t(k) � 1

3
k. h() : f0; 1g� ! f0; 1gl(k) means a collision-free

one-way hash function. '() : f0; 1g� ! f0; 1g>l(k) means a one-way function that perturbs

its image. All hash functions are assumed to behave like random oracles for security proof[3].

Note that we abbreviate a modular notation, mod p, for convenience hereafter.

Random Oracle. We assume random oracles hi() : f0; 1g� ! f0; 1gl(k) for i 2 [1; 5].

If Eve sends queries Q1;Q2;Q3; ::: to the random oracle hi, she can receive answers hi(Qj),

2Author of this paper understand the proof story must be revised and improved in the near future.
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all independently random values, from the oracle. Let h() denote a real world hash function.

For practical recoveries of random oracles in the real world, we de�ne; h1(x) = h(00jxj00),

h2(x) = h(01jxj01), h3(x) = h(01jxj10), h4(x) = h(10jxj10) and h5(x) = h(11jxj11) by follow-

ing the constructions given in the Bellare and Rogaway's work[3]. j denotes the concatenation.

Numerical Assumption. Security of AMP is based on two familiar hard problems which

are believed infeasible to solve in polynomial time. One is Discrete Logarithm Problem; given

a prime p, a generator g of a multiplicative group Z�p , and an element gx 2 Z�p , �nd the inte-

ger x 2 [0; p � 2]. The other is Di�e-Hellman Problem; given a prime p, a generator g of a

multiplicative group Z�p , and elements gx 2 Z�p and gy 2 Z�p , �nd gxy 2 Z�p . These two prob-

lems hold their properties in a prime-order subgroup[30, 28]. We assume that all numerical

operations of the protocol are on the cyclic group where it is hard to solve the Di�e-Hellman

problem as well as the discrete logarithm problem. We consider the multiplicative group Z�p

and actually use its prime-order subgroup Zq. Note that we should use its main operation, a

modular multiplication, for easy generalization. For the purpose, Bob chooses g that gener-

ates a prime-order subgroup Zq where p = qr + 1. Note that a prime q must be su�ciently

large (> l(k)) to resist Pohlig-Hellman decomposition and various index-calculus methods

but much smaller than p[30, 32, 33]. It is easy to make g by �(p�1)=q where � generates Z�p .

Z�p is also applicable but Zq is preferred for e�ciency and for preventing a small subgroup

con�nement more e�ectively. By con�ning all exponentiation to the large prime-order sub-

group through g of Zq, each part of the protocol is able to detect on-line attack whenever a

received exponential is con�ned to a small subgroup. We can use a secure prime modulus p

such that (p� 1)=2q is also prime or each prime factor of (p� 1)=2q is larger than q, or a safe

prime modulus p such that p = 2q + 1[24]. However, we strongly recommend to use a secure

prime modulus p. Such a modulus should make our protocols secure and e�cient.

2.2 Our Idea

The intrinsic problem of human-memorable password authentication is that the password

itself has low entropy. Thus, our idea is to \amplify" such low entropy on the well-structured

cryptographic protocol, i.e., on the secure interaction between communicating parties.

Definitions. Firstly we give some useful de�nitions and introduce the detailed idea.

De�nition 1 A Password Proof de�nes; a party A who knows a low entropy secret called a

password makes a counterpart B convinced that A is who knows the password.

There are two kinds of setup for the password proof(PP) such as a symmetric setup and

an asymmetric setup. A client possesses a password while a server stores its veri�er in the

asymmetric setup model. This model bene�ts from salt for overcoming the text-equivalence

of the symmetric setup. The password proof is actually composed of two kinds of proof.
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De�nition 2 A Secure Password Proof de�nes; a party A successfully performs the Password

Proof without revealing any information about the password itself.

De�nition 3 An Insecure Password Proof de�nes; a party A successfully performs the Pass-

word Proof but fails the Secure Password Proof, or a party A successfully performs the Pass-

word Proof by showing some or all information about the password.

The insecure Password Proof can be classi�ed into the fully insecure password proof such as

PAP, the partially insecure password proof such as CHAP, and the cryptographically insecure

password proof such as some cryptographic protocols.

De�nition 4 An Ampli�ed Password Proof de�nes; a party A who knows a password am-

pli�es the password and makes a counterpart B convinced that A is who knows the ampli�ed

password.

Theorem 1 The Ampli�ed Password Proof is a Secure Password Proof.

AMP will be the protocol that enables the ampli�ed password proof and the key agreement.

The Amplification. Our ampli�cation idea is very simple that Alice insists on her knowl-

edge of password � by giving x+ � rather than � only, while x is the randomly-chosen high

entropy information. For the purpose, fresh x must be committed by Alice prior to her proof

of each session. (x+ � is not guessable at all whereas � is guessable, if x is kept secret.)

De�nition 5 The Ampli�ed Password � de�nes x + � mod q where x is chosen randomly

at Zq and � is a human-memorable password. (Note: � is rather ephemeral.)

We con�gure this idea as an ampli�ed password proof.

The Amplified Password Proof. Assume that Alice knows � while Bob knows g�.

The procedure of the ampli�ed password proof is composed of basically three steps such as

initial commitment, challenge, and response; the initial commitment step performs a secure

commitment of x having high entropy by Alice; the challenge step performs a random chal-

lenge of y by Bob; the response step performs a knowledge proof of Alice about the ampli�ed

password �. We de�ne three functions for each step; they are G1() for initial commitment,

G2() for challenge, and H() for response.

De�nition 6 The Ampli�ed Password Proof performs; Alice who knows her password �,

randomly chooses and commits the high-entropy information x to Bob. Bob who knows g�,

picks y at random and asks Alice if she knows the password and the committed information.

Alice responds with the fact she knows the ampli�ed password �.
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Alice Bob

initial commitment
G1(x)
�!

G2(y)
 � challenge

response
H(�)
�!

Due to the property of the secure commitment, G1() should not reveal x even to Bob, for

example, gx. While G2() transmits a fresh challenge, H() implies the fact only that Alice

knows � without revealing any information about x and �. If G2() = g�y, then only who

knows x and � can remove � from G2(), i.e., (g
�y)�

�1
= gy. Undoubtedly Bob who knows

G1() as well as g
�, can make G2() by (gxg�)y where � = x+ �. As a result, both parties can

make gxy due to the Di�e-Hellman scheme so that we can set H() = gxy. This means Alice

never shows the password itself for her proof, rather she proves the fact of knowing it. The

ampli�ed password proof idea is very similar to the zero-knowledge proof in that sense, but

g� must be kept secure because it is vulnerable to guessing attacks.

The Amplification and Key Exchange. It is easy to add key exchange to the am-

pli�ed password proof because we already utilized the Di�e-Hellman scheme in describing

the ampli�ed password proof. In the ampli�ed password proof, Alice showed gxy for her proof

of knowing �. For key exchange instead, she can derive a session key from gxy and show she

agreed on it. Bob is also able to derive the same key and optionally show he also agreed on

it. A strong one-way hash function must be the best tool for this capability. For mutual key

con�rmation as well as mutual authentication, however, the protocol must be con�gured by

four steps rather than three steps to add Bob's response. The mutual authenticatoin adds

that Alice authenticates Bob who knows g�. The following de�nition gives our full conceptual

model.

De�nition 7 The conceptual model of AMP de�nes; Alice who knows �, says hello to Bob.

Bob asks Alice if she knows �. Alice proves her knowledge of � and gxy, and asks if he knows

g� and gxy. Then, Bob proves his knowledge of g� and gxy. Finally, they agree on the same

secret gxy as well as authenticate each other.

Alice Bob

x 2R Zq ; � y 2R Zq ; g
�

hello?
G1(x)
�!

G2(y)
 � hi; do you know �?

yes; do you know g�?
H1(�)
�!

H2(�)
 � Sure; I know it:

Note that only Alice is able to know explicitly she has been authenticated by Bob. The

ampli�er password proof and key exchange must be the password authenticated key exchange.
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2.3 Protocol Description

The followings are describing the setup and the run phases of our protocol, AMP. Basically

AMP is designed as a veri�er-based protocol. Therefore, we introduce veri�er and salt in the

asymmetric setup.

