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Abstract

We present session-key generation protocols in a model where the legitimate parties share
only a human-memorizable password. The security guarantee holds with respect to probabilistic
polynomial-time adversaries that control the communication channel (between the parties), and
may omit, insert and modify messages at their choice. Loosely speaking, the effect of such an
adversary that attacks an execution of our protocol is comparable to an attack in which an
adversary is only allowed to make a constant number of queries of the form “is w the password
of Party A”. We stress that the result holds also in case the passwords are selected at random
from a small dictionary so that it is feasible (for the adversary) to scan the entire directory.
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1 Introduction

This work deals with the oldest and probably most important problem of cryptography: en-
abling private and reliable communication among parties that use a public communication channel.
Loosely speaking, privacy means that nobody besides the legitimate communicators may learn the
data communicated, and reliability means that nobody may modify the contents of the data com-
municated (without the receiver detecting this fact). Needless to say, a vast amount of research
has been invested in this problem. Our contribution refers to a difficult and yet natural setting of
two parameters of the problem: the adversaries and the initial set-up.

We consider only probabilistic polynomial-time adversaries. Still even within this framework,
an important distinction refers to the type of adversaries one wishes to protect against: passive
adversaries only eavesdrop the channel, whereas active adversaries may also omit, insert and mod-
ify messages sent over the channel. Clearly, reliability is a problem only with respect to active
adversaries (and holds by definition w.r.t passive adversaries). We focus on active adversaries.

The second parameter mentioned above is the initial set-up assumptions. Some assumption of
this form must exist or else there is no difference between the legitimate communicators, called Alice
and Bob, and the adversary (which may otherwise initiate a conversation with Alice pretending to
be Bob). We list some popular initial set-up assumptions and briefly discuss what is known about
them.

Public-key infrastructure: Here one assumes that each party has generated a secret-key and
deposited a corresponding public-key with some trusted server(s). The latter server(s) may be
accessed at any time by any user.

It is easy to establish private and reliable communication in this model (cf. [18, 42]). (However,
even in this case, one may want to establish “session keys” as discussed below.)

Shared (high-quality) secret keys: By high-quality keys we mean strings coming from distribu-
tion of high min-entropy (e.g., uniformly chosen 56-bit (or rather 192-bit) long strings, uniformly
chosen 1024-bit primes, etc). Furthermore, these keys are selected by a suitable program, and
cannot be memorized by humans.

In case a pair of parties shares such a key, they can conduct private and reliable communication
(cf., [11, 46, 25]).

Shared (low-quality) secret passwords: In contrast to high-quality keys, passwords are strings
that may be easily selected, memorized and typed-in by humans. An illustrating (and simplified)
example is the case in which the password is selected uniformly from a relatively small dictionary;
that is, the password is uniformly distributed in D ⊂ {0, 1}n, where |D| = poly(n).

Note that using such a password in the role of a cryptographic key (in schemes as mentioned
above) will yield a totally insecure scheme. A more significant observation is that the adversary
may try to guess the password, and initiate a conversation with Alice pretending to be Bob
and using the guessed password. So nothing can prevent the adversary from successfully im-
personating Bob with probability 1/|D|. But can we limit the adversary’s success to about this
much?

The latter question is the focus of this paper.

Session-keys: The problem of establishing private and reliable communication is commonly re-
duced to the problem of generating a secure session-key (a.k.a “authenticated key exchange”).
Loosely speaking, one seeks a protocol by which Alice and Bob may agree on a key (to be used
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throughout the rest of the current communication session) so that this key will remain unknown
to the adversary.1 Of course, the adversary may prevent such agreement (by simply blocking all
communication), but this will be detected by either Alice or Bob.

1.1 What security may be achieved based on passwords

Let us consider the related (although seemingly easier) task of mutual authentication. Here Alice
and Bob merely want to establish that they are talking to one another. Repeating an observation
made above, we note that if the adversary initiates m ≤ |D| instances of the mutual authentication
protocol, guessing a different password in each of them, then with probability m/|D| it will succeed
in impersonating Alice to Bob (and furthermore find the password). The question posed above is
rephrased here as follows:

Can one construct a password-based scheme in which the success probability of any
probabilistic polynomial-time impersonation attack is bounded by O(m/|D|)+µ(n), where
m is the number of sessions initiated by the adversary, and µ(n) is a negligible function
in the security parameter n?

We resolve the above question in the affirmative. That is, assuming the existence of trapdoor
one-way permutations, we prove that schemes as above do exist (for any D and specifically for
|D| = poly(n)). Our proof is constructive. We actually provide a protocol of comparable security
for the more demanding goal of session-key generation.

Main Result (informally stated): Assuming the existence of trapdoor one-way permutations,
there exists a session-key generation protocol that satisfies the following properties in the password-
only setting:

• Key-match: For any (probabilistic polynomial-time) adversary controlling the channel, the prob-
ability that the parties output different session-keys without detecting this fact is bounded above
by O(1/|D|).

• Session-key and password secrecy: For any (probabilistic polynomial-time) adversary that tries
to distinguish the session-key output by each party from a uniformly distributed n-bit string,
the distinguishing gap (i.e., the difference in the probability that the adversary outputs 1 in
the two cases) is at most O(1/|D|) + µ(n), where µ(n) is a negligible function in the security
parameter n. Similarly, the distinguishing gap between the party’s password and a uniformly
distributed element of D is at most O(1/|D|) + µ(n).

Similar claims hold when m sessions (referring to the same password) are conducted sequentially,
with O(1/|D|) being replaced by O(m/|D|). This holds also when a polynomial number of other
sessions w.r.t independently distributed passwords are conducted concurrently to the above m
sessions. Additional desirable properties of session-key protocols also hold:

• Intrusion detection: if the adversary modifies any message sent in a session then with probability
at least 1−O(1/|D|) this is detected.

• Forward secrecy: The session-key maintains its security even if the password is revealed after
the session-key was established.

1We stress that many famous key-exchange protocols, such as the one of Diffie and Hellman [18], refer to a passive
adversary. In contrast, this paper refers to active adversaries.
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• Loss of Session-Keys: The current session-key maintains its security even if prior session-keys
are revealed. Furthermore, the password maintains its security even if all session-keys are
revealed. (This is also known as security against a known-key attack.)

• Improved security in presence of a passive adversary: If the adversary is passive (i.e., does not
omit, modify or insert messages) then both the legitimate parties end-up with the same uni-
formly distributed session-key. From the adversary’s point of view (which includes the messages
exchanged in this session) the session-key is computationally indistinguishable from a uniformly
distributed n-bit string, and the parties’ joint password is computationally indistinguishable
from a uniformly distributed element of D.

Caveat: Our protocol is proven secure only when assuming that the same pair of parties (using
the same password) does not conduct several concurrent executions of the protocol. We stress that
concurrent sessions of other pairs of parties or of the same pair using a different password, are
allowed. See further discussion in section 1.4.

1.2 Comparison to prior work

The design of secure mutual authentication and key-exchange protocols is a major effort of the
applied cryptography community. In particular, much effort has been directed towards the design
of password-based schemes that should withstand active attacks.2 An important restricted case of
the mutual authentication problem is the asymmetric case in which a human user authenticates
himself to a server in order to access some service. The design of secure access control mechanisms
based only on passwords is widely recognized as a central problem of computer practice and has
such has received much attention.

The first protocol suggested for password-based session-key generation, was by Bellovin and
Merritt [6]. This work was very influential and became the basis for much future work in this
area [7, 44, 32, 35, 40, 45]. However, these protocols have not been proven and their security is
based on heuristics. Despite the strong need for secure password-based protocols, the problem was
not treated rigorously until quite recently. For a survey of works and techniques related to password
authentication, see [36, 33] (a very brief survey can be found in [31]).

A first rigorous treatment of the access control problem was provided by Halevi and Krawczyk [31].
They actually considered an asymmetric hybrid model in which one party (the server) may hold a
high-quality key and the other party (the human) may only hold a password. The human is also
assumed to have secure access to a corresponding public-key of the server (either by reliable access
to a reliable server or by keeping a “digest” of that public-key, which they call a public-password).3

The Halevi–Krawczyk model capitalizes on the asymmetry of the access control setting, and is
inapplicable to settings in which communication has to be established between two humans (rather
than a human and a server). Furthermore, requiring the human to keep the unmemorizable public-
password (although not secretly) is undesirable even in the access control setting. Finally, we stress

2In particular, a specific focus has been on preventing off-line dictionary attacks. In such an off-line attack, the
adversary records his view from past protocol executions and then scans the dictionary for a password consistent
with this view. If checking consistency in this way is possible and the dictionary is small, then the adversary can
derive the correct password.

3The public-password is not memorizable by humans, and the human is supposed to carry a record of it. The good
point is that this record need not be kept secret (but rather merely needs to be kept reliably). Furthermore, in the
Halevi–Krawczyk protocol, the human is never asked to type the public-password; it is only asked to compare this
password to a string sent by the server during the protocol. (In the Halevi–Krawczyk protocol, the public-password
is the hash-value of the server’s public-key, where hashing is via a (universal) collision-intractable function.)
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that the Halevi–Krawczyk model is a hybrid of the “shared-key model” and the “shared-password
model” (and so their results don’t apply to the “shared-password model”). Thus, it is both of
theoretical and practical interest to answer the original question as posed above (i.e., without the
public-password relaxation): Is it possible to implement a secure access control mechanism (and
authenticated key-exchange) based only on passwords?

Positive answers to the original problem have been provided in the random oracle model. In this
model, all parties are assumed to have oracle access to a totally random (universal) function [1].
Secure (password-based) access control schemes in the random oracle model were presented in [5,
13]. The common interpretation of such results is that security is likely to hold even if the random
oracle is replaced by a (“reasonable”) concrete function known explicitly to all parties.4 We warn
that this interpretation is not supported by any sound reasoning. Furthermore, as pointed out
in [16], there exist protocols that are secure in the random oracle model but become insecure if the
random function is replaced by any specific function (or even a function uniformly selected from
any family of functions).

To summarize, this paper is the first to present session-key generation (as well as mutual au-
thentication) protocols based only on passwords (i.e., in the shared-password model) and using only
standard cryptographic assumptions (e.g., the existence of trapdoor one-way permutations, which
in turn follows from the intractability assumption regarding integer factorization).

Necessary conditions for mutual authentication: Halevi and Krawczyk [31] proved that
mutual-authentication in the shared-password model implies (unauthenticated) secret-key exchange.
Boyarsky [12] further pointed out that in the shared-password model, mutual-authentication implies
Oblivious Transfer.5

1.3 Techniques

One central idea underlying our protocol is due to Naor and Pinkas [39]. They suggested the
following protocol for the case of passive adversaries, based on a secure polynomial evaluation.6 In
order to generate a session-key, party A first chooses a linear polynomial Q(·), uniformly distributed
over a large field. Next, A and B execute a polynomial evaluation in which B obtains Q(w), where
w is their joint password. The session-key is then set to equal Q(w).

In [12] it was suggested to make the above protocol secure against active adversaries, by using
non-malleable commitments. This suggestion was re-iterated to us by Moni Naor, and in fact our
work grew out of his suggestion. In order to obtain a protocol secure against active adversaries,
we augment the abovementioned protocol of [39] by several additional mechanisms. Indeed, we use
non-malleable commitments [19], but in addition we also use a specific zero-knowledge proof [41],
ordinary commitment schemes [8], a specific pseudorandom generator (of [11, 46, 10]), and mes-
sage authentication schemes (MACs). The analysis of the resulting protocol is very complicated,
even when the adversary initiates a single session. As explained below, we believe that these

4An alternative interpretation is to view the random oracle model literally. That is, assume that such oracle
access is available to all parties via some trusted third party. However, in such a case, we are no longer in the “trust
nobody” model in which the question was posed.

5Oblivious Transfer is known to imply (unauthenticated) secret-key exchange [34], but the other direction is not
known to hold.

6In the polynomial evaluation functionality, parties A and B have a polynomial Q(·) and an element x for their
respective inputs. The evaluation is such that A learns nothing, and B learns Q(x) (i.e., the functionality is defined
by (Q, x) 7→ (λ, Q(x))).
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complications are unavoidable given the current state-of-art regarding the concurrent execution of
protocols.

Although not explicit in the problem statement, the problem we deal with actually concerns
concurrent executions of a protocol. Even in case the adversary attacks a single session among two
legitimate parties, its ability to modify messages means that it may actually conduct two concurrent
executions of the protocol (one with each party).7 Concurrent executions of some protocols were
analyzed in the past, but these were relatively simple protocols. Although the high-level structure of
our protocol can be simply stated in terms of a small number of modules (say 6), the currently known
implementations of some of these modules are quite complex. Furthermore, these implementations
are not known to be secure when two copies are executed concurrently. Thus, at the current
state of affairs, the analysis cannot proceed by applying some composition theorems to (two-party)
protocols satisfying some concurrent-security properties (since neither such adequate theorems nor
such adequate protocols are known). Instead, we have to analyze our protocol directly. We do
so by reducing the analysis of (two concurrent executions of) our protocol to the analysis of non-
concurrent executions of related protocols. Specifically, we show how a successful adversary in
the concurrent setting contradicts the security requirements in the non-concurrent setting. Such
“reductions” are performed several times, each time establishing some property of the original
protocol. Typically, the property refers to one of the two concurrent executions, and it is shown
to hold even if the adversary is given some secrets of the legitimate party in the second execution.
The adversary is then given these secrets enabling him to effectively emulate the second execution
internally. Thus, only the first execution remains and the property can be directly proven. We stress
that this procedure is not applied “generically”, but is rather applied to the specific protocol we
analyze while taking advantage of its specific structure (where some of this structure was designed
so to facilitate our proof). Thus, our analysis is ad-hoc in nature, but still we believe that it can
eventually lead to a methodology of analyzing concurrent executions of protocols.

1.4 Discussion

The thrust of this work is in demonstrating the feasibility of performing session-key generation
based only on (low-quality) passwords. Doing so, this work is merely the first step in a research
project directed towards providing a good solution to this practical problem. We discuss three
aspects of this project that require further study.

Concurrent executions: Our protocol is proven secure only when the same pair of parties
(using the same password) does not conduct several concurrent executions of the protocol. Thus,
actual use of our protocol requires a mechanism for ensuring that the same password is never used
in concurrent executions. A simple mechanism enforcing the above is to disallow a party to enter an
execution with a particular password if less than ∆ units of time have passed since last entering an
execution with the same password. Indeed, it is desirable not to employ such a timing mechanism,
and to prove that security holds also when many executions are conducted concurrently using the
same password.

The definition of security: Our notion of session-key generation is stated in terms of a number
of properties that capture the intuitive security goals. Thus, we provide protocols satisfying (at the

7Specifically, the adversary may execute the protocol with Alice while claiming to be Bob, concurrently to executing
the protocol with Bob while claiming to be Alice, and when these two executions refer to the same joint Alice–Bob
password.
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very least) a reasonable notion of security. Still, it is desirable to use “simulation-based definitions”;
that is, definitions that require secure protocols to emulate functionalities defined in an appropriate
ideal model (cf. [9, 37, 14]). We note that finding the “right” definitions for the goals of session-key
generation is far beyond the scope of this work, and is an ongoing research project even in the simpler
setting in which parties may share high-quality keys (and not merely low-quality passwords). The
interested reader is referred to [2, 3, 4, 43].

Efficiency: It is indeed desirable to have more efficient protocols than the one suggested by us.

1.5 Organization

In Sections 2 and 3 we present the formal setting and our protocol for password-based session-key
generation. Then, in Section 4 we present proof sketches of the main properties of our protocol.
Following these sketches, we present the full proofs in Sections 5 to 10. The proof sketches are
rather detailed and demonstrate our main techniques. Thus, we believe that a reading of the paper
until the end of Section 4 is enough to obtain a good understanding of the results presented.

2 Formal Setting

In this section we present notation and definitions specific to our setting as well as a definition
for Authenticated Session-Key Generation. Given these, we state our main result. A security
parameter n is often implicit in our notations and discussions. We first present the following
notations:

• Let C be the channel (probabilistic polynomial time adversary) through which parties A and B
communicate. We adopt the notation of Bellare and Rogaway [2] and model the communication
by giving C oracle access to A and B. We denote by CA(x),B(y), the output of C when he
communicates with A and B, holding respective inputs x and y. We denote C’s view in this
execution by view

(

CA(x),B(y)
)

.

• The password dictionary is denoted by D ⊆ {0, 1}n. We denote ε = 1
|D| .

• We denote by Un the uniform distribution over strings of length n.

• For a set S, we denote x ∈R S when x is chosen uniformly from S.

• We use “ppt” as shorthand for probabilistic polynomial time.

• We denote an unspecified negligible function by µ(n). That is, for every polynomial p(·) and for
all sufficiently large n’s, µ(n) < 1

p(n) . For functions f and g, we denote f ≈ g if |f(n)− g(n)| <
µ(n).

• We denote computational indistinguishability by
c≡.

Some the definitions in Appendix A are presented in the non-uniform model of computation. A
number of our proofs also seem to be in the non-uniform model, but can actually be carried out in
the uniform model. Thus a naive reading of our proofs makes our main result hold assuming the
existence of trapdoor permutations that cannot be inverted by polynomial size circuits. However,
the same result can be achieved under the analogous uniform assumption.
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2.1 (1− ε)-indistinguishability and pseudorandomness

Extending the definition of computational indistinguishability, we define the concept of (1 − ε)-
indistinguishability. Two ensembles are (1 − ε)-indistinguishable if for every ppt machine, the
probability of distinguishing between them is at most negligibly greater than ε. Thus, computational
indistinguishability coincides with 1-indistinguishability. The formal definition is as follows.

Definition 2.1 ((1− ε)-indistinguishability): Let {Xn}n∈N and {Yn}n∈N be probability ensembles,
so that for any n the distribution Xn (resp., Yn) ranges over strings of length polynomial in n.
We say that the ensembles are (1 − ε)-indistinguishable if for every probabilistic polynomial time
distinguisher D, for every polynomial p(·), all sufficiently large n’s and all auxiliary information
w ∈ {0, 1}poly(n)

|Pr[D(Xn, 1n, w) = 1]− Pr[D(Yn, 1n, w) = 1]| < ε +
1

p(n)

Definition 2.2 ((1 − ε)-pseudorandomness): We say that {Xn}n∈N is (1 − ε)-pseudorandom if it
is (1− ε)-indistinguishable from {Un}n∈N.

Similarly, we define (1− ε)-pseudorandom functions as follows.

Definition 2.3 ((1 − ε)-pseudorandom function ensembles): Let F = {Fn}n∈N be a function en-
semble where for every n, the random variable Fn assumes values in the set of functions mapping
n-bit long strings to n-bit long strings. Let H = {Hn}n∈N be the uniform function ensemble in
which Hn is uniformly distributed over the set of all functions mapping n-bit long string to n-bit
long strings.

Then, a function ensemble F = {Fn}n∈N is called (1−ε)-pseudorandom if for every probabilistic
polynomial-time oracle machine D, every polynomial p(·) and all sufficiently large n’s

∣

∣

∣Pr[DFn(1n) = 1]− Pr[DHn(1n) = 1]
∣

∣

∣ < ε +
1

p(n)

2.2 Authenticated Session-Key Generation

We now define the requirements from an authenticated session-key generation protocol. Let C be
an arbitrary ppt channel.

Definition 2.4 (Authenticated Session-Key Generation): P is a secure protocol for authenticated
session-key generation based on passwords if it fulfills the following requirements:

• Input: A and B share a secret w ∈R D, where ε = 1/|D|.

• Output: Each party outputs an n-bit string (called the key), denoted kA and kB respectively,
and an accept/reject bit. The accept/reject bit is public (known to the adversary) and the keys
are private.

• Requirements:

1. Viability: If C is passive8, then kA = kB. Furthermore, with respect to C’s view, kA is
pseudorandom and w is computationally indistinguishable from a random w̃ ∈R D.

8That is, he does not modify, omit or insert any messages sent between A or B. However, he may attempt to learn
secret information from the messages sent. Passive adversaries are also referred to as semi-honest in the literature.
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The indistinguishability of w from w̃ is formally stated as follows. If C is passive, then
the ensembles

{

view
(

CA(W ),B(W )
)

,W
}

and
{

view
(

CA(W ),B(W )
)

, ˜W
}

are computation-

ally indistinguishable, where W, ˜W are independent and uniformly distributed in D.9

2. Key-Match: The probability that both A and B output accept and yet kA 6= kB is at most
O(ε).

3. Secrecy: There are two secrecy conditions:

• Session-Key Secrecy: At the conclusion of the protocol, for every ppt channel C, kA and
kB are (1−O(ε))-pseudorandom with respect to C’s view.

• Password Secrecy: At the conclusion of the protocol, for every ppt channel C, w is
(1−O(ε))-indistinguishable from w̃ ∈R D with respect to C’s view.

The motivation behind our definition is as follows. The viability requirement refers to the case
of a passive adversary and in this case we demand that nothing (significant) be learned of the
password or the session-key. However, in the case of an active adversary such a level of security is
impossible because the adversary can always guess the password correctly with probability ε (and
can verify its guess by seeing if the parties accept). Therefore the session-key generated can only be
(1−ε)-pseudorandom, and no undesired events can be prevented with probability greater than 1−ε.
Aside from this inherent limitation, a successful session-key generation execution must conclude
with both parties having the same session-key (key-match). Furthermore, we wish the session-key
generated to be (1 − O(ε))-pseudorandom and that the protocol reveal no more than necessary
about the password w (secrecy). We stress that the secrecy requirements hold even though the
adversary is given the accept/reject bit. This formal requirement is necessary, since in practice this
information can be implicitly understood from whether or not the parties continue communication
after the session-key generation protocol has terminated.

We note that the above definition also enables mutual-authentication. This is because an
adversary cannot cause a party to accept with a key that is not (1 − O(ε))-pseudorandom to the
adversary (session-key secrecy). As this key is secret, it can be used for explicit authentication via
a (mutual) challenge/response protocol.10 By augmenting the session-key protocol in such a way,
we obtain explicit mutual-authentication.

Non-Uniform Distributions over D: For simplicity, we assume that the parties share a uni-
formly chosen w ∈R D. However, our proofs hold for any distribution over any dictionary D′ so
that no element occurs with probability greater than ε.

2.3 Our Main Result

Given Definition 2.4, we can now formally state our main result.

Theorem 2.5 Assuming the existence of trapdoor permutations, there exist secure protocols for
authenticated session-key generation based on passwords.

9The pseudorandomness of kA, as well as the secrecy requirements below, are formally defined in an analogous
manner.

10It is easy to show that such a key can be used directly to obtain a (1−O(ε))-pseudorandom function which can
then be used in a simple challenge/response protocol.
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2.4 Multi-Session Security

The definition above relates to two parties executing a single session-key generation protocol.
Clearly, we are interested in the more general case where many different parties run the protocol
any number of times. In fact, it is enough to prove that a protocol is secure for a single invocation
between two parties, by our definition, in order to show that it is secure in the multi-party and
sequential multi-session case. In this section we briefly discuss this issue.

2.4.1 Many Invocations by Two Parties

Let A and B be parties who invoke m sequential executions of a session-key generation protocol.
Given that we wish that an adversary gains no more than O(1) password guesses upon each invoca-
tion, the security upon the m’th invocation should be O(mε) (e.g., the session-key is (1−O(mε))-
pseudorandom and analogously for all other requirements). In Section 11 we prove that any secure
session-key generation protocol maintains O(mε) security after m invocations. Intuitively, this is
due to the password-secrecy requirement which states that after a single invocation, the password
is (1−O(ε))-indistinguishable from a random password. Then, any “success” greater than O(mε)
after m invocations can be reduced to learning more than O(ε) about the password in a single
invocation.

Sequential vs Concurrent Executions for Two Parties: Our solution is proven secure only if
A and B do not invoke concurrent executions of the session-key generation protocol (with the same
password). We stress that a scenario whereby the adversary invokes B twice or more (sequentially)
during a single execution with A is not allowed. Therefore, in order to actually use our protocol,
some mechanism must be used to ensure that such concurrent executions do not take place. This
can be achieved by having A and B wait ∆ units of time between protocol executions (where ∆
is greater than the time taken to run a single execution). Note that parties do not usually need
to initiate session-key generation protocols immediately one after the other. Therefore, this delay
mechanism need only be employed when an attempted session-key generation execution fails. This
means that parties not “under attack” by an adversary are not inconvenienced in any way.

We note that this limitation does not prevent the parties from opening a number of different
(independently-keyed) communication lines. They may do this by running the session-key protocol
sequentially, once for each desired communication line. However, in this case, they incur a delay of
∆ units of time between each execution. Alternatively, they may run the protocol once and obtain
a (1 − O(ε))-pseudorandom session-key. This key may then be used as a shared, high-quality key
for (concurrently) generating any polynomial number of (1−O(ε))-pseudorandom session-keys; one
for each communication line (simple and efficient protocols exist for this task).

2.4.2 Many Parties

We now briefly discuss a generalization to the case where many parties execute the session-key
protocol simultaneously. This includes the case that the adversarial channel controls any number
of the legitimate parties.11 Specifically, we claim that for m invocations of the protocol (which
must be sequential for the same pair of parties and may be concurrent otherwise), the security is
O(mε).

We show this in the case of m different pairs, each pair executing a single invocation (the general
case is similar). Consider m pairs of parties (A1, B1), . . . , (Am, Bm) such that each pair shares a

11The importance of this extension was pointed out by Boyarsky [12].
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secret password wi ∈R D. (We do not assume that the A’s and B’s are distinct, yet do assume
that for each i 6= j, the passwords wi and wj are independently chosen.) We first focus on the
security of a pair of parties (Ai, Bi) when i is fixed. It is clear that the O(ε) security holds because
C can internally simulate all other executions by choosing wj ∈R D for every j 6= i, and we obtain
a reduction to the single-pair case. The same argument holds regarding the security of a random
pair (Ai, Bi), where i ∈R {1, . . . , m} is chosen randomly before the execution begins.

