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Abstract

An information-theoretic model for steganography with a passive adversary is proposed.
The adversary’s task of distinguishing between an innocent cover message C and a modified
message S containing a hidden information is interpreted as a hypothesis testing problem.
The security of a steganographic system is quantified in terms of the relative entropy (or
discrimination) between PC and PS , which gives quantitative bounds on the detection capa-
bility of any adversary. It is shown that secure steganographic schemes exist in this model
provided the covertext distribution satisfies certain conditions. A universal stegosystem is
presented in this model that needs no knowledge of the covertext distribution, except that
it is generated from independently repeated experiments.

1 Introduction

Steganography is the art and science of communicating in such a way that the presence of a
message cannot be detected. It belongs to the field of information hiding, which has received
considerable attention recently [10]. A survey of current information hiding is given by Petitcolas
et al. [13]. One may distinguish two general directions in information hiding, determined by
the power of an adversary: protection only against the detection of a message by a passive
adversary and hiding a message such that not even an active adversary can remove it.

This paper views steganography as information hiding with a passive adversary. The model
is perhaps best illustrated by Simmons’ “Prisoners’ Problem” [17]: Alice and Bob are in jail,
locked up in separate cells far apart from each other, and wish to devise an escape plan. They
are allowed to communicate by means of sending authenticated messages via trusted couriers,
provided they do not deal with escape plans. The couriers are agents of the warden Eve (the
adversary) and will leak all communication to her. If Eve detects any sign of conspiracy, she will
thwart the escape plans by transferring both prisoners to high-security cells from which nobody
has ever escaped. Alice and Bob are well aware of these facts, so that before getting locked up,
they have shared a few secret codewords that they are now going to exploit for adding a hidden
meaning to their seemingly innocent messages. Alice and Bob succeed if they can exchange
information allowing them to coordinate their escape and Eve does not become suspicious.

Of course, Eve knows what a “legitimate” conversation among prisoners is like, and she
also knows about the tricks that prisoners apply to embed a hidden meaning in a seemingly
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innocent message. Following the approach of information theory, we capture this knowledge
by a probabilistic model, and view Eve’s task of detecting hidden messages as a problem of
hypothesis testing.

Our approach. We consider only the scenario where Alice sends a message to Bob. Eve
models an innocent message from Alice as a covertext C with probability distribution PC . A
message with embedded hidden information is called stegotext and denoted by S.

In general, Eve might not know the process by which stegotext is generated; thus, Eve’s
task would be to decide whether the observed message has been produced under the known
covertext distribution or under another distribution unknown to her. However, we adopt a
stronger model and assume that Eve has complete knowledge of the embedding and extraction
processes in a steganographic system, except for a short secret key K shared by Alice and
Bob. This prudent tradition is adopted from in cryptology, where it is known as “Kerckhoffs’
principle.”

Upon observing the message sent by Alice, Eve has to decide whether it is covertext or
stegotext. This is the problem of choosing one of two different explanations for observed data,
known as “hypothesis testing” in information theory [2, 3]. Recall that Eve knows the prob-
ability distributions of covertext and stegotext, and draws her conclusion about the observed
message only from this knowledge. However, Eve does not know if Alice produced the message
according to PC or PS , nor is she willing to assign any a priori probabilities to these two expla-
nations. (We note that it would be possible to assign such probabilities, but this would result
in a different model.)

We define the security of the steganographic system used by Alice and Bob (or stegosystem
for short) in terms of the relative entropy D(PC‖PS) between PC and PS , which yields quanti-
tative bounds on Eve’s detection performance. If the covertext and the stegotext distributions
are equal, D(PC‖PS) = 0 and we have a perfectly secure stegosystem; Eve has no information
at all about the presence of an embedded message. This parallels Shannon’s notion of perfect
secrecy for cryptosystems [16].

Note how our model differs from the scenario sometimes considered for steganography, where
Alice uses a covertext that is known to Eve and modifies it for embedding hidden information.
Such schemes can only offer protection against adversaries with limited capability of compar-
ing the modified stegotext to the covertext. For instance, this applies to the popular use of
steganography on visual images, where a stegoimage may be perceptually indistinguishable from
the coverimage for humans, but not for an algorithm with access to the coverimage.

Limitations. The coverage of our information-theoretic model for real-world steganographic
applications depends crucially on the assumption that there is a probabilistic model of the cover-
text. Moreover, the users of a stegosystem need at least some knowledge about the covertext
distribution, as will become clear in the description of our stegosystems.

Probabilistic modeling of information is the subject of information theory, originating with
Shannon’s pioneering work [15]. Information theory is today regarded as the “right” approach
to quantifying information and to reasoning about the performance of communication channels.
This confidence in the theory stems from many practical coding schemes that have been built
according to the theory and perform well in real applications.

