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Abstract

Byzantine agreement requires a set of parties in a distributed system to agree on a value
even if some parties are corrupted. A new protocol for Byzantine agreement in a completely
asynchronous network is presented that makes use of cryptography, specifically of threshold
signatures and coin-tossing protocols. These cryptographic protocols have practical and
provably secure implementations in the “random oracle” model. In particular, a coin-tossing
protocol based on the Diffie-Hellman problem is presented and analyzed.

The resulting asynchronous Byzantine agreement protocol is both practical and theoret-
ically nearly optimal because it tolerates the maximum number of corrupted parties, runs
in constant expected time, has message and communication complexity close to the opti-
mum, and uses a trusted dealer only in a setup phase, after which it can process a virtually
unlimited number of transactions.

The protocol is formulated as a transaction processing service in a cryptographic security
model, which differs from the standard information-theoretic formalization and may be of
independent interest.

Keywords: Asynchronous Consensus, Byzantine Faults, Threshold Signatures, Crypto-
graphic Common Coin, Dual-Threshold Schemes.

1 Introduction

The (binary) Byzantine agreement problem is one of the fundamental problems in distributed
fault-tolerant computing. In this problem, there are n communicating parties, at most t of
which are corrupted. The goal is that all honest (i.e., uncorrupted) parties agree on one of two
values that was proposed by an honest party, despite the malicious behavior of the corrupted
parties. This problem has been studied under various assumptions regarding the synchrony of
the network, the privacy of the communication channels, and the computational power of the
corrupted parties.

1A preliminary version of this work was presented at the 19th ACM Symposium on Principles of Distributed
Computing (PODC), Portland, Oregon, July 2000, and an extended abstract appears in the proceedings.
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In this paper, we work exclusively in an asynchronous environment with computationally
bounded parties; our motivation for this is a secure distributed system connected by the Internet.

Fischer, Lynch, and Paterson (FLP) [23] have shown that no deterministic protocol can
guarantee agreement even against benign failures in the asynchronous setting. Rabin [32] and
Ben-Or [6] were the first to present protocols that overcome this limitation by using random-
ization. They assume a common coin, a random source observable by all participants but
unpredictable for an adversary; this abstraction is used in most subsequent protocols for the
asynchronous model.

Our main contributions are an agreement protocol and a common coin protocol that employ
modern cryptographic techniques to a far greater extent than has been done previously in the
literature. The basic cryptographic primitives used are a non-interactive threshold signature
scheme and a novel threshold, random-access coin-tossing scheme. We use dual-threshold vari-
ants of both primitives. They can be efficiently implemented and proved secure under standard
intractability assumptions in the random oracle model; in this model, one treats a cryptographic
hash function as if it were a black box containing a random function.

Taken together, we obtain a new protocol for Byzantine agreement that is both practical
and theoretically nearly optimal with respect to the known lower bounds because

• it withstands the maximum number of corrupted parties: t < n/3;

• it runs in constant expected time;

• the expected number of messages is O(n2);

• each message is roughly the size of one or two RSA signatures (with the RSA threshold
signature scheme of Shoup [38]);

• it uses a trusted dealer only in a setup phase, after which it can process a virtually
unlimited number of transactions.

This last point deserves further elaboration. The initial setup phase of our scheme requires
a trusted dealer to distribute certain cryptographic keys. Once in place, however, our scheme
provides a transaction processing service that can handle a virtually unlimited number of re-
quests as generated by clients. Moreover, transactions can be processed concurrently, i.e., a new
instance of the agreement protocol can start as soon as a new transaction request is generated
by a client, even if there are extant instances of the protocol for other transactions. This is a
non-trivial but important feature for any cryptographic protocol because it rules out so-called
interleaving attacks.

1.1 Techniques

Our protocol uses non-interactive threshold signatures and a random-access coin-tossing scheme
from cryptography; these have efficient implementations in the random oracle model.

The random oracle model was first used in a rather informal way by Fiat and Shamir [22]; it
was first formalized and used in other contexts by Bellare and Rogaway [4] and has since been
used to analyze a number of practical cryptographic protocols. Of course, it would be better
not to rely on random oracles, as they are essentially a heuristic device; nevertheless, random
oracles are a useful tool—they allow us to design truly practical protocols that admit a security
analysis, which yields very strong evidence for their security. As far as we know, our work is
the first of its kind to apply the random oracle model to the Byzantine agreement problem.
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The notion of a threshold signature scheme was introduced by Desmedt, Frankel and oth-
ers [17, 18, 8, 16] and has been widely studied since then (T. Rabin [33] provides new results and
a survey of recent literature). It is a protocol for n parties tolerating up to t corruptions, where
each party holds a share of the signing key and k cooperating parties together can generate
a signature. In a non-interactive threshold signature scheme, each party outputs a signature
share upon request and there is an algorithm to combine k valid signature shares to consti-
tute a valid signature. Such non-interactive combination is used in our agreement protocol: a
party can justify its vote for a particular value by a single threshold signature generated from
k signature shares. This saves a factor n in terms of bit complexity.

One of the technical contributions of this paper is the notion of a dual-threshold signature
scheme, meaning that k is allowed to be higher than t + 1. This is in contrast to all previous
work on threshold signatures in the literature where k = t + 1. A companion paper [38]
presents a practical dual-threshold signature scheme that is secure in the random oracle model
under standard intractability assumptions. The signatures created by this scheme are ordinary
RSA signatures. Moreover, the scheme is completely non-interactive, an individual share of a
signature is not much greater than an ordinary RSA signature, and even for k = t+ 1, it is the
first rigorously analyzed non-interactive threshold signature scheme with small shares.

Coin-tossing schemes are used in one form or another in essentially all solutions to the asyn-
chronous Byzantine agreement problem. Many schemes, following Rabin’s pioneering work [32],
assume that coins are predistributed (and possibly signed) by a dealer using secret-sharing [35].
This approach has two problems: first, the coins will eventually be exhausted; second, parties
must somehow associate coins with transactions, which itself represents an agreement problem.
Because of these problems, protocols that rely on a “Rabin dealer” are not really suitable for
use as a transaction processing service as described here. The same applies to the coin-tossing
scheme of Beaver and So [2], which essentially gives parties sequential access to a bounded
number of coins. A “Rabin dealer” has been used in other contexts as well, e.g., for threshold
decryption [11]. Our protocol also requires a dealer for the initial setup, but yields an arbitrary
polynomial number of coins afterwards.

The beautiful work of Canetti and T. Rabin [12] presents a coin-tossing scheme that allows
common coins to be generated entirely “from scratch,” building on the work of Feldman and
Micali for the synchronous model [21]. Unfortunately, this scheme, while polynomial time, is
completely impractical.

Our approach to coin-tossing is to use a random-access coin-tossing scheme—essentially a
distributed function mapping the “name” of a coin to its value. Such coin-tossing schemes have
been studied before [29, 30]. We also define the notion of a dual-threshold coin-tossing scheme,
which is convenient and does lead to lower communication complexity, but is not absolutely
necessarily. One could easily implement such a coin from the non-interactive threshold signature
scheme of Shoup [38]; however, we present a dual-threshold coin-tossing scheme that is based
on the Diffie-Hellman problem, the analysis of which may be interesting in its own right. This
scheme is essentially the same as the one of Naor et al. [30], but our analysis is more refined:
first, for the single-parameter setting, we need a weaker intractability assumption, and second,
we provide an analysis of the scheme in the dual-threshold setting, which is not considered by
Naor et al.