In the general case, we wish to analyze the security where i is not fixed or chosen at random
ahead of time. Now, assume that there exists an adversary C and an index j ∈ {1, . . . , m}, such that
C succeeds with respect to (Aj , Bj) with probability greater than O(mε). Then, C can be used to
contradict the O(ε) security in the case that i is randomly chosen. This is because with probability
1/m we have that i = j and therefore C succeeds with probability greater than O( 1

m ·mε) = O(ε).
We conclude that for every j, the security with respect to the (Aj , Bj) execution is O(mε).

3 Our Session-Key Generation Protocol

All arithmetic below is over the finite field GF(2n) which is identified with {0, 1}n. For a review of
cryptographic tools used and some relevant notations, see Appendix A. In our protocol, we use a
secure protocol for evaluating non-constant, linear polynomials. This protocol involves two parties
A and B; A has a non-constant, linear polynomial Q(·) ∈ {0, 1}2n and B has a string x ∈ {0, 1}n.
The functionality is (Q, x) 7→ (λ,Q(x)); that is, A learns nothing and B learns the value Q(x)
(and nothing else). The fact that A is supposed to input a non-constant, linear polynomial can be
enforced by simply mapping all possible input strings to the set of such polynomials (this convention
is used for all references to polynomials from here on). We actually augment this protocol by
having A also input a commitment to the polynomial cA ∈ Commit(Q) and its corresponding
decommitment r (i.e., cA = C(Q, r)). Furthermore, B also inputs a commitment value cB. This
augmentation is needed to tie the polynomial evaluation to a value previously committed to in the
main (higher level) protocol. The functionality is defined as follows:

Definition 3.1 (Augmented Polynomial Evaluation):

• Input: A inputs a commitment cA and its corresponding decommitment r, and a linear, non-
constant polynomial Q. B inputs a commitment cB and a value x.

• Output:

1. Correct Input Case: If cA = cB and cA = C(Q, r), then B receives Q(x) (and A receives
nothing).

2. Incorrect Input Case: If cA 6= cB or cA 6= C(Q, r), then B receives ⊥ (and A receives
nothing).

We note that by [47, 28], this functionality can be securely computed (A provides the decommitment
and so the input conditions can be checked in polynomial time).

3.1 The Protocol

Let f be a one-way permutation and b a hard-core of f .

Protocol 1 (Session-Key Generation Protocol)
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• Input: A and B begin with a joint password w, which is supposed to be uniformly distributed
in D.

• Output: A and B output an accept/reject bit as well as session-keys kA and kB respectively
(kA “should” equal kB).

• The Protocol:

1. Stage 1: Commit

(a) A chooses a random, linear, non-constant polynomial Q over GF(2n).
(b) A and B engage in a non-malleable commitment protocol in which A commits to the

string (Q, w) ∈ {0, 1}3n. Denote the random coins used by B in the commitment
protocol by rB and denote B’s view of the execution of the commitment protocol by
NMC(Q,w).12

Following the commitment protocol, B sends his random coins rB to A. This has no
effect on the security since the commitment protocol has already terminated.

2. Stage 2: Pre-Key Exchange - In this stage the parties “exchange” strings τA and τB,
from which the output session-keys (as well as validation checks) are derived. Thus, τA and
τB are called pre-keys.

(a) A sends B a commitment c = Commit(Q) = C(Q, r) for a random r.
(b) A and B engage in an augmented polynomial evaluation protocol. A inputs Q and

(c, r); B inputs w and c.
(c) We denote B’s output by τB. (Note that τB “should” equal Q(w).)
(d) A internally computes τA = Q(w).

3. Stage 3: Validation

(a) A sends the string y = f2n(τA) to B.
(b) A proves to B in zero-knowledge that she input the same polynomial in both the non-

malleable and ordinary commitments, and that the value y is “consistent” with the
non-malleable commitment. Formally, A proves the following statement:

There exists a string (X1, x2) ∈ {0, 1}3n and random coins rA,1, rA,2 (where rA,1 and
rA,2 are A’s random coins in the non-malleable and ordinary commitments respectively)
such that

i. B’s view of the non-malleable commitment, NMC(Q,w), is identical to the re-
ceiver’s view of a non-malleable commitment to (X1, x2), where the sender and
receiver’s respective random coins are rA,1 and rB. (Recall that rB is the string of
B’s random coins in the non-malleable commitment.)13

ii. c = C(X1, rA,2), and
iii. y = f2n(X1(x2)).

12Recall that B’s view consists of his random coins and all messages received during the commitment protocol
execution.

13The view of a protocol execution is a function of the parties’ respective inputs and random strings. Therefore,
(X1, x2), rA,1 and rB define a single possible view. Furthermore, recall that B sent rB to A following the commitment
protocol. Thus A has NMC(Q, w) (which includes rB), the committed-to value (Q, w) and rA,1, enabling him to
efficiently prove the statement.
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The specific zero-knowledge proof of Richardson and Kilian [41] is used here, with a
specific setting of parameters; see Appendix A.4.14

(c) Let tA be the entire session transcript as seen by A (i.e., the sequence of all messages
sent and received by A) and let MACk be a message authentication code, keyed by k.
Then, A computes k1(τA) def= b(τA) · · · b(fn−1(τA)) and sends m = MACk1(τA)(tA) to
B.

4. Decision Stage

(a) A always accepts and outputs k2(τA) def= b(fn(τA)) · · · b(f2n−1(τA)).
(b) B accepts if and only if all the following conditions are fulfilled:

• y = f2n(τB) where y is the string sent by A to B in step 3(a) above and τB is B’s
output from the polynomial evaluation.
(Note that if τB = ⊥ then no string fulfills this equality and B always rejects.)

• he accepts the zero-knowledge proof in step 3(b) above, and

• Verifyk1(τB)(tB,m) = 1, where tB is the session-transcript as seen by B, the string
m is the alleged-MAC value that B receives, and k1(τB) = b(τB) · · · b(fn−1(τB)) is
the MAC key used in verification.

If B accepts, then he locally outputs k2(τB) = b(fn(τB)) · · · b(f2n−1(τB)), otherwise
he outputs a random string. (Recall that the accept/reject decision bit is considered a
public output.)

It is imperative that A and B always accept or reject based solely on these criteria, and
that they do not halt (before this stage) even if they detect malicious behavior.

In our description of the protocol, we have related only to parties A and B. That is, we have
ignored the existence of the channel C. Therefore, when A sends a string y to B, we “pretend”
that B actually received y and not something else. In a real execution, this may not be the case at
all. In the future we will therefore subscript every value by its owner, as we have denoted τA and
τB in the protocol. For example, A sends a string yA and we denote the string received by B by
yB.

3.2 Motivation for the Protocol

We now briefly motivate the design principle and structure of our protocol. The core of the session-
key generation is the polynomial evaluation. In the case of a passive channel, executing a secure
polynomial evaluation with a random, linear polynomial is a satisfactory protocol. That is, A
chooses a random Q and inputs it to a polynomial evaluation with B who inputs w and receives
Q(w). Party A then internally computes Q(w) and both parties use this value as the session-key.
The key is uniformly distributed (since Q is random and linear) and due to the secrecy requirements,
the protocol reveals nothing of w and Q(w) to a passive C.

Attacks by an Adversarial Channel: In our case the channel can alter messages, causing B
to receive Q′(w) 6= Q(w). This clearly contradicts the key-match requirement (see Definition 2.4),
but there are also strategies for which C can contradict the session-key secrecy requirement as
well. For example, C can execute the polynomial evaluation with B, inputting a polynomial Q′

14The setting of parameters referred to relates to the number of iterations m in the first part of the Richardson-
Kilian proof. We set m to equal the number of rounds in all other parts of our protocol plus t(n), where t(·) is any
non-constant function.
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that he chooses (independent of the execution with A). In this case, B’s output key is clearly not
(1 − O(ε))-pseudorandom (unless D is super-polynomial in size). C may distinguish Q′(w) from
a uniformly distributed string by scanning the entire dictionary D and comparing Q′(w′) for all
w′ ∈ D to the challenge. Note that this is feasible here since D may be polynomial in size and C
knows Q′.

“Controlling” the Channel: The commit and validation stages ensure that C cannot “modify”
Q to Q′ 6= Q and have B accept. In the commit stage, B is supposed to receive a commitment
to (Q,w). Loosely speaking, the zero-knowledge proof and B’s check that yB = f2n(τB), ensure
that if the commitment is to (Q′, w′) where w′ 6= w, then B will reject. However, the secrecy of an
ordinary commitment scheme does not prevent C from generating a commitment to (Q′, w) based
on A’s commitment to (Q,w) (even though w is secret and unknown to C). It is for this reason
that we use non-malleable commitments (see Section A.3). Thus, if C modifies the commitment
sent by A, the probability that it is of the form (Q′, w) (for Q′ 6= Q) is at most negligibly greater
than ε.

On the other hand, if C does not modify the commitment sent by A, then the validation stage
ensures that B will reject unless τB = Q(w) = τA (as desired).

Achieving Password-Secrecy: The MAC sent by A in the validation stage is needed in order
to ensure secrecy of the password after the protocol. Otherwise, C can learn information about
w based on whether B accepts or rejects. In fact, if we modify our protocol so that no MAC is
sent, then we have an attack on the resulting protocol that enables C to learn one bit of w in
every invocation (and therefore possibly learn w after only log |D| invocations). See Appendix B
for a description of the attack. By including the MAC, the channel C can itself predict whether B
accepts or rejects based on whether or not C modified any messages sent between A and B. This
means that no additional information is revealed by B’s accept bit.

It is interesting to note that due to the necessity of the MAC, we do not know how to solve the
seemingly simpler problem of mutual authentication without first generating a session-key.

We now explain the motivation behind some specific choices we made in designing the protocol.

Using the Generator. In the protocol, we implicitly use a pseudorandom generator defined by
G(s) = b(s) · · · b(f2n−1(s)) · f2n(s). As we discuss in Appendix A.5, this is a seed-committing
pseudorandom generator (i.e., f2n(s) uniquely determines s). The string τB received by B from
the polynomial evaluation is used both for validation and for deriving the session-key. As part of
the validation stage, some function F of τB is sent by A to B. The properties required from F
are that firstly it be 1–1 (in order that it be effective for validation). Secondly, we require that
pseudorandom keys for the MAC and output session-key may still be obtained, even though the
adversary is given F (τB). Viewed in this light, using a seed-committed pseudorandom generator
and taking F (·) as f2n(·) is a natural choice.

On the Use of Linear Polynomials. The pre-keys are generated by applying a random, linear,
non-constant polynomial on the password. This is for the following reasons. Firstly, we need
“random 1–1 functions” that map each dictionary entry to a uniformly distributed n-bit string.
The 1–1 property is used in saying that Q and τ uniquely determine w such that Q(w) = τ .15

15In particular, if a constant polynomial is allowed then C could choose a constant Q′ and run the entire protocol
with B using Q′. Since Q′ is constant, τB = Q′(w) is a fixed value and is thus known to C. Furthermore, C
can execute the zero-knowledge proof in the validation stage correctly because y = f2n(Q′(w)) is consistent with
NMC(Q′, w′) for every w′. We conclude that B accepts with a session-key known to C, in contradiction to the
session-key secrecy requirement.
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Secondly, we desire that for w′ 6= w, the values Q(w′) and Q(w) be (almost) independent. This
ensures that if C guesses the wrong password and obtains Q(w′), he will gain no information on the
actual key Q(w). (Essentially, any family of 1–1 Universal2 hash functions would be appropriate.)

For technical reasons, B outputs a random string in the case that he rejects. This guarantees that
his output string is always (1−O(ε))-pseudorandom.

3.3 Properties of Protocol 1

The main properties of Protocol 1 are captured by the following theorem.

Theorem 3.2 Protocol 1 constitutes a secure protocol for authenticated session-key generation
based on passwords (as defined in Definition 2.4).

We further prove that Protocol 1 has a number of additional properties desirable for session-key
generation. Specifically, we show that the protocol enables intrusion detection and that it maintains
both “forward secrecy” and “security if prior session-keys are revealed” (see Section 4.7).

Protocol 1 as a feasibility result: All the cryptographic tools used in Protocol 1 can be
securely implemented assuming the existence of trapdoor permutations. Thus, at the very least,
Theorem 3.2 implies the feasibility result captured by Theorem 2.5.

Protocol 1 as a basis for efficient solutions: We now briefly discuss the efficiency of our
protocol. The three main modules of the protocol are a non-malleable commitment, a secure poly-
nomial evaluation and a zero-knowledge proof. The number of rounds of communication required
for the zero-knowledge proof is m, where m equals the number of rounds in all other parts of
the protocol plus some non-constant function in the security parameter (say log log n). In fact, as
discussed in Section 7, this can be reduced to a single additional round assuming that expected
polynomial-time simulation is sufficient. We thus conclude that the main bottleneck with respect
to the number of rounds of communication is due to the non-malleable commitment and secure
polynomial evaluation modules.

Current implementations for non-malleable commitment [19] and two-party computation [47, 28]
require n rounds of communication.16 (It is however remarked in [19] that the non-malleable
commitment protocol can be improved to only log n rounds.) Therefore, any improvements in
the efficiency of these modules would result in greater efficiency for our protocol. The same is true
regarding the bandwidth, which is also large for currently known implementations of these modules.
We note that if indeed efficient constructions are found for these modules, then our protocol may
be used as an efficient solution for password-based session-key generation.

We comment that under a stronger set-up assumption that includes a common random string ac-
cessible by all parties (including the adversary), our protocol can be implemented more efficiently.17

Specifically, the zero-knowledge proof could be replaced by a non-interactive proof improving the
round complexity. Furthermore, it is conceivable that in the future, efficient protocols for non-
malleable commitment in this model may exist.18

16Some researchers believe that Yao’s protocol [47] can be implemented in a constant number of rounds.
17We note that it is not clear that the problem of password-based session-key generation is significantly easier in

this common random string model.
18Efficient non-malleable commitment schemes have been shown in the common random string model [17, 22].

However, the definition of non-malleability in [17, 22] is weaker than that of [19]: non-malleability is guaranteed only
if the adversary is also able to decommit (see [22]). In our protocol, the commitments are never opened and therefore
the stronger definition of [19] is required.
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4 Overview and Partial Proofs

Recall that C may omit, insert and modify any message sent between A and B. Thus, in actuality
C conducts two separate executions: one with A in which C impersonates B (called the (A,C)
execution), and one with B in which C impersonates A (called the (C, B) execution). These two
executions are carried out concurrently (by C) and there is no explicit execution between A and
B. Furthermore, C has full control of the scheduling of the (A,C) and (C, B) executions (i.e., C
may maliciously decide when to pause one execution and continue the other). For this reason,
throughout the proof we make statements to the effect of: “when A executes X in her protocol
with C then...”. This reflects the fact that the separate (A,C) and (C,B) executions may be at
very different stages.

We note that there are currently no tools for dealing with (general) concurrent computation
in the two-party case.19 Our solution is therefore based on an ad-hoc analysis of (two) concurrent
executions of specific two-party protocols that are secure as stand-alone (i.e., when only two parties
are involved and they conduct a single execution over a direct communication line). Our analysis
of these executions proceeds by using specific properties to remove the concurrency and obtain a
reduction to the stand-alone setting. That is, we show how an adversarial success in the concurrent
setting can be translated into a related adversarial success in the stand-alone setting. This enables
us to analyze the adversary’s capability in the concurrent setting, based on the security of two-party
stand-alone protocols.

We stress that we make no attempt to minimize the constants in our proofs. In fact, some of our
proofs are clearly wasteful in this sense and the results are not tight. Our main objective is to make
our (regrettably complex) proofs as modular and simple as possible.

Reliable Channels: For the proof, we define the concept of a reliable channel. We say that a
channel C is reliable in a given protocol execution if C runs the (A,C) and (C, B) executions in a
synchronized manner and does not modify any message sent by A or B. That is, any message sent by
A is immediately forwarded to B (without modification), and visa versa. This property is purely
syntactic and relates only to the bits of the messages sent in a given execution of the protocol.
In essence, an execution for which C is reliable looks like an execution via a passive adversary.
However, C may decide at any time during the protocol execution to cease being reliable (this
decision is possibly based on his current view and with some probability). This is in contrast to a
passive adversary who by definition only eavesdrops on the communication.

Organization: Due to the length and complexity of our proof, we leave the full proofs of some of
the central lemmas (and necessary preliminaries) to later sections. Instead, intuitive proof sketches
are provided in-place. Unless otherwise stated, the sketches are quite accurate and the full proofs
are derived from them in a straightforward manner.

We begin by proving the viability requirement (in Sections 4.2 and 5). Then, in Section 4.3
(and Section 6) we prove that Q(w) is (1−O(ε))-pseudorandom at the conclusion of the Pre-Key
Exchange stage between A and C. This is a central results towards proving that Protocol 1 is secure
by Definition 2.4. Using this result, we prove the session-key secrecy requirement (Sections 4.4
and 8 with preliminaries from Section 7), the key-match requirement (Sections 4.5 and 9) and the
password-secrecy requirement (Sections 4.6 and 10). Finally, in Section 4.7 we show additional
properties that hold for our protocol.

19We are aware of work in progress for concurrent, honest-majority computation [15]. However, this does not apply
to the two-party case.
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In Section 7 we show how (and under what circumstances) A’s zero-knowledge proof can be
simulated in our concurrent setting, proving that C learns nothing from this proof in the pro-
tocol. We do not know how to show that C learns nothing when using regular zero-knowledge
proofs, rather than the specific proof of Richardson and Kilian. Furthermore, the “zero-knowledge
property” of the proof in our setting is not derived merely from the fact that the Richardson and
Kilian proof provides concurrent zero-knowledge. Concurrent zero-knowledge only refers to a set-
ting where many instances of the same proof are run concurrently, but says nothing when the proof
is run concurrently with other protocols (as occurs in our case).

4.1 Formalizing the Setting

In this subsection, we present formal notations for the setting in which A and B interact via the
channel C. In order to measure what C has learned from a protocol execution, we consider the
following mental experiment that works in two stages. First, C invokes protocol executions with A
and B. Then, following these executions, C receives some “challenge” string. This string may, for
example, be either the session-key output by A and B or a random string. Then, C’s inability to
distinguish these cases points to the pseudorandomness of the output session-key.

For this experiment, we separate C into two parts, C1 and C2. The channel C1 interacts
concurrently with A and B for the entire protocol (or parts of it). At the conclusion of this
interaction, C1 outputs a string s representing its state information. Then, C2 (who plays the
role of the distinguisher and outputs a single bit) is given s and the challenge z. For example, in
order to analyze C’s capability of distinguishing the session-key from a random string, we consider
the difference in the probability that C2 outputs 1 when z equals the session-key and when z is a
randomly chosen string.

Formally, denote by CA(Q,w),B(w)
1 (1n) the setting where the channel C instigates a protocol execution

with parties A and B, who have respective inputs (Q,w) and w. Recall that A’s input in the protocol
is defined to be only w. However, modifying A so that she receives a random Q as additional input
makes no difference to the outcome (recall that Q is chosen randomly by A in the first step of the
protocol). This modification is made for the sake of the analysis and enables us to refer explicitly
to Q when, for example, talking about the pseudorandomness of Q(w).
Consider the following experiment for a fixed polynomial Q, password w and string z:

ExptA(Q,w),B(w)
z (C):

s ← CA(Q,w),B(w)
1 (1n)

return C2(s, z)

Then, for example, in order to analyze C’s capability of distinguishing between the output session-
key k2(Q(w)) and a random string, we bound the following difference:

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
k2(Q(w)) (C) = 1]− PrQ,w[ExptA(Q,w),B(w)

Un
(C) = 1]

∣

∣

∣

The above experiment template is used many times throughout the proof. In order to simplify
notation, the experiment is sometimes written in a slightly modified form. For example, if Q plays
no role in the experiment and C needs no explicit reference, then the experiment may be denoted
only by ExptA(w),B(w)

z .
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4.2 Viability

In this section, we state the viability requirement of the protocol. That is, if C is passive, then the
result of a protocol execution is a joint session-key known to both parties, and this key is pseudo-
random with respect to C’s view. Furthermore, given C’s view, the password w is indistinguishable
from a random w̃ ∈R D. This means that when C is passive, effectively nothing is learned about
the password or session-key from the protocol execution.

We note that the definitions of multi-party computation do not immediately imply that C
cannot learn anything in our context. This is because the definitions relate to an adversary C who
“corrupts” one or more parties. However, here we are dealing with the case that C corrupts zero
parties and we must show that in this case, C learns nothing about any party’s inputs or outputs.
The experiment referred to in the theorem is defined in Section 4.1.

Theorem 4.1 (Viability): Let C be a passive channel. Then, both A and B accept and output
the same session-key k2(Q(w)). Furthermore, the session-key k2(Q(w)) is pseudorandom and the
password w is indistinguishable from w̃ ∈R D. That is, for every passive ppt channel C, for every
polynomial p(·) and for all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
k2(Q(w)) (C) = 1]− PrQ,w,Un [ExptA(Q,w),B(w)

Un
(C) = 1]

∣

∣

∣ <
1

p(n)

and
∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
w (C) = 1]− PrQ,w,w̃[ExptA(Q,w),B(w)

w̃ (C) = 1]
∣

∣

∣ <
1

p(n)

where Q is a random, non-constant linear polynomial, and w and w̃ are independently and uniformly
distributed in D.

The proof can be found in Section 5. Since C is a passive adversary (in this case), the proof is
rather straightforward.

4.3 Pseudorandomness of Q(w)

A central element of our proof is showing that the output keys are (1−O(ε))-pseudorandom. We
begin by proving that at the conclusion of Stage (2) of the protocol (pre-key exchange) between A
and C, the string Q(w) is (1 − 2ε)-pseudorandom. From this, we derive both the security of the
MAC-key k1(Q(w)) and the output-key k2(Q(w)), based on the properties of the seed-committed
pseudorandom generator G(s) def= k1(s), k2(s), f2n(s).

We note that at the conclusion of the entire protocol, it is not true that the pre-key Q(w) itself
is (1−O(ε))-pseudorandom. This is because in the Validation Stage, party A sends y = f2n(Q(w)),
which is seen by C. Then, let z be the challenge which is either Q(w) or a random string. Since C
is given z, he can easily distinguish the cases by comparing f2n(z) with y.

As in the mental experiment defined in Section 4.1, the channel C first runs a protocol execution
with A and B. Following this, C is given a challenge z and should decide if z = Q(w) or if z is
a random string. However, the experiment must reflect the fact that we wish to analyze the
pseudorandomness of Q(w) at the conclusion of the (A,C) Pre-Key Exchange (rather than at the
end of the entire protocol). We do this by modifying A to another party A2 who only participates
in the first two stages of Protocol 1. That is, A2 halts immediately after the pre-key exchange
stage. Then, we analyze the setting in which C interacts with A2 and B (rather than A and B)
and at the conclusion of these executions is given the challenge. Recall that we denote this setting
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by CA2(Q,w),B(w)
1 (1n) and that the distinguisher C2 receives C1’s state information and a challenge

which is either Q(w) or a random string.

Theorem 4.2 (Pseudorandomness of Q(w)): Let C be an arbitrary ppt adversary interacting with
A2 and B. Then, for every polynomial p(·) and for all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA2(Q,w),B(w)
Q(w) (C) = 1]− PrQ,w,Un [ExptA2(Q,w),B(w)

Un
(C) = 1]

∣

∣

∣ < 2ε +
1

p(n)

where Q is a random, non-constant, linear polynomial and w ∈R D.

Proof: The main body of the proof is found in Lemmas 4.3 and 4.4. The theorem states that C
cannot distinguish between Q(w) and Un with any polynomial advantage over 2ε. In Lemma 4.3 we
show that C cannot distinguish between Un and Q(w̃) for a random w̃ ∈R D with any polynomial
advantage over ε. Then, Lemma 4.4 states that C also cannot distinguish between Q(w) and Q(w̃)
for an independent w̃ ∈R D with any polynomial advantage over ε. Putting these two Lemmas
together we have that C cannot distinguish between Q(w) and Un with any polynomial advantage
over 2ε.

Lemma 4.3 For every polynomial p(·) and for all sufficiently large n’s

∣

∣

∣PrQ,w,Un [ExptA2(Q,w),B(w)
Un

(C) = 1]− PrQ,w,w̃[ExptA2(Q,w),B(w)
Q(w̃) (C) = 1]

∣

∣

∣ < ε +
1

p(n)

Proof Sketch: The lemma holds even if C knows w itself. (Intuitively, C must distinguish
between Q(w̃) and Un, which is related to the secrecy of Q, not of w). Therefore, we can give C
the password w, enabling him to internally emulate the entire session with B. (This emulation
is perfect as knowledge of w is all that is needed to play B’s role.) What remains is therefore a
(non-concurrent) session with A2 only, which can be analyzed in the stand-alone, two-party setting.

It is clear that the only place that C can learn about Q is from the polynomial evaluation itself
(the commitments are indistinguishable and so reveal nothing). The security of the polynomial
evaluation implies that the receiver can learn nothing beyond the value of Q(·) at a single point.
Therefore, unless C inputs w̃ itself into the polynomial evaluation receiving Q(w̃), the values Q(w̃)
and Un are indistinguishable (recall that Q is a random, non-constant, linear polynomial and so we
have “almost” pairwise independence). However, as w̃ is uniformly distributed in D, the probability
that C inputs w̃ is at most ε. This means that C can distinguish Q(w̃) from Un with probability
at most ε. 2

(The full proof is presented in Section 6.1 and is derived in a straightforward manner from the
sketch.)

Lemma 4.4 For every polynomial p(·) and for all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA2(Q,w),B(w)
Q(w) (C) = 1]− PrQ,w,w̃[ExptA2(Q,w),B(w)

Q(w̃) (C) = 1]
∣

∣

∣ < ε +
1

p(n)
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Proof Sketch: As in the previous lemma, we first remove the concurrency from the setting.
The important points to notice here are as follows. Firstly, the lemma holds even if C knows the
polynomial Q (and in such a case, distinguishing Q(w) from Q(w̃) reduces to distinguishing w from
w̃). Secondly, it is possible to emulate A2 given only knowledge of Q (i.e., without knowing w).
This is because the only input used by A2 in the pre-key exchange is Q itself. It is true that A2 uses
w in the non-malleable commitment. However, due to the hiding property of the non-malleable
commitment, this can also be simulated without knowing w. Therefore, C can simulate the entire
session with A2 internally. What remains is a single session between C and B which is in the
standard two-party computation setting.