But the situation in steganography is more involved, since even a perfectly secure stegosys-
tem requires that the users and the adversary share the same probabilistic model of the cover-
text. For instance, if the covertext distribution consists of uniformly random bits, then encrypt-
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ing a message under a one-time pad results in a perfectly secure stegosystem according to our
notion of security. But no reasonable warden would allow the prisoners to exchange random-
looking messages in the Prisoners’ Problem, since the use of encryption is clearly forbidden!
Thus, the validity of a formal treatment of steganography is determined by the accuracy of a
probabilistic model for the real data.

Assuming knowledge of the covertext distribution seems to render our model somewhat
unrealistic for the practical purposes of steganography. But what are the alternatives? Should
we rather study the perception and detection capabilities of the human cognition since most
coverdata (images, text, and sound) is ultimately addressed to humans? Viewed in this way,
steganography could fall entirely into the realms of image, language, and audio processing.
However, it seems that an information-theoretic model, or any other formal approach, is more
useful for deriving statements about the security of steganography schemes—and a formal secu-
rity notion is one of the main reasons for introducing a mathematical model of steganography.

Related work. So far most formal models of information hiding address the case of active
adversaries. This problem is different from the one considered here since the existence of a
hidden message is typically known publicly, as for example in copyright protection schemes.
Information hiding with active adversaries can be divided into watermarking and fingerprint-
ing [14]. Watermarking supplies digital objects with an identification of origin; all objects are
marked in the same way. Fingerprinting, conversely, attempts to identify individual copies of
an object by means of embedding a unique marker in every copy that is distributed to a user.
Cox et al. [4] propose a slightly different terminology and define watermarking in general as
hiding covertext-dependent information, regardless of the adversary model.

As most objects to be protected by watermarking consist of audio, image, or video data,
these domains have received the most attention so far. A large number of hiding techniques and
domain-specific models have been developed for robust, imperceptible information hiding [4].
Ettinger [7] models active adversaries with game-theoretic techniques.

A general model for information hiding with active adversaries was formulated by Mittel-
holzer [11], but its hiding property also relies on the similarity of stegodata and coverdata
in terms of a perceptually motivated distortion measure. Zöllner et al. [18] use information-
theoretic methods to conclude that the embedding process in steganography must involve un-
certainty. A discussion of these models with respect to ours is included in Section 6.

A large number of techniques for undetectable communication originate in the military
domain, where they have found many applications. This includes radar, spread-spectrum com-
munication, and covert channels. It is likely that our model is also applicable to those areas.

Organization of the paper. Section 2 contains the formal description of our model and
the definition of security. After reviewing the theory of hypothesis testing, Section 3 presents
the basic bounds on the detection performance for secure stegosystems. Section 4 provides
some examples of unconditionally secure stegosystems; a universal stegosystem that requires no
knowledge of the covertext statistics for the users is presented in Section 5. The paper concludes
with a discussion in Section 6.

2 Model

Preliminaries. We define the basic properties of a stegosystem using the notions of entropy,
mutual information, and relative entropy [2, 3].
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The entropy of a probability distribution PX over an alphabet X is defined as

H(X) = −
∑
x∈X

PX(x) logPX(x).

When X denotes a random variable with distribution PX , the quantity H(X) is simply called
the entropy of the random variable X (with the standard convention 0 log 0 = 0 and logarithms
to the base 2). Similarly, the conditional entropy of a random variable X given a random
variable Y is

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y),

where H(X|Y = y) denotes the entropy of the conditional probability distribution PX|Y=y.
The entropy of any distribution satisfies 0 ≤ H(X) ≤ log |X |, where |X | denotes the cardinality
of X .

The mutual information between X and Y is defined as the reduction of entropy that
Y provides about X, i.e., I(X;Y ) = H(X) − H(X|Y ). It is symmetric in X and Y , i.e.,
I(X;Y ) = I(Y ;X), and always non-negative.

The relative entropy or discrimination between two probability distributions PQ0 and PQ1

is defined as

D(PQ0‖PQ1) =
∑
q∈Q

PQ0(q) log
PQ0(q)
PQ1(q)

(with 0 log 0
0 = 0 and p log p

0 =∞ if p > 0).
The conditional relative entropy between PQ0 and PQ1 given a random variable V defined

in both probability spaces is

D(PQ0|V ‖PQ1|V ) =
∑
v∈V

PV (v)
∑
q∈Q

PQ0|V=v(q) log
PQ0|V=v(q)
PQ1|V=v(q)

.

The relative entropy between two distributions is non-negative and it is equal to 0 if and
only if the distributions are equal. Although relative entropy is not a true distance measure in
the mathematical sense, because it is not symmetric and does not satisfy the triangle inequality,
it may be useful to think of it as a distance.