We stress that such dual-parameter threshold schemes provide stronger security guarantees
than single-parameter threshold schemes, and they are in fact more challenging to construct
and to analyze. Our notion of a dual-threshold scheme should not be confused with a weaker
notion that sometimes appears in the literature (e.g., [29]). For this weaker notion, there is
a parameter l > t such that the reconstruction algorithm requires l shares, but the security
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guarantee for a given signature/coin is lost if just a single honest party reveals a share. In our
notion, no security is lost unless k − t honest parties reveal their shares.

1.2 Related Work

The problem of asynchronous Byzantine agreement has a long history—see the survey of the
early Byzantine era by Chor and Dwork [15] and the more recent account by Berman and
Garay [7]. A fundamental result in this area is the impossibility result of Fischer, Lynch,
and Paterson [23] that rules out the existence of a deterministic protocol. The protocols of
Rabin [32] and Ben-Or [6] are the first probabilistic protocols to overcome this limitation.
Bracha’s protocol improves the resilience to the maximum t < n/3 [9].

We shall compare our protocol to others in the literature on several criteria. For these
purposes, it is sufficient to consider the protocols of Bracha [9], Toueg [40], Berman and Garay
(BG) [7], and Canetti and Rabin (CR) [12] (see [10] for details). The protocols of Toueg [40]
and BG [7] can be seen as descendants of Rabin’s pioneering work [32], whereas Bracha [9] and
CR [12] can be viewed as descendants of Ben-Or’s initial randomized algorithm [6]; CR [12]
also builds on ideas of Feldman and Micali [21] and Bracha [9].

These protocols vary in a number of aspects:

Resilience: how many parties may be corrupted. The theoretical maximum is t < n/3, which
is attained by our protocol, as well as the protocols of Toueg [40], Bracha [9], and CR [12].
The BG protocol [7] handles t < n/5.

Time Complexity: the (expected) number of basic steps before a decision is reached. Our
protocol, like those of Toueg [40], Bracha [12], and BG [7], has complexity O(1). The
protocol of Bracha [9] takes exponential time when t = Θ(n) and expected constant time
if t = O(

√
n).

Message Complexity: the (expected) number of messages sent during the protocol. Our
protocol has a message complexity of O(n2). All the other protocols in the literature
with an O(n2) bound, such as BG [7], do not achieve optimal resilience; the protocol of
Toueg [40] has a message complexity of O(n3), and the CR protocol [12] has a message
complexity that is completely impractical (although polynomial in n), which renders it to
be of theoretical interest only.

Bit Complexity: the (expected) total bit-length of messages during the protocol. Our proto-
col has a bit complexity of O(n2l), where l is the length of an RSA signature; the protocol
of BG [7] has a bit complexity of O(n2l′), where l′ is the length of a message authentica-
tion code (typically significantly less than the size of an RSA signature); in practice, the
difference between l and l′ is probably irrelevant, as in both cases, all messages easily fit
into a single IP packet.

Computational Complexity: the (expected) amount of computation that must be done lo-
cally by each party. Most papers on this subject do not make very careful estimates of
computational complexity; however, a useful distinction can be made between protocols,
like ours and Toueg’s [40], that use (typically expensive) public-key cryptography, and
those that do not [9], [7], [12].

Dealer: the degree to which a single trusted “dealer” is involved. Possible models are

no dealer: No dealer is needed [9], [12].
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system setup dealer: A dealer is needed to set up the initial states of parties, but
after this, an effectively unlimited number of transactions may be processed. Our
protocol is of this type; depending on how secure channels are implemented, many
other protocols in the literature may implicitly fall in this category as well.

Rabin dealer: Each transaction requires data that was pre-distributed by the dealer
among the parties [7] [40]. All of this data must be stored by each processor and this
pre-distributed data will be exhausted eventually. Moreover, the parties must agree
on which data to use for a given transaction. These drawbacks render such protocols
unsuitable for many applications that require a transaction processing service.

Computation Model: the computational power of the adversary. It can be

bounded: The adversary is constrained to perform only polynomial-time computations
and one must make specific assumptions about the intractability of certain problems.
This is our model, as well as the (implicit) model of Toueg [40].

unbounded: The adversary is computationally unlimited. In this case, one must explic-
itly assume that channels are secure (authenticated, and perhaps private), since they
cannot be secured by cryptography [9], [7], [12].

Corruption Model: how the adversary decides to corrupt parties. This can be

static: The adversary’s choice of who to corrupt is independent of the network traffic.
This is our model.

adaptive: The adversary chooses who to corrupt adaptively, based upon the network
traffic so far and the internal states of previously corrupted parties. This is the
model of CR [12], and is also implicit in the others [9], [40], [7].

Many authors like to classify agreement protocols based on whether they use digital sig-
natures or not. We do not see this distinction as a fundamental one, although the use of
signatures definitely impacts the computation model, and can also affect the computational
and bit complexity.

There is also a line of research which attempts to avoid the use of probabilistic protocols,
despite FLP [23]. For example, Reiter [34], adapts the approach of “failure detectors” [13, 41]
used in the asynchronous crash-failure model to the asynchronous Byzantine setting. Reiter
presents a protocol for atomic broadcast, from which a Byzantine agreement protocol can be
constructed (see [19]). However, as Reiter’s protocol is deterministic, the FLP result implies
that it can not solve the Byzantine agreement problem. In fact, Reiter’s protocol ensures
correctness only as long as the network is suitably well behaved—it is easily defeated by an
adversary that completely controls network scheduling. Indeed, it has been recognized that
extending the modular failure detector approach to the Byzantine model is difficult (e.g., [20]).

Reiter’s work [34], and related work, seems to be motivated by the fact that probabilistic
agreement protocols have a reputation for being impractical. However, it is not at all clear if
this reputation is well justified—we know of no empirical, comparative studies in the literature.
Much of the confusion arises because almost all of the work on probabilistic protocols has
been done by researchers who have been more interested in theoretically attractive, rather than
practical results. Their ground rules might not even consider our use of random oracles in the
protocol analysis as legal.

From an efficiency point of view, the strongest criticism of our new protocol is its use of
somewhat expensive public-key cryptography. However, even this can be avoided using an
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“optimistic” approach that uses public-key cryptography only as a “fall back” mechanism when
some parties crash or misbehave, or the network is temporarily slower than expected. Such
an approach, developed in a companion paper [26], seems an attractive alternative to failure
detectors.

1.3 Motivation

Malicious attacks are increasingly common on the Internet. Despite the growing reliance of
industry and government on electronic forms of conducting business, system failures resulting
from attacks or software errors are reported almost daily. Fault-tolerant distributed systems
have long been recognized as a possible solution, but only few of the many theoretical solutions
are applicable to the Internet setting. For one thing, synchronization is difficult to guarantee
on the Internet and one must therefore work in an asynchronous model. Another difficulty is
that one faces potentially malicious adversaries, who seem to get some benefit from disrupting
or, even more so, from subverting a service. This motivates the choice of the Byzantine failure
model as the only one that can guarantee service integrity under clearly defined assumptions
that include malicious attacks.

Our initial motivation for studying this problem was to design a distributed trusted third-
party service to be used in the fair exchange and contract signing protocols presented by Asokan,
Shoup, and Waidner [1]. In that setting, the trusted third party must make a decision to either
“abort” or “resolve” a transaction at the request of one of the parties involved in the exchange.
If one distributes the service so as to weaken the necessary trust assumption, a Byzantine
agreement problem has to be solved. As attacks may very well involve the administrators
of the computing systems implementing the distributed service, the service should consist of
independently administered and geographically distributed computing systems.

The trusted third-party service is a prime application for the method of increasing the
security guarantees of a service by fault-tolerant computation; we believe that this will become
an important paradigm for secure Internet applications.