The Verifier. Asymmetric setup is preferred because of the weaknesses of text-equivalence

in symmetric setup[8, 19, 39]. Thus, we need a veri�er V computed from � and salt � . We

de�ne two veri�ers; an explicit veri�er � known to a server and an implicit veri�er � obtained

by a client. � is easily computable from � whereas the reverse is not easy to compute.

De�nition 8 Our password-veri�ers are de�ned by,

� implicit veri�er : � = '(�; �) (similar to a private-key).

� explicit veri�er : � = g� (similar to a public-key),

Two veri�ers can be used in the way that a compromised password-�le shows the explicit

veri�er whereas the implicit veri�er is actually necessary for authentication. Both veri�ers

are vulnerable to the guessing attacks in the presence of � so that they must be maintained

securely. If Eve knows � and �, then she can �nd � by the guessing attack or impersonate

Bob; this is the inevitable feature of the veri�er-based protocols. '() is a one-way function

that merely perturbs and expands � and � into a secure exponent[30]. Note that we replace

� with � and � for asymmetric setup so that � = x+ � in our conceptual model.

Salt. We assume salt � is disclosed in every protocol run. For example, � is retained

by Bob but transmitted to Alice in every protocol run. This is a typical case in the existing

salt system such as the Unix password �le. We call this explicit salt. However, we can also

have implicit salt by making both parties get � respectively without any exchange, e.g., from

their identities[6, 10], though it is not favorable for upgrading the existing salt systems.

Protocol Setup. This step determines and publishes global parameters of AMP.

1. Alice and Bob share g, p and q.

2. Alice chooses � 2R f0; 1g
!(k) and notify Bob, in an authentic and con�dential manner3.

3. Bob chooses � 2R f0; 1g
t(k) and stores (id; �; � = g�) where � = h1(�; �).

4. id indicates precisely a user name.

3We imply by \an authentic and con�dential manner" that the corresponding parameters are shared by

some safe method, for example, secure registration, o�-line distribution with picture id proof.
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Bob should throw away � and � but keep � and �.

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

� 2 f0; 1g1, and their small subgroup con�nements must be avoided for a security reason.

Alice Bob

input (id; �) store (id; �; �)

x 2R Zq

G1 = gx
id;gx

�!

fetch (id; �; �)

y 2R Zq

�;(gx�)y

 � G2 = (G1�)
y

e = h2(G1;G2; id; Alice;Bob) e = h2(G1;G2; id; Alice;Bob)

� = h1(�; �)

� = (x+ �)�1(x+ e) mod q

� = (G2)
� � = (G1g

e)y

K1 = h3(�) K2 = h3(�)

H11 = h4(G1;K1)
h(gx;K)
�! H12 = h4(G1;K2)

verify H11
:
= H12

H21 = h5(G2;K1)
h((gx�)y;K)
 � H22 = h5(G2;K2)

verify H21
:
= H22

Figure 1: AMP Protocol

The following steps explain how the protocol is executed in Figure 1.

1. Alice computes G1 = gx by choosing x 2R Zq and sends (id;G1) to Bob.

2. After receiving message 1, Bob loads � and �, and computes G2 = (G1�)
y by choosing

y 2R Zq. This can be done by the simultaneous exponentiation method. Note that

G2 = (G1)
y(�)y = (gx�)y = g�y where � = x+ �. He sends (�;G2) to Alice.

3. After receiving message 2, Alice computes e = h2(G1;G2; id; Alice;Bob), � = h1(�; �),

� = (x + �)�1(x + e) mod q and � = (G2)
�. Note that � = (g�y)�

�1(x+e) = gy(x+e)

where � = x+�. She computes K1 = h3(�) and H11 = h4(G1;K1). She sends Bob H11.

4. While waiting for message 3, Bob computes e = h2(G1;G2; id; Alice;Bob), � = (G1)
ygey =

(gxge)y = g(x+e)y, K2 = h3(�) and H12 = h4(G1;K2). After receiving message 3, Bob
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compares H12 with H11. If they are matched, he computes H22 = h5(G2;K2) and sends

Alice H22. This means he authenticated Alice who knows � (actually � and thus �

since x is secure from gx), and agreed upon K(= K1 = K2).

5. While waiting for message 4 from Bob, Alice computes H21 = h5(G2;K1). After receiv-

ing message 4, she compares H21 with H22. If they are matched, Alice also agrees on

K(= K1 = K2) with authenticating Bob who knows �.

2.4 Small Discussion

AMP passes four messages between Alice and Bob and agrees on g(x+e)y rather than gxy. The

existence of e is explicit for withstanding Eve who stole �, i.e., the password �le compromise.

For example, if Eve knowing � sends �x to Bob, then Bob will reply with (�x�)y and compute

K2 = (�xge)y = g(�x+e)y . However, Eve has only �, x, e and �y(= G
(x+1)�1

2 ) so that she

still cannot �nd the key withoug knowing �. Regarding the bene�ts from the simultaneous

exponentiation method, each party computes the exponentiation, O((log n)3), only for two

times, respectively. Final two steps can be modi�ed, for example,H11 = h4(�;G1;G2; id; A;B)

and H22 = h5(�;G2;G1; B;A; id). As we mentioned in section 2.1, we can remove � from

message 2 for implicit salt (we show such a variant in the next section). For updating the

existing system such as a Unix password �le, we can modify � such that � = h1(�; h(�; �))

where h(�; �) is an existing veri�er. We supposed '() in f0; 1g�2l(k) as h1() in f0; 1g
l(k). For

the recovery in real application, recommending SHA-1 or RIPEMD-160 for 160-bit hash, we

de�ned; h1(x) = h(00jxj00). However, if other hash functions of 128-bit hash are used, for

example, MD5, we de�ne '(x) = h(00jxj00jx)h(10jxj10jx) instead of h1(x).

3 AMP Protocol Proof

This section describes a proof story of AMP in the random oracle model.

3.1 A Communication Model

Firstly we formalize the communication model of our protocol on the basis of the work of

Bellare and Rogaway[3]. That is, all communication among interacting parties is under the

adversary's control.

The Protocol. The protocol can be formally speci�ed by an e�ciently computable func-

tion � for two players; let us set I 2 fA;Bg for Alice and Bob. Note that Eve is not included

in the players[3]. Each party can be formally modeled by an in�nite collection of oracles.

De�nition 9 Our protocol is a set of function �I(1
k; �; �; r) = (m; �; �) for I.

� 1k : the security parameter, k 2 N .
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� � 2 f0; 1g� : the secret information of the sender.

� � 2 f0; 1g� : the conversation so far.

� r 2 f0; 1g1 : the random coin 
ips of the sender.

� m 2 f0; 1g� [ f�g : the next message for a reply.

� � 2 fAccept;Reject; �g : the decision.

� � 2 f0; 1g� [ f�g : the agreed session key.

The value f�g means; (1) there is no reply message for m, (2) the decision is not yet made

for �, (3) the decision is neither yet made nor accepted for �. N means a set of integer. For

example, �s
A indicate that Alice computes on the message from Bob and gives out an output

in session s. That is, each party is formally modeled by an in�nite collection of oracles; �i
A

and �
j
B where i and j 2 N indicate the instances. Therefore, Eve is able to call the oracles,

�i
A and �

j
B , and attempts to obtain desired information.

The Long-lived Weak-key Generator. A long-lived weak-key(LW-key) generator is

W(1!(k); �; rG) where � 2 I [ fEg and rG 2 f0; 1; g
1. Note that the LW-key may have a

length of k but its entropy is totally di�erent4. When we assume the strong-key length is

only k, i.e., our security parameter, the parameter !(k) means the low entropy of the LW-

key. Brute-forcing 2!(k) values is feasible whereas k is large enough against brute-forcing 2k

values (hence 2!(k) << 2k). The point of the LW-key is that the adversary is denied by the

generator as like the long-lived key case[3] but it is acceptable in the probability of 2�!(k).

Our model agrees on W(1!(k); A; rG) = �, W(1!(k); B; rG) = �, and W(1!(k); E; rG) = �.

The Adversary. The adversary Eve is represented as a probabilistic machine E(1k; �E ; rE)

equipped with an in�nite collection of oracles �s
I for i 2 I and s 2 N [3].

Let Pr[] � 2�k be a negligible probability for our security parameter k. Eve is allowed

to do everything she wants except for solving the discrete logarithm problem as well as the

Di�e-Hellman problem, and �nding out a hidden-value in a negligible probability. Therefore,

we can say; fPr[Discrete-LogE(k)],Pr[Di�e-HellmanE(k)]g< 2�k where Discrete-LogE(k) and

Di�e-HellmanE(k) are such events.