In the session between C and B, channel C’s view consists of B’s accept/reject bit only. Essen-
tially, B accepts if during the validation stage he is convinced that C knows the value of w. This
can be seen as follows. Let QC be the polynomial that C inputs into the polynomial evaluation.
Then, B accepts only if he receives y = f2n(QC(w)). However, since f2n and QC are 1–1 functions,
y defines a single possible value of w. This implies that B accepts only if C essentially guesses
the value of w correctly. Since w ∈R D and C receives nothing from the interaction with B before
sending y, the probability that B accepts is at most ε. We therefore have that with probability
1 − ε, B’s output-bit can be correctly simulated (by simply guessing that it equals reject). This
means that at most an “ε amount of information” can be learned from this bit (which is the only
bit of information learned by C during the execution). 2

The full proof is presented in Section 6.2 and is not a direct implementation of the above ideas. The
main difficulty involved is due to the fact that the use of the MAC in the validation stage of our
protocol precludes the use of currently known composition theorems for secure computation (see
Section 6.2 for details). We must therefore bypass this problem before analyzing C’s probability of
success.

The theorem follows immediately from Lemmas 4.3 and 4.4.

Intermediate Conclusion. At the end of Stage (2) of the protocol, A2 has a uniformly dis-
tributed string Q(w) that is (1 − 2ε)-pseudorandom with respect to C. We stress that this says
nothing of the string τB obtained by B from the polynomial evaluation. In fact, τB is not necessar-
ily (1− 2ε)-pseudorandom at all. A strategy for C in which he explicitly chooses a polynomial Q′

results in τB = Q′(w) where C knows Q′. Then, upon receiving the challenge z, the channel C can
simply check for every w ∈ D, if Q′(w) = z (if D is not too large, then this is feasible) and C would
distinguish Q′(w) from Un with overwhelming probability. However, as we will show, our protocol
is such that the probability that B accepts and τB 6= Q(w) is small (see the key-match condition).
Thus, we are assured that typically, either B rejects or τB is also a (1 − 2ε)-pseudorandom string
(which equals Q(w)).

4.4 Session-Key Secrecy

Session-Key Secrecy for A: The following theorem states that after the protocol execution,
A’s session-key is (1 − O(ε))-pseudorandom with respect to C’s view. Recall that Q(w) is (1 −
O(ε))-pseudorandom after the first two stages of the protocol, and that the only messages sent
by A in the third and final stage are y = f2n(Q(w)), a zero-knowledge proof and a MAC of
the message transcript. Intuitively, the zero-knowledge proof reveals nothing and since Q(w) is
(1−O(ε))-pseudorandom after the Pre-Key Exchange, the session-key k2(Q(w)) remains (1−O(ε))-
pseudorandom even given y = f2n(Q(w)) and the MAC. This is due to the fact that y along with
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the MAC-key and the session-key constitutes a pseudorandom generator. Therefore, the proof of
the theorem is derived from Theorem 4.2 and the properties of the seed-committed pseudorandom
generator (see Appendix A.5).

The full proof of the fact that nothing is learned from A’s zero-knowledge proof can be found in
Section 7. We stress that this is not at all obvious and that we do not know whether it holds when
using an ordinary zero-knowledge proof (rather than the Richardson-Kilian proof). In Section 8,
we use Section 7 and the properties of the seed-committed generator to formally prove the following
theorem for session-key secrecy. (The definition of the experiment in the theorem statement below
can be found in Section 4.1.)

Theorem 4.5 (Session-Key Secrecy): Let C be an arbitrary ppt channel. Then,

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
k2(Q(w)) = 1]− PrQ,w,Un [ExptA(Q,w),B(w)

Un
= 1]

∣

∣

∣ < 4ε +
1

poly(n)

Session-Key Secrecy for B: B’s session-key secrecy is shown by combining Theorem 4.5 (A’s
session-key secrecy) together with Theorem 4.6 proven below (the key-match requirement). Recall
that B’s session-key, denoted kB, equals k2(τB) in case B accepts and is a uniformly distributed
string in case he rejects. Intuitively, kB is (1 − O(ε))-pseudorandom because with probability
1 − O(ε), party B only accepts when τA = τB. However, in this case kB = k2(τA) and thus B’s
session-key secrecy is reduced to A’s session-key secrecy.

Formally, in Theorem 4.6 we prove that the probability that B accepts and τA 6= τB (or almost
equivalently that kB 6= k2(τA)) is at most negligibly more than 3ε. This implies that

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
kB

= 1 ∧ B = acc]− PrQ,w,Un [ExptA(Q,w),B(w)
k2(τA) = 1 ∧ B = acc]

∣

∣

∣ < 3ε+
1

poly(n)

(This can be seen by noticing that when kB = k2(τA), the experiments are identical. On the other
hand, when kB 6= k2(τA), then both the probabilities in the difference are between 0 and 3ε + µ.
Thus the difference can be at most negligibly more than 3ε.) We therefore have that

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
kB

= 1 ∧ B = acc]− PrQ,w,Un [ExptA(Q,w),B(w)
Un

= 1 ∧ B = acc]
∣

∣
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<
∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
k2(τA) = 1 ∧ B = acc]− PrQ,w,Un [ExptA(Q,w),B(w)

Un
= 1 ∧ B = acc]

∣

∣

∣ (1)

+ 3ε +
1

poly(n)

Now, recall that B’s accept bit is part of C’s view. Therefore, any success in distinguishing
k2(τA) from a uniformly distributed string when B accepts, can be transformed into success in
distinguishing k2(τA) from Un in the general case (i.e., where B may accept or reject). By the fact
that k2(τA) is (1 − 4ε)-pseudorandom, we have that Equation (1) is upper bound 4ε + µ. Thus
when B accepts, his session-key kB can be distinguished from a random string with probability at
most 3ε + 4ε + µ. On the other hand, in the case that B rejects, kB is uniformly distributed and
thus cannot be distinguished from a random string at all. Combining these facts, we have that

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
kB

= 1]− PrQ,w,Un [ExptA(Q,w),B(w)
Un

= 1]
∣

∣

∣ < 7ε +
1

poly(n)
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4.5 The Key-Match Requirement

We now prove the key-match requirement which states that the probability that A and B both
accept, yet have different keys is at most O(ε). Recall that τA

def= Q(w) and that τB is B’s output
from the polynomial evaluation.

Theorem 4.6 (Key-Match): For every ppt adversarial channel C, every polynomial p(·) and all
sufficiently large n’s

Pr[B = acc ∧ τA 6= τB] < 3ε +
1

p(n)

Proof Sketch: The proof is divided into two complementary subcases related to the scheduling
of the two executions (i.e., C’s execution with A and C’s execution with B). The scheduling
of these two executions may be crucial with respect to the non-malleable commitments. This is
because the definition of non-malleability states that a commitment is non-malleable when executed
concurrently with another commitment.20 In an execution of our protocol, the commitment from
C to B may be executed concurrently with the polynomial evaluation and/or validation stage of
the (A, C) execution. In this case, it is not clear that the non-malleable property holds at all.

We therefore prove the theorem by considering two possible strategies for C with respect to
the scheduling of the (A,C) and (C,B) executions. In the first case, we consider what happens if
C completes the polynomial evaluation with A before completing the non-malleable commitment
with B. In this case, the entire (A,C) execution may be interleaved with the (C, B) non-malleable
commitment. However, according to this scheduling, we are ensured that the (A,C) and (C,B)
polynomial evaluation stages are run at different times (with no overlap). Loosely speaking, this
means that the polynomial QC input by C into the (C, B) evaluation is independent of the polyno-
mial Q input by A in the (A,C) evaluation. (Recall that in the (A,C) execution, C only learns the
value of Q(·) at a single point.) In this case, when QC is independent of Q, the probability that
the “y” value sent by C to B will match f2n(QC(w)) is at most ε. This means that B will reject
with probability 1− ε. We call this case “unsynchronized”.

In the other possible scheduling, C completes the polynomial evaluation with A after com-
pleting the non-malleable commitment with B (and so in this case the two executions are more
synchronized). In this case we show how the (A,C) polynomial evaluation can be simulated, and
we thus remain with a concurrent execution containing two non-malleable commitments only. Non-
malleability now holds and this prevents C from modifying the commitment sent by A, if B is to
accept. This yields the key-match property. 2

Further details on the proof of Theorem 4.6: What we prove is that according to each of
the two scheduling cases, the probability that B accepts and there is a key mismatch is at most
O(ε). Using the Union Bound, Theorem 4.6 follows.

Case (1) (The Unsynchronized Case) In this case, C completes the polynomial evaluation
with A before completing the non-malleable commitment with B.

We actually prove a stronger claim here. We prove that according to this scheduling, B accepts
with probability less than 2ε + 1

poly(n) irrelevant of the values of τA and τB. This is enough because

Pr[B = acc ∧ τA 6= τB ∧ Case 1] ≤ Pr[B = acc ∧ Case 1]
20In fact by the definition, non-malleability is only guaranteed if the commitments are of the same scheme. Two

different non-malleable commitment schemes are not guaranteed to be non-malleable if executed concurrently.
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Lemma 4.7 (Case 1 - Unsynchronized): Let C be a ppt channel and define Case 1 to be a scheduling
of the protocol execution by which C completes the polynomial evaluation with A before concluding
the non-malleable commitment with B. Then for every polynomial p(·) and all sufficiently large n’s

Pr[B = acc ∧ Case 1] < 2ε +
1

p(n)

Proof Sketch: In this case, the (C,B) polynomial evaluation stage is run strictly after the (A,C)
polynomial evaluation stage, and the executions are thus “independent” of each other. That is, the
polynomial evaluations are executed sequentially and not concurrently. For the sake of simplicity,
assume that the entire protocol consists of a single polynomial evaluation between A and C and a
single polynomial evaluation between C and B. Then, since the evaluations are run sequentially,
a party P can interact with C and play A’s role in the (A,C) execution and B’s role in the (C, B)
execution. Thus, what we actually have is a two-party setting between C and P . As in previous
proofs, we analyze what happens in this two-party setting and derive the result regarding our
concurrent setting.

The actual reduction is more complex, as the (A,C) and (C,B) protocols involve other steps
beyond the polynomial evaluation. Furthermore, some of these steps may be run concurrently
(unlike the polynomial evaluations which are executed sequentially according to this scheduling).
Therefore, the main difficulty in the proof is in defining the two-party protocol between C and P
so that it correctly simulates the concurrent execution of our entire protocol. 2

The full proof is presented in Section 9.1.

Case (2) (The Synchronized Case) We now show that the probability that C completes
the polynomial evaluation with A after completing the non-malleable commitment with B and B
accepts and τA 6= τB, is less than ε + 1

poly(n) .

Lemma 4.8 (Case 2 - Synchronized): Let C be a ppt channel and define Case 2 to be a scheduling
of the protocol by which C completes the polynomial evaluation with A after completing the non-
malleable commitment with B. Then for every polynomial p(·) and for all sufficiently large n’s,

Pr[B = acc ∧ Case 2 ∧ τA 6= τB] < ε +
1

p(n)

Proof Sketch: As we have mentioned, in this scheduling case we can show that the non-
malleability property holds with respect to A’s commitment to the pair (Q,w). Loosely speaking,
this means that A’s commitment does not help C in generating a commitment to a related pair.
(This holds unless C simply copies A’s commitment unmodified; however, then we can show that B
rejects unless τA = τB, in which case key-match holds). Now, denote C’s non-malleable commitment
by (Q′, w′). Then, we are interested in the probability that Q′ 6= Q and w′ = w (i.e., the second
element in the pair is A and B’s shared secret password).21 Since A’s commitment does not help

21As we have mentioned, in the case that C copies A’s commitment unmodified and thus (Q′, w′) = (Q, w), we
can show that unless τA = τB , party B rejects with overwhelming probability. This is because the validation stage
enforces that τB = Q′(w′) and thus when (Q′, w′) = (Q, w), we have that τB = Q′(w′) = Q(w) = τA. In this sketch,
we therefore only relate to the case that (Q′, w′) 6= (Q, w).
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C in generating this commitment and w is uniformly distributed in D with respect to C’s view,
the probability that C generates such a commitment is at most negligibly more than ε. If C indeed
generates such a commitment, then he may cause B to accept, even when τA 6= τB. However, the
probability that C succeeds in this is less than ε + 1

poly(n) .
On the other hand, if C fails to generate such a related commitment and B receives a non-

malleable commitment to (Q′, w′) where w′ 6= w, then the validation stage ensures that B will
reject. This is because, essentially, the (C, B) validation stage enforces that B’s output from the
polynomial evaluation be consistent with the non-malleable commitment he received. That is, it
ensures that B will reject unless he receives τB = Q′(w′) from the polynomial evaluation. The
validation stage also enforces that the polynomial input by C into the polynomial evaluation is Q′.
That is, the respective inputs of C and B into the polynomial evaluation are Q′ and w. By the
correctness of the evaluation, it must hold that B receives Q′(w). Therefore if B accepts it must
be the case that Q′(w′) = Q′(w) which implies that w′ = w. In other words, if C’s commitment is
such that w′ 6= w, then B rejects with overwhelming probability. We conclude that B only accepts
if C’s (non-malleable) commitment was to (Q′, w) and that this can occur with probability at most
negligibly more than ε. 2

The full proof of Lemma 4.8 is presented in Section 9.2 and is significantly more involved than the
above sketch.

Theorem 4.6 follows by combining Lemmas 4.7 and Lemma 4.8.

4.6 Password Secrecy

We now prove that at the conclusion of the protocol, the password w is (1−O(ε))-indistinguishable
from a random w̃ ∈R D.

Before beginning, we state below a corollary (proven at the end of Section 8), that relates to
the security of the MAC. We note that, for simplicity, our proofs (throughout) refer to a MAC
that is implemented by a pseudorandom function. However, all claims carry through for any
implementation of a MAC. The corollary below states that it is “hard” for C to generate a correct
MAC-value for any value other than that sent by A. Specifically, the function MACk1(τA)(·) is
(1 − 4ε)-pseudorandom. Therefore for any value t, unless t is the exact (A,C)-message-transcript
(and thus A herself sends this value in the protocol), the probability that C generates a pair
(t,MACk1(τA)(t)) is at most negligibly greater than 4ε.

The pseudorandomness of the MAC function is based on the fact that at the conclusion of
the (A,C) pre-key exchange stage τA is (1 − 2ε)-pseudorandom (Theorem 4.2) and that k1(τA)
is (1 − 4ε)-pseudorandom, even given y = f2n(τA) (recall that A sends y during the protocol).
Intuitively, this is because f2n(τA) ·k1(τA) is a (1−O(ε))-pseudorandom sequence, and thus k1(τA)
remains (1−O(ε))-pseudorandom even given f2n(τA).

Corollary 4.9 Let C be an arbitrary ppt channel. Then, for every string t that differs from the
(A, C)-message-transcript, the value MACk1(τA)(t) is (1 − 4ε)-pseudorandom with respect to C’s
view.

We now prove that for every ppt channel C, at the conclusion of the protocol, with respect to C’s
view the actual password is (1−O(ε))-indistinguishable from a uniformly chosen (new) password.

Theorem 4.10 (Password Secrecy): Let C be a ppt channel interacting with A and B. Then, for
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every polynomial p(·) and for all sufficiently large n’s

∣

∣

∣Prw[ExptA(w),B(w)
w (C) = 1]− Prw,w̃[ExptA(w),B(w)

w̃ (C) = 1]
∣

∣

∣ < 26ε +
1

p(n)

where w and w̃ are independently and uniformly distributed in D.

Proof Sketch: We prove this theorem by first “removing” the concurrent (C,B) execution. This
is done in a way that affects C’s capability of distinguishing w from w̃) by at most O(ε).

The (C, B) validation is first removed by showing that C can actually predict B’s accept/reject
bit itself (this is enough as this bit is B’s only output from this stage). This is shown by combining
the following facts:

• Theorem 4.6 states that the probability that B accepts and τA 6= τB is at most O(ε).

• Let tA and tB be the (A,C) and (C,B) message-transcripts respectively. Then, Corollary 4.9
states that if tA 6= tB, then MACk1(τA)(tB) is (1 − O(ε))-pseudorandom with respect to C’s
view.

• B only accepts if he receives MACk1(τB)(tB) (keyed by τB) in the last step of the protocol. Note
that if τA = τB, then Corollary 4.9 holds regarding this MAC.

Putting these together, we have that if τA = τB and C is not reliable, then B rejects with probability
1 − O(ε). On the other hand, if τA 6= τB, then B anyway rejects with probability 1 − O(ε) (key-
match). Therefore, the probability that B accepts and tA 6= tB is at most O(ε). On the other hand,
if tA = tB (i.e., C was reliable), then B certainly accepts. By noticing that C always knows whether
tA = tB or tA 6= tB holds, we have that C can predict B’s accept/reject bit itself by “guessing”
that B accepts if and only if tA = tB. Since, channel C is wrong in this guess with probability at
most O(ε), the difference in C’s view in the case that C really receives B’s output bit or guesses it
himself, is at most O(ε).

Next, the remainder of the (C, B) evaluation is removed. Intuitively this is possible because (in
the remaining first two stages) the only place that B uses w is in the (C,B) polynomial evaluation.
However, C receives no output from this evaluation and thus nothing is revealed about w. We
conclude that B’s role in the remaining execution can be simulated using any w′ ∈ D and this
simulation is indistinguishable from a real execution.

We now remain with a non-concurrent setting involving only A and C. In this setting, we show
that C can distinguish w from w̃ ∈R D with probability at most O(ε). As before, the (A,C)
validation stage is first removed by simulating the zero-knowledge proof given by A and next by
noticing that both y and the MAC sent by A are (1 − O(ε))-pseudorandom to C. Then, if C
receives random strings instead, this can make a difference of at most O(ε). Therefore, A’s part
in the validation stage can be replaced by the zero-knowledge simulator and random strings. (As
explained in Section 4.4 this simulation of A’s proof is not immediate, see Section 7.)

We now remain with a protocol between A, restricted to the first two stages, and C. Now,
notice that in the first two stages of the protocol, A only uses w in her non-malleable commitment.
Thus, due to the hiding property of the commitment, w remains computationally indistinguishable
from w̃ ∈R D. This completes the proof sketch. 2

The full proof is presented in Section 10.
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4.7 Additional Properties

In this section, we show additional desirable properties of our protocol. Namely, we show that our
protocol satisfies Intrusion Detection, Forward Secrecy and security in the face of Session-Key Loss
(also known as a “Known-Key Attack”).

Intrusion Detection: If the adversary modifies any message sent in a session, then with prob-
ability at least (1−O(ε)) this is detected.

This property is immediately derived from Claim 10.4 (see Section 10), that states that the prob-
ability that B accepts and C is not reliable is at most O(ε). This prevents C from carrying out
any undetected active attack (where an active attack is one in which C is not reliable). However,
it does not mean that C cannot learn about the password and session-key by only eavesdropping.
(We have already shown that C can learn at most O(ε) in Theorems 4.5 and 4.10, however this
may be significant if it can go undetected.)

We now show that in actuality, C can only “significantly learn something” about w by being
unreliable. Therefore, we are ensured that a channel C cannot learn anything noticeable about
w, without us detecting adversarial behavior with probability at least 1 − O(ε). Recall that a
passive channel is always reliable but the reverse is not true. Furthermore, an active channel may
dynamically decide to be reliable or not, possibly depending on what occurs during the protocol
execution. Despite this, the following claim states that in a given execution for which the channel
is reliable, he can learn no more than if he was passive.

Claim 4.11 For every ppt active channel C there exists a passive channel C ′ such that for every
randomized process z = Z(Q,w)

Pr[C reliable ∧ ExptA(Q,w),B(w)
z (C) = 1] = Pr[ExptA(Q,w),B(w)

z (C ′) = 1]

From Theorem 4.1 (viability) we know that a passive channel learns nothing significant about the
password w or the session-key. Therefore, this is also true of a reliable channel. This implies that
in order for C to learn something, he must act unreliably. (Recall that even when C is unreliable,
he can learn at most O(ε) about the password and session-key.)

The proof of the above claim is based on having C ′ emulate an execution for C. Recall that C ′

is passive and therefore receives a message transcript of messages sent between A and B. Channel
C ′’s emulation involves passing the messages of the transcript (in order) to C and observing that
C forwards all messages immediately and unchanged to their intended receiver. If at any point
C is not reliable (and thus C ′ cannot continue the emulation), then C ′ halts and outputs 0. On
the other hand, if C is reliable for the entire execution, then C ′ outputs whatever C does from
the experiment. The equality is obtained because when C is reliable, C ′’s emulation is perfect and
when C is unreliable, C ′ never outputs 1. 2

Before discussing the properties of Session-Key Loss and Forward Secrecy, we consider a version
of Protocol 1 augmented to include mutual authentication (as discussed in Section 2.2). The
augmentation is such that if B rejects, then with probability 1−O(ε), A also rejects. (Recall that
when a party rejects, he outputs a uniformly distributed session-key, chosen independently of the
protocol execution and password.) The following discussion relates to this augmented protocol.
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Loss of Session-Keys: The current session-key remains secure even if prior session keys are
revealed. Furthermore, the password maintains its security even if all session-keys are revealed.

First, recall that Claim 10.4 states that the probability that B accepts and C is not reliable is at
most O(ε). Then, due to the augmentation, it also holds that the probability that A accepts and C
is not reliable is at most O(ε). We continue by relating separately to session-keys generated from
executions in which C was reliable and in which C was not reliable.

First, in executions for which C was not reliable, with probability 1 − O(ε) per execution, we
have that the output session-keys are uniformly distributed. Therefore, these session-keys reveal
no information about the current session-key or password.

We now show that session-keys generated from executions in which C was reliable also reveal
nothing significant about the current session-key or password. At the conclusion of the full proof
of viability (Section 5), we show that the password w is indistinguishable from a random w̃ ∈R D,
given an entire session-transcript and the resulting session-key. This refers to a passive channel;
however, by Claim 4.11 we have that this also holds for sessions in which C is reliable. Although
this is shown for a single session, the proof can be extended to any polynomial number of sessions.
We therefore have that the password is secure even if all session-keys are revealed.

The fact that the current session-key also remains secure (when all prior session-keys are re-
vealed), is derived directly from the password security just shown, and the fact that the polynomial
Q is chosen randomly and independently in each session. 2

Forward Secrecy: The session-key remains secure even if the password is revealed at a later
time.

As in the case of Session-Key Loss, we need only relate to a session-key generated from an execution
in which C is reliable. (Otherwise, with probability 1−O(ε) the session-key is independent of the
password.) At the conclusion of the full proof of viability, we show this property for a passive
channel C. As previously described, by applying Claim 4.11 we have that this also holds for
sessions in which C is reliable. 2

5 Full Proof of Viability

In this section, we present the proof of the viability requirement. The requirement for viability
relates to a passive channel C who can only eavesdrop on protocol executions between honest parties
A and B. This means that C receives the transcript of messages sent by A and B and tries to
“learn something” based on this transcript alone. We show that such a C will fail except with
negligible probability; that is:

Theorem 5.1 (Theorem 4.1 – restated): Let C be a ppt passive channel. Then, both A and B
accept and output the same session-key k2(Q(w)). Furthermore, for every polynomial p(·) and for
all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
k2(Q(w)) (C) = 1]− PrQ,w,Un [ExptA(Q,w),B(w)

Un
(C) = 1]

∣

∣

∣ <
1

p(n)
(2)

and
∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
w (C) = 1]− PrQ,w,w̃[ExptA(Q,w),B(w)

w̃ (C) = 1]
∣

∣

∣ <
1

p(n)
(3)

where Q is a random, non-constant linear polynomial, and w and w̃ are independently and uniformly
distributed in D.

28



Proof: Clearly, if C is passive then both parties accept and output the same session-key, as
required. Theorems 4.5 and 4.10 (session-key and password secrecy) immediately give us that
k2(Q(w)) is (1−O(ε))-pseudorandom and that w is (1−O(ε))-indistinguishable from a random w̃ ∈R
D. However, we wish to prove something stronger: that the session-key is (fully) pseudorandom
and that the password is (fully) indistinguishable from a random password.

As we have mentioned, since C is passive, C receives a message transcript and based on this
transcript alone must distinguish the session-key from a random string (resp., the password w from
w̃ ∈R D). We begin by showing that Q is pseudorandom and w is indistinguishable from w̃ ∈R D
given the transcript of the first two stages of the protocol.

Notation: The message-transcript of a protocol execution (by honest parties) is a function of
the inputs Q and w and the respective random coins of A and B, denoted rA and rB. We denote
the message transcript of the first two stages of the protocol by t2(Q,w, rA, rB). Furthermore, we
denote by T2(Q,w) def= {t2(Q,w, rA, rB)}rA,rB

the uniform distribution over all possible transcripts
for a given Q and w. (Note that the security parameter n, and thus the lengths of Q,w,rA and rB
are implicit in all these notations.)

The pseudorandomness of Q and indistinguishability of w mentioned above amounts to saying
that the distribution ensembles induced by the probability distributions {Q1, w1, T2(Q1, w1)}Q1,w1

and {Q2, w2, T2(Q1, w1)}Q1,Q2,w1,w2 are computationally indistinguishable.22 This is proved in the
following claim. After establishing the claim we show that Equations (2) and (3) in the Theorem
hold when C is given a transcript of the entire protocol execution (rather than just the first two
stages as shown in the claim).

Claim 5.2 The distribution ensemble {{Q1, w1, T2(Q1, w1)}Q1,w1}n∈N is computationally indistin-
guishable from {{Q2, w2, T2(Q1, w1)}Q1,Q2,w1,w2}n∈N. That is, for every ppt distinguisher D, every
polynomial p(·) and all sufficiently large n’s

|Pr[D(Q1, w1, t2(Q1, w1, rA, rB)) = 1]− Pr[D(Q2, w2, t2(Q1, w1, rA, rB)) = 1]| < 1
p(n)

where Q1 and Q2 are random non-constant, linear polynomials over GF (2n), w1, w2 ∈R D and rA
and rB are uniform random strings.