1.4 Organization

In §2 we introduce our asynchronous system model using cryptography. §3 contains the def-
inition of Byzantine agreement and §4 introduces the cryptographic primitives of threshold
signatures and coin-tossing protocols. The agreement protocol based on these primitives is
presented in §5 and our coin-tossing protocol is given in §6.

2 Basic System Model

In this section, we describe our basic system model for an arbitrary multi-party protocol where a
number of parties communicate over an insecure, asynchronous network, and where an adversary
may corrupt some of the parties. Our point of view is computational : all parties and the
adversary are constrained to perform only feasible computations. This differs substantially
from the traditional secure channels model in distributed computing, but is necessary and
also appropriate for the cryptographic setting (cf. [5, 3, 37]). Although authentication and
digital signatures have been used before in agreement protocols, there seem to be no adequate
cryptographic formal models [28, p. 115].

There are n parties, P1, . . . , Pn, an adversary that is allowed to corrupt up to t of them,
and a trusted “dealer.”
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We adopt the static corruption model, wherein the adversary must decide whom to corrupt
at the very outset of the execution of the system. Let f , with 0 ≤ f ≤ t, denote the number of
parties the adversary actually corrupts. These corrupted parties are simply absorbed into the
adversary: we do not regard them as system components.

Alternatively, one could adopt the adaptive corruption model, wherein the adversary can
adaptively choose whom to corrupt as the attack is ongoing, based on information it has ac-
cumulated so far. We do not adopt this model, mainly because we would no longer know how
to obtain the practical, provably secure implementations of the necessary cryptographic prim-
itives. Moreover, the static corruption model is not too unrealistic; in practice, the choice of
whom to corrupt is usually based on factors totally independent of the network traffic (e.g.,
which system administrator is not careful, or can perhaps be bribed or blackmailed).

There is an initial setup phase, in which the trusted dealer generates the initial state for
all n parties. The adversary obtains the initial state of the corrupted parties, but obtains no
information about the initial state given to the honest parties.

Our network is insecure and asynchronous, i.e., the adversary has complete control of the
network: he may schedule the delivery of messages as he wishes, and may modify or insert
messages as he wishes. As such, the network is merely absorbed into the adversary in our formal
model. The honest parties are completely passive: they simply react to requests made by the
adversary and maintain their internal state between requests. More precisely, after the initial
setup phase, the adversary performs a number of basic steps. One basic step works as follows:
the adversary delivers a message to an honest party Pi; then Pi updates its internal state, and
computes a set of response messages; these messages are then given to the adversary. These
response messages perhaps indicate to whom these messages should be sent, and the adversary
may choose to deliver these messages faithfully at some time. In general, the adversary chooses
to deliver any messages it wants, or no messages at all; we may sometimes impose additional
restrictions on the adversary’s behavior, however.

Of course, the computations made by the honest parties, the adversary, and the dealer
should all be representable as probabilistic, polynomial-time computations. To be completely
formal, we would have to introduce a security parameter, and all the computations would be
bounded by a polynomial in this security parameter. In particular, the parameter n and the
number of basic steps performed by the adversary are polynomially bounded in the security
parameter.

The dealing algorithm and the algorithm executed locally by each Pi to compute its new
state and response messages are specific to the particular protocol. The dealing algorithm is
given the security parameter, as well as n and t as input. Note that the adversary chooses n
and t, but a specific protocol might impose its own restrictions (e.g., t < n/3). We can assume
that the dealer includes these values, as well as the index i, in the initial state of Pi.

3 Definition of Byzantine Agreement

We now define the operation and requirements of a Byzantine agreement protocol, in the context
of our basic system model described in the previous section. There are n parties, P1, . . . , Pn,
and the adversary may corrupt some number f of them, where f ≤ t.

As mentioned in the introduction, we want an agreement protocol that can be used to
implement a transaction processing service. To this end, we assume that each decision to be
made is associated with a unique transaction identifier TID . The value TID is an arbitrary bit
string whose structure and meaning are determined by a particular application. In our formal
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model, it is simply chosen by the adversary.
The adversary may deliver a message to Pi of the form

(TID , activate, initial value),

where initial value is in {0, 1}. When the adversary has delivered such a message, we say that
Pi is activated on TID with the given initial value. After activating Pi on TID , the adversary
may then deliver messages to Pi of the form

(TID , j, i, . . . ),

where 1 ≤ j ≤ n denotes the index of the sender.
Upon receiving a message involving TID , Pi updates its internal state, and generates a set

(possibly empty) of response messages. Each of this messages is either of the form

(TID , i, j, . . . ),

where 1 ≤ j ≤ n denotes the index of the recipient, or

(TID , decide,final value),

where final value ∈ {0, 1}. In the latter case, we say that Pi decides final value for TID . We
require that Pi makes a decision for a given TID at most once. However, the adversary may
continue to deliver messages involving TID after Pi has made a decision for TID .

For simplicity, we shall assume that messages are authenticated, which means that we restrict
the adversary’s behavior as follows: if Pi and Pj are honest, and the adversary delivers a message
M of the form (TID , i, j, . . . ) to Pj , then the message M must have been generated by Pi at
some prior point in time. It is reasonable to build authentication into our model because it can
be implemented very cheaply using standard symmetric-key cryptographic techniques.

The three basic properties that an agreement protocol must satisfy are agreement, termina-
tion, and validity.

Agreement. Any two honest parties that decide a value for a particular TID must decide
the same value. More precisely, it is computationally infeasible for an adversary to make two
honest parties decide on different values.

Termination. The traditional approach in the distributed computing literature is to assume
that all messages between honest parties are “eventually” delivered, and then to define the
termination condition to be that all honest parties “eventually” decide (with probability 1). In
formalizing these definitions, one considers infinite runs of a protocol; however, in the compu-
tationally bounded setting, this simply does not work.

We present here a workable definition in our setting that captures the intuition that to the
extent the adversary delivers messages among honest parties, the honest parties quickly decide.
Although the intuition is fairly clear, one has to be careful with the details. For us, termination
consists of two conditions: deadlock freeness and fast convergence.

Deadlock freeness. It is infeasible for the adversary to create a situation where for some TID
there are some honest parties who are not decided, yet all honest parties have been
activated on TID , and all messages relating to this TID generated by honest parties have
been delivered.

8



Fast Convergence. For s = 1, 2, . . . , let TIDs denote the sth transaction identifier introduced
by the adversary, and define Xs to be the total number of messages generated by all
honest parties that relate to TIDs. Then there exist fixed polynomials B and C in n and
in the security parameter such that for all s ≥ 1 and m ≥ 1,

Pr[Xs ≥ mB + C] ≤ 2−m + ε,

where ε is a function that is negligible in the security parameter (i.e., it vanishes faster
than any polynomial in the security parameter). Note that while ε may depend on the
adversary, the polynomials B and C depend only on the agreement protocol, and are
independent of the adversary.

The deadlock freeness property rules out trivial protocols that never decide and never gen-
erate any messages to be delivered. The fast convergence property ensures timely convergence,
provided the adversary delivers messages; also, the fact that B and C are independent of the ad-
versary rules out trivial protocols that never decide but always generate “make work” messages
to be delivered.

Our definition of termination implies that an adversary could quickly make all honest parties
make a decision on a given TID (with probability exponentially close to 1) by delivering a (fixed)
polynomially bounded number of messages; however, we do not force the adversary to do so—see
[10] for a definition more along these lines.

Validity. If all honest parties are activated on a given TID with the same initial value, then
any honest party that decides must decide this value.