Setting. We adopt the standard terminology of information hiding [14] for our model of a
stegosystem. There are two parties, Alice and Bob, who are the users of the stegosystem.
Alice wishes to send an innocent-looking message with a hidden meaning over a public channel
to Bob, such that the presence of hidden information goes unnoticed by a third party, the
adversary Eve, who has perfect read-only access to the public channel.

Alice operates in one of two modes. In the first case, Alice is inactive and sends an innocent,
legitimate message containing no hidden information, called covertext and denoted by C; it is
generated according to a distribution PC known to Eve. One may imagine that the covertext
is generated by a source to which only Alice has access. In the second case, Alice is active and
sends a message containing embedded information E for Bob. Such a message is called stegotext
and is denoted by S.

Alice may use a private random source R for the embedding operation. We assume that R
is independent of E and C.
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Figure 1: The model of a secret-key stegosystem. When Alice is active, the switch is in position 1
and she outputs stegotext S, which contains a hidden message E and was produced using
knowledge of the secret key K shared by Alice and Bob. When Alice is inactive, the switch is
in position 0, no embedding occurs, and Alice outputs covertext C.

The distributions of C, E, and R are known to Eve. In general, it is not necessary for Alice
or Bob to know the covertext and stegotext distributions.

In addition, Alice and Bob share a secret key K, which is unknown to Eve. The key has been
chosen at random and communicated over a secure channel prior to the use of the stegosystem—
in any case before the information E that Alice wants to communicate to Bob becomes known.
Thus, we assume that K is independent of E, R, and C.

Figure 1 shows the operation of a stegosystem in more detail. The switch at Alice’s end of
the public channel determines if Alice is active or not.

• In the first case (switch in position 0), Alice is inactive and sends only legitimate cover-
text C to Bob over the public channel. The covertext is generated by a covertext source,
which is separate from the embedding process. The adversary Eve observes C.

• In the second case (switch in position 1), Alice is active and is given a message E that she
embeds into the given covertext C using the shared key K to produce stegotext S. The
embedding algorithm may be probabilistic, involving randomness from R. The stegotext
is sent to Bob over the public channel. The adversary Eve and the receiver Bob observe S.
Using his knowledge of K, Bob extracts a decision value Ê from S in the hope that this
gives him some information about E.

The embedding algorithm may exploit knowledge about the covertext distribution. We
require, however, that the embedding function for a given covertext distribution is universal and
works for any distribution of the message E. Thus, the embedding operation takes a concrete
message as an input and must not depend on knowledge of the message distribution. This
makes the stegosystem robust in the sense that the legitimate users do not have to worry about
the adversary’s knowledge of E. Such a precaution is often made in cryptographic contexts.

An alternative, but equivalent model would be to assume that the covertext originates with
Alice herself, and not with a source external to her. Alice would use a probabilistic algorithm
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involving her private random source R for generating C. Similarly, she would produce the
stegotext without access to externally generated covertext. This formulation of the model
emphazises the fact that neither Eve nor Bob has access to the covertext source.

The above discussion assumes that Bob has an oracle that tells him if Alice is active or not.
This is a strong assumption, and we make it here in order to focus on the security properties
of a stegosystem in general. Removing it does not hurt the security of a stegosystem, since if
Bob was trying to extract an embedded message from the covertext when Alice is inactive, he
would merely obtain garbage. As shown in Example 2 below, the oracle also does not open
the way to trivial stegosystems. Later on in Example 3, we discuss a more practical class of
stegosystems, in which this assumption is not necessary, because Bob may detect the presence
of Alice’s message from redundancy in the embedded information.

Secure stegosystems. From the point of view of Eve, who does not know if Alice is active,
the two cases above look similar: she observes data that is sent from Alice to Bob over the
public channel. The data was generated either according to PC or according to PS ; these are
the two explanations that Eve has for the observation. In the following, keep in mind that we
do not assign probabilities to the events that Alice is active or not.

Definition 1. Let M denote the message received by Bob on the public channel, i.e., M = S
if Alice is active and M = C if Alice is inactive. A stegosystem consists of the components
described above that satisfy the following conditions:

1. H(S|CEKR) = 0. The stegotext is determined uniquely by Alice’s probabilistic embed-
ding algorithm from her inputs.

2. H(Ê|MK) = 0. Bob’s output is determined uniquely by the information available to him.

3. If Alice is active and H(E) > 0, then I(Ê;E) > 0. If Alice embeds a message that has
non-zero entropy, then Bob’s output carries some information about the message.

Note that condition 3 implies that a stegosystem is “useful” in the sense that Bob obtains
at least some information about E.

This model describes a stegosystem for one-time use, where Alice is always active or not.
If Alice sends multiple dependent messages to Bob and at least one of them contains hidden
information, she is considered to be active at all times and S consists of the concatenation of
all her messages.