Proof: Equivalently, we establish that {{Q1, w1, T2(Q1, w1)}Q1,w1}n∈N is computationally indis-
tinguishable from {{Q1, w1, T2(Q2, w2)}Q1,Q2,w1,w2}n∈N. The proof is based on the security of the
different modules in the protocol. We actual prove something stronger in that the distributions are
indistinguishable for every pair of polynomials Q1, Q2 and passwords w1, w2 (i.e., not only when
they are randomly chosen). We note that since C is passive, there is no concurrency in this setting.
Therefore, we can directly analyze our protocol relying on the security of the different modules.

The Commitments: Due to the hiding property of string commitments, a non-malleable commit-
ment to (Q1, w1) is indistinguishable from one to (Q2, w2), and likewise an ordinary commitment
to Q1 is indistinguishable from one to Q2.

22Notice that it is not true that the distributions {Q1, w1, T (Q1, w1)}Q1,w1 and {Q2, w2, T (Q1, w1)}Q1,Q2,w1,w2 are
indistinguishable, where T (Q, w) denotes the distribution of message transcripts for the entire protocol (including the
validation stage). This is because the string y = f2n(Q(w)) is sent during the validation stage. Now, given (Qi, wi),
a distinguisher need only compare f2n(Qi(wi)) to the y-value of the transcript to know whether or not the transcript
is based on (Qi, wi) or another pair (Q2−i, w2−i).
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The Polynomial Evaluation: The inputs to the polynomial evaluation are Q,w and Commit(Q).
Denote by TP (Q,w), the distribution of transcripts for this evaluation. We claim that for every
Q1, Q2, w1, w2, we have that {Q1, w1, TP (Q1, w1)} and {Q1, w1, TP (Q2, w2)} are indistinguishable.
This can be derived from the following two facts (and is based on the security of the polynomial
evaluation that states that A learns nothing and that B learns Q(w) only):

1. For every non-constant, linear polynomial Q, password w ∈ D and string x ∈ {0, 1}n, we have
that

{Q,w, x, TP (Q,w)} c≡ {Q,w, x, TP (Q, x)} (4)

where
c≡ denotes computational indistinguishability. This is based directly on the fact that A

learns nothing of B’s input (which is either w or x) from the evaluation. Therefore, A must
not be able to distinguish w from x given her message transcript. Equation (4) follows.

2. For every two non-constant, linear polynomials Q1, Q2 and string x ∈ {0, 1}n such that
Q1(x) = Q2(x), it holds that

{Q1, Q2, x, TP (Q1, x)} c≡ {Q1, Q2, x, TP (Q2, x)} (5)

This is because B obtains only Q(x) from the evaluation, where A inputs Q ∈ {Q1, Q2}.
Since Q1(x) = Q2(x), party B cannot distinguish the case that A inputs Q1 or Q2 into the
evaluation (otherwise he learns more than just Q(x)). Equation (5) follows.

Now, for every two non-constant polynomials Q1 and Q2, there exists a value x such that Q1(x) =
Q2(x). Therefore, we have that for every two non-constant linear polynomials Q1, Q2 and every
two passwords w1, w2 ∈ D

{Q1, Q2, w1, w2, x, TP (Q1, w1)}
c≡ {Q1, Q2, w1, w2, x, TP (Q1, x)}
c≡ {Q1, Q2, w1, w2, x, TP (Q2, x)}
c≡ {Q1, Q2, w1, w2, x, TP (Q2, w2)}

where x is such that Q1(x) = Q2(x) and where the first and third “
c≡” are due to Equation (4) and

the second is from Equation (5). We therefore have that {Q1, w1, TP (Q1, w1)}
c≡ {Q1, w1, TP (Q2, w2)}

Combining this with what we have shown regarding the commitments, The claim follows.

Loosely speaking, the above claim shows that the transcript of the first two stages of the pro-
tocol reveals nothing significant about both the polynomial Q and the password w. It remains
now to analyze the additional messages from the third stage of the protocol. Recall that the
third stage (validation) consists of A sending y = f2n(Q(w)), a MAC of the session-transcript
keyed by k1(Q(w)) and a zero-knowledge proof. To simplify the exposition, we will assume that A
sends the MAC-key itself. This makes no difference as C can compute the MAC value from the
MAC-key and the visible session-transcript. Intuitively, the zero-knowledge proof reveals nothing
and the session-key k2(Q(w)) remains pseudorandom even given f2n(Q(w)) and k1(Q(w)) because
G(Q(w)) def=

(

f2n(Q(w)), k1(Q(w)), k2(Q(w))
)

constitutes a pseudorandom generator. Further-
more, the password w is “masked” by Q and therefore remains secret, even given Q(w) itself.
Details follow.

By the definition of zero-knowledge, there exists a simulator that generates transcripts indistin-
guishable from real proofs. This implies that this part of the validation stage reveals nothing of Q
and w, and we therefore ignore it for the rest of the proof. That is, we may assume that the entire
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session-transcript consists of T2(Q,w) and the pair
(

f2n(Q(w)), k1(Q(w))
)

. We are now ready to
show that Equations (2) and (3) hold.

Equation (2): Using Claim 5.2 and the fact that for a random Q2, the value Q2(w2) is uniformly
distributed in {0, 1}n, we have

{Q1(w1), T2(Q1, w1)}
c≡ {Q2(w2), T2(Q1, w1)}

c≡ {Un, T2(Q1, w1)} (6)

In particular,

{T2(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w))} c≡ {T2(Q, w), f2n(Un), k1(Un), k2(Un)}
c≡ {T2(Q,w), f2n(U (1)

n ), k1(U (1)
n ), U (2)

n }

where the last “
c≡” is by pseudorandomness of the generator G(s) =

(

f2n(s), k1(s), k2(s)
)

and U (1)
n

and U (2)
n denote independent uniform distributions over n-bit strings. Using Equation (6), we also

have
{T2(Q,w), f2n(U (1)

n ), k1(U (1)
n ), U (2)

n } c≡ {T2(Q,w), f2n(Q(w)), k1(Q(w)), Un}

Combining these two corollaries we obtain that

{T2(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w))} c≡ {T2(Q,w), f2n(Q(w)), k1(Q(w)), Un}

That is, the session-key k2(Q(w)) is pseudorandom with respect to C’s view, even given the entire
protocol transcript.

Equation (3): Q is pseudorandom given T2(Q,w) and therefore Q(w) completely hides w. (Here
we use the fact that for every x ∈ {0, 1}n, the value of a random (non-constant) linear poly-
nomial at x is uniformly distributed.) That is, {T2(Q,w), Q(w), w}Q,w is indistinguishable from
{T2(Q, w), Q(w), w̃}Q,w,w̃. This immediately implies that

{T2(Q, w), f2n(Q(w)), k1(Q(w)), w} c≡ {T2(Q,w), f2n(Q(w)), k1(Q(w)), w̃}

and we thus have that the password w is indistinguishable from w̃ ∈R D with respect to C’s view.

A Note Regarding Loss of Session Keys: Loosely speaking, the property of security in the
face of session-key loss (described in Section 4.7) states that the password w remains secure even if
the session-key is revealed. Our proof of Equation (3) is used to show this. That is, we have shown
that {T2(Q,w), Q(w), w}Q,w is indistinguishable from {T2(Q,w), Q(w), w̃}Q,w,w̃. This implies that

{T2(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w)), w} c≡ {T2(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w)), w̃}

That is, w is indistinguishable from w̃ ∈R D even given the entire session-transcript and the
resulting session-key k2(Q(w)).

A Note Regarding Forward Secrecy: The property of forward secrecy (described in Sec-
tion 4.7) states that the session-key remains secure even if the password is later revealed. As in the
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property of session-key loss, the proof of Equation (3) can be used to show that forward secrecy
holds. That is,

{T2(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w)), w} c≡ {T2(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w)), w̃} (7)
c≡ {T2(Q, w), f2n(Q(w)), k1(Q(w)), Un, w̃} (8)
c≡ {T2(Q,w), f2n(Q(w)), k1(Q(w)), Un, w} (9)

where Equation (7) is exactly as in the loss of session-keys, Equation (8) is due to the pseudo-
randomness of k2(Q(w)) (Equation (2) in Theorem 4.1) and Equation (9) is due to the indistin-
guishability of w (Equation (3) in Theorem 4.1). This means that k2(Q(w)) is pseudorandom with
respect to the view of a passive channel, even when given the password w.

6 Full Proof of Pseudorandomness of Q(w)

Theorem 4.2 states that at the conclusion of Stage 2 of the (A,C)-execution, the value Q(w) is
(1 − 2ε)-pseudorandom with respect to C’s view. As described in Section 4.3, the theorem is
obtained by combining Lemmas 4.3 and 4.4 which are proved in full here.

6.1 Proof of Lemma 4.3

Lemma 6.1 (Lemma 4.3 – restated): For every ppt channel C, every polynomial p(·) and for all
sufficiently large n’s

∣

∣

∣PrQ,w,Un [ExptA2(Q,w),B(w)
Un

(C) = 1]− PrQ,w,w̃[ExptA2(Q,w),B(w)
Q(w̃) (C) = 1]

∣

∣

∣ < ε +
1

p(n)

Proof: The lemma holds even if C knows the password w, and so we prove the lemma for a channel
C who is given w for auxiliary input. Since the password w is known to C, and this constitutes all
of B’s secret input, the (C,B)-execution can be perfectly emulated by C himself. This means that
C (with auxiliary input w) can distinguish between Q(w̃) and Un in a two-party setting (involving
only A2 and C) with the same probability as in our concurrent setting (where B is also involved).
Formally, consider the following two-party experiment between A2 and C (we stress that B does
not participate in the execution):

ExptA2(Q,w)
z (C(w)):

s ← CA2(Q,w)
1 (w, 1n)

return C2(s, z)

Formally, for every ppt channel C there exists a ppt machine C ′ such that for every randomized
process z = Z(Q,w)

PrQ,w[ExptA2(Q,w)
z (C ′(w)) = 1] = PrQ,w[ExptA2(Q,w),B(w)

z (C) = 1] (10)

C ′ works by emulating the CA2(Q,w),B(w)
1 setting for C. This is done by interacting with A2 and

playing the role of B (with input w) in the (C,B) execution. Since C ′ knows w, the emulation is
perfect and thus the output from the experiment is identical. By applying Equation (10) to the
probabilities in the lemma (once setting z = Un and once setting z = Q(w̃)), we have that it is
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enough to prove that for every C ′ interacting only with A2 (where there is no concurrent execution
with B), the following holds

∣

∣

∣PrQ,w,Un [ExptA2(Q,w)
Un

(C ′(w)) = 1]− PrQ,w,w̃[ExptA2(Q,w)
Q(w̃) (C ′(w)) = 1]

∣

∣

∣ < ε +
1

poly(n)
(11)

We now prove Equation (11). First note that the non-malleable commitment sent by A2 in this
setting plays no role in the continuation of the protocol. Due to the hiding property of the commit-
ment, if A2 commits to random values instead of to (Q, w), this makes at most a negligible difference
to C ′’s success. This enables us to remove the non-malleable commitment entirely because C ′ can
internally simulate receiving a random commitment.

What remains is thus the (A2, C) pre-key exchange, consisting of A2 sending Commit(Q) to C
followed by a single secure polynomial evaluation. Since the polynomial evaluation is secure, C ′ can
learn at most a single point of Q(·), but otherwise gains no other knowledge of the random Q. As
described in the proof sketch, this implies that C ′ can distinguish Q(w̃) from Un with probability at
most negligibly greater than ε (where the ε advantage comes from the case that w̃ turns out to equal
the input fed by C ′ into the polynomial evaluation). We now formally show how the limitation on
C ′’s distinguishing capability is derived from the security of the polynomial evaluation.

The security of the polynomial evaluation states that C ′
1 can learn no more in a real execution than

in an ideal scenario where the polynomial evaluation is replaced by an ideal module computed by
a trusted third party. Denote the ideal model parties by Â2 and Ĉ ′

1 (Ĉ ′
1 is adversarial). By the

definition of secure two-party computation, for every real adversary C ′
1 interacting with A2, there

exists an ideal adversary Ĉ ′
1 interacting with Â2 such that the output distributions of C ′

1 and Ĉ ′
1 are

indistinguishable. Denote the outputs of C ′
1 and Ĉ ′

1 by s and ŝ respectively. It therefore holds that
for every ppt distinguishing machine D, Pr[D(s) = 1] ≈ Pr[D(ŝ) = 1]. However, by the definition
of secure computation, the distinguishing machine D also receives the parties’ respective inputs Q
and w. Therefore, it likewise holds that for every randomized process z = Z(Q,w), we have that
Pr[D(s, z) = 1] ≈ Pr[D(ŝ, z) = 1]. This is true for every D and in particular for C ′

2 (who receives
(s, z) by the experiment definition). That is, for every such z = Z(Q,w),

∣

∣

∣Pr[ExptA2(Q,w)
z (C ′(w)) = 1]− Pr[ExptÂ2(Q,w)

z (Ĉ ′(w)) = 1]
∣

∣

∣ <
1

poly(n)

We conclude that it is enough to show that for every ppt party Ĉ ′ interacting with Â2 in an ideal
execution, it holds that

∣

∣

∣

∣

PrQ,w,Un [ExptÂ2(Q,w)
Un

(Ĉ ′(w)) = 1]− PrQ,w,w̃[ExptÂ2(Q,w)
Q(w̃) (Ĉ ′(w)) = 1]

∣

∣

∣

∣

< ε +
1

poly(n)

We thus consider an ideal execution of the pre-key exchange consisting of Â2 sending Ĉ ′ a com-
mitment to Q followed by an ideal augmented polynomial evaluation. The view of Ĉ ′

1 in such an
execution consists only of a commitment to Q and the result of the polynomial evaluation. (The
exact definition of the augmented polynomial evaluation can be found in Section 3.)

Assume for now that the execution of the polynomial evaluation is such that Ĉ ′
1 always receives

Q(wC) for some wC input by it into the evaluation (and not ⊥ as in the case of incorrect inputs).
Then, Ĉ ′

1’s view is exactly (r,Commit(Q), Q(wC)), where r is the string of his random coin tosses
and wC is determined by Ĉ ′

1 based on r and Commit(Q). For sake of clarity, we augment the
view by wC itself (i.e, we write Ĉ ′

1’s view as (r,Commit(Q), wC , Q(wC))). Assuming without loss
of generality that Ĉ ′

1 always outputs his entire view, we conclude that Ĉ ′
2 receives as input either
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(r,Commit(Q), wC , Q(wC), Un) or (r,Commit(Q), wC , Q(wC), Q(w̃)), where w̃ ∈R D. We now show
that if wC 6= w̃, then the above two tuples are indistinguishable. That is,

{r,Commit(Q), wC , Q(wC), Un}Q,Un

c≡ {r,Commit(Q), wC , Q(wC), Q(w̃) | wC 6= w̃}Q,w̃

First, by the hiding property of the commitment scheme, we can replace the commitment to Q in the
above distributions with a commitment to 02n. (If this makes a non-negligible difference, then Ĉ ′

can be used to distinguish a commitment to Q from a commitment to 02n.) Next, notice that the
distributions {r,Commit(02n), wC , Q(wC), Q(w̃) | wC 6= w̃} and {r,Commit(02n)wC , Q(wC), Un}
are statistically close.23 Then, by returning the commitment to Q in place of the commitment to
02n, we have that for every ppt Ĉ ′

2

PrQ,Un [Ĉ ′
2(r,Commit(Q), wC , Q(wC), Un) = 1]

≈ PrQ,w̃[Ĉ ′
2(r,Commit(Q), wC , Q(wC), Q(w̃)) = 1 | wC 6= w̃]

or equivalently

PrQ,Un [ExptÂ2(Q,w)
Un

(Ĉ ′(w)) = 1] ≈ PrQ,w̃[ExptÂ2(Q,w)
Q(w̃) (Ĉ ′(w)) = 1 | wC 6= w̃]

Since w̃ ∈R D and it is chosen independently of the Ĉ ′A2(Q,w)
1 (w, 1n) execution, we have that

Pr[wC = w̃] ≤ ε (with equality when wC is chosen from D). Therefore
∣

∣

∣

∣

Pr[ExptÂ2(Q,w)
Un

(Ĉ ′(w)) = 1]− Pr[ExptÂ2(Q,w)
Q(w̃) (Ĉ ′(w)) = 1]

∣

∣

∣

∣

< ε +
1

poly(n)
(12)

(The exact calculation is derived by breaking the probability into two conditional cases; the first
where wC = w̃ and the second where wC 6= w̃.) This completes the analysis of the simplified case
in which the polynomial evaluation always outputs Q(wC) for some wC (and never outputs ⊥).
However, Ĉ ′

1 may cause the result of the evaluation to be ⊥ and we must show that this cannot
help him. Intuitively, if Ĉ ′

1 were to receive ⊥ then he would learn nothing about Q and this would
thus be a “bad” strategy. However, it must be shown that Ĉ ′

1 cannot learn anything by the mere
fact that he received ⊥ and not Q(wC).

This can be seen by noticing that the bit indicating whether Ĉ ′
1 receives ⊥ or Q(wC), denoted

χC , is almost independent of Q (by the hiding property of the commitment). Therefore, χC is also
almost independent of the values Q(w̃) and Un. Thus, augmenting the distinguisher’s view by χC
does not change the situation analyzed above and we have

{r, Commit(Q), wC , Q(wC), Un, χC}Q,Un

c≡ {r,Commit(Q), wC , Q(wC), Q(w̃), χC | wC 6= w̃}Q,w̃

Noting that the state output by Ĉ ′
1 is polynomial time computable from (r,Commit(Q), wC , Q(wC), χC),

it follows that in also in the general case (where the polynomial evaluation outputs⊥), Equation (12)
holds.

23If Q was randomly chosen from all linear polynomials (rather than only from those that are non-constant),
then due to pairwise independence the distributions would be identical. However, because Q cannot be constant,
w 6= w̃ implies that Q(wC) 6= Q(w̃) always. On the other hand, Q(wC) = Un with probability 2−n. Therefore, with
probability 2−n the two distributions can be distinguished by seeing if the last two elements are equal or not. This
is the only difference between the distributions and they are therefore statistically close.
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6.2 Proof of Lemma 4.4

Lemma 6.2 (Lemma 4.4 – restated): For every ppt channel C, every polynomial p(·) and for all
sufficiently large n’s

∣

∣

∣PrQ,w[ExptA2(Q,w),B(w)
Q(w) (C) = 1]− PrQ,w,w̃[ExptA2(Q,w),B(w)

Q(w̃) (C) = 1]
∣

∣

∣ < ε +
1

p(n)

Proof: The outline of the proof is as follows. As in the previous lemma, the lemma holds even
if C knows some secret information: in this case, the value of the polynomial Q. Given Q, we
show how C can internally emulate the (A2, C)-execution and we therefore remain only with the
(C,B)-execution. Now we have a standard two-party setting and we wish to analyze the probability
that, in this setting, C distinguishes Q(w) from Q(w̃). Seemingly, we should be able to derive this
directly from the security of the polynomial evaluation. However, we encounter a technical difficulty
due to the fact that currently known composition theorems for secure computation do not apply
to our specific scenario. We discuss the reason for this and then show how to bypass the problem
in this particular case.

As mentioned above, the lemma holds even if C knows Q and this enables us to remove the (A2, C)
execution. Formally, consider the following experiment in which A2 does not participate:

ExptB(w)
z (C(Q)):

s ← CB(w)
1 (Q, 1n)

return C2(s, z)

We claim that for every ppt channel C, there exists a ppt machine C ′ with auxiliary input Q, such
that for every randomized process z = Z(Q, w)

∣

∣

∣PrQ,w[ExptB(w)
z (C ′(Q)) = 1]− PrQ,w[ExptA2(Q,w),B(w)

z = 1]
∣

∣

∣ <
1

poly(n)
(13)

The party C ′ works by simply playing A2’s role to C; C ′ is able to do this because A2’s only input
into the pre-key exchange is the polynomial Q (and the commit stage can be simulated sufficiently
well without any input). Specifically, C ′’s simulation works by first non-malleably committing to a
random value (instead of to (Q,w)). Then, C ′ continues exactly as A2 would by sending an ordinary
commitment to Q and participating in the polynomial evaluation with C, inputting Q. The only
difference in C’s view is with respect to the non-malleable commitment, and this can make only
a negligible difference.24 We thus obtain Equation (13). It remains to show that for every ppt C ′

interacting only with B, the channel C ′ can distinguish Q(w) from Q(w̃) with probability less than
ε + 1

poly(n) .

24Assume by contradiction that C behaves differently when he receives a commitment to (Q, w) or to U3n. We
now show that C can be used to distinguish such commitments. First notice that the non-malleable commitment is
referred to by A only during the zero-knowledge proof in the validation stage. Since A2 does not reach this stage, the
commitment is not used at all. This is a crucial point enabling any non-negligible difference in C’s behavior to be used
to distinguish commitments to (Q, w) from random commitments. Now, let D be a distinguisher given a commitment
to either (Q, w) or U3n. Then, D can perfectly simulate CA(Q,w),B(w)

1 (1n) (he knows Q and w), except instead of
simulating a commitment by A to (Q, w) in the (A, C) commit stage, D uses his input (challenge) commitment. As
the rest of the simulation by D is independent of the value in this commitment, the only difference is with respect to
this step. Therefore, any non-negligible difference in C’s output implies distinguishability of the commitments. This
argument is used a number times during our proof.

We note that this is in contrast to a situation where A does run her zero-knowledge proof (and specifically in a
real execution), where the value of the commitment is crucial.
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Relying on the Security of Two-Party Computation: As described, we now have a two-
party setting in which C and B interact according to our protocol. In this setting, we wish to
show that C can distinguish Q(w) from Q(w̃) with probability at most negligibly greater than ε.
Intuitively this is due to the security of the polynomial evaluation which ensures that C learns
nothing from it. As for the rest of the (C, B) execution (i.e., the validation and decision stages),
all that C can learn is B’s accept/reject bit. The proof is thus based on showing that due to the
design of the validation stage, C gains a distinguishing advantage of at most ε from the accept bit
of B. We would therefore expect to proceed by replacing the polynomial evaluation by an ideal
module computed by a trusted third party. By analyzing C’s distinguishing probability in this ideal
setting, we would then derive his distinguishing probability when the ideal polynomial evaluation
is replaced by a (real) secure evaluation. Any difference in the probabilities would contradict the
security of the polynomial evaluation and we would thus obtain the lemma.

However, this argument does not quite work here. First notice that if the polynomial evaluation
was run by itself then, as a secure protocol, we know that C learns nothing of w from it. However,
this is not the case; rather the evaluation is run as part of a larger protocol. The fact that in this
larger setting, C learns nothing of w from the polynomial evaluation, must be formally justified.
Loosely speaking, this is the objective of the Sequential Composition Theorem [14]. We begin by
discussing the formulation of this theorem, upon which our above argument rests.

The starting point of the composition theorem is an arbitrary protocol π that involves an ideal
subroutine call to a functionality f (the protocol with the ideal call is denoted πf ).25 Now consider
the protocol πρ that is derived by replacing the ideal call to f with a secure protocol ρ for computing
f . The crucial point here to notice is that, outside of the ρ subprotocol, the protocol πρ depends
only on the output of ρ, and not on any intermediate messages sent during its computation. This
is because ρ directly takes the place of f , for which there are no intermediate messages (it is an
ideal oracle call). The composition theorem states that, in this setting, attacking πρ is not more
advantageous than attacking the ideal protocol πf .

Unfortunately, our protocol does not fit into this scenario. In the validation stage of our protocol
C ′ must send B a MAC of the entire message transcript, including the messages belonging to the
secure polynomial evaluation. That is, the protocol definition depends on intermediate messages
belonging to a secure two-party protocol. As discussed above, the composition theorem of [14] does
not apply to such a case.26 It is possible to generalize the Sequential Composition Theorem to
include such protocols; we leave this for future work. For now, we show how to bypass this problem
in our specific protocol.

“Removing” the Validation Stage: The above problem is caused by the MAC sent by C ′

during the validation stage. We therefore first show how we can remove the validation stage so that
this affects C ′’s probability of distinguishing Q(w) from Q(w̃) by at most ε (once the validation
stage is removed, we can just apply a standard analysis). First notice that if C ′ can predict B’s
output bit perfectly, then the (C ′, B)-validation stage is meaningless with respect to C ′’s view. This
is because B’s only private output from this stage is his accept/reject bit (B also sends messages in
the role of the verifer in a zero-knowledge proof; however, B is an honest verifier and his messages
are thus simulatable). Therefore, C ′ can internally simulate B’s role in this stage, using his perfect

25For simplicity we relate to the case of an arbitrary protocol that uses a single ideal call; the full theorem, however,
relates to the more general case of many sequential ideal calls to f1, . . . , fm.

26We stress that in our protocol, the message transcript of the secure polynomial evaluation is a vital part of the
continuation of the protocol. In fact, if the MAC were only to be applied to the message transcript excluding the
internal messages of the polynomial evaluation then the protocol would no longer be correct (see Appendix B).
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prediction for B’s accept/reject bit. Taking this a step further, if C ′ can predict B’s output bit and
be correct with probability at least 1− ε, then the (C ′, B)-validation stage can be removed, with a
difference of at most ε to C ′’s view. We therefore proceed by showing how C ′ can indeed predict
B’s output bit by himself, with accuracy 1 − ε. This is possible because when C ′ interacts with
B in this non-concurrent setting, the probability that B accepts is at most negligibly more than ε.
That is, C ′ can predict that B always rejects and he will be correct with probability 1− ε. Recall
that in this scenario, A2 is not involved and therefore C ′ must attempt to have B accept without
any “help” from A2.

Claim 6.3 For every ppt channel C ′ playing in C ′B(w)
1 (Q, 1n), for every polynomial p(·) and for

all sufficiently large n’s

Pr[B = acc] < ε +
1

p(n)

Proof: We prove the claim by considering a modified party B′ who executes everything in the
same way as B except that in the validation stage he only checks that y = f2n(τB) (ignoring the
MAC and the zero-knowledge proof). Recall that τB is B’s output from the polynomial evaluation.
Since we only omitted checks that may make B reject, we have that

Pr[B = acc] ≤ Pr[B′ = acc]

Next we show that B′ accepts with probability at most ε + 1
poly(n) . This is based on the security

of the polynomial evaluation which ensures that C learns nothing of w before the validation stage.
That is, we show that the validation stage (which now amount to B′ checking if f2n(τB) = y where
y is sent by C in this stage) ensures that if w is uniformly distributed in D (with respect to C’s
view), then party B′ accepts with probability at most ε.