This is the usual definition of validity in the literature. A weaker notion of validity may
sometimes be more appropriate for particular applications. For instance, initial values may
come with validating data (e.g., a digital signature) that establishes the “validity” of a value in
a particular context. One could then simply require that an honest party may only decide on a
value for which it has the accompanying validating data—even if all honest parties start with
0, they may still decide on 1 if they obtain the corresponding validating data for 1 during the
agreement protocol.

4 Cryptographic Primitives

4.1 Digital Signatures

A digital signature scheme [25] consists of a key generation algorithm, a signing algorithm, and
a verification algorithm. The key generation algorithm takes as input a security parameter, and
outputs a public key/private key pair (PK,SK). The signing algorithm takes as input SK and
a message M , and produces a signature σ. The verification algorithm takes PK, a message M ,
and a putative signature σ, and outputs either accept or reject. A signature is considered
valid if and only if the verification algorithm accepts. All signatures produced by the signing
algorithm must be valid.

The basic security property is unforgeability. The attack scenario is as follows. An adversary
is given the public key, and then requests the signatures on a number of messages, where the
messages themselves may depend on previously obtained signatures. If at the end of the attack,
the adversary can output a message M and a valid signature σ on M , such that M was not
one of the messages whose signature he requested, then the adversary has successfully forged
a signature. Security means that it is computationally infeasible for an adversary to forge a
signature.
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4.2 Threshold Signatures

In this section, we define the notion of an (n, k, t) dual-threshold signature scheme. The basic
idea is that there are n parties, up to t of which may be corrupted. The parties hold shares
of the secret key of a signature scheme, and may generate shares of signatures on individual
messages—k signature shares are both necessary and sufficient to construct a signature. The
only requirement on k is that t < k ≤ n − t. As mentioned in the introduction, previous
investigations into threshold signatures have only considered the case k = t+ 1. Also, we shall
require that the generation and verification of signature shares is completely non-interactive—
this is essential in the application of asynchronous Byzantine agreement.

A threshold signature scheme is a multi-party protocol, and we shall work in our basic
system model for such protocols (see §2).

The Action. The dealer generates a public key PK along with secret key shares SK1, . . . ,SKn,
a global verification key VK, and local verification keys VK1, . . . ,VKn. The initial state in-
formation for party Pi consists of the secret key SKi along with the public key and all the
verification keys.

After the dealing phase, the adversary submits signing requests to the honest parties for
messages of his choice. Upon such a request, party Pi computes a signature share for the given
message using SKi.

Combining Signature Shares. The threshold signature scheme also specifies three algo-
rithms: a signature verification algorithm, a share verification algorithm, and a share combining
algorithm.

• The signature verification algorithm takes as input a message and a signature (generated
by the share-combining algorithm), along with the public key, and determines if the
signature is valid.

• The share verification algorithm takes as input a message, a signature share on that
message from a party Pi, along with PK, VK, and VKi, and determines if the signature
share is valid.

• The share combining algorithm takes as input a message and k valid signature shares on
the message, along with the public key and (perhaps) the verification keys, and (hopefully)
outputs a valid signature on the message.

Security Requirements. The two basic security requirements are robustness and non-
forgeability.

Robustness. If it computationally infeasible for an adversary to produce k valid signature
shares such that the output of the share combining algorithm is not a valid signature.

Non-forgeability. It is computationally infeasible for the adversary to output a valid signa-
ture on a message that was submitted as a signing request to less than k − t honest parties.
Note that if the adversary actually corrupts f < t parties, the relevant threshold is still k − t
and not k − f .

Implementation. Note that our definition of a threshold signature scheme admits the trivial
implementation of just using a set of k ordinary signatures. For relatively small values of n,
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this may very well be a perfectly adequate implementation. (Such a scheme cannot be used to
implement the coin-tossing scheme, however.)

The scheme of Shoup [38] is well suited to our purposes and is much more efficient than the
above trivial implementation when n gets large. Each signature share is essentially the size of an
RSA signature, and shares can be quite efficiently combined to obtain a completely standard
RSA signature. The signature shares come with “proofs of correctness.” These correctness
proofs are not much bigger than RSA signatures; however, in an efficient implementation, one
would most likely omit these proofs (and their verification), and only provide them if they are
explicitly requested, presumably by a party whose share combination algorithm has failed to
produce a correct signature.

4.3 Threshold Coin-Tossing Scheme

In this section, we define the notion of an (n, k, t) dual-threshold coin-tossing scheme. The basic
idea is that there are n parties, up to t of which may be corrupted. The parties hold shares of
an unpredictable function F mapping the name C (which is an arbitrary bit string) of a coin
to its value F (C) ∈ {0, 1}. The parties may generate shares of a coin—k coin shares are both
necessary and sufficient to construct the value of the particular coin. The only requirement on
k is that t < k ≤ n − t, analogous to threshold signatures. The generation and verification of
coin shares are completely non-interactive; we work in the basic system model of §2.

The Action. The dealer generates secret key shares SK1, . . . ,SKn, and verification keys
VK,VK1, . . . ,VKn. The initial state information for party Pi consists of the secret key SKi

along with all the verification keys. The secret keys implicitly define a function F mapping
names to {0, 1}.

After the dealing phase, the adversary submits reveal requests to the honest parties for coins
of his choice. Upon such a request, party Pi outputs a coin share for the given coin, which it
computes using SKi.

Combining Coin Shares. The coin-tossing scheme also specifies two algorithms: a share
verification algorithm, and a share combining algorithm.

• The share verification algorithm takes as input the name of a coin, a share on this coin
from a party Pi, along with VK and VKi, and determines if the coin share is valid.

• The share combining algorithm takes as input a the name C of a coin and k valid shares
of C, along with (perhaps) the verification keys, and (hopefully) outputs F (C).

Security Requirements. The two basic security requirements are robustness and unpre-
dictability.

Robustness. It is computationally infeasible for an adversary to produce a name C and k
valid shares of C such that the output of the share combining algorithm is not F (C).

Unpredictability. An adversary’s advantage in the following game is negligible. The adver-
sary interacts with the honest parties as above, and at the end of this interaction, he outputs
a name C that was submitted as a reveal request to fewer than k − t honest parties, and a bit
b ∈ {0, 1}. The adversary’s advantage in this game is defined to be the distance from 1/2 of
the probability that F (C) = b. Note that if the adversary actually corrupts f < t parties, the
relevant threshold is still k − t and not k − f .
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Unpredictability for Sequences of Coins. The unpredictability property above implies
the following more general unpredictability property that we actually need in order to analyze
agreement protocols.

Consider an adversary A that interacts with the honest parties as above, but as it interacts,
it makes a sequence of predictions, predicting bi ∈ {0, 1} as the value of coin Ci for i = 1, . . . , q
for some q. A’s predictions are interleaved with reveal requests in an arbitrary way, subject
only to the restriction that at the point in time that A predicts the value of coin Ci, it has
made fewer than k − t reveal requests for Ci. After it predicts Ci, it may make as many reveal
requests for Ci as it wishes. For 1 ≤ i ≤ q, let ei = F (Ci) ⊕ bi. This defines the error vector
(e1, . . . , eq).

The unpredictability property above implies that the error vector is computationally in-
distinguishable from a random bit-vector of length q. This means that there is no effective
statistical test that distinguishes the error vector from a random vector—the important point
is that we are considering statistical tests that receive only the test vector as input, and no
additional information about A’s interaction in the above game.