Eve, upon observing the message sent by Alice, has to decide whether it was covertext C or
stegotext S, i.e., whether Alice is inactive or active. We quantify the security of a stegosystem
in terms of the relative entropy between PC and PS .

Definition 2. A stegosystem is called perfectly secure against passive adversaries if

D(PC‖PS) = 0.

A stegosystem is called ε-secure against passive adversaries if

D(PC‖PS) ≤ ε.
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Remarks. It would be natural to require explicitly that a perfectly secure stegosystem pro-
vides also perfect secrecy for E in the sense of Shannon [16] by demanding that S and E are
statistically independent (as for example in the definition of Mittelholzer [11]). However, this is
not necessary since we required Alice’s embedding algorithm to work for any distribution PE ,
without depending on the distribution itself. This guarantees perfect secrecy for E against Eve
as follows. Fix a covertext distribution and an embedding method. For all possible distributions
of E, the embedding process must produce S with the same distribution as C (when given no
further information). Since every concrete message value corresponds to a particular distribu-
tion of E but the distribution of S is the same for all values, S is statistically independent from
E.

Analogously, we do not impose a secrecy constraint on E for stegosystems with ε > 0. The
implications on the secrecy of E are more involved and not investigate here; however, it is
easy to construct stegosystems with perfect secrecy also in this case (see the second system in
Section 4).

Example 1. In a world where pictures are stored on paper and not transmitted digitally, sup-
pose Alice knows a “coverimage” m that she is going to mention to Bob. Eve has also seen m.
Alice and Bob determine a set M = {m0, . . . ,m|M|−1} of images that are perceptually indis-
tinguishable from m for any viewer. Alice will not send m but a randomly chosen element of
M, which defines the probability space underlying the covertext C. Eve is aware of this as well.
Furthermore, Alice and Bob share a uniformly random secret key K in Z|M|. If Alice is active,
she may embed a message E ∈ Z|M| by sending S = m(K+E) mod |M|. Bob obtains E from
M, S, and K easily. Since we assume the distribution of images sent by Alice to be uniform,
covertext and stegotext distributions are equal and this yields a perfectly secure stegosystem.

Example 2. In our definition of a stegosystem, Bob knows from an oracle if Alice is active or
not. Hence, one might be tempted to construct the following “perfect” stegosystem that exploits
this knowledge for transmitting hidden information without using a shared secret key. Consider
an embedding algorithm consisting of an ideal source encoder that manages to compress some
message E1 into stegotext S1, which consists of independent and uniformly random bits. If the
given C is a sequence of independent and uniformly random bits of the same length, the two
distributions are the same and Eve cannot distinguish a compressed message from covertext.
In this case, Bob obtains E1 without any secret key. His advantage to distinguish stegotext
from covertext stems entirely from the oracle, and one might conclude that assuming such an
oracle allows for trivial stegosystems.

However, this conclusion does not hold because the described stegosystem is not perfectly
secure. Recall that the embedding method is fixed and required to work for any message
distribution, so it must work also for some E2 with a smaller support and strictly less entropy
than E1—for instance, when Eve has partial or complete knowledge of the message. Let the
embedding of E2 result in S2. Then it is intuitively clear that the deterministic encoder will
not output enough random bits and the distributions of C and S2 will differ.

Formally, this can be seen by expanding the mutual information between the message and
the stegotext in two different ways. Since the encoder is deterministic and perfect, we have
H(S1) = H(E1) from expanding I(E1;S1). The same encoder applied to E2 also uniquely
determines S2, and therefore H(S2) = H(E2)−H(E2|S2) ≤ H(E2) from expanding I(E2;S2).
Hence, H(S2) ≤ H(E2) < H(E1) = H(S1) by the assumption on E2, which implies that the
distributions of S1 and S2 are different and contradicts the assumption that the stegosystem is
perfect.
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Average security. It is often appropriate to model an information source as an infinite
stochastic process. For example, the covertext may be generated from many independent repe-
titions of the same experiment. Although Eve observes the complete covertext sequence in our
model above, it also makes sense to consider a restricted adversary who has only access to a
small subset. This might apply in situations where the users of a stegosystem operate over a
long period of time.

Let all random variables in our model above be extended to stochastic processes and let
n denote the number of repetitions. Assume that the covertext is generated by a stationary
information source. Hence, the normalized relative entropy between the covertext and stegotext
processes determines the security in cases where Eve is restricted to see a finite part of the
covertext sequence.

Definition 3. A stegosystem for stochastic processes with stationary covertext is called per-
fectly secure on average against passive adversaries whenever

lim
n→∞

1
n
D(PC‖PS) = 0.

Analogously, a stegosystem for stochastic processes is called ε-secure on average against passive
adversaries whenever

lim
n→∞

1
n
D(PC‖PS) ≤ ε.