As this claim is due to the security of the polynomial evaluation, we analyze the probability
that B′ accepts in an ideal execution. Denote the ideal model parties by Ĉ ′ and B̂′. We claim
that for every ppt Ĉ ′, it holds that Pr[B̂′ = acc] ≤ ε. The channel Ĉ ′’s view of the protocol is
essentially empty (apart from his own randomness). This is because Ĉ ′ receives nothing from the
polynomial evaluation and the only other messages sent by B are as the receiver of a non-malleable
commitment. Since this involves no secrets from B̂′’s part, party Ĉ ′ learns nothing from them.

Now, B̂′ accepts only if y = f2n(QC(w)) where QC is the polynomial input by Ĉ ′ to the secure
evaluation (recall that if B̂′ receives ⊥ from the polynomial evaluation then he always rejects).
Since Ĉ ′ learns nothing of w in the execution, with respect to his view the string f2n(QC(w)) is
uniformly distributed in the set {f2n(QC(w′)) : w′ ∈ D}. As f2n and QC are 1–1 functions (QC
is a non-constant linear polynomial), this set contains exactly |D| elements. We therefore conclude
that for every Ĉ ′ interacting with B̂′ in an ideal execution,

Pr[B̂′ = acc] ≤ 1
|D|

= ε

By the security definition of multi-party computation, for every adversary C ′ interacting with B′

in the real model, there exists an adversary Ĉ ′ interacting with B̂′ in the ideal model, such that
the outputs of B′ and B̂′ are indistinguishable. This is the correctness requirement described in
Section A.1. This implies that

∣

∣

∣Pr[B′ = acc]− Pr[B̂′ = acc]
∣

∣

∣ <
1

poly(n)
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(Otherwise, one can distinguish the real and ideal executions with non-negligible probability by
simply outputting the accept/reject bit.) We conclude that for every ppt adversary C ′ in a real
execution

Pr[B′ = acc] < ε +
1

poly(n)

and the lemma follows.

We are now ready to remove the entire validation stage from the protocol.27 We do this formally
by modifying B so that he does not output any accept/reject bit. We call the modified party B2
(as with A2, he only participates in the first 2 stages). Now, there exists a ppt channel C ′′ such
that

PrQ,w[ExptB2(w)
Q(w) (C ′′(Q)) = 1] = PrQ,w[ExptB(w)

Q(w)(C
′(Q)) = 1 | B = rej] (14)

PrQ,w,w̃[ExptB2(w)
Q(w̃) (C ′′(Q)) = 1] = PrQ,w,w̃[ExptB(w)

Q(w̃)(C
′(Q)) = 1 | B = rej] (15)

The strategy for C ′′ is to simply run C ′B2(w)
1 and continue by “assuming” that B2 outputs reject.

Thus in executions for which B rejects, the output of C ′′ (interacting with B2) equals the output
of C ′ (interacting with B).

Once the validation step is removed, C ′′ cannot distinguish Q(w̃) from Q(w) since he obtains
no output from the polynomial evaluation (and this is the only part of the protocol where B uses
w). This is captured by the following.

Claim 6.4 For every ppt channel C ′′, every polynomial p(·) and for all sufficiently large n’s

∣

∣

∣PrQ,w[ExptB2(w)
Q(w) (C ′′(Q)) = 1]− PrQ,w,w̃[ExptB2(w)

Q(w̃) (C ′′(Q)) = 1]
∣

∣

∣ <
1

p(n)

We now put everything together in order to show that C cannot distinguish Q(w) from Q(w̃) with
probability noticeably greater than ε (and so establish Lemma 4.4).

∣

∣

∣Pr[ExptA2(Q,w),B(w)
Q(w) = 1]− Pr[ExptA2(Q,w),B(w)

Q(w̃) = 1]
∣

∣

∣ (16)

≈
∣

∣

∣Pr[ExptB(w)
Q(w)(C

′(Q)) = 1]− Pr[ExptB(w)
Q(w̃)(C

′(Q)) = 1]
∣

∣

∣ (17)

=
∣

∣

∣

(

Pr[ExptB(w)
Q(w)(C

′(Q)) | B = acc]− Pr[ExptB(w)
Q(w̃)(C

′(Q)) | B = acc]
)

· Pr[B = acc] (18)

+
(

Pr[ExptB(w)
Q(w)(C

′(Q)) = 1 | B = rej]− Pr[ExptB(w)
Q(w̃)(C

′(Q)) = 1 | B = rej]
)

· Pr[B = rej]
∣

∣

∣

≤ Pr[B = acc] +
∣

∣

∣Pr[ExptB2(w)
Q(w) (C ′′(Q)) = 1]− Pr[ExptB2(w)

Q(w̃) (C ′′(Q)) = 1]
∣

∣

∣ (19)

< ε +
1

poly(n)
(20)

where the soft equality between lines 16 and 17 is as shown in Equation (13), the equality between
lines 18 and 19 is by Equations (14) and (15), and the inequality between lines 19 and 20 is due to
Claim 6.3 (for the first part), and Claim 6.4 (for the second part).

27This is in contrast to the proof of Claim 6.3 where we removed only the zero-knowledge proof and MAC from the
validation stage.
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7 On Simulating A’s Zero-Knowledge Proof

In some of the proofs that follow, we wish to “remove” the (A, C) validation stage, which includes
a zero-knowledge proof. Since the proof (given by A to C) is zero-knowledge, it seems that the
channel C (who plays the verifier in the proof) should be able to simulate it himself. This is true (by
definition) if the zero-knowledge proof is executed as stand alone. However, the definitions of zero-
knowledge guarantee nothing in our setting, where the proof is run concurrently with other related
protocols (belonging to the (C, B)-execution). Technically speaking, the zero-knowledge simulation
of A typically requires rewinding C. However, messages belonging to the (C,B)-execution may be
interleaved with the proof. For example, C’s queries to A in the proof may depend on messages
received by B. Rewinding C would thus also require rewinding B. However, as B is an external
party, he cannot be rewound.

We remark that concurrent zero-knowledge does not solve this problem either, since it relates to
concurrent executions of a (zero-knowledge) protocol with itself and not concurrently with arbitrary
protocols. Still, we use the ideas underlying the concurrent zero-knowledge proof of Richardson
and Kilian [41] in order to address the problem for our specific application.

We refer the reader to Appendix A.4 for a description of the Richardson and Kilian (RK) proof
system. Recall that we set the parameter m (the number of iterations in the first part of the RK
proof) to be equal to the total number of rounds in our protocol (not including the zero-knowledge
proof itself) plus t = t(n), where t(n) equals any non-constant function of the security parameter
n (say t(n) = log n).

To motivate how the proof simulation is done in our scenario, consider the following mental
experiment in which the (C, B)-execution does not include the zero-knowledge proof (given by C
to B). In such a case, the total number of rounds in the (C,B) execution equals m − t. On the
other hand, the number of iterations in the first part of the RK proof given by A to C equals
m. Therefore there are t complete iterations in the first part of this proof in which C receives
no messages from B. In these iterations it is possible to rewind C without rewinding B. This is
enough to establish zero-knowledge, since the Richardson-Kilian construction is such that as soon
as rewinding is possible in one iteration, the entire proof may be simulated. The crucial point is
that we are not required to rewind B (which is not possible, since B is an outside party).

The above reasoning can be applied in the following scenario. Consider a modified party B 6zk
who is exactly the same as B, except that his protocol definition does not include verifying a zero-
knowledge proof from C. Then, as we have described in the above mental experiment, when C
interacts with A and B 6zk, the proof given by A to C can be simulated by C himself.

7.1 The Main Result

The Modified Parties A6zk and B 6zk: In our above description we described a modified party
B 6zk, whose protocol definition does not include verifying C’s zero-knowledge proof. Furthermore,
when we say that A’s proof can be simulated by C himself, this means that A too can be modified
to a party A 6zk, whose protocol definition does not include proving any statement in the validation
stage. Before continuing, we formally define what we mean by these modifications of A and B to
A6zk and B6zk respectively. This needs to be done carefully because the transcript (and not just the
result) of the zero-knowledge proof affects other parts of our protocol. Specifically, in the validation
stage, A sends a MAC of her entire message-transcript to C (and likewise, C should send such a
MAC to B). This message-transcript includes the messages of the zero-knowledge proof. Therefore,
the protocols of A 6zk and B6zk must be appropriately redefined to take this issue into account.
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The A 6zk Modification: In the zero-knowledge proof with C, party A plays the prover. The essence
of the modification of A to A6zk is in replacing A’s prover role in the (A,C)-proof by a simulator.
This modification works only if C’s view in a protocol execution with A6zk is indistinguishable
from his view in an execution with A. As mentioned, the MAC sent by A in the validation stage
is computed on the entire message transcript, including messages from the zero-knowledge proof.
Therefore, the MAC sent by A6zk must also include messages from the simulated proof. However,
A 6zk does not see these messages as the simulation is internal in C; therefore the message transcript
of the proof must be explicitly given to her.

In light of this discussion, we define the modified A 6zk to be exactly the same as A, except that
she has no zero-knowledge proof in her validation stage. Instead, at the point in which A’s zero-
knowledge proof takes place, she receives a string s which she appends to her message transcript.
This means that the only difference between A and A 6zk’s message transcripts is that A’s transcript
includes messages from a zero-knowledge proof and A6zk’s transcript includes s instead. Intuitively, if
s is the transcript of the simulated proof, then A and A6zk’s message transcripts are indistinguishable.
This ensures that the MACs sent by A and A6zk respectively are indistinguishable.

The B6zk Modification: In the zero-knowledge proof with C, party B plays the verifier. We wish to
modify B to B 6zk so that the only difference between the parties is that B6zk does not participate
in the zero-knowledge proof. The modification should be such that B 6zk has the same behavior as
a party who plays the verifier in the zero-knowledge proof, but always considers the verification to
be successful (irrespective of the real outcome). A problem arising in defining B 6zk is that the zero-
knowledge proof has influence on B’s protocol definition beyond the mere result of the verification
procedure. Again, this “influence” is due to the MAC that B receives in the validation stage; this
MAC is computed on the entire message transcript, including the messages from the zero-knowledge
proof. Furthermore, this MAC is part of B’s decision process in whether to output accept or reject.
Therefore, our modification of B is such that the resulting message transcripts for B and B6zk are
identical. That is, similarly to A 6zk, instead of playing the verifier in the proof, B6zk expects to
receive a string s which he then appends to his message transcript. Then, if s equals a valid proof
transcript, the message transcripts of B and B 6zk are identical.

We begin by showing that with respect to the “distinguishing experiments” defined in Section 4.1,
there is no difference if C interacts with A and B or with A and B 6zk. Intuitively, this is because
B always plays an honest-verifier in the zero-knowledge proof and C knows whether the proof
succeeded or not. Therefore, C can simulate the proof and the affects of its result by himself.

Lemma 7.1 Let B6zk be the above-defined modified party. Then, for every ppt channel C there
exists a ppt channel C ′ such that for every randomized process z = Z(Q,w)

PrQ,w[ExptA(Q,w),B(w)
z (C) = 1] = PrQ,w[ExptA(Q,w),B 6zk(w)

z (C ′) = 1]

Proof: The equality in the lemma is obtained by having the channel C ′ (who interacts with A and
B6zk) simulate the scenario in which C interacts with A and B. This simulation is defined so that
C’s view is identical to the setting where C really interacts with A and B. Notice first that in both
settings, C and C ′ interact with A (and not with a modified party). Therefore, with respect to
the (A, C)-execution, channel C ′ need do nothing beyond forwarding all messages between A and
C (without modification). Furthermore, until the zero-knowledge proof is reached in the (C,B)-
execution stage, there is also no difference between B and B6zk. Therefore, the simulation of this
part just involves C ′ forwarding all messages between C and B6zk.
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The interesting part of the simulation is from the (C, B) zero-knowledge proof until the con-
clusion of the (C, B)-execution. This includes the zero-knowledge proof from C to B, and B’s
accept/reject bit. We stress that the simulation must ensure that C receives the same accept/reject
bit from B 6zk that B would have output. (Notice that in general B 6zk’s output-bit may not be the
same as B’s, because if the (C, B) zero-knowledge proof fails B always rejects. On the other hand,
B6zk does not have such a proof and may therefore accept in the same situation.) The simulation
is thus as follows:

The Simulation:

1. Zero-Knowledge with C: C ′ emulates B’s role as the verifier in the proof with C. The basis for
this emulation is the fact that B plays an honest verifier. Therefore, C ′’s emulation consists
of being an honest verifier in B’s place.

C ′ plays the verifier in this proof and therefore either accepts or rejects the proof. Let zk-
accept be a random variable such that zk-accept = 1 if and only if C ′ accepts the proof.

2. The String s Received by B 6zk: By the definition of B6zk, party B6zk expects to receive a string
s at the point of B’s zero-knowledge proof. This string is then appended to B 6zk’s message
transcript. Channel C ′ sets s to equal the transcript of messages belonging to the internal
zero-knowledge proof execution it had conducted in Step 1.

3. The MAC from C: In the last step of the protocol, C sends a MAC to B. The MAC forwarded
by C ′ to C depends on whether or not C ′ accepted the zero-knowledge proof (i.e., if zk-accept
= 1 or not).

• Case zk-accept = 1: In this case, channel C ′ forwards (to B6zk) the MAC sent by C.

• Case zk-accept = 0: In this case, channel C ′ sends an invalid string in place of the MAC.
(This ensures that B 6zk will reject.)

4. B 6zk’s Output Bit: C ′ receives B6zk’s accepts/reject bit and forwards it to C.

This concludes the simulation. We now show that C’s view in this simulation is identical to his
view in a real execution with B. As discussed above, we need only consider the last part of the
(B,C) execution. Firstly, C’s view of the zero-knowledge proof with B is identical to the view
simulated by C ′, since C ′ emulates B perfectly. Next, note that C ′ accepts the zero-knowledge
proof with the same probability that B would have; this is a central point in showing that C’s view
of the rest remains unchanged. Consider the following two cases:28

• Case zk-accept = 1: Channel C ′ accepted the proof and thus B would have accepted it (with the
same probability). Party B therefore accepts if he received yB = f2n(τB) where τB is his output
from the polynomial evaluation, and if the MAC is correct. The modification has no effect on
the y-value and therefore this makes no difference. It remains to show that the probability that
B accepts the MAC from C equals the probability that B6zk accepts this same MAC. This is
true if the message transcripts that both B and B6zk hold are the same (by the “same”, we
mean that they are identically distributed). Apart the zero-knowledge proof, the transcripts are

28Let B-zk-accept be a random variable such that B-zk-accept = 1 if and only if B accepts his zero-knowledge proof
from C. Then, formally we show below that for b ∈ {0, 1}, the probability that ExptA(Q,w),B(w)

z (C) = 1 conditioned
on B-zk-accept = b equals the probability that Expt

A(Q,w),B6zk(w)
z (C′) = 1 conditioned on zk-accept = b. Now, since

for b ∈ {0, 1}, we have that Pr[B-zk-accept = b] = Pr[zk-accept = b], we obtain the equality in the lemma.
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identical by definition. Furthermore, B 6zk appends the messages from C ′’s internal emulation of
the proof (with C) to his message transcript. As C ′ plays an honest verifier exactly as B would
have, this means that their message transcripts are identically distributed. We conclude that
the probability that B6zk accepts in this case equals the probability that B accepts.

• Case zk-accept = 0: Channel C ′ rejected the proof and thus B would have rejected it (with the
same probability). In this case B’s output-bit is always reject. Since C ′ sends B6zk an invalid
MAC value in this case, B 6zk also always rejects.

We have shown that when the result of C ′’s verification is the same as B, then B 6zk’s accept/reject bit
is the same as B’s. Given that the probability that C ′ accepts the proof is equal to the probability
that B accepts it, we have that B and B 6zk’s output-bits equal accept with the same probability.
This means that C’s view is identical in both cases and this completes the proof.

We now show that when C interacts with B6zk, modifying A to A 6zk makes no difference to his view.
This is done by showing how the proof from A can be simulated by C himself. A key observation
regarding B 6zk is that the number of messages it sends is strictly less than the number of iterations
of the zero-knowledge proof that takes place in the (A,C) execution.

Lemma 7.2 Let A 6zk and B6zk be the above-defined modified parties. Then, for every ppt channel C
there exists a ppt channel C ′ such that for every randomized process z = Z(Q,w), every polynomial
p(·) and all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA(Q,w),B 6zk(w)
z (C) = 1]− PrQ,w[ExptA 6zk(Q,w),B 6zk(w)

z (C ′) = 1]
∣

∣

∣ <
1

p(n)

Proof: In both experiments, B6zk does not participate in the zero-knowledge proof. As we have de-
scribed above (in the motivating discussion), this enables A’s zero-knowledge proof to be simulated
for C, who is the verifier. We now formally show how C ′ executes this simulation for C.

The key observation is that the number of iterations in the first part of the RK-proof is m,
whereas the number of messages sent between C and B6zk is m− t. Therefore, there are t iterations
for which no message is sent between C and B6zk (these iterations may not be fixed but rather can
be determined by C ′ during the execution). In these iterations, since B6zk is not active, C ′ is able
to rewind C. The RK-proof is such that if the verifier can be rewound for any iteration during the
first part, then a successful simulation of the proof is achieved.

To see why the above holds, recall that the RK-proof consists of two parts. The first part
consists of m iterations, where in each iteration the verifier (who is C in this case) sends the prover
a commitment to a random string vi. The prover then sends a commitment to pi and the verifier
decommits. In the second part of the proof, the prover proves (with a witness-indistinguishable
proof [21]) that either there exists an i such that pi = vi or that the “target” statement is correct.
In a real proof, the prover will not be able to set pi = vi except with negligible probability. This
then implies that the statement is correct. On the other hand, if there is just one iteration of the
first part in which the simulator can rewind the verifier, he can then set pi = vi (because he rewinds
after obtaining the decommitment value vi and can thus set his commitment pi to equal vi). In
this case, he can successfully prove the witness-indistinguishable proof (without knowing a proof
of the target statement).

Now, in our case there are t iterations in which no messages are sent to B. In these iterations it
is possible to rewind C. The only problem remaining is that C may refuse to decommit. If during
the execution of a real proof, C refuses to decommit, then the prover halts. During the simulation,
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however, we must ensure that the probability that we halt due to C’s refusal to decommit is the
same as in a real execution. This prevents us from simply halting if after a rewind, C refuses to
decommit (since before rewinding he did decommit).

Before we continue, we define the concepts of promising and successful iterations. Through
this, we differentiate what happens during the first execution of a given iteration (i.e., before any
rewinding when the verifier receives a commitment to a random string pi) and during repeated
executions after rewinding (when the verifier receives a commitment to pi such that pi = vi). That
is,

• An iteration i is called promising if when C receives a commitment to a random pi, the iteration
is such that no messages are sent to B 6zk and C decommits properly. (This occurs before any
rewinding.)

• An iteration i is called successful if when C receives a commitment to pi such that pi = vi, the
iteration is such that no messages are sent to B6zk and C decommits properly. (This typically
occurs after rewinding when pi can be set to vi.)

Now, notice that when an iteration is successful, we can complete a full simulation of the proof.
This is because the first part of the proof is such that there exists an i for which pi = vi. Therefore
the simulator (having an adequate NP-witness) can prove the necessary witness-indistinguishable
proof. Loosely speaking, the probability that a promising iteration is not successful must be negligi-
ble. This is because the only difference between the two cases is whether C receives a commitment
to pi or vi. Now, assume that there is a verifier V ∗ for whom the probabilities that an iteration
is promising or successful are non-negligibly far apart. Then, V ∗ can be used to distinguish a
commitment to pi from a commitment to vi, contradicting the security of the commitment scheme.
This point is crucial because unless C refuses to decommit before any rewinding, we know that
there must be at least t promising iterations. We can conclude that with overwhelming probability,
some of these are also successful, allowing us to complete the simulation.

The Actual Simulator: We now show how C ′ runs the simulation for C. The channel C ′ plays
the prover to C; in each iteration i he receives a commitment to vi from C and replies with a
commitment to a random string pi. If an iteration is not promising, then there are two possible
reasons why: (1) C refused to decommit and in this case C ′ halts the simulation; (2) C sent a
message to B 6zk during the iteration – in this case C ′ simply continues to the next iteration.

On the other hand, if an iteration is promising, then C ′ obtains the decommitted value vi,
rewinds C and commits to pi = vi. That is, C ′ attempts to obtain a successful iteration. If the
rewinded iteration is successful, then as we have shown C ′ can complete the simulation successfully.
However, the iteration may not be successful after the rewinding. That is, C may refuse to decommit
or may send messages to B 6zk. As long as the rewinded iteration is not successful, C ′ continues
to rewind up to N times (where N = poly(n) and the exact polynomial taken is discussed in the
analysis). If none of the rewinds were successful then he resends his original commitment to a
random pi and continues to the next iteration. We note that each rewinding is independent in that
C ′ sends an independent random commitment to pi = vi each time.

We stress that C ′ must block any message sent by C to B6zk during a rewinding. This is because
C cannot be rewound beyond a point in which he sent a message to B6zk. However, since C may
refuse to decommit, further rewindings may be necessary. Thus, in the case that C sends a message
to B6zk during a rewinding, C ′ halts the iteration (without forwarding the message) and rewinds
again, up to N times.
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Motivation for the Analysis: As we have mentioned, if an iteration is not promising because C
refused to decommit, then the simulation terminates successfully (as the prover would also simply
halt in a real proof). On the other hand, we know that there are at least t iterations for which C
does not send any messages to B6zk (recall that there are only m− t messages sent between C and
B 6zk). We therefore have at least t promising iterations (or C refused to decommit and anyway the
simulation succeeds). The simulation fails only if all these promising iterations are not successful;
we show that for a correct choice of N (the number of rewindings of a promising iteration), this
occurs with at most negligible probability.

The Analysis: Our aim is to show that the simulation fails with negligible probability. That is,
for every positive polynomial p, we show that (for all but finitely many n’s) the simulation fails
with probability smaller than 1/p(n). In the rest of the analysis we assume that m <

√
n (this is

easy to enforce, possibly, by artificially increasing the original security parameter n to a polynomial
in n). We use the following notation:

• Let X1, . . . , Xm be random variables such that Xi = 1 if and only if C sends no messages to
B6zk during iteration i when pi is a random commitment (i.e., before rewinding).

• Let Y1, . . . , Ym be random variables such that Yi = 1 if and only if C agrees to decommit during
iteration i when pi is a random commitment (i.e., before rewinding).

We therefore have that an iteration i is promising if Xi = Yi = 1. We now introduce similar
notations for iterations after rewinding:

• Let X ′
1, . . . , X

′
m be random variables such that X ′

i = 1 if and only if C sends no messages to B6zk
during iteration i when pi is a commitment such that pi = vi (i.e., typically after rewinding).

• Let Y ′
1 , . . . , Y

′
m be random variables such that Y ′

i = 1 if and only if C agrees to decommit during
iteration i when pi is a commitment such that pi = vi (i.e., typically after rewinding).

We therefore have that an iteration i is successful if X ′
i = Y ′

i = 1.

We start by showing that the success event X ′
i = Y ′

i = 1 occurs essentially as often as the promising
event Xi = Yi = 1. We wish to establish this not only for the a-priori probabilities but also when
conditioned on any past event that occurs with noticeable probability. Specifically, we prove the
following.

Claim 7.3 For every polynomial q, every i ≤ m, and every α ∈ {0, 1}i−1 either

Pr[Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α] <
1

q(n)
(21)

or
if Pr[Xi = Yi = 1 |Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α] ≥ 1

n
then Pr[X ′

i = Y ′
i = 1 |Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α] > 1

2n
(22)

Proof: The claim follows by the hiding property of the commitment scheme. Specifically, an
algorithm violating the hiding property is derived by emulating the first i−1 iterations (of the real
execution) with the hope that Y1 · · ·Yi−1 = 1i−1 & X1 · · ·Xi−1 = α holds, which indeed occurs with
noticeable probability. Given that this event occurs, the algorithm can distinguish a commitment
to a random value from a commitment to a given vi. More precisely, contradiction to the hiding
property is derived by presenting two algorithms. The first algorithm emulates the real interaction
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for i iterations, and obtains vi from the verifier decommitment in the ith iteration, in case such
an event has occured. The second algorithm is given the view of the first algorithm along with a
challenge commitment and distinguishes the case in which this commitment is to a random value
from the case this commitment is to the value vi.

Our aim is to upper bound the probability that the simulation fails, by considering all possible
values that X = X1 · · ·Xm can obtain in such a case. Denoting the simulator’s failure event by
fail, we have:

Pr[fail] =
∑

β∈{0,1}m

Pr[fail&X = β]

=
∑

α∈S

Pr[fail&X1 · · ·X|α| = α]

where S is any maximal prefix-free subset of {0, 1}m. (Recall that a set S is prefix-free if for every
α, β ∈ S it holds that α is not a prefix of β. By maximality, we mean that every α ∈ {0, 1}m has a
prefix in S (or else this α could have been added to S without violating the prefix-free condition).)
The last equality holds since the strings in {0, 1}m can be partitioned to subsets such that the
strings in each subset have a unique prefix in the set S.