A proof of this can be adapted easily from the work of Beaver and So [2], although their
setting is slightly different. The idea of the proof runs as follows. By the universality of the next-
bit test [42], if the error vector were distinguishable from a random vector, then there would
be an algorithm D that on input j, chosen randomly from {1, . . . , q}, along with e1, . . . , ej−1,
outputs a value that correctly predicts ej with probability significantly better than 1/2. Given
this D and A, we construct a new adversary A′ that predicts a single coin, contradicting the
unpredictability assumption. A′ runs as follows. First, it chooses j ∈ {1, . . . , q} at random.
Next, it runs A as a subroutine. Just after A predicts coin Ci for 1 ≤ i < j, A′ immediately
makes a sufficient number of reveal requests to obtain F (Ci), and hence ei. A′ stops A just
after A makes its prediction bj for the value of F (Cj), and then A′ computes

b̂j = D(j; e1, . . . , ej−1)⊕ bj

as its prediction for F (Cj) and halts. It is easy to see that b̂j is correct with probability
significantly better than 1/2.

Given the pseudo-random quality of the error vector, one can now easily derive a number of
simple statistical properties. The only we will need is this: for any 1 ≤ m ≤ q, the probability
that A correctly predicts the first m coins is bounded by 2−m+ε, where ε is a negligible function
in the security parameter.

Implementation. Note that an implementation of a coin-tossing scheme can be obtained
from any non-interactive threshold signature scheme with the property that there is only one
valid signature per message, such as the RSA-based scheme mentioned earlier [38]. Then a
cryptographic hash of the signature can be used as the value of the coin. It is straightforward
to see that in the random oracle model, this yields a secure coin-tossing scheme. It also allows
an implementation to “optimistically” skip the verification tests unless necessary.

In §6 we present also a direct implementation of a coin-tossing scheme based on the Diffie-
Hellman problem.
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5 Asynchronous Byzantine Agreement

5.1 Protocol ABBA

We now present our protocol ABBA, which stands for Asynchronous Binary Byzantine Agree-
ment. As usual there are n parties P1, . . . , Pn, up to t of which may be corrupted by the
adversary. We denote by f the actual number of parties corrupted.

The protocol uses an (n, n− t, t) threshold signature scheme S and an (n, t+ 1, t) threshold
signature scheme S0 (see §4.2), as well as an (n, n − t, t) threshold coin-tossing scheme (see
§4.3). Let F (C) denote the value of coin with name C.

Overview. For a given transaction identifier TID , each party Pi has an initial value Vi ∈
{0, 1}, and the protocol proceeds in rounds r = 1, 2, . . . The first round starts with a special
pre-processing step:

0. Each party sends its initial value to all other parties signed with an S0-signature share.
On receiving 2t+1 such votes, each party combines the signature shares of the value with
the simple majority (i.e., at least t + 1 votes) to a threshold signature of S0. This value
will be the value used in the first pre-vote. (This step is not necessary if the input values
are accompanied by validating data.)

After that each round contains four basic steps:

1. Each party casts a pre-vote for a value b ∈ {0, 1}. These pre-votes must be justified by
an appropriate S-threshold signature, and must be accompanied by a valid S-signature
share on an appropriate message.

2. After collecting n−t valid pre-votes, each party casts a main-vote v ∈ {0, 1, abstain}. As
with pre-votes, these main-votes must be justified by an appropriate S-threshold signa-
ture, and must be accompanied by a valid S-signature share on an appropriate message.

3. After collecting n − t valid main-votes, each party examines these votes. If all votes are
for a value b ∈ {0, 1}, then the party decides b for TID , but continues to participate in
the protocol for one more round. Otherwise, the party proceeds.

4. The value of coin (TID , r) is revealed, which may be used in the next round.

We now proceed with the details of the protocol given in Figure 1. We first introduce some
conventions.

Recall that a message from Pi to Pj has the form (TID , i, j, payload), so that in specifying
a message, we will only specify the payload if necessary; the values of TID , i, and j are implied
from the context.

The pre-vote and main-vote messages have to contain a proper justification, which consists
of threshold signatures on collected votes as follows.

Pre-Vote Justification. In round r = 1, party Pi’s pre-vote is the majority of the pre-
processing votes from step 0. There must be at least t + 1 votes for the same value b ∈ {0, 1}
(although this b might not be unique if n > 3t + 1). For the justification, a party selects
t+ 1 such votes, and combines the accompanying S0-signature shares to obtain an S0-threshold
signature on the message

(TID , pre-process, b).
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In rounds r > 1, a pre-vote for b may be justified in two ways:

• either with an S-threshold signature on the message

(TID , pre-vote, r − 1, b);

we call this a hard pre-vote for b;

• or with an S-threshold signature on the message

(TID , main-vote, r − 1, abstain)

for the pre-vote b = F (TID , r − 1); we call this a soft pre-vote for b.

Intuitively, a hard pre-vote expresses Pi’s preference for b based on evidence for preference b in
round r − 1, whereas a soft pre-vote is just a vote for the value of the coin, based evidence of
conflicting votes in round r − 1. The threshold signatures are obtained from the computations
in previous rounds (see below). We assume that the justification indicates whether the pre-vote
is hard or soft.

Main-Vote Justification. A main-vote v in round r is one of the values {0, 1, abstain} and,
like pre-votes, accompanied by a justification as follows:

• If among the n− t justified round-r pre-votes collected by Pi there is a pre-vote for 0 and
a pre-vote for 1, then Pi’s main-vote v for round r is abstain. The justification for this
main-vote consists of the justifications for the two conflicting pre-votes.

• Otherwise, Pi has collected n − t justified pre-votes for some b ∈ {0, 1} in round r, and
since each of these comes with a valid S-signature share on the message

(TID , pre-vote, r, b),

party Pi can combine these shares to obtain a valid S-threshold signature on this message.
Party Pi’s main-vote v in this case is b, and its justification is this threshold signature.

The protocol is shown in Figure 1.

5.2 Analysis

Theorem 1 Assuming a secure threshold signature scheme, a secure threshold coin-tossing
scheme, and a secure message authentication code, protocol ABBA solves asynchronous Byzan-
tine agreement for n > 3t.

The rest of this section outlines a proof of this theorem. We have to show validity, agreement,
and termination.

It is straightforward to check that protocol ABBA satisfies the validity condition.
We prove agreement and termination assuming the adversary corrupts exactly f = t parties;

we then discuss the modifications necesarry for the case that f < t.
Fix a given TID and consider the pre-votes cast by honest parties in round r ≥ 1. Because

n > 3t, there will be at most one value b ∈ {0, 1} that garners at least n − 2t such pre-votes,
and we define ρr to be this value (if it exists), and otherwise we say that ρr is undefined. We
say that ρr is defined at the point in the game at which time sufficient pre-votes are cast.
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Protocol ABBA for party Pi with initial value Vi

0. Pre-Processing. Generate an S0-signature share on the message

(TID , pre-process, Vi).

and send a message of the form

(pre-process, Vi, signature share)

to all parties.

Collect 2t+ 1 proper pre-processing messages.

Repeat the following steps 1–4 for rounds r = 1, 2, . . . .

1. Pre-Vote. If r = 1, let b be the simple majority of the received pre-processing votes.

Otherwise, if r > 1, select n− t properly justified main-votes from round r − 1 and let

b =


0 if there is a main-vote for 0,
1 if there is a main-vote for 1,
F (TID , r − 1) if all main-votes are abstain.

Produce an S-signature share on the message

(TID , pre-vote, r, b).

Produce the corresponding justification (see text) and send to all parties a message of
the form

(pre-vote, r, b, justification, signature share).

2. Main-Vote. Collect n− t properly justified round-r pre-vote messages. Consider these
pre-votes and let

v =


0 if there are n− t pre-votes for 0,
1 if there are n− t pre-votes for 1,
abstain if there are pre-votes for 0 and 1.

Produce an S-signature share on the message

(TID , main-vote, r, v).

Produce the corresponding justification (see text) and send to all parties a message of
the form

(main-vote, r, v, justification, signature share).