Notice that Alice is still either active or inactive during the entire experiment, and the
stegotext distribution will not be ergodic in general.

3 Detection Performance

This section analyzes Eve’s capabilities of detecting an embedded message. Basic bounds on her
performance are obtained from the theory of hypothesis testing. A brief review of hypothesis
testing is given first, following the presentation by Blahut [2].

3.1 Hypothesis Testing

Hypothesis testing is the task of deciding which one of two hypotheses H0 or H1 is the true
explanation for an observed measurement Q. In other words, there are two plausible probability
distributions, denoted by PQ0 and PQ1 , over the space Q of possible measurements. If H0 is
true, then Q was generated according to PQ0 , and if H1 is true, then Q was generated according
to PQ1 . A decision rule is a binary partition of Q that assigns one of the two hypotheses to each
possible measurement q ∈ Q. The two errors that can be made in a decision are called a type I
error for accepting hypothesis H1 when H0 is actually true and a type II error for accepting H0

when H1 is true. The probability of a type I error is denoted by α, the probability of a type II
error by β.

A basic property in hypothesis testing is that deterministic processing cannot increase the
relative entropy between two distributions. For any function f : Q → T , if T0 = f(Q0) and
T1 = f(Q1), then

D(PT0‖PT1) ≤ D(PQ0‖PQ1). (1)
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Let d(α, β) denote the binary relative entropy of two distributions with parameters (α, 1−α)
and (1− β, β), respectively,

d(α, β) = α log
α

1− β
+ (1− α) log

1− α
β

.

Because deciding between H0 and H1 is a special form of processing by a binary function,
the type I and type II error probabilities α and β satisfy

d(α, β) ≤ D(PQ0‖PQ1). (2)

This bound is typically used as follows: Suppose that D(PQ0‖PQ1) <∞ and that an upper
bound α∗ on the type I error probability is given. Then (2) yields a lower bound on the type II
error probability β. For example, α∗ = 0 implies that β ≥ 2−D(PQ0

‖PQ1
).

We note two properties of relative entropy that are useful in Section 5. The first one connects
entropy, relative entropy, and the size of the alphabet for any random variable X ∈ X : If PU is
the uniform distribution over X , then

H(X) +D(PX‖PU ) = log |X |. (3)

The second property states that conditioning on derived information (side information, which
has the same distribution in both cases) can only increase the discrimination: If there is a
deterministic function f : Q → V such that the random variables f(Q0) and f(Q1) have the
same distribution PV , then [2, Thm. 4.3.6]

D(PQ0‖PQ1) ≤ D(PQ0|V ‖PQ1|V ). (4)

3.2 Bounds for Secure Stegosystems

Consider Eve’s decision process for detecting a hidden message in a stegosystem as a hypothesis
testing problem. Any particular decision rule is a binary partition (C0, C1) of the set C of possible
covertexts. She decides that Alice is active if and only if the observed message c is contained in
C1. Ideally, she would always detect a hidden message. (But this occurs only if Alice chooses
an encoding such that valid covertexts and stegotexts are disjoint.) If Eve fails to detect that
she observed stegotext S, she makes a type II error; its probability is denoted by β.

The opposite error, which usually receives less attention, is the type I error: Eve decides
that Alice sent stegotext although it was a legitimate cover message C; its probability is denoted
by α. An important special case is that Eve makes no type I error and never accuses Alice of
sending hidden information when she is inactive (α = 0). Such a restriction might be imposed
on Eve by external mechanisms, justified by the desire to protect innocent users.

The deterministic processing property (1) bounds the detection performance achievable by
Eve. From (2) we obtain the following result.

Theorem 1. In a stegosystem that is ε-secure against passive adversaries, the probability β
that the adversary does not detect the presence of the embedded message and the probability α
that the adversary falsely announces the presence of an embedded message satisfy

d(α, β) ≤ ε.

In particular, if α = 0, then

β ≥ 2−ε.

In a perfectly secure system, we have D(PC‖PS) = 0 and therefore PC = PS ; thus, the
observed message does not give Eve any information about whether Alice is active or not.
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4 Secure Stegosystems

According to our model, we obtain a secure stegosystem whenever the stegotext distribution
is close to the covertext distribution for an observer with no knowledge of the secret key. The
embedding function depends crucially on the covertext distribution. We assume in this section
that the covertext distribution is known to the users Alice and Bob, and describe how secure
stegosystems can be constructed.

One-time pad. As already mentioned in the introduction, the one-time pad is a perfectly
secure stegosystem whenever the covertext consists of uniformly random bits. Assuming such
a covertext would be rather unrealistic, but in order to illustrate the model, we briefly describe
this system formally.