For a constant k < t to be determined later, we define Hk to be the set of all strings having
length at most m − 1 and hamming weight exactly k. Let S1

def= {α′1 : α′ ∈ Hk} (i.e., strings of
length at most m and hamming weight k + 1 that have no strict prefix satisfying this condition),
and S2 be the set of all m-bit long strings having hamming weight at most k. Then S1 ∪ S2 is a
maximal prefix-free subset of {0, 1}m, and so we have:

Pr[fail] =
∑

α∈S1∪S2

Pr[fail&X1 · · ·X|α| = α]

=
∑

α′∈Hk

Pr[fail& X1 · · ·X|α′|+1 = α′1]

where the last equality follows since Pr[fail& X ∈ S2] = 0 (i.e., unless C refuses to properly
decommit in some iteration, in which case the simulation never fails, there must be at least t ≥ k+1
iterations/indices i in which Xi = 1 holds). Since |Hk| < mk, we have

Pr[fail] < mk · max
α′∈Hk

{Pr[fail& X1 · · ·X|α′|+1 = α′1]}

≤ mk · max
α′∈Hk

{Pr[fail&X1 · · ·X|α′| = α′]}

We will show that for every α′ ∈ Hk, it holds that

Pr[fail&X1 · · ·X|α′| = α′] <
1

mk · p(n)
(23)

which establishes our claim that the simulation fails with probability smaller than 1/p(n).
In order to establish Eq. (23), we fix an arbitrary α′ ∈ Hk, let i = |α′|+ 1, and we consider two

cases:

Case 1: Pr[Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α′] < 1
mk·p(n) . In this case, using the fact that the

simulation never fails if any of the Yj ’s equals 0, it follows that Pr[fail& X1 · · ·Xi−1 = α′] <
1

mk·p(n) as desired.
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Case 2: Pr[Y1 · · ·Yi−1 = 1i−1 & X1 · · ·Xi−1 = α′] ≥ 1
mk·p(n) . In this case, setting q(n) = mk · p(n),

we conclude that Eq. (22) holds. Furthermore, for every j ≤ i, it holds that Pr[Y1 · · ·Yj−1 =
1j−1 &X1 · · ·Xj−1 = α′′] ≥ 1

mk·p(n) holds, where α′′ is the the (j − 1)-bit long prefix of α′.
Thus, Eq. (22) holds for α′′ too. We are particularly interested in prefices α′′ such that α′′1
is a prefix of α′. We know that there are k such prefices α′′1 and we denote the set of their
lengths by J (i.e., j ∈ J if the j-bit long prefix of α′ ends with a one). We consider two
subcases:

1. If for some j ∈ J , it holds that Pr[Xj = Yj = 1 |Y1 · · ·Yj−1 = 1j−1 & X1 · · ·Xj−1 = α′′] ≥
1
n then (by Eq. (22)) it holds that Pr[X ′

j = Y ′
j = 1 |Y1 · · ·Yj−1 = 1j−1 &X1 · · ·Xj−1 =

α′′] > 1
2n . This means that a rewinding attempt at iteration j succeeds with probability

greater than 1/2n, and the probability that we fail in O(n2) attempts is exponentially
vanishing. Thus, in this subcase Pr[fail& X1 · · ·Xi−1 = α′] < 2−n < 1

mk·p(n) as desired.

2. The other subcase is that for every j ∈ J , it holds that Pr[Xj = Yj = 1 |Y1 · · ·Yj−1 =
1j−1 &X1 · · ·Xj−1 = α′′] < 1

n . Recalling that failure may occur only if all Yj ’s equal
one, and letting α′ = σ1 · · ·σi−1, we get (using σj = 1 for j ∈ J)

Pr[fail&X1 · · ·Xi−1 = α′]

≤ Pr[Y1 · · ·Yi−1 = 1i−1 &X1 · · ·Xi−1 = α′]

=
i−1
∏

j=1

Pr[Xj = σj &Yj = 1 |Y1 · · ·Yj−1 = 1j−1 &X1 · · ·Xj−1 = σ1 · · ·σj−1]

≤
∏

j∈J

Pr[Xj = 1& Yj = 1 |Y1 · · ·Yj−1 = 1j−1 &X1 · · ·Xj−1 = σ1 · · ·σj−1]

< (1/n)k

By a suitable choice of k (e.g., k = 2 limn→∞ logn p(n)) and recalling that m <
√

n, we
have 1

nk < 1
mk·p(n) as desired.

Thus, we have established the desired bound of Eq. (23) in all possible cases.

Concluding the (A, C) Simulation: Following the zero-knowledge proof, A6zk sends a MAC of
the entire session-transcript. The channel C ′ must ensure that C receives a MAC that is indis-
tinguishable from the MAC that he would have received from A. Recall that by the definition of
the A6zk modification, the party A6zk expects to receive a string s in place of the zero-knowledge
proof. C ′ defines s to be the transcript of the zero-knowledge simulation. This means that A6zk’s
resulting message-transcript is identical to the transcript held by C. Furthermore, this transcript
is indistinguishable from a transcript that C would hold after a real execution with A (rather than
in this simulated interaction). This implies that the MAC sent by A6zk is indistinguishable from
one that A would have sent. This completes the proof.

7.2 Corollaries and Remarks

The above proof is identical for a party B2 who does not participate at all in the validation stage.
We now restate Lemma 7.2 in this case (this is used in Section 10).
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Lemma 7.4 Let A 6zk be the above-defined modified party and let B2 be a party who halts before the
validation stage. Then, for every ppt channel C there exists a ppt channel C ′ such that for every
randomized process z = Z(Q,w), every polynomial p(·) and all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA(Q,w),B2(w)
z (C) = 1]− PrQ,w[ExptA6zk(Q,w),B2(w)

z (C ′) = 1]
∣

∣

∣ <
1

p(n)

An immediate corollary from Lemmas 7.1 and 7.2 is that if we modify both A and B to A6zk and
B6zk respectively, then this has at most a negligible affect on C’s output.

Corollary 7.5 Let A6zk and B 6zk be the modified parties defined above. Then, for every ppt chan-
nel C there exists a ppt channel C ′ such that for every randomized process z = Z(Q,w), every
polynomial p(·) and all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
z (C) = 1]− PrQ,w[ExptA6zk(Q,w),B 6zk(w)

z (C ′) = 1]
∣

∣

∣ <
1

p(n)

A Note on the Number of Rounds: Our simulator works given that the number of rounds
in the first part of the RK-proof is any non-constant function of the security parameter n (say
log log n). We note that if only an expected (rather than strictly) polynomial-time simulator is
desired, then a single additional round suffices. This can be shown using the techniques of [26].

Pseudorandomness of Q(w) Restated: We now restate Theorem 4.2 in the case that C inter-
acts with A2 and B6zk, rather than with A2 and B (recall that A2 is a party that halts before the
validation stage). The restated theorem is used for the session-key secrecy (proved in Section 8),
and is presented here only due to the definition of the modified party B6zk.

Theorem 7.6 (Pseudorandomness of Q(w) with B6zk): Let C be an arbitrary ppt adversary inter-
acting with A2 and B6zk. Then, for every polynomial p(·) and for all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA2(Q,w),B 6zk(w)
Q(w) = 1]− PrQ,w,Un [ExptA2(Q,w),B 6zk(w)

Un
= 1]

∣

∣

∣ < 2ε +
1

p(n)

where Q is a random, non-constant, linear polynomial and w ∈R D.

The proof of this theorem is identical to the proof of Theorem 4.2.

8 Full Proof of Session-Key Secrecy

Theorem 4.2 states that Q(w) is (1−O(ε))-pseudorandom prior to the validation stage of the (A,C)-
execution. In this section we prove that the session-key k2(Q(w)) is (1 − O(ε))-pseudorandom
at the conclusion of the entire protocol. Recall that in the validation stage A sends the string
y = f2n(Q(w)), proves a statement in zero-knowledge and sends a MAC (keyed by k1(Q(w))) of
the entire message transcript. In order to simplify the proof, we consider that A sends the MAC-key
k1(Q(w)) itself during the validation stage. Given the MAC-key (i.e., k1(Q(w))), the channel C
can always compute the MAC itself. Therefore, this can only “help” C distinguish the session-key
from a random string.
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The proof relies on the fact that since G(s) = (f2n(s), k1(s), k2(s)) is a pseudorandom gener-
ator, the output key k2(Q(w)) is (1 − O(ε))-pseudorandom, even given f2n(Q(w)) and k1(Q(w)).
This must be justified, as in our case the generator is seeded by Q(w) which is only (1 − 2ε)-
pseudorandom, whereas a generator is usually seeded by a uniformly random string. In the follow-
ing proposition we show that if Q(w) is (1− 2ε)-pseudorandom (as previously shown), then given
f2n(Q(w)) and k1(Q(w)), the string k2(Q(w)) is (1 − 4ε)-pseudorandom. (By “given” we mean
that a ppt distinguishing machine is given these strings, along with the challenge string which is
either k2(Q(w)) or Un.) Applied to the analysis of our protocol, this means that even after A sends
the string f2n(Q(w)) and the MAC in the validation stage, the output session-key k2(Q(w)) is still
(1−O(ε))-pseudorandom. We also show that given f2n(Q(w)), the string k1(Q(w)) is (1−O(ε))-
pseudorandom. This means that the MAC-key is (1 − O(ε))-pseudorandom even after A sends
f2n(Q(w)). The validation stage also contains a zero-knowledge proof and we deal with this later.

Preliminaries

We model any information that C may have learned about Q and w during the protocol by a random
process I(·). This can be seen by defining I((Q, w)) to equal the output of CA2(Q,w),B 6zk(w)

1 (1n). (The
reason we define the random process over A2 and B6zk, rather than A and B, will become evident
later.) Now, we model the inputs Q and w by a random variable Yn and the value Q(w) by a related
random variable Xn (i.e., for Yn = (α, β), the random variable Xn is defined to be α(β)). Then,
the fact that Q(w) is (1−2ε)-pseudorandom with respect to C’s view after interacting with A2 and
B6zk (as stated in Theorem 7.6), is represented by the saying that Xn is (1− 2ε)-pseudorandom to
a distinguisher given I(Yn).

Proposition 8.1 Let {Xn} and {Yn} be (possibly) related random variables such that {Xn} is
(1− δ)-pseudorandom to a distinguisher given I(Yn). Then

• (I(Yn), f2n(Xn), k1(Xn), k2(Xn)) is (1−2δ)-indistinguishable from (I(Yn), f2n(Xn), k1(Xn), Un),
and

• (I(Yn), f2n(Xn), k1(Xn)) is (1− 2δ)-indistinguishable from (I(Yn), f2n(Xn), Un).

Proof: We begin by showing that (I(Yn), f2n(Xn), k1(Xn)) is (1 − 2δ)-indistinguishable from

(I(Yn), f2n(Xn), Un). This is shown in three steps (
δ≡ denotes (1 − δ)-indistinguishability and

c≡
denotes computational indistinguishability):

1. (I(Yn), f2n(Xn), k1(Xn))
δ≡ (I(Yn), f2n(Un), k1(Un))

This is because by the hypothesis (I(Yn), Xn) is (1− δ)-indistinguishable from (I(Yn), Un).

2. (I(Yn), f2n(Un), k1(Un))
c≡ (I(Yn), f2n(U (1)

n ), U (2)
n ) (where U (1)

n and U (2)
n are two independent

uniform distributions)

This is derived directly from the fact that (f2n(Un), k1(Un)) is pseudorandom.

3. (I(Yn), f2n(U (1)
n ), U (2)

n )
δ≡ (I(Yn), f2n(Xn), U (2)

n )

As in the first step, this is because (I(Yn), Xn) is (1− δ)-indistinguishable from (I(Yn), Un).

Putting it all together we have that (I(Yn), f2n(Xn), k1(Xn)) and (I(Yn), f2n(Xn), Un) are (1−2δ)-
indistinguishable.

An analogous argument is used to show that (I(Yn), f2n(Xn), k1(Xn), k2(Xn)) is (1−2δ)-indistinguishable
from (I(Yn), f2n(Xn), k1(Xn), Un).
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Session-Key Secrecy w.r.t. A 6zk and B6zk

We now show that when C interacts with A6zk and B6zk (where A6zk and B 6zk are as defined in
Section 7), the session-key is (1−O(ε))-pseudorandom.

Corollary 8.2 Let C be an arbitrary ppt channel interacting with A6zk and B6zk, as defined in
Section 7. Then, for every polynomial p(·) and all sufficiently large n’s

∣

∣

∣PrQ,w[ExptA6zk(Q,w),B 6zk(w)
k2(Q(w)) = 1]− PrQ,w,Un [ExptA6zk(Q,w),B 6zk(w)

Un
= 1]

∣

∣

∣ < 4ε +
1

poly(n)

Proof: Theorem 7.6 (from Section 7) states that for any ppt channel C interacting with A2 and
B6zk

∣

∣

∣PrQ,w[ExptA2(Q,w),B 6zk(w)
Q(w) = 1]− PrQ,w,Un [ExptA2(Q,w),B6zk(w)

Un
= 1]

∣

∣

∣ < 2ε +
1

poly(n)

That is, the string Q(w) is (1 − 2ε)-pseudorandom with respect to C’s view at the conclusion
of the protocol execution. Now, the only difference between A2 and A6zk is that A6zk sends the
following two messages in the validation stage: f2n(Q(w)) and the MAC-key k1(Q(w)). Using
the notation of Proposition 8.1, the channel C’s view of the execution CA6zk,B 6zk

1 (1n) can be rep-

resented by (I(Q,w), f2n(Q(w)), k1(Q(w))) (define I(Q,w) def= CA2(Q,w),B6zk(w)
1 (1n)). Now, Propo-

sition 8.1 states that (I(Q,w), f2n(Q(w)), k1(Q(w)), k2(Q(w))) is (1 − 4ε)-indistinguishable from
(I(Q,w), f2n(Q(w)), k1(Q(w)), Un). In other words,

∣

∣

∣PrQ,w[ExptA 6zk(Q,w),B 6zk(w)
k2(Q(w)) = 1]− PrQ,w,Un [ExptA 6zk(Q,w),B 6zk(w)

Un
= 1]

∣

∣

∣ < 4ε +
1

poly(n)

That is, the corollary is obtained by combining Theorem 7.6 with Proposition 8.1.

Session-Key Secrecy w.r.t. A and B

It remains to show that when C interacts with A and B (and not the modified parties A6zk and
B6zk), then the session-key k2(Q(w)) is (1−O(ε))-pseudorandom. This is immediately derived from
Corollary 7.5 that states that for every ppt channel C there exists a ppt channel C ′ such that for
every randomized process z = Z(Q,w)

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
z (C) = 1]− PrQ,w[ExptA6zk(Q,w),B 6zk(w)

z (C ′) = 1]
∣

∣

∣ <
1

poly(n)

By applying Corollary 7.5 twice to Corollary 8.2, replacing z once with k2(Q(w)) and once with
Un, we have the following theorem for session-key secrecy.

Theorem 8.3 (Theorem 4.5 restated): Let C be an arbitrary ppt channel. Then,

∣

∣

∣PrQ,w[ExptA(Q,w),B(w)
k2(Q(w)) = 1]− PrQ,w,Un [ExptA(Q,w),B(w)

Un
= 1]

∣

∣

∣ < 4ε +
1

poly(n)
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Divertion: Security of the MAC Value

We now divert and prove a corollary needed for Sections 4.6 and 10 (password secrecy). We prove it
here because its proof is almost identical to that of Theorem 8.3. Recall that the last message sent
by A in the protocol is a MAC (implemented via a pseudorandom function keyed with k1(Q(w)))
applied to her entire message transcript. The corollary states that for any other string t, the value
MACk1(Q(w))(t) is (1− 4ε)-pseudorandom with respect to C’s view.

Corollary 8.4 (Corollary 4.9 restated): Let C be an arbitrary ppt channel. Then, for every string t
that differs from the (A,C)-message transcript, the value MACk1(Q(w))(t) is (1−4ε)-pseudorandom
with respect to C’s view.

Proof: In the proof of Theorem 8.3 we show that k2(Q(w)) is (1−4ε)-pseudorandom with respect
to C’s view. Using the same argument, we have that before A sends the MAC in the validation
stage, the MAC-key k1(Q(w)) is (1−4ε)-pseudorandom with respect to C’s view. Formally, consider
a modified party A 6mac who is exactly the same as A except that she does not send the MAC in the
validation stage. Then, the same proof as above can be used to show that

∣

∣

∣PrQ,w[ExptA 6mac(Q,w),B(w)
k1(Q(w)) = 1]− PrQ,w,Un [ExptA6mac(Q,w),B(w)

Un
= 1]

∣

∣

∣ < 4ε +
1

poly(n)
(24)

(Recall that this is proved in two stages. We first consider a scenario in which C interacts with
a party A 6zk,6mac, who sends neither the MAC or zero-knowledge proof, and with B6zk. In this
scenario, we show that k1(Q(w)) is (1 − 4ε)-pseudorandom with respect to C’s view. Then, by
applying Corollary 7.5, we have that the above holds also when C interacts with A 6mac and B.)

In the proposition below we show that Equation (24) implies that the MAC used is a (1− 4ε)-
pseudorandom function. Then, even when C is given the MAC for the (A,C)-message transcript,
all other MAC values are (1−4ε)-pseudorandom with respect to his view. This completes the proof
as the only difference between A and A6mac is that A sends a MAC on the (A,C)-message transcript
in the validation stage.

It remains to prove that the MAC used is a (1 − 4ε)-pseudorandom function. We use the same
notation as in Proposition 8.1. (Recall that I(·) is a random process that represents the information
learned by C during a protocol execution, Yn is a random variable taking on pairs (Q,w) and Xn
is a related random variable taking on values Q(w).)

Proposition 8.5 Let {Xn} and {Yn} be (possibly) related random variables such that {Xn} is (1−
δ)-pseudorandom to a distinguisher given I(Yn). Furthermore, let gr(·) be a pseudorandom function
when r is uniformly distributed. Then, given I(Yn), the function gXn(·) is (1− δ)-pseudorandom.

Proof: The proof is based on the idea that a string distinguisher that needs to distinguish Xn
from Un can simulate oracle queries to gXn(·) or gUn(·) depending on its input. Since we know
that gUn(·) is indistinguishable from a random function (by definition), distinguishing gXn(·) from
a random function essentially means distinguishing Xn from Un. Details follow.

Let D be a ppt oracle machine who receives the output of the random process I(Yn) and oracle
access to either gXn or a random function f . Then,

∣

∣

∣Prob[DgXn (I(Yn), 1n) = 1]− Prob[Df (I(Yn), 1n) = 1]
∣

∣

∣

≤ |Prob[DgXn (I(Yn), 1n) = 1]− Prob[DgUn (I(Yn), 1n) = 1]| (25)

+
∣

∣

∣Prob[DgUn (I(Yn), 1n) = 1]− Prob[Df (I(Yn), 1n) = 1]
∣

∣

∣ (26)
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Equation (26) is negligible by the definition of a pseudorandom function. On the other hand,
Equation (25) must be less than δ + 1

poly(n) because otherwise a ppt machine D′ that, given I(Yn)
attempts to distinguish Xn from Un, can invoke D on input (I(Yn), 1n) and answer all oracle queries
according to its input string (which is either Xn or Un).

9 Full Proof of the Key-Match Requirement

The key-match requirement captured in Theorem 4.6 states that the probability that A and B
both accept, yet have different keys is at most O(ε). Recall that τA

def= Q(w) and that τB is B’s
output from the polynomial evaluation. We prove this theorem by considering two complementary
schedulings of the concurrent executions. We show that for each scheduling, the probability that
B accepts and τA 6= τB is at most O(ε). (In fact, the first scheduling is such that B accepts with
probability at most O(ε), irrespective of whether or not τA = τB.)

9.1 Proof of Lemma 4.7

Lemma 9.1 (Lemma 4.7 – restated; Case 1 – Unsynchronized): Let C be a ppt channel and define
Case 1 to be a scheduling of the protocol execution by which C completes the polynomial evaluation
with A before concluding the non-malleable commitment with B. Then, for every polynomial p(·)
and all sufficiently large n’s

Pr[B = acc ∧ Case 1] < 2ε +
1

p(n)

Proof: As in our previous proofs, we reduce the concurrent setting to a two-party stand-alone
setting. However, before doing this we remove the zero-knowledge proofs and modify parties A and
B to A6zk and B 6zk respectively, as defined in Section 7 (loosely speaking, the modified parties act
exactly as A and B but do not participate in the zero-knowledge proofs). Corollary 7.5 states that
for every channel C interacting with A and B, there exists a channel C ′ interacting with A 6zk and
B 6zk such that the channels’ views in the two cases are indistinguishable. Since B’s accept/reject
bit is part of C’s view, we have that the probability that B 6zk accepts (in an execution with C ′

and A 6zk) is negligibly close to the probability that B accepts (in an execution with C and A). We
therefore continue by proving the theorem in the setting whereby C interacts with A6zk and B6zk
(rather than with A and B).

As mentioned, our first step now is to reduce the concurrent setting to a two-party stand-alone
setting. In previous proofs this was done by having C simulate one of the concurrent executions
with A or B. For example, C would internally simulate the (C,B)-execution while interacting with
A. The reduction here is different in that a party P will incorporate parts of both the (A, C) and
(C, B) executions. The key point in this reduction is in noticing that according to the scheduling of
Case 1, the two polynomial evaluations are run sequentially without any overlap. Specifically, the
(A6zk, C)-evaluation terminates before the (C,B 6zk)-evaluation begins. Consider now a simplified
case in which the entire (A6zk, C)-protocol consists only of a single polynomial evaluation; likewise
for the (C,B 6zk)-protocol. Then, when the scheduling is as mentioned, a party P , can execute two
sequential polynomial evaluations with C; in the first he plays A 6zk’s role and in the second he plays
B6zk’s role. That is, when this scheduling occurs the above two-party setting perfectly simulates
the concurrent setting.
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The actual reduction is more complex as the (A 6zk, C) and (C, B 6zk) protocols involve other steps
beyond the polynomial evaluation. The protocol that we define between P and C must correctly
simulate these other steps as well. As we shall see, some of the additional steps are internally
simulated by C and some are played by P . Specifically, apart from playing in both polynomial
evaluations, P plays A6zk’s role in the (A6zk, C)-commitment stage and B6zk’s role in the (C,B 6zk)-
validation stage. What remains is B6zk’s role in the (C,B 6zk)-commitment stage and A6zk’s role in
the (A 6zk, C)-validation stage; these are internally simulated by C. The following table shows which
party (P or C) simulates A6zk and B 6zk’s respective roles.

Stage A 6zk B6zk

1. Commitment P C
2. Pre-Key Exchange P P
3. Validation C P

Party P ’s input consists of Q and w and this therefore enables him to play A6zk and B 6zk’s roles, as
required. We also give C some auxiliary input that enables him to internally simulate the remaining
parts of the execution.

This reduction makes sense when the scheduling of Case 1 occurs. Loosely speaking, we show
that according to this scheduling, the two-party protocol between P and C accurately simulates
our concurrent setting. (When Case 1 does not occur, then nothing can be said about the (P, C)
protocol. However, for the lemma we need to bound B6zk’s accepting probability in Case 1 only.
This is therefore enough.)

We now present the protocol for parties P and C; the protocol is specifically designed to simulate
the concurrent CA6zk(Q,w),B 6zk(w)

1 setting, according to the scheduling of Case 1. What we show is
that every adversary C1 in the concurrent setting can be “simulated” (in some adequate sense) by
an adversary C ′ to the following protocol.

Protocol-(P, C):

Input:

• P has (Q,w), where Q is a linear (non-constant) polynomial and w ∈ D.

• C receives the string Q(w) for input.

The Protocol:

1. Emulation of Stage 1 of the (A 6zk, C)-execution (commitment stage):

• P sends C a non-malleable commitment to (Q,w).

2. Emulation of Stage 2 of the (A 6zk, C)-execution (pre-key exchange):

• P sends C a commitment c1 = Commit(Q) = C(Q, r1) for a random r1.

• P and C invoke an augmented polynomial evaluation, where P inputs the polynomial Q
and (c1, r1) and C inputs c1 and some value wC . Party C then receives the output value
Q(wC) (or ⊥ in the case of incorrect inputs).

3. Emulation of Stage 2 of the (C, B 6zk)-execution (pre-key exchange):

• C sends P a commitment c2 = C(QC , r2) for some polynomial QC and a random r2.
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• C and P invoke another augmented polynomial evaluation (in the other direction) where
C inputs the polynomial QC and (c2, r2) and P inputs c2 and w. Party P receives τ (which
equals either QC(w) or ⊥) from the evaluation.

4. Partial Emulation of Stage 3 of the (C, B6zk)-execution (validation stage):

• C sends a string y to P , and P outputs accept if and only if y = f2n(τ).

We say that C succeeds if P outputs accept at the conclusion of the protocol execution. We now
show that any C succeeding in having B 6zk accept in the concurrent protocol with the scheduling
of Case 1, can be used by a party C ′ to succeed with at least the same probability in the above
protocol with P .

Claim 9.2 Let C be a ppt channel interacting with A 6zk and B 6zk. Then there exists a ppt party C ′

interacting with P in Protocol-(P, C ′) such that

PrQ,w[P = acc] ≥ PrQ,w[B6zk = acc ∧ Case 1]

Proof: We begin by considering a modification of party B6zk to B′ who ignores the MAC sent to
him in the validation stage. That is, B′ is the same as B except that he decides whether to accept
or reject based solely on the y-string he receives in the validation stage. As B′ only omits checks,
we have that

PrQ,w[B′ = acc ∧ Case 1] ≥ PrQ,w[B 6zk = acc ∧ Case 1]

We continue by proving that for every C interacting with A6zk and B′, there exists a C ′ interacting
with P such that

PrQ,w[B′ = acc ∧ Case 1] = PrQ,w[P = acc]

The party C ′ incorporates C internally and perfectly simulates the concurrent setting with A6zk

and B′ for C (i.e., CA 6zk,B′

1 ). First notice that Step (4) of the (P,C ′) protocol constitutes the full
validation stage of the (C, B′)-protocol (whereas it is only partial for the (C, B6zk)-protocol). This
means that the (P, C ′) protocol contains all stages of the (A6zk, C) and (C, B6zk) protocols except
for the the first stage of the (C, B 6zk)-protocol and the third stage of the (A 6zk, C)-protocol. As
mentioned, these stages are internally simulated by C ′.

The C ′ Simulation: We now describe how C ′ runs the simulation. Party C ′ invokes C and
emulates the CA 6zk(Q,w),B′(w) setting for him. This involves separately simulating the (A 6zk, C) and
(C, B′) executions. This is done as follows (recall that C fully controls the scheduling):

• The (A 6zk, C) Execution:

1. Stages 1 and 2: All messages from these stages of the execution are passed between C and
P (without any change). That is, C ′ forwards any messages sent from C to A6zk to P and
likewise, messages from P are forwarded to C.