When the adversary is deterministic and restricts its action to faithfully conveying each


ow among oracles, i.e., matching conversations, she is called a benign adversary[3]. Let No-

MatchingE(k) be the event that �s
i is accepted and there is no oracle �t

j which engaged in a

matching conversation.

4Actually the LW-key, i.e., the password, is chosen by a human-user through a limited input device such

as a keyboard or keypad, and in a small set of human-memorable word space.
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Eve communicates with the oracles via queries of the form Q(i; s; n); Eve sends message

n to the oracle of i. There are some special queries for adversary such as Q(i; s; guess) for

searching at most 2!(k) space with the LW-key generator, and Q(i; s; compromise) for com-

promising a veri�er. Note that a compromise query converts s to a compromised session for

handling a password �le compromise[8]. Also note that the number of failures of the query

Q(i; s; guess) asked to fresh oracles is counted globally. We de�ne that counter Ci for i 2 I.

If �s
i has accepted, Eve is able to send other special queries; Q(i; s; reveal) for compromising

a session key, Q(i; s; corrupt) for compromising a password and Q(i; s; test) for measuring

adversarial success. Note that a corrupt query converts s to a corrupted session for handling

perfect forward secrecy[18], while a reveal query converts s to a revealed session for handling

a known-key attack (Denning-Sacco attack)[11].

The Sessions. Depending on the ability of the adversary, we can classify considerable ses-

sions as follows. There must be FreshSession and UnfreshSession. They can be converted to

SucceededSession or FailedSession. SucceededSession can be devided into MatchedSession and

No-matchedSession. Each session could allow the adversary to have some valid information

before running or examining those sessions. FreshSession can be devided into PureFreshSes-

sion in which valid information is never provided, and CompromisedButFreshSession where

the veri�er � is provided. UnfreshSession can be devided into RevealedSession that provides

g(x+e)y or K, and and CorruptedSession provides �. Note that CompromisedUnfreshSession is

negligible for examination because o�-line guessing attacks on � is inevitable in every proto-

col. The adversary is allowed to use all of these session for achieving her goals. The query

will be answered by �s
i by the following experiment.

Running The Protocol. Running a protocol � (with the LW-key generator W) in the

presence of Eve and k, means performing the following experiment in a given session:

1. Choose a string rG 2R f0; 1g
1 and �i = W(1k; i; rG), for i 2 I, and set �E =

W(1k; E; rG).

2. Choose a string rsi 2R f0; 1g
1 for i 2 I and s 2 N , and a string rE 2R f0; 1g

1.

3. Let �si = � for all i 2 I and s 2 N .

4. Run the adversary, E(1k; �E ; rE), answering oracle calls as follows. When E asks a

query, Q(i; s; n), oracle �s
i answers with (m; �) by computing (m; �; �) = �I(1

k; �; �si :n; r
s
i ),

and sets �si = �si :n.

5. The adversary chooses an oracle �s
i and attempts to guess its session key or password.

While running the protocol, the adversary asks all queries she wishes to ask.
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Security Definition. The following de�nition is derived from work of Bellare and Rogaway[3],

and the following work of Stefan Lucks[26].

De�nition 10 Protocol � is a secure authenticated key exchange with a LW-key

generator W() if the following statements are true:

1. If two oracles have matching conversations, then both oracles accept and agree on the

identical key.

2. If it is the case that the oracles accept and agree on the same key, then the probability

of no-matching is negligible.

3. If Eve is benign, her probability of success is negligible.

4. If Eve has been rejected R times, the possible set of � decreases linearly, 2!(k) �R.

5. If Eve has been rejected R(< 2!(k)�1) times but �nally remains benign, her probability

of success is still negligible.

The above security de�nition must be improved and re�ned in the near future. The �rst

condition considers the completeness of the protocol. The second condition implies that

adversaries cannot be accepted by the oracle without knowing the valid password (or the

valid veri�er) and the valid key. The third condition regards the security against the passive

adversary who always listens to the conversation and analyzes the eavesdropped message. The

fourth condition holds that an on-line trial cannot partition out the searching space. The

�fth condition deals with security against the active adversary who occasionally participates

in the conversation but mostly analyzes the gathered information o�-line.

3.2 Security Examination

We show the security of our protocol by inducing that the probability of success for adversary

is negligible. Our most favorite tools are, of course, Discrete-LogE(k) and Di�e-HellmanE(k).

Lemma 1 The probability of success is negligible for forging G1 or G2 in FreshSession of AMP.

Proof Sketch: The adversary Eve is allowed to ask Q(i; s;G1) or Q(i; s;G2) for FreshSession.

1. Let Eve choose x 2R Zq and ask Q(B; s; gx) in PureFreshSession. Then �B responds

with G2 = g(x+�)y . Eve could �nd �
0

= gy
0(x+e) by computing G2

(x+�0)�1(x+e) and

asking Q(B; s; guess) with �
0

2R f0; 1g
!(k) . However, she cannot verify �

0 :
= �, i.e.,

gy
0(x+e) :

= g(x+e)y, without submitting H
0

1 ahead of H2. The probability of successful

submission is 2�!(k). CB must count up the number of failures so that her attack can

be detected easily in only R trials where R is very small such that R << 2!(k)=2.
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2. Let Eve choose x 2R Zq and ask Q(B; s; �x) in CompromisedButFreshSession. Note

that guessing attacks on � is not a concern in CompromisedButFreshSession. Then �B

responds with G2 = g(x+1)�y . Eve could �nd g�y simply by G
(x+1)�1

2 . However, as

long as she is not given �, she cannot compose g(x+e)y without �nding y. Finding y is

bounded by Pr[Discrete-LogE(k)] so that it is negligible.

3. Let Eve choose c 2R Zq and ask Q(A; s; gc) where she is given G1 in PureFreshSession.

Then �A responds with H1 by getting � = (G
0

2)
(x+�)�1(x+e). We can rewrite c =

(x + �
0

)y
0

mod q where �
0

and y
0

are variables. Eve must �nd y
0

such that y
0

�

c(x+�
0

)�1( mod q) for getting �
0

= (G1g
e)y

0

and verifying �
:
= �

0

. For the computation

of y
0

, it is necessary to know x of G1. However, getting x from G1 is bounded by

Pr[Discrete-LogE(k)] so that it is negligible.

4. Let Eve choose y 2R Zq and �
0

2R f0; 1g
!(k), and ask Q(A; s;G

0

2) where she is given

G1 in PureFreshSession and G
0

2 = (G1g
�0)y. Then �A responds with H1 by computing

� = (G
0

2)
(x+�)�1(x+e), but note that � = (g(x+�

0)y)(x+�)
�1(x+e), i.e., � = gy

0(x+e) rather

than gy(x+e) where y
0

� (x+ �0)y(x+ �)�1(mod q). Finding y
0

or � is the only way for

Eve to be accepted by the oracle.

(a) x chosen by �A, x 2R f0; 1g
>l(k), is not given to Eve. We can say that � = �

0

if

and only if y
0

� y(mod q). It corresponds to the on-line attack.

i. Let Eve attempt to verify �
:
= �

0

. However, �
0

is rather a constant because

she de�ned it before receiving H1 from �A. Eve cannot replace �
0

for further

veri�cation without retrying it on line. The probability of � = �
0

is 2�!(k);

an extremely low probability for on-line success. Due to the maximum count

of on-line failure, CA = R, she must be denied by the oracle before trying

2!(k) � R more guesses. The probability of � 6= �
0

is very high such that

Pr[] � 1� 1
2!(k)�R

. Therefore, we can say hereafter �
0

is a constant such that

� 6= �
0

in this case.

ii. Let Eve attempt to �nd y
0

but she has to know x for attempting the equation,

y
0

� (x+�0)y(x+�)�1( mod q). Finding x from G1 is bounded by Pr[Discrete-

LogE(k)] so that it is negligible. Even if Eve computes �
0

= (G1g
e)y = g(x+e)

y

,

it is clear that � 6= �
0

when � 6= �
0

. Thus, the probability of �nding y
0

is

Pr[] < 2�k.