Example 3. Assume the covertext C is a uniformly distributed n-bit string for some positive n
and let Alice and Bob share an n-bit key K with uniform distribution. The embedding function
(if Alice is active) consists of applying bitwise XOR to the n-bit message E and K, thus
S = E ⊕ K; Bob can decode this by computing Ê = S ⊕ K. The resulting stegotext S is
uniformly distributed in the set of n-bit strings and therefore D(PC‖PS) = 0.

Using this stegosystem, we illustrate how to remove the assumption that Bob knows if Alice
is active. Let the embedded message be k < n bits long and take a binary linear code with
k information bits and block length n. Then Alice uses the message to select a codeword and
embeds it in place of E using the one-time pad stegosystem. Bob checks if the vector extracted
from the one-time pad is a codeword. If yes, he concludes that Alice is active and decodes it to
obtain the embedded message.

Incidentally, the one-time pad stegosystem is equivalent to the basic scheme of visual cryp-
tography [12]. This technique hides a monochrome picture by splitting it into two random
layers of dots. When these are superimposed, the picture appears. Using a slight modification
of the basic scheme, it is also possible to produce two innocent-looking pictures such that both
of them together reveal a hidden embedded message that is perfectly secure against an observer
who has only one picture.

General distributions. For arbitrary covertext distributions, we now describe a system
that embeds a one-bit message in the stegotext. The extension to larger message spaces is
straightforward, but might require even more detailed knowledge of the covertext distribution.
Alice constructs the embedding function from a partition of the covertext space C into two
parts such that both parts are assigned approximately the same probability under PC . In other
words, let

C0 = arg min
C′⊆C

∣∣∣∣∑
c∈C′

PC(c)−
∑
c 6∈C′

PC(c)
∣∣∣∣ and C1 = C \ C0.

Alice and Bob share a one-bit secret key K. Define C0 to be the random variable with al-
phabet C0 and distribution PC0 equal to the conditional distribution PC|C∈C0 and define C1

similarly on C1. Then Alice computes the stegotext to embed a message E ∈ {0, 1} as

S = CE⊕K .

Bob can decode the message because he knows that E = 0 if and only if S ∈ CK . Note that the
embedding provides perfect secrecy for E.
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Theorem 2. The one-bit stegosystem described above has security

1
ln 2

(
Pr[C ∈ C0]− Pr[C ∈ C1]

)2
against passive adversaries.

Proof. Let δ = Pr[C ∈ C0] − Pr[C ∈ C1]. We show only the case δ > 0. It is straightforward
but tedious to verify that

PS(c) =

{
PC(c)/(1 + δ) if c ∈ C0,
PC(c)/(1− δ) if c ∈ C1.

It follows that

D(PC‖PS) =
∑
c∈C

PC(c) log
PC(c)
PS(c)

=
∑
c∈C0

PC(c) log(1 + δ) +
∑
c∈C1

PC(c) log(1− δ)

=
1 + δ

2
· log(1 + δ) +

1− δ
2
· log(1− δ)

≤ 1 + δ

2
· δ

ln 2
+

1− δ
2
· −δ

ln 2
= δ2/ ln 2

using the fact that log(1 + x) ≤ x/ ln 2.

In general, determining the optimal embedding function from a covertext distribution is an
NP-hard combinatorial optimization problem. For instance, if we find an efficient embedding
algorithm for the above one-bit stegosystem that achieves perfect security whenever possible,
we have solved the NP-complete PARTITION problem [8], as can easily be verified.

5 Universal Stegosystems

Stegosystems of the kind described above require that the covertext distribution is known to
the users Alice and Bob. This seems not realistic for many applications. In this section, we
describe a method for obtaining a universal stegosystem where such knowledge is not needed.
The idea is that Alice and Bob exploit a covertext signal that is produced by an infinite sequence
of independent repetitions of the same experiment. Alice applies a universal data compression
scheme to compute an approximation of the covertext distribution. She then produces stegotext
with the approximate distribution of the covertext from her own randomness and embeds a
message into the stegotext using the method of the one-time pad. Eve may have complete
knowledge of the covertext distribution, but as long as she is restricted to observe only a finite
part of the covertext sequence, this stegosystem achieves perfect average security asymptotically.

There are many practical universal data compression algorithms [1], and most encoding
methods for perceptual data rely on them in some form. It is conceivable to combine them
with our universal stegosystem for embedding messages in perceptual coverdata such as audio
or video.
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The method of types. One of the fundamental concepts of information theory is the method
of types [6, 5]. It leads to simple proofs for the asymptotic equipartition property (AEP) and
many other important results. The AEP states that the set of possible outcomes of n indepen-
dent, identically distributed realizations of a random variable X can be divided into a typical
set and a non-typical set, and that the probability of the typical set approaches 1 with n→∞.
Furthermore, all typical sequences are almost equally likely and the probability of a typical
sequence is close to 2−nH(X).