2. Stage 3: C ′ internally emulates A6zk’s role here, and thus P is not involved at all. In this
stage C expects to receive the string y = f2n(Q(w)) and a MAC of the (A 6zk, C) session-
transcript keyed by k1(Q(w)). Party C ′ can send these messages since he knows Q(w) and
can therefore compute both the y-string and the MAC-key (and so the MAC value).

• The (C,B′) Execution:
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1. Stage 1: C ′ internally emulates B′’s role here, and thus P is not involved at all. B′’s role in
this stage is as the receiver of a non-malleable commitment; therefore no secret information
is needed by C ′ to emulate this part.

2. Stages 2 and 3: When C sends the first message belonging to Stage 2 of the (C,B′)-
execution, party C ′ acts as follows:

• Failure Case: If this first message was sent before the completion of Stage 2 of the
(A6zk, C) execution, then C ′ halts (the simulation fails).

• Success Case: If this first message was sent after the completion of Stage 2 of the
(A6zk, C) execution, then C ′ continues the simulation by forwarding this and all con-
sequent messages belonging to these stages to P (and returning messages from P to
C).

This completes the simulation. We begin by noting that when the simulation succeeds, C’s view
is identical to a real execution with A 6zk and B′. Recall that the (P, C)-protocol emulates Stages 1
and 2 of the (A 6zk, C) protocol before Stages 2 and 3 of the (C, B′) protocol. Therefore, the simulation
succeeds as long as C’s scheduling is such that Stage 2 of the (A 6zk, C) execution is completed before
Stage 2 of the (C, B′) execution begins. However this is exactly the definition of the scheduling of
Case 1. In other words, the simulation is successful if and only if the scheduling is according to
Case 1. Now, if the simulation is not successful (i.e., Case 1 did not occur) then P never accepts.
On the other hand, when the simulation succeeds P accepts with the same probability as B′ would
have. We conclude that the probability that P accepts is exactly equal to the probability that the
scheduling is according to Case 1 and B′ accepts.

It remains to bound the probability that P accepts in the above (P, C ′)-protocol.

Claim 9.3 For every ppt party C ′ interacting with P in Protocol-(P, C ′) we have that for every
polynomial p(·) and all sufficiently large n’s

Pr[P = acc] < 2ε +
1

p(n)

Proof: We analyze the probability that P accepts in the two-party protocol for P and C ′ defined
above. This is an ordinary two-party setting and as such can be analyzed by directly considering
the security of the different modules. (We stress that this protocol’s connection to the concurrent
execution of our protocol with A,B and C has already been established in Claim 9.2 and is not
relevant in the analysis here.)

We first modify the protocol so that in Step 1, party P sends a random commitment, instead
of a commitment to (Q,w). Due to the hiding property of the commitment, this can make at most
a negligible difference (this replacement is possible since the commitment is not used anywhere in
the continuation of the protocol). Therefore, C ′ can internally emulate this commitment and this
stage can be removed from the protocol. We thus remain with a protocol consisting of the following
stages:

• (Emulation of Stage 2 of (A 6zk, C)): P sends C ′ a commitment to Q and then P and C ′ execute
an augmented polynomial evaluation in which C ′ receives either Q(wC), for some wC , or ⊥. By
the security of the evaluation, C ′ receives Q(wC) (or ⊥) and nothing more.

• (Emulation of Stage 2 of (C,B′)): C ′ sends P a commitment to some polynomial QC and then
C ′ and P execute an augmented polynomial evaluation in which P receives QC(w) or ⊥. By
the security of the evaluation, C ′ receives nothing in this stage.
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• (Emulation of Stage 3 of (C,B′)): C ′ sends a string y to P and P accepts if y = f2n(QC(w)).

The intuition behind showing that P accepts with probability at most negligibly greater than 2ε is
as follows: C ′ must send the “correct” y based solely on the value Q(wC) that he (possibly) received
from the first evaluation (and his auxiliary input Q(w)). Now, if wC 6= w, then the only thing that
party C ′ learns about w is that it does not equal wC . This is due to the pairwise independence of
the random polynomial Q. Therefore, C must guess the correct value for y from |D|−1 possibilities
(i.e., f2n(QC(w′)) for every w′ 6= wC). On the other hand, the probability that wC = w is at most
ε as nothing is revealed of w during the protocol. (Note that C can indeed determine whether or
not wC = w by comparing Q(wC) to his auxiliary input Q(w).)

The above argument is based on the security of the polynomial evaluations. We therefore proceed by
analyzing the probability that P accepts in an ideal execution where the two polynomial evaluations
are replaced by ideal evaluations. We denote the ideal model parties by P̂ and Ĉ ′. By the sequential
composition theorem of multi-party computation [14], we have that the accepting probabilities of
P (in a real execution) and P̂ (in an ideal execution) are at most negligibly different.

We now upper bound the probability that P̂ accepts in an ideal execution. Party Ĉ ′ is given
Q(w) for auxiliary input and in the first polynomial evaluation Ĉ ′ inputs a value wC . We differ-
entiate between the case that wC = w and wC 6= w and separately upper bound the following
probabilities:

1. Pr[P̂ = acc ∧ wC = w]

2. Pr[P̂ = acc ∧ wC 6= w]

Bounding the probability that P̂ = acc and wC = w: We actually show that Pr[wC = w] ≤
ε + µ for some negligible function µ. The only message received by Ĉ ′ prior to sending wC is a
commitment to the polynomial Q. That is, Ĉ ′’s entire view at this point consists of his auxiliary
input Q(w) and Commit(Q). Due to the hiding property of the commitment, Commit(Q) can be
replaced by Commit(02n) and this makes at most a negligible difference. We therefore remove the
commitment and bound the probability that wC = w where Ĉ ′ is given Q(w). Since Q is a random
linear polynomial, we have that for every w, the string Q(w) is uniformly distributed. That is,
Q(w) reveals no information about w. Therefore, we have that Pr[wC = w] ≤ ε (with equality in
case wC ∈ D). This implies that when Ĉ ′ is given a commitment to Q (rather than to 02n), we
have that Pr[wC = w] < ε + µ. Therefore

Pr[P̂ = acc ∧ wC = w] ≤ Pr[wC = w] ≤ ε + µ

Bounding the probability that P̂ = acc and wC 6= w: We first analyze the following con-
ditional probability: Pr[P̂ = acc | wC 6= w]. Recall that Ĉ ′’s view (after the first polynomial
evaluation) consists of his random tape, auxiliary input Q(w) and the following messages:

1. A commitment to a polynomial Q sent by P̂ .

As before, the commitment to Q can be replaced with a commitment to 02n with at most a
negligible difference. We therefore ignore this part of Ĉ ′’s view from now on.

2. An input/output pair (wC , Q(wC)) (or (wC ,⊥) in the case of incorrect inputs) from the first
polynomial evaluation, where wC 6= w.
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The continuation of the protocol involves Ĉ ′ sending a polynomial QC for the second polynomial
evaluation and then a string y, where P̂ accepts if and only if y = f2n(QC(w)). Restated, the prob-
ability that P̂ accepts equals the probability that Ĉ ′, given his view (Q(w), wC , Q(wC)), generates
a pair (QC , y) such that y = f2n(QC(w)).

Now, the polynomial Q is random and linear, and we are considering the case that wC 6= w.
Therefore, by pairwise independence we have that Q(w) is almost uniformly distributed, even given
the value of Q at wC . (Since Q cannot be a constant polynomial, Q(w) is only statistically close
to uniform; this is however enough.) This means that given Ĉ ′’s view, the password w is almost
uniformly distributed in D − {wC}. Since both f2n and QC are 1–1 functions, we have that the
probability that Ĉ ′ generates a pair (QC , f2n(QC(w))) is at most the probability that he guesses
w, which equals 1

|D|−1 = ε
1−ε . Replacing the commitment to 02n with a commitment to Q, we have

that for some negligible function µ,

Pr[P̂ = acc | wC 6= w] ≤ ε
1− ε

+ µ

We therefore conclude that in an ideal execution

Pr[P̂ = acc] = Pr[P̂ = acc | wC = w] · Pr[wC = w] + Pr[P̂ = acc | wC 6= w] · Pr[wC 6= w]

< 1 · Pr[wC = w] +
ε

1− ε
· (1− Pr[wC = w]) + µ

≤ ε
1− ε

+ Pr[wC = w] ·
(

1− ε
1− ε

)

+ µ

=
ε

1− ε
+ Pr[wC = w] · 1− 2ε

1− ε
+ µ ≤ 2ε + µ

where the last inequality is because Pr[wC = w] < ε + µ. This implies that in a real execution, the
probability that P accepts is at most negligibly greater than 2ε.

The lemma follows by combining Claims 9.2 and 9.3.

9.2 Proof of Lemma 4.8

Lemma 9.4 (Lemma 4.8 – restated; Case 2 - Synchronized): Let C be a ppt channel and define
Case 2 to be a scheduling of the protocol by which C completes the polynomial evaluation with A
after completing the non-malleable commitment with B. Then for every polynomial p(·) and for
all sufficiently large n’s,

Pr[B = acc ∧ Case 2 ∧ τA 6= τB] < ε +
1

p(n)

Proof: The proof of this lemma relies on the non-malleability of the commitment sent in the
commitment stage of the protocol. As was described in the proof sketch, in the case that τA 6= τB,
the validation stage ensures that B only accepts if the non-malleable commitment he received was
to (Q′, w), where Q′ 6= Q and w is A and B’s shared password. (We note that in the case that
(Q′, w′) = (Q,w), party B rejects with overwhelming probability, unless τA = τB. This is because
the validation stage enforces that τB = Q′(w′) and by the hypothesis Q′(w′) = Q(w) = τA.)
Furthermore, the probability that C succeeds in generating such a commitment (in which Q′ 6= Q
and yet w is the second element) is at most negligibly greater than ε. We now formally prove both
these statements.

56



As described, unless τA = τB, the channel C can only make B accept if he generates a non-malleable
commitment to (Q′, w) where Q′ 6= Q. To instantiate the above intuition, we define a relation R
as follows (recall that the non-malleable commitment value sent by A is (Q,w) and denote the one
received by B by (Q′, w′)). Define R ⊂ {0, 1}3n × {0, 1}3n such that ((Q,w), (Q′, w′)) ∈ R if and
only if (Q′, w′) 6= (Q,w) and w′ = w. That is, C “succeeds” with respect to R (and thus B may
accept) if C does not copy A’s commitment and yet the second element of the commitment is the
correct password.

We consider the probability that B accepts in Case 2 and τA 6= τB in two complementary
subcases. In the first subcase, channel C succeeds with respect to the relation R and in the second
subcase, C fails. We prove claims showing the following:

1. (Success Case): Pr[B = acc ∧ Case 2 ∧ τA 6= τB ∧ ((Q,w), (Q′, w′)) ∈ R] < ε + 1
poly(n)

2. (Fail Case): Pr[B = acc ∧ Case 2 ∧ τA 6= τB ∧ ((Q,w), (Q′, w′)) 6∈ R] < 1
poly(n)

The lemma follows by combining B’s accepting probability in the above two cases. We begin by
upper bounding the success case. Specifically, we show that the probability that C succeeds in
generating a correct (related) commitment is at most negligibly greater than ε.

Claim 9.5 (Success w.r.t R): Let C be a ppt channel and denote by (Q′, w′) the value committed
to by C in the non-malleable commitment received by B. Then for every polynomial p(·) and all
sufficiently large n’s

Pr[Case 2 ∧ ((Q,w), (Q′, w′)) ∈ R] < ε +
1

p(n)

Proof: The definition of non-malleability states that a commitment is non-malleable when run con-
currently with another commitment only. Therefore, in a simpler scenario in which the (A,C) and
(C,B) non-malleable commitments are run in isolation, we can directly apply the non-malleability
property to the relation R that we have defined above. However, in our scenario, other parts of
the (A,C) protocol can also be run concurrently to the (C, B) non-malleable commitment. Specifi-
cally, by the scheduling of Case 2, the (A,C) pre-key exchange may run concurrently to the (B, C)
commitment. The key point in this proof is in showing that the (A,C) pre-key exchange can be sim-
ulated. Given such a simulation, we have a scenario in which the (A,C) and (C, B) non-malleable
commitments are run in isolation, and thus non-malleability holds.

Recall that A’s input to the pre-key exchange stage is comprised of the polynomial Q only.
Therefore, if C has Q, then he can perfectly emulate this stage himself (this is true irrespective of
the security of the modules making up the pre-key exchange stage of the protocol). Fortunately,
Claim 9.5 holds even if C is explicitly given Q. Thus, we prove that for every ppt channel C given
auxiliary input Q, it holds that

Pr[Case 2 ∧ ((Q,w), (Q′, w′)) ∈ R] < ε +
1

poly(n)

As we have described, C has Q and thus can perfectly emulate the (A,C) pre-key exchange. By the
scheduling of Case 2, we have that the (C, B) commit stage concludes before the completion of the
(A,C) pre-key exchange. Since the (A,C) pre-key exchange is simulatable (by C), the probability
that C succeeds with respect to R is the same as when the (A,C) and (C,B) non-malleable
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commitments are run in isolation.29 We therefore proceed by upper-bounding the probability that
a ppt adversary C (given a commitment to (Q,w) and auxiliary input Q) successfully generates a
commitment to (Q′, w′) where ((Q,w), (Q′, w′)) ∈ R.

Intuitively, A’s commitment to (Q,w) does not help C in generating a related commitment.
Therefore, the probability of generating a commitment to (Q′, w) is the same as the probability of
guessing w. Formally, by the definition of non-malleability, for every C there exists a simulator Ĉ
who generates a commitment to (Q̂′, ŵ′) without seeing the commitment to (Q,w) such that

∣

∣

∣Pr[((Q,w), (Q′, w′)) ∈ R]− Pr[((Q,w), (Q̂′, ŵ′)) ∈ R]
∣

∣

∣ <
1

poly(n)

Since Ĉ is given no information about w, the probability that Ĉ generates a commitment to (Q̂′, w)
is at most ε (by the fact that w is uniformly distributed in D). Therefore, the probability that C
generates a commitment to (Q′, w) where Q′ 6= Q is less than ε + 1

poly(n) as required.

We now show that when C fails with respect to R, then B accepts with at most negligible probability.

Claim 9.6 (Failure w.r.t R): For every ppt channel C, every polynomial p(·) and all sufficiently
large n’s

Pr[B = acc ∧ τA 6= τB ∧ ((Q, w), (Q′, w′)) 6∈ R] <
1

p(n)

Proof: In proving this claim, we rely solely on the fact that C “fails” with respect to the relation
R, in order to show that B rejects. As described in the proof sketch, intuitively B rejects in this
case because the validation stage enforces consistency between the non-malleable commitment, the
polynomial input by C into the polynomial evaluation and B’s output from the polynomial eval-
uation. That is, with overwhelming probability, B rejects unless C inputs Q′ into the polynomial
evaluation and B’s output from the evaluation equals Q′(w′). However, B’s input into the poly-
nomial evaluation is w, and thus (by the correctness condition of secure protocols) B’s output is
Q′(w). Thus, with overwhelming probability B rejects unless Q′(w′) = Q′(w). As we will show, this
implies that τA = τB, in contradiction to the claim hypothesis. In the following fact, we formally
show that with overwhelming probability, B’s output from the polynomial evaluation equals Q′(w).

Fact 9.7 For every ppt channel C,

Pr[B = acc ∧ τB 6= Q′(w)] <
1

poly(n)

Proof: This fact is derived from the correctness condition of the secure polynomial evaluation
and the soundness of the zero-knowledge proof. Loosely speaking, the correctness condition of a
secure two-party protocol states that an adversary cannot cause the output of an honest party to
significantly deviate from his output in an ideal execution (where the output is exactly according
to the functionality definition). We stress that this has nothing to do with privacy and holds even
if the adversary knows the honest party’s input.

29Formally, an adversary attacking a non-malleable commitment protocol (and given Q as auxiliary input) can use
C in order to generate a related commitment with the same probability as C succeeds in our session-key protocol
when the scheduling is according to Case 2.
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Now, let QC be the ordinary commitment sent by C to B before the polynomial evaluation.
Then, by the definition of the augmented polynomial evaluation, B’s output τB is either QC(w)
(in the case of correct inputs) or ⊥ (in the case of incorrect inputs). Therefore, in a stand-alone
two-party setting, we have that with overwhelming probability τB ∈ {QC(w),⊥}.

It remains to show that this also holds in our concurrent setting. As we have mentioned, the
correctness requirement holds even if the adversary knows the honest party’s input. That is, it
holds even if C knows w, in which case C can perfectly emulate the entire (A,C) execution, and
we remain with a non-concurrent execution with B. The correctness condition thus holds and
we conclude that with overwhelming probability τB ∈ {QC(w),⊥}. However, since B checks if
y = f2n(τB) and this never holds when τB = ⊥, B always rejects if τB = ⊥. Thus,

Pr[B = acc ∧ τB 6= QC(w)] <
1

poly(n)

The proof is completed by noticing that the zero-knowledge proof states (among other things) that
QC = Q′. Thus by the soundness of the zero-knowledge proof (which also holds in our setting), the
probability that B accepts and QC 6= Q′ is negligible. We conclude that

Pr[B = acc ∧ τB 6= Q′(w)] <
1

poly(n)

On the other hand, we now show that with overwhelming probability, τB = Q′(w′).

Fact 9.8 For every ppt channel C,

Pr[B = acc ∧ τB 6= Q′(w′)] <
1

poly(n)

Proof: In the first step of the validation stage, B receives a string y. The statement proved
by C (in zero-knowledge) includes the condition y = f2n(Q′(w′)). Furthermore, B rejects unless
y = f2n(τB). Since f2n is a 1–1 function, we conclude that with overwhelming probability, B rejects
unless τB = Q′(w′).

We now use the above two facts to show that when ((Q,w), (Q′, w′)) 6∈ R, party B rejects with
overwhelming probability. There are two possible cases for which ((Q,w), (Q′, w′)) 6∈ R: either
(Q′, w′) = (Q,w) or w′ 6= w.

• Case (Q′, w′) = (Q,w): By Fact 9.7 (or equivalently by Fact 9.8), we have that with overwhelm-
ing probability, B rejects unless τA = Q(w) = Q′(w′) = τB, in contradiction to the hypothesis
that τA 6= τB.

• Case w′ 6= w: From Facts 9.7 and 9.8 we have that if B accepts then with overwhelming
probability Q′(w′) = Q′(w). However, Q′ is a non-constant linear polynomial and is thus 1–1.
This implies that w′ = w, in contradiction to the case hypothesis.

This completes the proof of Claim 9.6.

Lemma 4.8 is obtained by combining Claims 9.5 and 9.6.
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10 Full Proof of Password Secrecy

In this section we prove the password secrecy requirement which states that at the conclusion of
the protocol execution, the password w is (1 − O(ε))-indistinguishable from a random w̃ ∈R D,
with respect to the channel’s view.

Theorem 10.1 (Theorem 4.10 – restated): For every ppt channel C, every polynomial p(·) and
all sufficiently large n’s

∣

∣

∣Prw[ExptA(w),B(w)
w (C) = 1]− Prw,w̃[ExptA(w),B(w)

w̃ (C) = 1]
∣

∣

∣ < 26ε +
1

p(n)

Proof: As described in the proof sketch, the theorem is proved by first “removing” the entire
(C, B) execution. Loosely speaking, we show that the (C, B) execution can be simulated by C
himself (while interacting only with A), such that his view in the simulated setting is (1 − O(ε))-
indistinguishable from his view in a full execution with both A and B. The proof then continues
by showing that for every channel C interacting with A alone, the password w is (1 − O(ε))-
indistinguishable from w̃ ∈R D (with respect to C’s view). Putting these together, we have that
when C interacts with both A and B, he can distinguish w from w̃ ∈R D with probability at most
O(ε).

The prove is divided into two lemmas: in the first we remove the (C, B) execution and in the
second we upper bound the “amount of information” C can learn about w in a non-concurrent
execution with A only. We denote an analogous experiment in which C ′ interacts only with A by
ExptA(w)

z (C ′) (this experiment is formally defined in Section 6.1).

Lemma 10.2 (Removing the (C, B) Execution): For every ppt channel C interacting with A and
B, there exists a ppt channel C ′ interacting only with A such that for every randomized process
z = Z(w), every polynomial p(·) and all sufficiently large n’s

∣

∣

∣Prw[ExptA(w)
z (C ′) = 1]− Prw[ExptA(w),B(w)

z (C) = 1]
∣

∣

∣ < 7ε +
1

p(n)

Proof: The proof of the lemma is in two steps. In the first step we remove the (C, B) validation
stage. Following this, we remove the remaining (first two stages) of the (C, B) execution. Let B2
be a party who participates in only the first two stages of the protocol (i.e., he halts before the
validation stage). Then, the fact that we can remove the (C, B) validation stage is stated as follows.

Claim 10.3 (Removing the (C, B) Validation): Let C be a ppt channel and let B2 be a party who
does not participate in the validation stage. Then, there exists a ppt channel C̃ interacting with A
and B2 such that for every randomized process z = Z(w)

∣

∣

∣Prw[ExptA(w),B(w)
z (C) = 1]− Prw[ExptA(w),B2(w)

z (C̃) = 1]
∣

∣

∣ < 7ε +
1

poly(n)

Proof: This proof involves showing how B’s role in the (C,B) validation stage can be simulated
by C̃ (for C). Basically, this simulation is made possible due to the MAC sent in the last step of
the protocol. Recall that the (C, B) validation stage involves four steps: (1) B receives a y-string
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(which should equal f2n(τB)); (2) B verifies a zero-knowledge proof; (3) B receives a string that
should equal a MAC of his entire session-transcript; and (4) B outputs an accept/reject bit.

First note that the only messages sent by B during the validation stage are his messages as a
verifer for the zero-knowledge proof and his accept/reject bit. Therefore, only these messages need
to be simulated. However, as B is an honest verifier, his messages in the zero-knowledge proof can
be perfectly simulated by C̃, who emulates the verifier in C’s proof to B. It thus remains for C̃
to simulate B’s accept/reject bit. We show that the MAC sent in the validation stage is such that
if C was not reliable, then B rejects with probability 1 − O(ε). This enables C̃ to “predict” B’s
output-bit based on whether or not C was reliable.

Formally, C̃ runs the protocol (with A and B2) by passing all messages via C and by playing the
verifier in the zero-knowledge proof of the (C,B) validation stage. Furthermore, C̃ checks whether
or not C was reliable during the execution. Recall that C is reliable if the (A,C) and (C,B)
executions are run in a synchronized manner, and C does not modify any of the messages sent by
A or B. This is a syntactic feature, easily verifiable by C̃ (as he views all the communication). If
C was reliable then C̃ outputs accept for B, otherwise he outputs reject for B. This completes the
simulation of C’s interaction with A and B. Let χC̃ denote the simulated accept/reject bit output
by C̃.

Now, when C̃ predicts B’s output bit correctly, we have that C’s view in this simulation is
identical to a real execution with A and B. This means that the difference in the experiments in
the claim equals the probability that C̃’s prediction is wrong (i.e., the probability that B = acc
and χC̃ = rej or visa versa). Noticing that χC̃ = acc if and only if C is reliable, we have that:

∣

∣

∣Prw[ExptA(w),B(w)
z (C) = 1]− Prw[ExptA(w),B2(w)

z (C̃) = 1]
∣

∣

∣

= Pr[B = acc ∧ C not reliable] + Pr[B = rej ∧ C reliable]

First notice that when C is reliable B always accepts. That is, Pr[B = rej ∧ C reliable] = 0. We
now show that Pr[B = acc ∧ C not reliable] is at most negligibly more than 7ε and this completes
the proof of Claim 10.3.

Claim 10.4 For every ppt channel C,

Pr[B = acc ∧ C not reliable] < 7ε +
1

poly(n)

Proof: The proof of this claim is based on the security of the MAC sent in the validation stage. In-
tuitively, sending a MAC on the entire session transcript ensures that if any messages were modified
(as in the case of an unreliable C), then this will be noticed by B. However, in our protocol, A and
B may have different MAC-keys (in which case nothing can be said about detecting C’s malicious
behavior). Fortunately, the key-match requirement ensures that this happens (undetectably by B)
with probability at most O(ε).

The security of the MAC, shown in Corollary 4.9 and proven at the end of Section 8, states
the following. Let tA be A’s message transcript. Then for every t 6= tA, the string MACk1(τA)(t) is
(1− 4ε)-pseudorandom with respect to C’s view. By the definition of reliability, if C is not reliable
then B’s message transcript (denoted tB) is not equal to tA. That is, if C is not reliable we have
that MACk1(τA)(tB) is (1− 4ε)-pseudorandom with respect to C’s view.

Now, party B’s protocol definition is such that he rejects unless the last message he receives
equals MACk1(τB)(tB), where k1(τB) is the MAC-key. Notice that the key used by B for the MAC
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is k1(τB), whereas Corollary 4.9 refers to a MAC keyed by k1(τA). However, if τA = τB then
k1(τA) = k1(τB). Therefore, if τA = τB, then the Corollary holds and the probability that C
generates the correct MAC-value is at most negligibly greater than 4ε. That is,

Pr[B = acc ∧ C not reliable ∧ τA = τB] < 4ε +
1

poly(n)

On the other hand, if τA 6= τB then irrespective of the MAC, the probability that B accepts is at
most negligibly more than 3ε. This is due to the key-match requirement proven in Theorem 4.6.
We conclude that

Pr[B = acc ∧ C not reliable]

= Pr[B = acc ∧ C not reliable ∧ τA 6= τB] + Pr[B = acc ∧ C not reliable ∧ τA = τB]

< 3ε + 4ε +
1

poly(n)

As stated above, this completes the proof of Claim 10.3.