3. Check for decision. Collect n − t properly justified main-votes of round r. If these
are all main-votes for b ∈ {0, 1}, then decide the value b for TID , and continue for one
more round (up to step 2). Otherwise, simply proceed.

4. Common coin. Generate a coin share of the coin (TID , r), and send to all parties a
message of the form

(coin, r, coin share).

Collect n − t shares of the coin (TID , r), and combine these shares to get the value
F (TID , r) ∈ {0, 1}.

Figure 1: Asynchronous Binary Byzantine Agreement
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Lemma 2 For r ≥ 1, the following holds (with all but negligible probability):

(a) if an honest party casts or accepts a main-vote of b ∈ {0, 1} in round r, then ρr is defined
and ρr = b;

(b) if an honest party casts or accepts a hard pre-vote for b ∈ {0, 1} in round r + 1, then ρr
is defined and ρr = b;

(c) if an honest party casts or accepts a main-vote of abstain in round r + 1, then ρr is
defined and ρr = 1− F (TID , r);

(d) if r is the first round in which any honest party decides, then all honest parties that
eventually decide, decide the same value in either round r or r + 1.

Proof. To prove (a), suppose an honest party accepts a main-vote of b ∈ {0, 1} in round r. To
be justified, this main-vote must be accompanied by a valid threshold signature on the message

(pre-vote,TID , r, b).

By the non-forgeability property of the signature scheme, this implies that at least (n− t)− t =
n − 2t honest parties cast pre-votes for b. Thus, ρr has been defined and is equal to b. That
proves (a).

Part (b) now simply follows from the fact that a hard pre-vote for b ∈ {0, 1} in round r+ 1
is justified by the same threshold signature as the main-vote from round r in part (a).

Now for part (c). A main vote of abstain in round r + 1 must be accompanied by a
justification for a pre-vote of 0 in round r+1 and a justification for pre-vote of 1 in round r+1.
These pre-votes cannot both be soft pre-votes, and so one of these two pre-votes must be hard.
It follows from (b) that this hard pre-vote must be for ρr, and hence the other pre-vote must
be a soft pre-vote for 1− ρr, and hence F (TID , r) = 1− ρr. Part (c) now follows.

Now for part (d). Suppose some party Pi decides b ∈ {0, 1} in some round r, and no party
has decided in a previous round. Then in this round, Pi accepted n − t main-votes for b. By
part (a), we must have b = ρr. So any other honest party who decides in round r must also
decide ρr.

Of the n− t main-votes for b that Pi accepted, at least n−2t came from honest parties who
main-voted b, and since n > 3t, fewer than (n− t)− t = n− 2t signature shares on the message

(main-vote, r, abstain)

have been or ever will be generated by honest parties. This in turn implies that a soft pre-vote
in round r + 1 cannot be justified. Thus, the only justifiable pre-votes in round r + 1 are hard
pre-votes, and by part (b), these must be hard pre-votes of b. Finally, this implies that the
only justifiable main-votes in round r + 1 are main-votes for b, and so all main-votes accepted
by honest parties in round r + 1 will be main-votes for b. 2

Agreement follows from part (d). All that remains is termination. For this, we need to show
deadlock freeness and fast convergence.

Deadlock freeness is fairly straightforward. It is clear that honest parties will proceed from
one round to the next, provided the adversary delivers enough messages between the honest
parties. The deadlock freeness property follows from this observation, along with part (d) of
Lemma 2, and the fact that parties who decide play along for one more round.
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All that remains is fast convergence. Lemma 2 says that in a given round r + 1, for r ≥ 1,
the set of n− t main-votes accepted by an honest party in step 3 contains votes for either 0 or
1, but not both. Also, such an honest party will decide in this round unless it accepts at least
one main-vote of abstain. But if it does accept an abstain, then ρr = 1 − F (TID , r). The
key to showing fast termination will be to show that the value of ρr is determined before the
coin (TID , r) is revealed.

By “ρr is determined at a particular point in time,” we mean the following: There is an
efficient procedure W that takes as input a transcript describing the adversary’s interaction with
the system up to the given point in time, along with TID and r ≥ 1, and outputs w ∈ {0, 1, ?}.
Furthermore, if the output is w 6= ?, then if ρr ever becomes defined, it must be equal to w (or
at least, it should be computationally infeasible for an adversary to cause this not to happen).

By “the coin (TID , r) is revealed at a particular point in time,” we mean the point in time
when an honest party generates the (n− 2t)-th share of the coin (TID , r).

Lemma 3 There is a function W that determines ρr, as described above, such that for all
r ≥ 1, either ρr is determined before coin (TID , r) is revealed, or ρr+1 is determined before
(TID , r + 1) is revealed.

Proof. Suppose an honest party Pi is just about to generate the (n−2t)-th share of coin (TID , r)
in step 1 of round r + 1. As such, there is a set S of at least n − 2t honest parties who have
also reached step 1 of round r + 1; this set includes Pi, who is just about to release its share;
all other members of S have already released their share. Almost all round r + 1 pre-votes for
the parties in S, as well as their justifications, are completely determined at this point, even
if these votes have not actually been cast. The only exception are soft pre-votes, whose actual
value is equal to F (TID , r), which is not yet known.

If any party in S is going to cast a hard pre-vote for b ∈ {0, 1}, then by Part (b) of Lemma 2,
b is the only possible value for ρr. Thus, ρr is already determined—in fact, it is already defined.

Otherwise, all parties in S are going to cast soft pre-votes, choosing the value F (TID , r)
as the value of their round r + 1 pre-vote. It follows that the only possible value for ρr+1 is
F (TID , r). Therefore, immediately after Pi reveals its share of coin (TID , r), ρr+1 is deter-
mined. Moreover, the coin (TID , r+1) has not yet been revealed at this point, since fewer than
n− 2t honest parties have gone beyond step 2 of round r + 1. Thus, ρr+1 is determined before
coin (TID , r + 1) is revealed. 2

This lemma, together with the unpredictability property of sequences of coins described in
§4.3, implies that the probability that any honest party advances more than 2r + 1 rounds is
bounded by 2−r + ε, where ε is negligible. Fast convergence follows immediately. Note that to
make this argument rigorous, we need to be able to explicitly “predict” (as in §4.3) the desired
value of the coin (1− ρr) that would delay termination, which is why we defined the notion of
“determining” ρr as we did.

We remark that if the first honest parties to decide make their decision in round r, there
may be others who make their decision in round r + 1. The “early deciders” play along for
round r + 1, which allows the “late deciders” to decide. However, the “late deciders” do not
“know” they are “late,” so they attempt to play along for round r + 2. What happens is that
in round r + 2, the protocol will “fizzle out”: the “late deciders” will simply end up waiting in
step 2 for n− t messages that never arrive. This “fizzling out” does indeed satisfy our technical
definition of termination, and is perhaps adequate for some settings; however, a more “decisive”
termination can be achieved with a minor modification of the protocol (see §5.3.1).
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That completes the proof of agreement and termination for the case f = t. We now sketch
the differences for the case f < t. There are some annoying technical problems that arise in
this case because there is a gap between the number (n− 2t) of shares for a signature (or coin)
that need to be revealed before the signature (or coin) may be reconstructible, and the number
(n − t − f) of shares that need to be revealed before it can be reconstructed. We could have
defined security for threshold signatures (coins) so that this gap did not exist; however, such a
definition would be stronger than necessary.

Consider an adversary that chooses to corrupt a set C of f < t parties. Let H denote the set
of n−f honest parties. We choose an arbitrary subset Q ⊂ H of t−f “quasi-corrupted” parties.
The idea is that for the purposes of agreement and termination, parties in Q are considered to
be honest, but for the purposes of the threshold signature and coin-tossing schemes, parties in
Q are considered corrupted.