Let xn be a sequence of n symbols from X . The type or empirical probability distribution
Uxn of xn is the mapping that specifies the relative proportion of occurrences of each symbol
x0 ∈ X in xn, i.e., Uxn(x0) = Nx0 (xn)

n , where Nx0(xn) is the number of times that x0 occurs in
the sequence xn. The set of types with denominator n is denoted by Un and for U ∈ Un, the
type class {xn ∈ X n : Uxn = U} is denoted by T (U).

The following standard result [6, 3] summarizes the basic properties of types.

Lemma 3. Let Xn = X1, . . . , Xn be a sequence of n independent and identically distributed
random variables with distribution PX and alphabet X and let Un be the set of types. Then

1. The number of types with denominator n is at most polynomial in n, more particularly
|Un| ≤ (n+ 1)|X |.

2. The probability of a sequence xn depends only on its type and is given by PXn(xn) =
2−n(H(Uxn )+D(Uxn‖PX)).

3. For any U ∈ Un, the size of the type class T (U) is on the order of 2nH(U). More precisely,
1

(n+1)|X|
2nH(U) ≤ |T (U)| ≤ 2nH(U).

4. For any U ∈ Un, the probability of the type class T (U) is approximately 2−nD(U‖PX). More
precisely, 1

(n+1)|X|
2−nD(U‖PX) ≤ Pr[Xn ∈ T (U)] ≤ 2−nD(U‖PX).

A universal data compression scheme. A universal coding scheme (E ,D) for a memoryless
source X works as follows. Fix a rate ρ < log |X | and let ρn = ρ − |X | log(n+1)

n . Define a set
of sequences An = {xn ∈ X n : H(Uxn) ≤ ρn}. The block code is given by an enumeration
A = {1, . . . , |A|} of the elements of An. The encoder E maps a sequence Xn to a codeword in A
if the entropy of the type of Xn does not exceed ρn and to a default value ∆ otherwise. Let
Z denote the output of E . Given a value S ∈ A ∪ {∆}, the decoder D returns the appropriate
sequence in An if S 6= ∆ or a default sequence xn0 otherwise.

Using Lemma 3, it is easy to show that |An| ≤ 2nρ and therefore dnρe bits are sufficient
to encode all xn ∈ An [6, 3]. Moreover, if H(X) < ρ then values outside An occur only with
exponentially small probability and the error probability p(n)

e = PZ(∆) satisfies

p(n)
e ≤ (n+ 1)|X |2−nminU :H(U)>ρn D(U‖PX). (5)

The following observation is needed below. Write

H(Xn) = H(XnZ) (6)
= PZ(∆)H(XnZ|Z = ∆) +

(
1− PZ(∆)

)
H(XnZ|Z 6= ∆) (7)

≤ PZ(∆)H(Xn) +
(
1− PZ(∆)

)(
H(Z|Z 6= ∆) +H(Xn|Z,Z 6= ∆)

)
(8)

≤ PZ(∆)H(Xn) +H(Z|Z 6= ∆), (9)
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where (6) follows because Z is determined uniquely by Xn, (7) follows from rewriting, (8) holds
because Z is uniquely determined by Xn and by rewriting, and (9) follows because codewords
Z 6= ∆ can be decoded uniquely. Rewriting this as

H(Z|Z 6= ∆) ≥ nH(X)
(
1− p(n)

e

)
, (10)

we see that the codeword Z carries almost all information of Xn.

A universal stegosystem. Suppose the covertext, which is given as input to Alice, consists
of n independent realizations of a random variable X. Our universal stegosystem applies the
above data compression scheme to the covertext. If Alice is active, she generates stegotext
containing hidden information using the derived encoder and her private random source.

More precisely, given ρ > H(X) and n, Alice first maps the incoming covertext Xn to its
encoding Z = E(Xn). W.l.o.g. assume the output of the encoder is a binary m-bit string for
m = dlog |A|e (or the special symbol ∆) and the shared key K is a uniformly random `-bit
string with ` ≤ m; furthermore, let the message E to be embedded be an `-bit string and let
Alice’s random source R generate uniformly random (m− `)-bit strings.

If Alice’s encoder outputs Z = ∆, she sends S = Xn and no message is embedded. Other-
wise, she computes the m-bit string

T = (E ⊕K)‖R,

where ‖ denotes the concatenation of bit strings, and sends S = D(T ).
Bob extracts the embedded message from the received stegotext S as follows. If E(S) = ∆,

he declares a transmission failure and outputs a default value. Otherwise, he outputs

Ê = E(S)[1,...,`] ⊕K,

where Z[1,...,`] stands for the prefix of length ` of a binary string Z.
Note that this stegosystem relies on Alice’s private random source in a crucial way.