(b) Let Eve guess �
00

2R f0; 1g
!(k) and compute �

00

= G
00

2 g
��00y = g(x+e+�

0)y��00y for

verifying �
00 :
= � in 2�!(k) probability, rather than attempt to replace �

0

with �
00

,

where G
00

2 = (G1g
eg�

0

)y. If �
00

= � with guessed �
00

, she can be convinced � = �
00

.

Thus, if the equation,

(x+ �
0

)y(x+ �)�1(x+ e) � (x+ e)y + �
0

y � �
00

y(mod q)
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is true, then she can �nd � in 2�!(k) probability, regardless of x and �
0

. Otherwise,

she has to �nd x �rst. We can rewrite it as,

(x+ �
0

) 6 y(x+ �)�1(6 x+ 6 e) � (6 x+ 6 e) 6 y(1 + �
0

x�1 � �
00

x�1)(mod q).

That is,

(x+ �
0

)(x+ �)�1 � (1 + �
0

x�1 � �
00

x�1)(mod q).

We can transpose (x+ �)�1 so that,

(x+ �
0

) � (x+ �) + (x+ �)�
0

x�1 � (x+ �)�
00

x�1

� x+ � + �0 + ��
0

x�1 � �
00

� ��
00

x�1

� (x+ �
0

) + (� � �
00

) + (�
0

� �
00

)�x�1 (mod q).

Then, we can transpose (x+ �
0

) so that;

0 � (� � �
00

) + (�
0

� �
00

)�x�1(mod q).

Therefore, the equality such that,

� = �
0

= �
00

(due to � = �
00

and �
0

= �
00

),

is the mandatory requiremet of this modular equation. However, the probability

of success is negligible because � 6= �
0

with very high probability as we mentioned

above in (a). Therefore, Eve must �nd x for getting �. The probability of verifying

�
00 :
= � is Pr[] < 2�k.

After all, the probability of success is negligible for forged queries in FreshSession, because

on-line retrial is detectable while o�-line veri�cation has a probability such that Pr[] < 2�k. �

The following theorem shows AMP is a secure authenticated key exchange protocol with

a LW-key generator W() by following De�nition 10. Security against conventional attacks

will be examined in section 5.

Theorem 2 AMP is a secure authenticated key exchange protocol with a LW-key generator

W().

Proof Sketch: We deal with each condition of De�nition 10.

1. A completeness of the protocol in MatchedSession is already shown in Figure 1. If two

oracles have matching conversations, then H1 and H2 can be veri�ed successfully due

to the fact that � = �(K1 = K2).

2. The �nal acceptance means both H1 and H2 are successfully veri�ed. Therefore, we

have to scrutinize whether it is possible in No-matchedSession. If it is not true, we may

have Pr[No�MatchingE(k)] � 2�k.

(a) The birthday paradox is negligible due to the nature of the random oracle, hi() :

f0; 1g� ! f0; 1gl(k); the probability is 2�
1
2
l(k)
� 2�k.
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(b) Due to item (a), the correct value K(= K1 = K2) is mandatory for the acceptance

even in sf No-matchedSession. For �nding K, Eve must obtain � or � due to the

one-way property of random oracles.

i. The probability of guessing g(x+e)y(= � = �) in PureFreshSession is Pr[] <

2�k.

ii. Rewrite � and � where G1 = glog G1 and G2 = (G1�)
(log G1+�)

�1 log G2 , i.e.,

� = (G2)
(log G1+�)

�1(log G1+e) = (G1g
e)(log G1+�)

�1 log G2 = �. For G1 there is

nothing ahead, but for G2 we need G1. Note that (G1;G2)! e. Thus, we can

�nd easily the 
ows, (G1 ! G2 ! e ! �) and (G1 ! G2 ! e ! �). Without

such 
ows, the exponents of G1 and G2 must be analyzed but the probability

is Pr[] � 2�l(k) even with a forged attempt by Lemma 1.

After all, we have Pr[No�MatchingE(k)] � 2�k so that it is infeasible inNo-matchedSession.

3. When Eve is benign, all she receives from the oracle are fid; �;G1;G2;H1;H2g for

every session where their internal values, x and y, are independent random values

from f0; 1g>l(k). Therefore, gx, gy, and their composition on the cyclic group must be

well distributed on the group. We assume the uniform distribution. Since W(E) = �

and G2 = (G1g
�)y, the probability of �nding gy

0

by guessing �
0

in G1 and G2, is less than

2�(!(k)+l(k)). For verifying the guess of �
0

, Eve must �nd � or � for asking the random

oracle. However, �nding g(x+e)y over gx and g(x+�)y without � must be bounded by

Pr[Di�e-HellmanE(k)] so that it is negligible. Therefore, the probability of success for

benign Eve is Pr[] < 2�k.

4. Since G1 and G2 remain on the cyclic group under uniform distribution, there is no way

to �nd the relationship between the rejected guesses and the remaining guesses. Other

possibilities are all negligible by Lemma 1. If Eve is rejected, she must reduce the set

by one, 2!(k)� 1, and try again with another guess. That is, the set is reduced linearly.

Therefore, the success probability of her on-line guess is only Pr[] � 1
2!(k)�R�c

for very

small c(� 0). She must be denied by the oracle only in R trials by Lemma 1.

5. Assume all Cis are set o� and Eve has been rejected with di�erent guesses 2!(k) � 2

times by the oracle, then she could have bernoulli trial on two remaining guesses; if

one is rejected then the other is the one and vice versa. However, assume Eve does not

participate in FreshSession any more but she only be benign in FreshSession. Then, she

is only able to analyze all rejected messages and new eavesdropped messages equipped

with bernoulli trial on guess. For actual participation, the probability was less than

2�k by Lemma 1. For her analysis, the probability is 2�(l(k)+1)(< 2�k) by item 3 of this

proof. Hence, the probability of success for partially benign Eve is negligible. That

means if Eve attempts o�-line analysis even with a small dictionary, she does not have

any advantage without knowing x or y for each message.
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AMP is a secure authenticated key exchange protocol with a LW-key generator W(). �

Lemma 2 The adversary does not bene�t from RevealedSession or CorruptedSession for achiev-

ing each goal.

Proof Sketch: Eve attempts to �nd � or � in RevealedSession while she attempts to �nd K

or �(= �) in CorruptedSession. If Eve bene�ts from each session, the given information must

make non-negligible probability of success or make some advantage for the query Q(i; s; test).

1. Let Eve ask Q(i; s; reveal). Then she is given K and �(= �) in RevealedSession.

Due to the one-way property of random oracles, we assume �(= �) is given. Since

�(= �) is not re-usable due to x and y, she cannot attempt to be granted on-line.

For tracking to � or �, she must be also in MatchedSession. Then we say she is given

fid; �; e; gx; g(x+�)y ; g(x+e)y ;H1;H2g with matching-conversations. For verifying �
0

and

�
0

, she should make g(x+�
0)y on the given information but she cannot make it without

�nding y. Otherwise, she has to �nd x for �nding gy from g(x+e)y and making gy(x+�
0).

Both are still bounded by Pr[Discrete-LogE(k)]. It is not di�cult to understand Re-

vealedSession is not advantageous to Eve.

2. Let Eve ask Q(i; s; corrupt). Then she is given � and � in CorruptedSession. Due to the

one-way property of random oracles, we assume � is given. For tracking to K or �(= �),

she must be also inMatchedSession. Then she is also given fid; �; �; e; gx ; g(x+�)y ;H1;H2g

with matching-conversations. For making g(x+e)y , she should remove � from g�y and

�nd y where � = x + �. Finding � includes x so that both �ndings must be bounded

by Pr[Discrete-LogE(k)]. Even if we assume � is removed, the problem is still bounded

by Pr[Di�e-HellmanE(k)]. It is not di�cult to understand CorruptedSession is not ad-

vantageous to Eve. �

4 AMP Protocol Variants

We present four explicit variants of AMP. They are called AMPi, AMPn, AMP+, AMP++.

AMPi is extended for accommodating implicit salt while AMPn is extended for non-veri�er au-

thentication similar to clear-text password authentication. AMP+ and AMP++ are extended

for disregarding the information leakage question though such are not critical in AMP.

4.1 AMPi

AMPi is a simple extension of AMP for accommodating implicit salt.

Protocol Setup. This step determines and publishes global parameters of AMPi.

1. Alice and Bob share g, p and q.
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2. Alice chooses � 2R f0; 1g
!(k) and notify Bob, in an authentic and con�dential manner.