What this means concretely is that for parties in Q, their secret shares for the threshold
schemes are revealed to the adversary, but they otherwise behave as honest players with which
the adversary interacts in the usual way. The main implication of this is that a particular
signature or coin can be reconstructed if and only if at least n− 2t parties in H\Q contribute
shares. We also modify the proof as follows:

• In formulating the definition of ρr, we only count votes cast by members of H\Q.

• In formulating the notion of precisely when a coin is revealed, we only count shares
generated by parties in H\Q.

With these modifications, Lemmas 2 and 3 can easily be proved, exactly as stated, and from
these, agreement and termination follow.

5.3 Variations

Protocol ABBA can be modified several ways.

5.3.1 Achieving Stronger Termination

As we briefly discussed in §5.2, some parties may terminate an instance of a protocol in a
rather indecisive way: although they have made a decision, they do not know that they can
stop; instead, they will simply block, waiting forever for messages that will never arrive. It is
not clear to what extent this is a serious problem, but anyway, it is easy to modify protocol
ABBA so that parties not only decide, but terminate in a more decisive fashion. Namely, when
a party Pi decides b for TID in round r, it can combine the signature shares that it has on hand
to construct an S-threshold signature on the message

(main-vote,TID , r, b).

It then sends this threshold signature to all parties and stops. Thus, Pi can effectively erase all
data in its internal state relevant to TID , and ignore all future incoming messages relating to
TID . Any other party that is waiting for some other message, but instead receives the above
threshold signature, can also decide b for TID , send the this signature to all parties, and then
stop.

Note that without this modification, the threshold signatures on main-votes other than
abstain are actually not used by the protocol, and could be deleted.

18



5.3.2 Using an (n, t+ 1, t) Coin-Tossing Scheme

Instead of an (n, n− t, t) coin-tossing scheme, one could use an (n, t+ 1, t) coin-tossing scheme,
provided that before a party releases its share of a coin, it sends an appropriate “ready” message
to all parties, and waits for n − t corresponding “ready” messages from other parties. These
“ready” messages do not need to be signed—the authenticity of the messages is enough. This
modification increases the communication complexity of the protocol; however, an (n, t + 1, t)
coin can be implemented based on weaker intractability assumptions than and (n, n− t, t) coin,
and so the tradeoff may be worthwhile in some settings.

5.3.3 Further Optimizations

Although we have strived to make our protocol as efficient as possible, we have omitted several
optimizations in order to simplify the presentation; they are described next. Some of them lead
to a more flexible, “pipelined” execution of the protocol steps.

1. A party need not generate a share of the coin in round r+1 if it did not accept a main-vote
of abstain in round r.

2. A party need not wait for n − t coin shares, unless it is going to cast a soft pre-vote, or
unless it needs to later verify the justification of a soft pre-vote (it can always wait for
them later if needed).

3. A party need not wait for n− t pre-votes once it accepts two conflicting pre-votes, since
then it is already in a position to cast a main-vote of abstain.

4. A party need not wait for n − t main-votes if it has already accepted a main-vote for
something other than abstain, since then it is already in a position to move to the next
round; however, the decision condition should be checked before the end of the next round.

5. It is possible to collapse steps 4 and 1; however, some adjustments must be made to
accommodate the threshold signature. If a party wants to make a hard pre-vote for b, he
should generate signature shares on two messages that say “I pre-vote b if the coin is 0”
and “I pre-vote b if the coin is 1.” If a party wants to make a soft pre-vote, he should
generate signature shares on two messages that say “I pre-vote 0 if the coin is 0” and “I
pre-vote 1 if the coin is 1.” This allows the parties to make soft pre-votes and reveal the
coin concurrently, while also making it possible to combine both soft and hard pre-votes
for the same value to construct the necessary main-vote justifications. This variation
reduces the round and message complexity by a factor of 1/3, at the expense of somewhat
higher computational and bit complexity; it also precludes variations (1) and (2) above.

6 A Diffie-Hellman Based Threshold Coin-Tossing Scheme

6.1 The Scheme

In this section, we present an (n, k, t) threshold coin-tossing scheme based on the Diffie-Hellman
problem. We work with a group G of large prime order q.

At a high level, our scheme works as follows. The value of a coin C is obtained by first
hashing C to obtain g̃ ∈ G, then raising g̃ to a secret exponent x0 ∈ Zq to obtain g̃0 ∈ G, and
finally hashing g̃0 to obtain the value F (C) ∈ {0, 1}. The secret exponent x0 is distributed
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among the parties using Shamir’s secret sharing scheme [35]. Each party Pi holds a share xi
of x0; its share of F (C) is g̃xi , along with a “validity proof.” Shares of coin C can then be
combined to obtain g̃0 by interpolation “in the exponent.”

In more detail, we need cryptographic hash functions

H : {0, 1}∗ → G;
H ′ : G6 → Zq;
H ′′ : G→ {0, 1}.

No specific requirements are made for these hash functions, but they will be modeled as random
oracles in the analysis. (H ′′ could actually be implemented in the standard model, e.g., by the
inner product of the bit representation of the input with a random bit string, chosen once and
for all by the dealer.)

In the dealing phase, the dealer selects k coefficients of a random polynomial f(T ) over Zq
of degree less than k and a random generator g of G. For 0 ≤ i ≤ n, let xi = f(i) and gi = gxi .
Party Pi’s secret key SKi is xi, and his verification key VKi is gi. The global verification key
VK consists of a description of G (which includes q) and g.

For a general coin C ∈ {0, 1}∗, we let g̃ = H(C), and g̃i = g̃xi for 0 ≤ i ≤ n. The value of
the coin is F (C) = H ′′(g̃0).

For a given coin C, party Pi’s share of the coin is g̃i, together with a “validity proof,” i.e., a
proof that logg̃ g̃i = logg gi. This proof is the well-known interactive proof of equality of discrete
logarithms (see [14]), collapsed into a non-interactive proof using the Fiat-Shamir heuristic [22].
A valid proof is a pair (c, z) ∈ Zq × Zq, such that

c = H ′(g, gi, h, g̃, g̃i, h̃), (1)

where
h = gz/gci and h̃ = g̃z/g̃ci .

Party Pi computes such a proof by choosing s ∈ Zq at random, computing h = gs, h̃ = g̃s, and
obtaining c as in (1) and z = s+ xic.

Now, for any set S of k distinct points in Zq, and any β ∈ Zq, there exist elements λSα,β ∈ Zq
for α ∈ S, such that ∑

α∈S
f(α)λSα,β = f(β).

These λ-values are independent of f(T ), and can be computed from the formulas for Lagrange
interpolation.

To combine a set of valid shares {g̃α : α ∈ S}, one simply computes

g̃0 =
∏
α∈S

g̃
λSα,0
α .

The value of the coin is then computed as H ′′(g̃0).

6.2 Security Analysis

To analyze this scheme, we need to consider the following two intractability assumptions.
For g, g0, ĝ ∈ G, define DH(g, g0, ĝ) to be ĝ0 = ĝx0 , provided that g0 = gx0 . Also, define
DHP(g, g0, ĝ, ĝ0) to be 1 if ĝ0 = DH(g, g0, ĝ), and 0 otherwise.
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The Computational Diffie-Hellman (CDH) assumption is the assumption that DH is hard
to compute—that is, there is no efficient, probabilistic algorithm that computes DH correctly
(with negligible error probability) on all inputs.

The Decisional Diffie-Hellman (DDH) assumption is the assumption that DHP is hard to
compute—that is, there is no efficient, probabilistic algorithm that computes DHP correctly
(with negligible error probability) on all inputs.