Theorem 4. Let the covertext consist of a sequence (X1, . . . , Xn) of n independently repeated
random variables with the same distribution PX for n → ∞. Then given any ε > 0, the
algorithm above implements a universal stegosystem that is ε-secure on average against passive
adversaries and hides an `-bit message with ` ≤ nH(X), for n sufficiently large.

Proof. The first two conditions of a stegosystem are satisfied because the embedding and ex-
traction algorithms are deterministic. For condition 3, it is easy to see from the given universal
data compression scheme (E ,D) that

Ê = E(S)[1,...,`] ⊕K = E(D(T ))[1,...,`] ⊕K = T[1,...,`] ⊕K = E

whenever E(S) 6= ∆, which happens with overwhelming probability as shown below. It remains
to show that the stegosystem is ε-secure on average.

Let ρ = H(X) + ε/2. Then

m = dnρe ≤
⌈
nH(X) + nε/2

⌉
. (11)

Define a binary random variable V as follows:

V =

{
0 if Z 6= ∆,
1 if Z = ∆.
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We bound the relative entropy between covertext and stegotext as

D(PC‖PS) ≤ D(PC|V ‖PS|V ) (12)
= PV (0)D(PC|V=0‖PS|V=0) + PV (1)D(PC|V=1‖PS|V=1) (13)
≤ D(PC|V=0‖PS|V=0) (14)
≤ D(PZ|V=0‖PT ) (15)
= m−H(Z|V = 0), (16)

where (12) follows from the property (4) of relative entropy about conditioning on derived
information and (13) from the definition of conditional relative entropy. The second term in (13)
vanishes because the covertext and stegotext distributions are the same whenever V = 1, and
PV (0) ≤ 1, hence we obtain (14). Because C and S in the case V = 0 are obtained from Z and
T by deterministic processing, (15) follows from (1). Since T is uniformly distributed, the next
step (16) follows using (3).

Using the fact that the events V = 0 and Z 6= ∆ are the same, insert (10) and (11) into (16)
to obtain

1
n
D(PC‖PS) ≤ 1

n

(⌈
nH(X) + nε/2

⌉
− nH(X)

(
1− p(n)

e

))
≤ 1

n

(
p(n)
e nH(X) + nε/2 + 1

)
= p(n)

e H(X) + ε/2 +
1
n
.

Since ρn approaches ρ from below and ρ > H(X), it follows that for all sufficiently large n, also
ρn > H(X) and the value minU :H(U)>ρn D(U‖PX) in the exponent in (5) is strictly positive.
This implies that the last expression is smaller than ε for all sufficiently large n and that the
stegosystem is indeed ε-secure on average.

6 Discussion

The approach of this paper is to view steganography with a passive adversary as a problem of
hypothesis testing because the adversary succeeds if he merely detects the presence of hidden
information.

Other information-theoretic models for information hiding and steganography in the litera-
ture take a slightly different view:

• Zöllner et al. [18] recognize that breaking a steganographic system means detecting the use
of steganography to embed a message. However, they formally require only that knowledge
of the stegotext does not decrease the uncertainty about an embedded message, analogous
to Shannon’s notion of perfect secrecy for cryptosystems.

• Mittelholzer [11] considers steganography (with a passive adversary) and watermarking
(with an active adversary). A stegosystem is required to provide perfect secrecy for the
embedded message in sense of Shannon, and an encoder constraint is imposed in terms of
a distortion measure between covertext and stegotext. The expected mean squared error
is proposed as a possible distortion measure.

Although these conditions may be necessary, they are not sufficient to guarantee unde-
tectable communication, as can be seen from the following insecure stegosystem.
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Example 4. Let the covertext consist of an m-bit string with even parity that is otherwise
uniformly random (m ≥ 2). Let a ciphertext bit be computed as the XOR of a one-bit message
and a one-bit random secret key; this is a random bit. Then the first bit of the covertext is
replaced by the ciphertext bit and the last bit is adjusted such that the parity of the resulting
stegotext is odd.

Clearly, the scheme provides perfect secrecy for the message. The squared error distortion
between covertext and stegotext is 1/m and vanishes as m→∞. Yet, an adversary can easily
detect the presence of an embedded message with certainty. In the sense of Definition 2, such
a scheme is completely insecure since the discrimination is infinite.

Simmons’ original formulation of the prisoners’ problem includes explicit authentication,
that is, the secret key K shared by Alice and Bob is partially used for authenticating Alice’s
messages. The reason for this is that Alice and Bob want to protect themselves from the
adversary and from malicious couriers (and they are allowed to do so), which may give rise to a
subliminal channel in the authentication scheme. It would be interesting to extend our model
for this scenario.

Another direction would be to model steganography with the security notions of modern
cryptography [9], and to define a secure stegosystem such that the stegotext is computationally
(or statistically) indistinguishable from the covertext.
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