3. Bob stores (id; � = g�) where � = h1(id;B; �).

4. id indicates precisely a user name.

Bob should throw away � and � but keep �.

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

� 2 f0; 1g1, and their small subgroup con�nements must be avoided for a security reason.

Alice Bob

input (id; �) store (id; �)

x 2R Zq

G1 = gx
id;gx

�!

fetch (id; �)

� = h1(id;B; �) y 2R Zq

� = (x+ �)�1 mod q
(gx�)y

 � G2 = (G1�)
y

e = h2(G1;G2; id; Alice;Bob) e = h2(G1;G2; id; Alice;Bob)

� = �(x+ e) mod q

� = (G2)
� � = (G1g

e)y

K1 = h3(�) K2 = h3(�)

H11 = h4(G1;K1)
h(gx;K)
�! H12 = h4(G1;K2)

verify H11
:
= H12

H21 = h5(G2;K1)
h((gx�)y;K)
 � H22 = h5(G2;K2)

verify H21
:
= H22

Figure 2: AMPi Protocol

The following steps explain how the protocol is executed in Figure 2.

1. Alice computes G1 = gx by choosing x 2R Zq and sends (id;G1) to Bob.

2. After receiving message 1, Bob loads �, and computes G2 = (G1�)
y by choosing y 2R

Zq. This can be done by the simultaneous exponentiation method. Note that G2 =

(G1)
y(�)y = (gx�)y = g�y where � = x+ �. He sends G2 to Alice.

3. While waiting for message 2, Alice computes � = h1(id;B; �) and � = (x+�)�1 mod q,

i.e., � = ��1. After receiving message 2, Alice computes e = h2(G1;G2; id; Alice;Bob),
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� = �(x + e) mod q and � = (G2)
�. Note that � = (g�y)�

�1(x+e) = gy(x+e) where

� = x+ �. She computes K1 = h3(�) and H11 = h4(G1;K1). She sends H11 to Bob.

4. While waiting for message 3, Bob computes e = h2(G1;G2; id; Alice;Bob), � = (G1)
ygey =

(gxge)y = g(x+e)y, K2 = h3(�) and H12 = h4(G1;K2). After receiving message 3, Bob

compares H12 with H11. If they are matched, then he computes H22 = h5(G2;K2) and

sends H22 to Alice. This means he authenticated Alice who knows � (actually � and

thus � since x is secure from gx), and agreed upon K(= K1 = K2).

5. While waiting for message 4 from Bob, Alice computes H21 = h5(G2;K1). After receiv-

ing message 4, she compares H21 with H22. If they are matched, Alice also agrees on

K(= K1 = K2) with authenticating Bob who knows �.

AMPi reduces its running time by allowing Alice to compute mod q inverse while waiting for

message 2 from Bob. This is due to the use of implicit salt.

4.2 AMPn

AMPn is a simple extension of AMP for accommodating non-veri�er authentication similar

to clear-text password authentication. Its assumption is that the protocol is vulnerable to

the password �le compromise as like EKE. The goal of this extension is only for maximizing

e�ciency not for security. Actually, AMPn is the most e�cient but more sensitive compared

to other AMPs (very similarly to comparing EKE with A-EKE). So we call AMPn \AMP-

naked" because it is not protected by e and salted �.

Protocol Setup. This step determines and publishes global parameters of AMPn.

1. Alice and Bob share g, p and q.

2. Alice chooses � 2R f0; 1g
!(k) and notify Bob, in an authentic and con�dential manner.

3. Bob stores (id; � = g�) where � = h1(�); he can store � rather than �.

4. id indicates precisely a user name.

Bob should throw away � and � but keep �; note again that he can keep � instead of �.

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

� 2 f0; 1g1, and their small subgroup con�nements must be avoided for a security reason.

Alice Bob

input (id; �) store (id; �)

x 2R Zq

G1 = gx
id;gx

�!
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fetch (id; �)

� = h1(�) y 2R Zq

� = (x+ �)�1x mod q
(gx�)y

 � G2 = (G1�)
y

� = (G2)
� � = (G1)

y

K1 = h2(�) K2 = h2(�)

H11 = h3(G1;K1)
h(gx;K)
�! H12 = h3(G1;K2)

verify H11
:
= H12

H21 = h4(G2;K1)
h((gx�)y;K)
 � H22 = h4(G2;K2)

verify H21
:
= H22

Figure 3: AMPn Protocol

The following steps explain how the protocol is executed in Figure 3.

1. Alice computes G1 = gx by choosing x 2R Zq and sends (id;G1) to Bob.

2. After receiving message 1, Bob loads �, and computes G2 = (G1�)
y by choosing y 2R Zq.

This can be done by the simultaneous exponentiation method. If Bob stores � rather

than � for spatial e�ciency, he computes G2 = (G1)
yg�y. Note that G2 = (G1)

y(�)y =

(gx�)y = g�y where � = x+ �. He sends G2 to Alice.

3. While waiting for message 2, Alice computes � = h1(�) and � = (x + �)�1x mod q.

After receiving message 2, Alice computes � = (G2)
�. Note that � = (g�y)�

�1x = gyx

where � = x+�. She computes K1 = h2(�) and H11 = h3(G1;K1). She sends Bob H11.

4. While waiting for message 3, Bob computes � = (G1)
y = (gx)y = gxy, K2 = h2(�) and

H12 = h3(G1;K2). After receiving message 3, Bob compares H12 with H11. If they are

matched, then he computes H22 = h4(G2;K2) and sends H22 to Alice. This means he

authenticated Alice who knows � (actually either of �, � or � is acceptable, see below),

and agreed upon K(= K1 = K2).

5. While waiting for message 4 from Bob, Alice computes H21 = h4(G2;K1). After receiv-

ing message 4, she compares H21 with H22. If they are matched, Alice also agrees on

K(= K1 = K2) with authenticating Bob who knows � or �.

AMPn, so-called AMP-naked, extremely reduces its running time by allowingAlice to compute

all mod q operations while waiting for message 2 from Bob and by allowing both parties not

to compute e-related operations at all. This is due to the \naked-assumption" such that the

protocol is vulnerable to the password �le compromise. For example, if Eve who stole � sends
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�x to Bob, she can complete the protocol because G2 = �(x+1)y while � = �xy[20]. However,

AMPn provides much more well-de�ned form of authentication for having EKE-security.

4.3 AMP+

AMP+ is a simple extension of AMP for disregarding the information leakage question such

that \message and key are clearly unrelated?" Note that G2 = g(x+�)y and � = � = g(x+e)y;

they are unrelated because random e is dependent on x and y but x and y are independent

to each other. Protocol setup of AMP+ is exactly same to that of AMP so that we skip it.

Protocol Run. Note that the cases, x 2 f0; 1g1, y 2 f0; 1g1, G1 2 f0; 1g
1 , G2 2 f0; 1g

1,

� 2 f0; 1g1, and their small subgroup con�nements must be avoided for a security reason.

(id; �) Alice Bob (id; �; �)

x 2R Zq

G1 = gx
id;gx

�!

fetch (id; �; �)

y 2R Zq

e1 = h2(G1; id; Alice;Bob) e1 = h2(G1; id; Alice;Bob)

�;(gxe1�)y

 � G2 = (Ge11 �)y

e2 = h3(G1;G2; id; Alice;Bob) e2 = h3(G1;G2; id; Alice;Bob)

� = h1(�; �)

� = (xe1 + �)�1(x+ e2) mod q

� = (G2)
� � = (G1g

e2)y

K1 = h4(�) K2 = h4(�)

H11 = h5(G1;K1)
h(gx;K)
�! H12 = h5(G1;K2)

verify H11
:
= H12

H21 = h6(G2;K1)
h((gx�)y;K)
 � H22 = h6(G2;K2)

verify H21
:
= H22

Figure 4: AMP+ Protocol

The following steps explain how the protocol is executed in Figure 4.

1. Alice computes G1 = gx by choosing x 2R Zq and sends (id;G1) to Bob.

2. After receiving message 1, Bob loads � and �, and computes e1 = h2(G1; id; Alice;Bob),

G2 = (Ge11 �)y by choosing y 2R Zq. This can be done by the simultaneous exponentia-

tion method. Note that G2 = (G1)
e1y(�)y = g(xe1+�)y. He sends (�;G2) to Alice.
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3. While waiting message 2, Alice computes e1 = h2(G1; id; Alice;Bob). After receiving

message 2, Alice computes e2 = h3(G1;G2; id; Alice;Bob), � = h1(�; �), � = (xe1 +

�)�1(x+e2) mod q and � = (G2)
�. Note that � = (g(xe1+�)y)(xe1+�)

�1(x+e2) = gy(x+e2).