Theorem 4 In the random oracle model, the above coin-tossing scheme is secure under the
CDH assumption, if k = t+ 1, and under the DDH assumption otherwise.

We need to show robustness and unpredictability.
The robustness of the scheme follows from the soundness of the interactive proof of equality

of discrete logarithms, and the fact that in the random oracle model, the challenges c are the
output of the random oracle H ′.

To prove unpredictability, we assume we have an adversary that can predict a coin with
non-negligible probability, and show how to use this adversary to efficiently compute DH (if
k = t+ 1) or DHP (if k > t+ 1).

We first make a few simplifying assumptions:

• the adversary corrupts parties Pk−t, . . . , Pk−1;

• before the adversary requests the share of a coin or predicts a coin, he has already evalu-
ated H at that coin’s name;

• the adversary evaluates H successively at distinct points C1, . . . , Cl, where l is a bound
that is fixed for a given adversary and security parameter.

We denote the “target” coin, which the adversary attempts to predict, by Ĉ, and we let ĝ =
H(Ĉ), and ĝi = ĝxi for 0 ≤ i ≤ n.

We may assume that Ĉ is equal to Cs, where s is randomly chosen from {1, . . . , l}. Should
the adversary makes k − t requests to reveal shares of Ĉ, we simply stop the game. This
decreases the adversary’s advantage by a factor of l.

Case 1: k = t + 1. Here is how we use this adversary to compute DH. By the results of
Shoup [36], it is sufficient to construct an algorithm that on random inputs g, g0, ĝ ∈ G, outputs
a list of group elements that contains ĝ0 = DH(g, g0, ĝ) with non-negligible probability.

We simulate the adversary’s interaction with the coin-tossing scheme as follows. By our
simplifying assumption, the adversary corrupts parties P1, . . . , Pt. As the notation suggests,
we use the given value g in the global verification key. We choose x1, . . . , xt ∈ Zq at random,
set S = {0, 1, . . . , t}, compute gi = gxi for 1 ≤ i ≤ t, and let for t+ 1 ≤ i ≤ n

gi =
k−1∏
j=0

g
λSj,i
j .

In the random oracle model, the adversary explicitly queries the random oracles H,H ′,H ′′.
The simulator we are building is responsible for the operation of these oracles—it sees the
queries made by the adversary, and is free to respond as it wishes so long as its responses are
consistent and correctly distributed. As the notation suggests, we use the given ĝ as the value
of H at Ĉ (whatever Ĉ turns out to be).

21



For coins C 6= Ĉ, we choose r ∈ Zq at random and compute g̃ = gr. The simulator uses the
given g̃ as the value of H at C. We then compute the shares g̃i = gri for t + 1 ≤ i ≤ n. The
validity proofs can be simulated using standard zero-knowledge techniques [24].

For the target coin Ĉ, we never have to compute any shares for honest parties, since k = t+1.
When the adversary terminates, we simply output the list of queries made by the adversary to
the oracle H ′′.

It is easily verified that the above simulation is nearly perfect: the adversary’s view has
precisely the same distribution as in the actual interaction (but there is actually a negligible
probability that the zero-knowledge simulations fail).

Observe that because the adversary has a non-negligible advantage in predicting the value of
the coin Ĉ, he must evaluate H ′′ at the corresponding point ĝ0 with non-negligible probability.
That completes the proof of Theorem 4 for Case 1.

Case 2: k > t+ 1. The above simulation does not work in this case because we would have to
simulate the shares of the coin Ĉ from up to k− t− 1 > 0 honest parties. Moreover, we cannot
view these honest parties as fixed: the adversary may adaptively select which honest parties
contribute shares of the target coin. So instead, in this case, we use the adversary to compute
DHP. Actually, it is sufficient [39, 31] to construct a statistical test that distinguishes between
the following two distributions

D: the set of tuples
(g, g0, . . . , gk−t−1, ĝ, ĝ0, . . . , ĝk−t−1),

where g, g0, . . . , gk−t−1 ∈ G are random, and ĝ = gr, ĝ0 = gr0, . . . , ĝk−t−1 = grk−t−1 for
randomly chosen r ∈ Zq; and

R: the set of tuples
(g, g0, . . . , gk−t−1, ĝ, ĝ0, . . . , ĝk−t−1),

where g, g0, . . . , gk−t−1, ĝ0, . . . , ĝk−t−1 ∈ G are random.

Our statistical test works as follows. Let

(g, g0, . . . , gk−t−1, ĝ, ĝ0, . . . , ĝk−t−1)

be the input “test” tuple. We simulate the adversary’s interaction with the coin-tossing scheme
as follows. By our simplifying assumption, the adversary corrupts Pk−t, . . . , Pk−1. As the
notation suggests, we simulate the dealer by using the given g in the global verification key,
and g1, . . . , gk−t−1 in the local verification keys for P1, . . . , Pk−t−1. We choose the secret keys
xk−t, . . . , xk−1 ∈ Zq at random and set S = {0, 1, . . . , k − 1}; for k − t ≤ i ≤ k − 1, compute
gi = gxi , and for k ≤ i ≤ n, let

gi =
k−1∏
j=0

g
λSj,i
j .

Also, we will use the given ĝ as the output of H at Ĉ, and the given ĝ1, . . . , ĝk−t−1 as the
corresponding shares of Ĉ from parties P1, . . . , Pk−t−1. We will use the given ĝ0 to compute
the shares of Ĉ from the other honest parties as follows: for k− t ≤ i ≤ k− 1, set ĝi = ĝxi , and
for k ≤ i ≤ n, compute

ĝi =
k−1∏
j=0

ĝ
λSj,i
j .
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Whenever the adversary requests a share of Ĉ for an honest party Pi, we give the adversary
ĝi as computed above.

We reveal the shares of a coin C 6= Ĉ just as in Case 1: we choose r ∈ Zq at random, and
compute g̃ = gr and g̃i = gri for all 1 ≤ i < k − t and k ≤ i ≤ n.

For both target and non-target coins, we construct simulated proofs of correctness just as
in Case 1.

At the end of the adversary’s interaction, when the adversary makes a prediction b ∈ {0, 1}
for the value of coin Ĉ, we output X = 1 if b = H ′′(ĝ0), and X = 0 otherwise.

We claim that this algorithm is an effective statistical test distinguishing D from R.
Observe that if the test tuple comes from D, the above simulation is nearly perfect, and so

the probability that X = 1 is essentially the adversary’s advantage, which differs from 1/2 by
a non-negligible amount.

Therefore, it will suffice to show that if the test tuple comes from R, the probability that
X = 1 differs from 1/2 by a negligible amount. But this follows from the observation that for
any sequence of distinct indices i1, . . . , ik−t−1 belonging to honest parties, the group elements

ĝ0, ĝi1 , . . . , ĝik−t−1

are independent and uniformly distributed. Thus, after revealing any k − t− 1 of the “shares”
ĝi belonging to honest parties, then conditioning on the adversary’s view, the value of ĝ0 is still
random, and hence the probability that X = 1 in this case is essentially 1/2.

This completes the proof of Theorem 4 for Case 2. Note that in the proof of this, we do
not need to model H ′′ as a random oracle—we only need the property that for random ĝ0 ∈ G,
H ′′(ĝ0) has a nearly uniform distribution. For example, using the Entropy Smoothing Theorem
[27, Chapter 8], one could implement H ′′ as the inner product of the bit representation of ĝ0

with a random bit string (chosen once and for all by the dealer). Also note that using the same
proof technique, one could prove the unpredictability property using the threshold k−f instead
of k − t, where f is the actual number of corrupted parties.
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