She computes K1 = h4(�) and H11 = h5(G1;K1). She sends H11 to Bob.

4. While waiting for message 3, Bob computes e = h2(G1;G2; id; Alice;Bob), � = (G1)
yge2y =

(gxge2)y = g(x+e2)y, K2 = h4(�) and H12 = h5(G1;K2). After receiving message 3, Bob

compares H12 with H11. If they are matched, then he computes H22 = h6(G2;K2) and

sends H22 to Alice. This means he authenticated Alice who knows � (actually, �), and

agreed upon K(= K1 = K2).

5. While waiting for message 4 from Bob, Alice computes H21 = h6(G2;K1). After receiv-

ing message 4, she compares H21 with H22. If they are matched, Alice also agrees on

K(= K1 = K2) with authenticating Bob who knows �.

We should de�ne h6(x) = h(10jxj01) for AMP+. The randomness of e1 is totally dependent

upon the randomness of G1 so that Bob cannot contribute to its randomness, while the

randomness of e2 is dependent upon the randomness of G2 as well as G1. Note that G2 =

g(xe1+�)y while the agreed key is g(x+e2)y. It is clearer to see they are unrelated regarding the

intractability of the discrete logarithm problem and the Di�e-Hellman problem.

4.4 AMP++

AMP+ is another form of extension for disregarding the information leakage question.

Protocol Setup. This step determines and publishes global parameters of AMP++.

1. Alice and Bob shares g, p and q.

2. Alice chooses � 2R f0; 1g
!(k) and notify Bob, in an authentic manner.

3. id indicates an identi�er or name of Alice; more precisely a user name.

4. Bob stores (id; � = g��) where � = h1(id;Bob; �)
5.

Bob should throw away � and � but keep id and �.

Protocol Run. The following describes how to run AMP++. Note that the cases, x1 2

f0; 1g1, x2 2 f0; 1g
1, y 2 f0; 1g1, G0 2 f0; 1g

1 , G1 2 f0; 1g
1 , G2 2 f0; 1g

1, � 2 f0; 1g1,, and

their small subgroup con�nements must be avoided for a security reason.

Alice Bob

input (id; �) store (id; �)

5We can also use the explicit salt scheme such that � = h1(�; �) where � 2R f0; 1gt(k). See later part.
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x1; x2 2R Zq

� = h1(id;Bob; �)

G0 = x1 + � mod q

G1 = gx2
id; x1+�; g

x2

�!

fetch (id; �)

y 2R Zq

(gx2�)y

 � G2 = (G1�)
y

e = h2(G0;G1;G2; id; Alice;Bob) e = h2(G0;G1;G2; id; Alice;Bob)

� = (x2 � �)�1(x1 + ex2) mod q

� = (G2)
� � = (g)G0y(�)y(G1)

ey

K1 = h3(�) K2 = h3(�)

H11 = h4(G0;G1;K1)
h(gx2 ;K)
�! H12 = h4(G0;G1;K2)

verify H11
:
= H12

H21 = h5(G2;K1)
h((gx2�)y;K)
 � H22 = h5(G2;K2)

verify H21
:
= H22

Figure 5: AMP++ Protocol

The following steps describe how the protocol is executed in Figure 5.

1. Alice computes � = h1(id;Bob; �), G0 = x1 + � mod q, and G1 = gx2 by choosing

x1; x2 2R Zq and sends (id;G0;G1) to Bob.

2. After receiving message 1, Bob loads �, and computes G2 = (G1�)
y by choosing y 2R Zq.

This can be done by the simultaneous exponentiation method, i.e., G1
y�y. Note that

G2 = (G1�)
y = g(x2��)y. He sends G2 to Alice.

3. After receiving message 2, Alice computes e = h2(G0;G1;G2; id; Alice;Bob), � = (x2 �

�)�1(x1 + ex2) mod q, and � = (G2)
�. Note that � = (g(x2��)y)(x2��)

�1(x1+ex2) =

gy(x1+ex2). She computes K1 = h3(�) and H11 = h4(G0;G1;K1). She sends H11 to Bob.

4. While waiting for message 3, Bob computes e = h2(G0;G1;G2; id; Alice;Bob), � =

(g)G0y(�)y(G1)
ey, K2 = h3(�) and H12 = h4(G0;G1;K2). Note � = g(x1+�)yg��ygx2ey =

g(x1+ex2)y. After receiving message 3, Bob compares H11 with H12. If they are equal

to each other, then he computes H22 = h5(G2;K2) and sends it to Alice. This means

he authenticated Alice who knows � (actually, �), and agreed upon K(= K1 = K2).
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5. While waiting for message 4, Alice computesH21 = h5(G2;K1). After receiving message

4, she compares H12 with H22. If H12 = H12, Alice also agrees on K(= K1 = K2) with

authenticating Bob who knows �.

It is clear to see G2 and an agreed key are unrelated since the agreed key is g(x1+ex2)y while

G2 = g(x2��)y . Note that �a�b
c needs 25% more multi-precision multiplications than �a

does on the average through the simultaneous multiple exponentiation method[35, 28]. Con-

sidering the bene�t of the simultaneous method, the parallel exponentiation is still three

times (3E) due to the use of implicit salt.

Explicit Salt in AMP
++
. For e�ciency (3E), we considered the implicit salt scheme.

However, we can accommodate the explicit salt scheme at the cost of parallel exponentiation

(4E). For using explicit salt, Alice should compute � after receiving message 2 so that she

could compute and pass G0 with H1 in step 3. Therefore, Bob should compute � after receiv-

ing message 3. The protocol loses the parallel computation of � and � so that the parallel

exponentiation cost is to be 4E rather than 3E. This is the worst case in our AMP family.

5 Analysis and Comparison

This section examines the security against conventional attacks and then discusses the ad-

vantages and disadvantages of AMP in terms of security, e�ciency and constraints, while

comparing AMP to other functionally-similar (secure) protocols such as A-EKE, B-SPEKE,

SRP, GXY, SNAPI-X, AuthA and PAK-X[8, 19, 39, 27, 6, 10]. AMP implies the original

protocol and other extensions if we do not explicitly notify.

5.1 Security of AMP

1. AMP provides perfect forward secrecy via the Di�e-Hellman problem and the discrete

logarithm problem. That is, even if � (or �) is compromised, Eve cannot �nd old

session keys because she is not able to solve the hard problems. We examined this

feature in item 2 of Lemma 2.

2. Denning-Sacco attack is the case that Eve, who compromised an old session key, at-

tempts to �nd � or to make the oracle accept her[11]. For the purpose, Eve has to

solve the discrete logarithm problem even if g(x+e)y(= � = �) is compromised. It is

also infeasible to check the di�erence between e and � in g(x+e)y and g(x+�)y without

solving the discrete logarithm of gx. Therefore, AMP is secure against this attack. We

examined this feature in item 1 of Lemma 2.

3. Replay attack is negligible because G1 should include an ephemeral parameter of Alice

while the others such as G2, H1 and H2, should include ephemeral parameters of both
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parties of the session. Finding those parameters corresponds to solving the discrete

logarithm problem and each parameter is bounded by 2�l(k) < 2�k. Therefore, both

active replay and succeeding veri�cation are negligible. Condition 2 and 5 of Theorem 2

supported this feature.

4. Small subgroup con�nement is defeated and avoided by con�ning to the large prime-order

subgroup. An intentional small subgroup con�nement can be detected easily.

5. On-line guessing attack is detectable and the following o�-line analysis can be frustrated,

even if Eve attempts to disguise parties. Actually, Eve is able to perform the on-line

attack to either party but its failure is countable. Impersonation of the party or man-

in-the-middle attack is also infeasible without knowing � or �. Item 1 of Lemma 1

and Condition 2 and 4 of Theorem 2 directly handled the detectable on-line attacks,

while the other items of Lemma 1 and Condition 5 of Theorem 2 handled the o�-line

frustration.

6. O�-line guessing attack is also infeasible because Eve cannot disintegrate G2. Condition

3 and 5 of Theorem 2 handled this feature. Partition attack is to reduce the set of

passwords logarithmically by asking the oracle in parallel with o�-line analysis, while

chosen exponent attack is to analyze it via her chosen exponent. Both attacks are

infeasible because Eve cannot solve or reduce y
0

= (x + �)y(x + �
0

)�1 mod q for

guessed passwords without knowing both x and y. These features are examined in

Lemma 1 and Condition 4 of Theorem 2.

7. Security against password-�le compromise is the basic property of AMP except AMPn

that has a naked assumption. We exaimed this feature in item 2 of Lemma 1.

8. Information leakage is not an issue in AMP by virtue of random oracles for � and e.

5.2 E�ciency and Constraints

Performance of these protocol families can be approximated in terms of communication and

computation loads (see Table 1). We summarize the e�ciency and constraints of AMP.

Efficiency. The e�ciency of AMP can be discussed as follows.

1. In the aspect of a communication load, AMP has only four protocol steps while the

number of large message blocks is only two in AMP. They are G1 and G2. For AMP++,

the size of G0 can be bounded by l(k) + � with negligible � when we use a secure prime.

2. A total amount of execution time could be approximated by the number of modular

exponentiation by considering the parallel execution of both parties. We describe it as

E(Alice : Bob). Note that AMP has intrinsically only 3E, except that AMP++ has 4E
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with explicit salt. AMP has E((g)x : �), E(� : (G
y
1�

y)) and E((G2)
� : (G

y
1g

ey)) while

all variants except AMP++ with explicit salt have similar operations. Here '�' means

no-modular-exponentiation such as O((log n)3).

3. Each party of AMP performs only two exponentiations, respectively. It is the same to

the number in the Di�e-Hellman scheme though AMP needs more operations for larger

base, Zq operation or simultaneous exponentiation.

4. For run time parameters, each party generates only one random number, respectively,

in AMP family except for AMP++. Alice can reduce her run time exponentiations to

only one and parallel exponentiations to only two, by pre-computation of gx. AMP++

needs Alice to generate two random numbers.

5. G2 can bene�t from the simultaneous exponentiation method as (G1)
y�y. � of AMP++

must bene�t from the simultaneous exponentiation method for e�ciency. As we men-

tioned already, �a�b needs 16% and �a�b
c needs 25% more multi-precision multipli-

cations than �a does on the average[35, 28].

6. In step 3, Alice should compute (y + �)�1 but only in the q-order subgroup. Modular

inversion, O((log q)2), is much less expensive than modular exponentiation, O((log p)3).

Moreover, the size of q can be bounded by only l(k) + � with negligible � by virtue of a

secure prime. Note that O(log l(k)) << O(log p). Therefore, it is quite negligible when

we consider modular exponentiation.

7. AMP uses the main group operation so that it is easy-to-generalize in any cyclic groups.

Therefore, AMP can be easily implemented on the elliptic curve group. A generalization

on such a group must be very useful for further e�ciency of space and speed, though

there may be a patent restriction on the elliptic curve cryptographic algorithms.

A rigorous e�ciency comparison to the other protocols will be done in section 5.3

Constraints. AMP gives very light constraints as follows.

1. AMP prefers g to be a generator of the large (> l(k)) prime-order subgroup Zq for de-

feating and avoiding a small subgroup con�nement e�ectively by con�ning exponentials

into the large prime-order subgroup[30]. A secure prime modulus is higly recommended

for easy detection of an intentional small subgroup con�nement and great e�ciency of

the protocols though a safe prime modulus is also favorable. Note that the secure prime

is easier to get than the safe prime[24].

2. A compromise of � allows a guessing attack or a server impersonation but it is an

inevitable feature of all veri�er-based protocols[39]. As one of those protocols, AMP

needs an additional guessing attack complexity for a client impersonation.
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Protocol Large Exponentiations Random Numbers

Steps Blocks Client Server Parallel Client Server

A-EKE 7 (+4) 3 (+1) 4 (+2) 4 (+2) 6 (+3) 1 (+0) 1 (+0)

B-SPEKE 4 (+1) 3 (+1) 3 (+1) 4 (+2) 6 (+3) 1 (+0) 2 (+1)

SRP 4 (+1) 2 (+0) 3 (+1) 3 (+1) 4 (+1) 1 (+0) 1 (+0)

GXY 4 (+1) 2 (+0) 4 (+2) 3 (+1) 5 (+2) 1 (+0) 1 (+0)

SNAPI-X 5 (+2) 5 (+3) 5 (+3) 4 (+2) 7 (+4) 2 (+1) 3 (+2)

AuthA 3 (+0) 2 (+0) 4 (+2) 3 (+1) 6 (+3) 1 (+0) 1 (+0)

PAK-X 3 (+0) 3 (+1) 4 (+2) 4 (+2) 8 (+5) 1 (+0) 2 (+1)

AMP 4 (+1) 2 (+0) 2 (+0) 2 (+0) 3 (+0) 1 (+0) 1 (+0)

Table 1: Comparisons of Veri�er-based Protocols

3. AMP needs both parties to count the other side's on-line failure to detect the on-line

guessing attack. However, this is the shared requirement of all password protocols.

5.3 Comparisons to Others

AMP is compared to the existing veri�er-based protocols such as A-EKE, B-SPEKE, SRP,

GXY, SNAPI-X, AuthA and PAK-X[8, 19, 39, 22, 27, 6, 10]. They are all wonderful protocols

for password authentication research. We disregard the security issue because all of them are

believed secure.

Table 1 compares them with regard to several factors such as the number of protocol steps,

large message blocks, and exponentiations. The number of random numbers is given as a

subsidiary reference. Protocol steps and large blocks are critical factors to the communication

load, while exponentiations and random numbers are to the computation load. The number of

parallel exponentiations could compare approximately the amount of protocol execution time.

The large block means a large cryptographic block based on the public-key cryptography such

as the Di�e-Hellman exponential or the RSA message. The value in parenthesis implies the

di�erence from the most e�cient one that is denoted by bold characters. Note that AuthA

and PAK-X are the versions that use implicit salt. They must have �ve steps rather than

three for accommodating explicit salt.

As we can see in Table 1, AMP is expected as the most e�cient veri�er-based protocol be-

cause it has the minimum values mostly. Note that AMPi and AMPn are a little more e�cient

than AMP while AMP+ is a little less e�cient than AMP. Also note that AMP++ adds one

more random number (and one more paralle exponentiation for explicit salt). Comparisons

of AMPn to the related protocols such as EKE, SPEKE, SNAPI, PAK[7, 18, 27, 10] under

their naked assumption, are skipped in this document. We give some basic introductions to

those related protocols and discuss the superiority of AMP.
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A-eke. Bellovin and Merrit introduced the �rst veri�er-based protocol, A-EKE in 1993

by augmenting their famous protocol DH-EKE[8]. A-EKE used symmetric encryption and

digital signature[29] for authenticaed key exchange so that it had to have several constraints.

However, A-EKE gave many researchers the right way to go for user authentication. Actually

our study is also based on DH-EKE and A-EKE. or p-NEW signature[29].

B-speke. Jablon proposed B-SPEKE, the veri�er-based augmentation of SPEKE, in 1997[18,

19]. Jablon's paper includes very informative introductions to password authenticated key

exchange as an addition to the famous work of EKE[18, 7]. A-SPEKE was an A-EKE based

extension of SPEKE while B-extension was better for SPEKE than A-extension[19]. Among

the set of B-SPEKE, the combined B-SPEKE was the most optimized so that it was com-

pared in Table 1.

Srp. Wu proposed SRP that was notable in its practical approach, in 1998[39]. The bench-

mark showed its superiority to the earlier schemes[39]. SRP was not favorable to the gener-

alization, especially in the elliptic curve group.

Gxy. Kwon and Song proposed GXY that was derived from SRP for agreeing on the Di�e-

Hellman exponential gxy, in 1999[22]. However, the protocol was actually less e�cient than

SRP. GXY was also not favorable to the generalization.

Snapi-X. MacKenzie and Swaminathan introduced the �rst provable veri�er-based proto-

col, SNAPI-X, in 1999[27]. It was the augmented version of their basic protocol SNAPI in

the same paper. It was notable in its full proof of security by combining RSA and Di�e-

Hellman scheme at the cost of protocol e�ciency.

AuthA. Bellare and Rogaway introduced a provable approach, AuthA, by assuming an

ideal cipher in 2000[6]. Their pure password version, MA-EKE2[5], was also notable in its

provable approach. They give us the theoretical way for proof as always. The veri�er-based

version, AuthA, reduced her protocol steps with implicit salt. Coincidentally, its exponen-

tiation sequences were almost the same to GXY[22]. We carefully point out that AuthA

and MA-EKE2 could be vulnerable to password guessing due to Ef1(�)(g
x), Ef2(�)(g

y) and

h(h(A;B; gx; gy ; gxy); 1) if an agreed secret gxy is compromised.

Pak-X. Boyko, MacKenzie, and Patel introduced the provable veri�er-based protocol, PAK-

X, in 2000[10]. PAK-X was notable in its clearly provable approach. PAK-X was the last

protocol in their three kinds of protocols but the only one that used a veri�er. It also reduces

the number of protocol steps without exchanging salt but may have the lowest performance.
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Figure 6. Graphical Representation of Table 1

Why Amp. Figure 6 rewrites Table 1 graphically so that we can see AMP(�) has the best

performance. The following items well summarize why AMP is believed the best in this paper.

1. AMP is a secure veri�er-based protocol6 on the basis of the ampli�ed password proof

and it is provable in the random oracle model.

2. AMP is the most e�cient protocol among the existing veri�er-based protocols.

3. AMP has the light constraints and is easy to generalize, e.g., in elliptic curve groups for

further e�ciency.

4. AMP has several variants for accommodating implicit veri�er or for pure password-based

authentication.

5. AMP truly allows the Di�e-Hellman based key agreement; (1) Alice sends gx to Bob

who simply raises it to y with random number e, i.e. g(x+e)y; (2) Bob sends gy to Alice

by hiding it under the ampli�ed password as (gy)� while Alice obtains it by (gy�)�
�1

and raises it to x with random number e, i.e. gy(x+e).

6. AMP has a simple structure so that it is easy to understand and implement the protocol.

7. AMP is favorable to upgrading the existing system; AMP accommodates any kinds of

salt schemes without notable degrading of the protocol performance so that the existing

password �le of various systems can be upgraded easily.

6Only AMPn is a pure password-based protocol so that it is also comparable to the well-known related

protocols such as EKE, SPEKE, SNAPI, PAK[7, 18, 27, 10] under the naked assumption such that the protocol

is vulnerable to the password �le compromise.
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6 Applications

As one of veri�er-based protocols, AMP can be used for user authentication and further

con�dential communications over the Internet. We give several examples for it.

6.1 A-Telnet and A-FTP

It is typical to apply the protocol to the existing remote authentication framework such as

Telnet and FTP. For example, SRP already provides its enhanced Telnet and FTP versions.

We can consider A-Telnet (AMPli�ed Telnet) and A-FTP (AMPli�ed FTP) for the same

purpose with more 
exibility and e�ciency.

6.2 AA-Gate

Today every Internet user owns a number of accounts for various kinds of Internet sites. The

users are mostly authenticated by giving their ids and passwords while it is still a far story

for them to have their own private-key and certi�cate pairs for SSL (Secure Socket Layer).

A small number of sites prevent eavesdropping of authentication information over SSL. It is

hard for users to remember a large number of ids and passwords for each site. Therefore, all

users prefer to choose their ids and passwords consistently and coherently. We should note

that this feature makes simple but critical security holes on the Internet. If an account list

of one large site is disclosed accidentally or intentionally, or the authentication information

is eavesdropped for a speci�c account, then the other sites are vulnerable to tiny-dictionary

attacks. This is critical even if the other site communicates with the browser over SSL on

authentication phase.

We can construct AA-Gate (AMPli�ed Authentication Gate) for user convenience and

enhanced security. The basic structure of AA-Gate is contrary to that of RADIUS (Remote

Authentication Dial-In User Service). Every user opens his or her account at AA-Gate and

registers his or her preferred sites on AA-Gate. Users can enter their old account information

or utilize a password generator provided by AA-Gate. When users log on to AA-Gate, they

can be securely guided to the registered sites by AA-Gate. Every communication between

users and AA-Gate is secured by AMP while AA-Gate and the registered sites can commu-

nicate over SSL. After the successful authentication, a user can choose a registered site that

she wants to visit. Then, the AA-Gate server downloads a proxy certi�cate to the client that

acts furtherly for activating SSL session between the user and the server. The AA-Gate client

(applet, or plug-in application) must communicate with the AA-Gate server again because it

cannot possess the proxy private-key. Finally, users and the registered site can open their SSL

session securely supported by AA-Gate's proxy certi�cate mechanism. A user does not need

to own his or her certi�cate rather utilizes the proxy certi�cate of AA-Gate for opening the

mutually authenticated SSL session. We can consider AA-Gate-User-Agent for conveniently

registering a new site.
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6.3 Networked Smart Card

A smart card is the best solution for enhancing the security on the Internet. Especially

a crypto smart card is able to perform security operations as well as store the sensitive

information such as a private-key. However, it is not easy to distribute such a card and a

card-reader device to the existing infrastructure. Therefore, we can consider the Networked

Smart Card over the Internet on the basis of AMP. This software and network based solution

may expect the faster spread than hardware oriented solution.

We can consider two kinds of approaches for Networked Smart Card. One is a centralized

approach and the other is a localized approach. Users must install their VSC (Virtual Smart

Card) software on their machine. However, VSC can be provided as a Java applet in the

centralized approach for users who are unwilling to install such a new software. Of course,

every communication between the VSC and the SCS (Smart Card Server) must be secured

by AMP. The sensitive information of users is stored in the SCS for the centralized approach,

while the information is stored in the VSC for the localized approach.

6.4 A-RADIUS

The RADIUS protocol is a method of managing the exchange of authentication-related infor-

mation in the network. The RADIUS remote access environment has three components such

as Users, RAS (Remote Access Servers), and RS (RADIUS Server). The RADIUS protocol

utilizes PAP (Password Authentication Protocol) or CHAP (Challenge Handshake Authenti-

cation Protocol) but all of them are vulnerable to password guessing attacks. Communication

between RAS and RS are encrypted under a secret key but users and RAS communicates in

the plain-text. We can consider A-RADIUS (AMPli�ed RADIUS) for enhanced security. For

providing one-way authentication, only three messages of AMP are used for this architecture.

All RAS has to do is relay three AMP messages between Users and RS, and wait for the

authentication result from RS. It is still recommended to encrypt all messages between RAS

and RS for authenticating RAS and securing internal conversation.

7 Conclusion

In this paper, we introduced a new veri�er-based protocol, AMP, for secure password authen-

tication and the Di�e-Hellman key agreement, by following the previous notable methods

such as A-EKE, B-SPEKE and SRP. AMP has been designed on the basis of our simple idea,

the ampli�ed password proof. In addition, we presented several variants of AMP. They are

AMPi, AMPn, AMP+, AMP++. Among them, AMPn was a pure password-based proto-

col rather than a veri�er-based protocol. Compared to the similarly secure protocols, AMP

was the most e�cient one. AMP holds the provable security, the best e�ciency, the light

constraints, and the generalization features as its advantages. In addition, it allows an easy
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integration to the existing systems.

Internet business and commercial services are growing rapidly while personal privacy and

security concerns are slower than those activities. Authentication is undoubtedly very im-

portant. Though the hardware-dependent authentication methods are growing steadily, the

pure password authentication scheme is still reasonable in a distributed environment, and the

public-key based cryptographic protocol is the best solution for improving its security. We

should note that the only password authentication method can truly authenticate the human

mind over the network. For example, a private-key is not memorable for human users even in

the public key infrastructure. Therefore, we might keep utilizing it over the Internet and in

mobile environments even with the hardware-supported authentication schemes. A-Telnet,

A-FTP, AA-Gate, Networked Smart Card, and A-RADIUS were only such examples.
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Figure 7.  Password Authentication Protocols

Appendix : Genealogy of Password Protocol

PAK [10]

7

7 The above genealogy is typically based on the opinion of the author. We analyzed all the protocols
carefully and arranged them in the figure by considering their similarity or improvement. However, each
author of the protocols could have  different opinions.   At this moment,  we would like to  make it clear
that the above genealogy is only one of good references.
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