It remains now to remove the rest of the execution between C and B2. That is,

Claim 10.5 (Removing the Remaining (C, B2) Execution): For every ppt channel C̃ interacting
with A and B2, there exists a ppt channel C ′ interacting only with A such that for every randomized
process z = Z(w)

∣

∣

∣Prw[ExptA(w),B2(w)
z (C̃) = 1]− Prw[ExptA(w)

z (C ′) = 1]
∣

∣

∣ <
1

poly(n)

Proof: Intuitively, B2’s role can be simulated without any knowledge of w. Loosely speaking,
this is because B2 only uses w in the (C̃, B2) polynomial evaluation, and in this evaluation C̃
receives no output. Formally, this is shown by proving that if B2 were to input an independently
chosen w̃ ∈R D (into the polynomial evaluation), instead of w, then C̃ would not be able to tell
the difference. That is, for every randomized process z = Z(w)

∣

∣

∣Prw[ExptA(w),B2(w)
z (C̃) = 1]− Prw[ExptA(w),B2(w̃)

z (C̃) = 1]
∣

∣

∣ <
1

poly(n)
(27)

(Observe that in the second experiment, B2’s input is w̃.) We prove Equation (27) even when C̃
is given w as auxiliary input. Now, since w constitutes all of A’s input, the channel C̃(w) can
perfectly simulate the entire (A,C) execution. It thus remains to show that for z = Z(w),

∣

∣

∣Prw[ExptB2(w)
z (C̃(w)) = 1]− Prw[ExptB2(w̃)

z (C̃(w)) = 1]
∣

∣

∣ <
1

poly(n)

However, this is derived directly from the security of the polynomial evaluation. This is because C̃
obtains no output from the polynomial evaluation, and this is the only part of the protocol where
B2 uses his input (of w or w̃). Thus, C̃ can distinguish the cases that B2 has input w or w̃ with at
most negligible probability, and Equation (27) follows.
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The proof of the current claim (i.e., Claim 10.5) is completed by noting that when B2 inputs
w̃ ∈R D (chosen independently of w), then the entire (C̃, B2) execution can be perfectly simulated
by a channel C ′. That is, there exists a channel C ′ such that for every randomized process z = Z(w)

Prw[ExptA(w)
z (C ′) = 1] = Prw[ExptA(w),B2(w̃)

z (C̃) = 1] (28)

The claim follows from Equations (27) and (28).

Combining Claims 10.3 and 10.5, we complete the proof of Lemma 10.2.

We now remain with a (non-concurrent) execution between A and C ′. In this setting, we show that
C ′ can distinguish w from w̃ ∈R D with probability at most 12ε. That is:

Lemma 10.6 For every ppt channel C ′ interacting only with A, every polynomial p(·) and all
sufficiently large n’s

∣

∣

∣Prw[ExptA(w)
w (C ′) = 1]− Prw,w̃[ExptA(w)

w̃ (C ′) = 1]
∣

∣

∣ < 12ε +
1

p(n)

Proof: As in the previous lemma, we first show that the (A,C)-validation stage can be “removed”.

Claim 10.7 (Removing the (A,C) Validation): Let A2 be a party that does not participate in the
validation stage. Then for every ppt channel C ′ interacting with A, there exists a ppt channel C ′′

interacting with A2 such that for every randomized process z = Z(w)
∣

∣

∣Prw[ExptA(w)
z (C ′) = 1]− Prw[ExptA2(w)

z (C ′′) = 1]
∣

∣

∣ < 6ε +
1

poly(n)

Proof: The (A,C) validation stage consists of A sending y = f2n(Q(w)), proving a statement in
zero-knowledge and sending a MAC of her entire session-transcript. In this proof we show how all
parts of this stage can be simulated by C ′′ (for C ′).

• The y-value sent by A: By Theorem 4.2, at the completion of Stage 2 by A, the string Q(w) is (1−
2ε)-pseudorandom. Since f2n is 1–1 (and polynomial-time computable), the string f2n(Q(w)) is
also (1−2ε)-pseudorandom. Thus, C ′′ can simulate this step by choosing a uniformly distributed
string instead of f2n(Q(w)), and C ′ can distinguish the simulation from a real interaction with
probability at most negligibly greater than 2ε.

• The zero-knowledge proof: Here we remove a zero-knowledge proof in a standard stand-alone
setting.30 Therefore, by the definition of zero-knowledge, there exists a simulator that generates
transcripts indistinguishable from real proofs. Thus, C ′′ simply runs this simulator (with C ′ as
the verifier) and produces a “fake transcript” that is computationally indistinguishable from a
real proof (with respect to C ′’s view).

• The MAC: As with the y-value, C ′′ simulates the MAC by sending a random string instead. We
claim that the MAC value sent by A is (1− 4ε)-pseudorandom. Therefore C ′ can distinguish a
random string from a correct MAC value with probability at most negligibly greater than 4ε.
The proof of the fact that A’s MAC is (1− 4ε)-pseudorandom is derived directly from the proof
of Corollary 8.4. This is based on the fact that k1(Q(w)) is a (1− 4ε)-pseudorandom string and
thus MACk1(Q(w))(·) is a (1− 4ε)-pseudorandom function.

30We stress that there is no concurrent execution here, and so replacing a zero-knowledge interactive proof by a
simulated transcript is straightforward.
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Putting the above together we have that C ′ can distinguish C ′′’s simulation from real messages sent
by A with probability at most negligibly greater than 6ε. This completes the proof of Claim 10.7.

What remains now is a scenario where a channel C ′′ interacts with A2. The protocol thus consists
only of A2 committing to (Q,w) followed by a pre-key exchange stage in which A2 inputs Q (recall
that w is not used by A2 in this stage). Then, by the hiding property of the commitment, it is
immediate that C ′′ can distinguish w from w̃ ∈R D with at most negligible probability. That is,

∣

∣

∣Prw[ExptA2(w)
w (C ′′) = 1]− Prw,w̃[ExptA2(w)

w̃ (C ′′) = 1]
∣

∣

∣ <
1

poly(n)
(29)

Combining Equation (29) with Claim 10.7 (taking z = w once and z = w̃ ∈R D a second time), we
conclude that

∣

∣

∣Prw[ExptA(w)
w (C ′) = 1]− Prw,w̃[ExptA(w)

w̃ (C ′) = 1]
∣

∣

∣ < 2 · 6ε +
1

poly(n)
= 12ε +

1
poly(n)

Combining Lemma 10.6 with Lemma 10.2 (applied twice, once for z = w and once for z = w̃) we
have

∣

∣

∣Prw[ExptA(w),B(w)
w (C) = 1]− Prw,w̃[ExptA(w),B(w)

w̃ (C) = 1]
∣

∣

∣

<
∣

∣

∣Prw[ExptA(w)
w (C ′) = 1]− Prw[ExptA(w)

w̃ (C ′) = 1]
∣

∣

∣ + 2 · 7ε +
1

poly(n)

< 12ε + 14ε +
1

poly(n)
= 26ε +

1
poly(n)

11 Proof of Multi-Session Security

The claims in this section are derived from our definition for session-key generation protocols only
and are correct for any protocol fulfilling this definition.

We focus on the case where the adversary sequentially invokes m sessions of our protocol with
the same pair of parties, A and B. In each of these invocations, A and B use the same password
w ∈ D. Recall that neither A nor B will agree to participate in a new session before it has locally
terminated the previous sessions. (We ignore other pairs of parties that share independently selected
passwords; these are easily simulated by the adversary.)

We refrain from presenting formal definitions of security for m sessions (these are easy extensions
of the single session case), and confine ourselves to showing how to reduce the security of m sessions
to the security of a single session. Throughout the discussion, the dictionary D is fixed and implicit
in all notations.

11.1 Password secrecy after m sessions

We start by considering the case of m = 2. In order to allow a generalization to arbitrary m, we
consider the execution of a protocol that (as stand-alone) has “password security” 1− ε1, followed
by an execution of a protocol that (as stand-alone) has “password security” 1−ε2. For starters, one
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may think of ε1 = ε2 = O(ε) (i.e., each protocol is a single-session protocol). During the induction,
the protocols become the sequential composition of a number of single-session protocols together
and ε1, ε2 are adjusted appropriately. By password insecurity (i.e., the εi’s above) we mean an
upper bound on the distinguishability-gap, from the channel’s point of view, between the password
used in the execution and a uniformly chosen password in D.

Let XC(w1, w2, w3) denote the probability that the channel C outputs 1 in the following ex-
periment: First, the channel invokes the first protocol between A and B, when they both use the
password w1 ∈ D and the adversary modifies their interaction (and effectively interacts concur-
rently with each of them). Next, the channel invokes the second protocol between A and B, when
they both use the password w2 ∈ D (and again it effectively interacts concurrently with each of
them). Finally, the channel is presented with a challenge w3 ∈ D.

Lemma 11.1 Let XC(w1, w2, w3), ε1 and ε2 be as above. Then, for any probabilistic polynomial-
time channel C, it holds that |E[XC(W,W,W )] − E[XC(W,W,W ′)]| ≤ 2ε1 + ε2, where W and W ′

are independent and uniformly distributed in D.

Proof: We consider several hybrid executions, and relate some pairs so to derive the above claim.
Below, W1, W2 and W3 represent random variables that are independent and uniformly distributed
in D.

Claim 1: |E[XC(W1,W2, W3)]− E[XC(W1,W1, W3)]| ≤ ε1.

Proof: In order to prove this claim, we use the password security of the first protocol. Intuitively,
a channel succeeding in the above experiment can be used to distinguish the password used in the
first protocol. First, recall that the requirement of password secrecy is that of indistinguishability
after the protocol execution. That is, the channel is given a challenge c which either equals w1 (the
password used in the protocol) or w2 ∈R D.

Now, let C ′ be a channel for the first protocol, that behaves as follows. First C ′ emulates the
interaction of C with A(w1) and B(w1) by actually interacting with A(w1) and B(w1) (i.e., C ′

simply forwards all messages between A,C and B for this interaction). Next, C ′ obtains a challenge
c (which is either w1 or w2 ∈R D) and uses it to emulate the execution CA(c),B(c). (We stress that
C ′ does not interact with parties A and B, which have already terminated, but rather runs their
programs internally using c as their password.) Finally, C ′ passes C a uniformly selected challenge
w3 ∈R D, and outputs whatever C does.

Clearly, in case c = w1 ∈R D, C’s view is exactly that of the event XC(W1,W1,W3) (W3 is inde-
pendent of the first two passwords and therefore C ′’s emulation is perfect). Therefore, the expected
value of the output of C ′ equals E[XC(W1, W1,W3)]. Similarly, in case c ∈R D and is independent of
w1, the expected value of the output of C ′ equals E[XC(W1,W2, W3)]. Therefore, C ′ distinguishes
w1 from w2 with exactly the probability gap |E[XC(W1,W1,W3)]−E[XC(W1,W2,W3)]|. The claim
follows. 2

Claim 2: |E[XC(W1,W1, W1)]− E[XC(W1,W2,W2)]| ≤ ε1.

Proof: The proof is similar to the proof of Claim 1. Channel C ′ emulates the two interactions in
exactly the same way. Then, C ′ passes his challenge c (that either equals w1 or w2) to C for the
challenge, instead of selecting a uniform one. In case c = w1 ∈R D, the expected value of the
output of C ′ equals E[XC(W1,W1,W1)]. On the other hand, in case c and w1 are independently
distributed in D, the expected value of the output of C ′ equals E[XC(W1,W2,W2)]. As before, this
implies the claim. 2

Claim 3: |E[XC(W1,W2,W2)]− E[XC(W1,W2, W3)]| ≤ ε2.
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Proof: Here we use the password security of the second protocol. Intuitively, the first protocol here
is run with a password independent of the second protocol and the challenge. It can therefore be
emulated and what remains is the standard password secrecy setting of the second protocol.

Consider a channel C ′ for the second protocol, that behaves as follows. First C ′ uniformly selects
w1 ∈R D and uses it to emulate the execution CA(w1),B(w1). (We stress that C ′ does not interact
with parties A and B, but rather runs their programs internally using w1 as their password.) Next,
C ′ emulates the interaction of C with A(w2) and B(w2) by actually interacting with A(w2) and
B(w2). Finally, C ′ obtains a challenge c and passes it to C, and outputs whatever C does.

Clearly, in case c = w2 ∈R D, the expected value of the output of C ′ equals E[XC(W1, W2,W2)].
On the other hand, in case c and w2 are independently distributed in D, the expected value of the
output of C ′ equals E[XC(W1, W2, W3)]. 2

Combining the three claims, we have

|E[XC(W,W,W )]− E[XC(W,W,W ′)]| = |E[XC(W1,W1,W1)]− E[XC(W1, W1,W3)]|
≤ |E[XC(W1,W1,W1)]− E[XC(W1,W2,W2)]|

+ |E[XC(W1,W2,W2)]− E[XC(W1,W2,W3)]|
+ |E[XC(W1,W2,W3)]− E[XC(W1,W1,W3)]|

≤ ε1 + ε2 + ε1

where in the last inequality Claims 2, 3 and 1 respectively are applied.

Using the proof of Lemma 11.1 (i.e., paying close attention to one aspect of it), and using the
password secrecy requirement of the protocol, we obtain the following.

Theorem 11.2 From the point of view of any probabilistic polynomial-time channel that handles m
sessions of our protocol, the password is (1−O(mε))-indistinguishable from the uniform distribution
over D.

Proof: The theorem is proved by induction on the number of sessions, m. We consider two
protocols: the first protocol consists of the first (among the m executions) execution of our basic
protocol, and the second consists of the remaining m− 1 executions of our basic protocol.

We wish to prove the theorem for a number of session that may grow as a function of the
security parameter, and not merely for a constant number of executions. Still, let us first consider
how the proof would go for a constant m. If we denote by I(i) the password insecurity of i sessions,
then by Lemma 11.1 we have I(i) ≤ 2 · I(1) + I(i− 1), and I(m) ≤ 2m · I(1) = O(mε) follows (as
desired).

However, this notation hides the actual running-time of the adversarial channels. Let us then
denote by IT (i) the password insecurity of i sessions with respect to adversaries running in time
T . Then, Lemma 11.1 says that if for every polynomial function T it holds that IT (1) ≤ ε1 and
IT (i− 1) ≤ ε2 then for every polynomial T ′ it holds that IT ′(i) ≤ 2ε1 + ε2. Recall that, in general,
it is not possible to applying induction on such a claim for a non-constant of times. This is because
the running time of the adversary may become non-polynomial.

However, looking at the proof of Lemma 11.1, we observe that it actually establishes that
for every function T ′ if IT ′(i) > 2ε1 + ε2 then either IT1(1) > ε1 or ITi−1(i − 1) > ε2, where
T1(n) = T ′(n) + (i − 1) · p(n) and Ti−1(n) = T ′(n) + p(n), and where p is a fixed polynomial
denoting the time it takes to emulate the actions of A and B (in a single session of our protocol).
The running-time T1(n) is obtained by noticing that the adversary for Claims 1 and 2 in the proof
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of the lemma works by invoking the “original” adversary (taking time T ′(n)) and emulating A and
B for i − 1 invocations (taking time (i − 1)p(n)). On the other hand, Ti−1(n) is obtained from
Claim 3 where only the first protocol invocation need be emulated at a cost of p(n) more than
T ′(n).31

Now, for every T , we have IT (i) ≤ 2 ·IT+i·p(1)+IT+p(i−1), and IT (m) ≤ 2m ·IT+m·p(1) follows.
Thus, the contradicting adversary remains polynomial time even for any polynomial number of
invocations. Using the fact that IT ′(1) = O(ε) for any polynomial T ′ (as well as the fact that both
t and m are polynomials), the theorem follows.

11.2 Session-key secrecy after m sessions

Combining Theorem 11.2 and the session-key secrecy for a single session, we prove that the mth

session-key is 1−O(mε) pseudorandom from the point of view of a channel that conducts m sessions.
Again, we consider the sequential execution of two protocols, the first having (as stand alone)

“password security” 1−ε1, and the second having (as stand alone) “session-key security” 1−ε2. We
stress that the second protocol must be a single session of our protocol (since we refer to the way it
generates the session-key). We redefine XC so that it refers to an experiment in which a candidate
session-key is presented as a challenge (and so that it refers explicitly to the first polynomial selected
by A in the second protocol).32 That is, we let XC(w1, (q, w2), c) denote the probability that the
output of channel C equals 1 in the following experiment: As before, first C interacts concurrently
with A1 and B1, where each party uses password w1, next C interacts with A2 and B2 where each
party uses password w2 but A2 uses the polynomial q instead of Q (so to obtain the session-key
k2(q(w2)); by our protocol definition k2(q(w2)) is the output session-key), and finally C is presented
a (session-key) challenge c ∈ {0, 1}n.

Lemma 11.3 Let XC(w1, (q, w2), c), ε1 and ε2 be as above. Then, for any probabilistic polynomial-
time channel C, it holds that |E[XC(W, (W,Q), k2(Q(W )))] − E[XC(W, (W,Q), Un)]| ≤ 2ε1 + ε2,
where Q is a uniformly distributed linear polynomial.

Proof: We first prove a claim that will allow us to disregard the first protocol (at a cost of 2 · ε1).
We do this by showing that if an independent password is used for the first protocol instead, then
this can make at most a difference of ε1.
Claim 1: Let R : {0, 1}∗ → {0, 1}∗ be a probabilistic polynomial-time algorithm satisfying |R(x)| =
|x|/3 for all x’s. Then |E[XC(W1, (W1, Q), R(W1, Q))]− E[XC(W1, (W2, Q), R(W2, Q))]| ≤ ε1.
Proof: The claim follows from the password security of the first protocol, similarly to the proof
of Claim 2 in Lemma 11.1: We consider a channel C ′ that first interacts with A1(w) and B1(w).
Next, upon receiving a password challenge c, the adversary C ′ uniformly selects a linear polynomial
q and emulates the actions of A2(c, q) and B2(c). Finally, C ′ presents C with the challenge R(c, q),
and outputs whatever C does.

In case c = w ∈R D, the expected value of the output of C ′ equals E[XC(W1, (W1, Q), R(W1, Q))].
On the other hand, in case c and w are independently distributed in D, the expected value of the
output of C ′ equals E[XC(W1, (W2, Q), R(W2, Q))]. 2

31The question of which case (i.e., the first session or the remaining i − 1 sessions) to use is ignored here and
below. A trivial solution is to specify the choice via a (non-uniform) auxiliary input. If fact, unraveling the induction
(below), one may find an adequate choice (i.e., auxiliary input) by a preprocessing in which each of the m (not 2m)
possibilities is evaluated. (The induction tree has m leaves, and each determines the path to it.)

32As we explained above, these claims are based solely on our definition and are not related to any specific protocol.
However, for ease of presentation here, we consider the key generated from our protocol. This is not a necessity, and
the result holds for any protocol fulfilling the requirements of Definition 2.4.
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Applying the above claim to R that uniformly selects a string of length |w| = |q|/2, we have

|E[XC(W1, (W1, Q), Un)]− E[XC(W1, (W2, Q), Un)]| ≤ ε1 (30)

Applying the claim to R(w, q) = k2(q(w)), we have

|E[XC(W1, (W1, Q), k2(Q(W1)))]− E[XC(W1, (W2, Q), k2(Q(W2)))]| ≤ ε1 (31)

We next prove that in the case that the first protocol is run with an independent password, C
distinguishes the cases with probability at most ε2.

Claim 2: |E[XC(W1, (W2, Q), Un)]− E[XC(W1, (W2, Q), k2(Q(W2)))]| ≤ ε2.

Proof: The claim follows by the session-key security of the second protocol. Since the password
used in the first protocol is independent of that used in the second protocol, the first protocol can
be perfectly emulated for C (as in the proof of Claim 3 in Lemma 11.1). 2

Combining Equations (30) and (31) with Claim 2, the lemma follows.

Considering the first m− 1 sessions as one protocol and the last session as a second, and applying
Lemma 11.3 (using Theorem 11.2 and the session-key secrecy requirement of the protocol), we
immediately obtain:

Theorem 11.4 From the point of view of any probabilistic polynomial-time channel that handles
m sessions of our protocol, the last session-key is (1 − O(mε))-indistinguishable from the uniform
distribution over {0, 1}n.

11.3 Undetected session-key mismatch after m sessions

By undetected session-key mismatch we refer to the event in which the legitimate communicators
end-up with different session-keys without detecting this fact (this is the key-match requirement in
the definition). Combining Theorem 11.2 and the bound on undetected session-key mismatch in a
(stand-alone) single session, we prove that the probability that an undetected session-key mismatch
occurs in the last session, after m− 1 prior sessions, is at most O(mε).

Again, we consider the sequential execution of two protocols, the first having (as stand alone)
“password security” 1−ε1, and the second having (as stand alone) “undetected mismatch security”
1 − ε2. We redefine XC so that XC(w1, w2) denotes the probability of the event ‘undetected
mismatch’ for the second session occuring in the following experiment: As before, first C interacts
concurrently with A1 and B1, where each party uses password w1, next it interacts with A2 and
B2 where each party uses password w2.

Lemma 11.5 Let XC(w1, w2), ε1 and ε2 be as above. Then, for any probabilistic polynomial-time
channel C, it holds that E[XC(W,W )] ≤ ε1 + ε2.

Proof: We first claim that |E[XC(W1,W1)] − E[XC(W1,W2)]| ≤ ε1. The claim follows from the
password security of the first protocol, similarly to the proof of Claim 1 in Lemma 11.3: We consider
a channel C ′ that first interacts with A1(w) and B1(w). Next, upon receiving a password challenge
c, the adversary C ′ emulates the actions of A2(c) and B2(c). Finally, C ′ outputs 1 if and only if
the ‘undetected mismatch’ event has occured in this emulation. (Surely, C ′ can determine this bit
since it emulates all parties in the second protocol.) Therefore, if C’s success in causing a mismatch
in the second protocol can be used by C ′ to distinguish the password in the first protocol.
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We next show that E[XC(W1,W2)] ≤ ε2. This follows by the ‘undetected mismatch’ security of
the second protocol, by emulating the first protocol (as in the proof of Claim 3 in Lemma 11.1).
Combining the two claims, the lemma follows.

As in the previous subsection, we immediately obtain

Theorem 11.6 For any probabilistic polynomial-time channel that handles m sessions of our pro-
tocol, the probability that in the last session the parties output different session-keys without detect-
ing this fact is at most O(mε).
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A Cryptographic Tools

In this section we briefly describe the tools used in our construction. That is, we describe secure
two-party computation, string commitment and non-malleable string commitment, the Richardson-
Kilian zero-knowledge proof system, seed-committed pseudorandom generators and message au-
thentication codes. We present comprehensive and formal definitions for secure two-party compu-
tation as this forms the basis for the majority of our proofs.

72



A.1 Secure Two-Party Computation

In this section we present definitions for secure two-party computation. The following description
and definition is taken from [24].

A two-party protocol problem is casted by specifying a random process which maps pairs of
inputs (one input per each party) to pairs of outputs (one per each party). We refer to such a
process as the desired functionality, denoted f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗. That is, for
every pair of inputs (x, y), the desired output-pair is a random variable, f(x, y), ranging over pairs
of strings. The first party, holding input x, wishes to obtain the first element in f(x, y); whereas
the second party, holding input y, wishes to obtain the second element in f(x, y).

Whenever we consider a protocol for securely computing f , it is implicitly assumed that the
protocol is correct provided that both parties follow the prescribed program. That is, the joint
output distribution of the protocol, played by honest parties, on input pair (x, y), equals the
distribution of f(x, y).

We consider arbitrary feasible deviation of parties from a specified two-party protocol. A few
preliminary comments are in place. Firstly, there is no way to force parties to participate in the
protocol. That is, possible malicious behavior may consist of not starting the execution at all, or,
more generally, suspending (or aborting) the execution at any desired point in time. In particular, a
party can abort at the first moment when it obtains the desired result of the computed functionality.
We stress that our model of communication does not allow us to condition the receipt of a message
by one party on the concurrent sending of a proper message by this party. Thus, no two-party
protocol can prevent one of the parties from aborting when obtaining the desired result and before
its counterpart also obtains the desired result. In other words, it can be shown that perfect
fairness – in the sense of both parties obtaining the outcome of the computation concurrently – is
not achievable in two-party computation. We thus give up on such fairness altogether.

Another point to notice is that there is no way to talk of the correct input to the protocol. That
is, a party can alway modify its local input, and there is no way for a protocol to prevent this.

To summarize, there are three things we cannot hope to avoid.

1. Parties refusing to participate in the protocol (when the protocol is first invoked).

2. Parties substituting their local input (and entering the protocol with an input other than the
one provided to them).

3. Parties aborting the protocol prematurely (e.g., before sending their last message).

The ideal model. We now translate the above discussion into a definition of an ideal model. That
is, we will allow in the ideal model whatever cannot be possibly prevented in any real execution. An
alternative way of looking at things is that we assume that the two parties have at their disposal a
trusted third party, but even such a party cannot prevent specific malicious behavior. Specifically,
we allow a malicious party in the ideal model to refuse to participate in the protocol or to substitute
its local input. (Clearly, neither can be prevent by a trusted third party.) In addition, we postulate
that the first party has the option of “stopping” the trusted party just after obtaining its part of
the output, and before the trusted party sends the other output-part to the second party. Such an
option is not given to the second party.33 Thus, an execution in the ideal model proceeds as follows

33This asymmetry is due to the non-concurrent nature of communication in the model. Since we postulate that the
trusted party sends the answer first to the first party, the first party (but not the second) has the option to stop the
third party after obtaining its part of the output. The second party, can only stop the third party before obtaining
its output, but this is the same as refusing to participate.
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(where all actions of the both honest and malicious party must be feasible to implement).

Inputs: Each party obtains an input, denoted z.

Send inputs to trusted party: An honest party always sends z to the trusted party. A malicious
party may, depending on z, either abort or sends some z′ ∈ {0, 1}|z| to the trusted party.

Trusted party answers first party: In case it has obtained an input pair, (x, y), the trusted
party (for computing f), first replies to the first party with f1(x, y). Otherwise (i.e., in case
it receives only one input), the trusted party replies to both parties with a special symbol, ⊥.

Trusted party answers second party: In case the first party is malicious it may, depending on
its input and the trusted party answer, decide to stop the trusted party. In this case the
trusted party sends ⊥ to the second party. Otherwise (i.e., if not stopped), the trusted party
sends f2(x, y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted party. A
malicious party may output an arbitrary (polynomial-time computable) function of its initial
input and the message it has obtained from the trusted party.

The ideal model computation is captured in the following definition.34

Definition A.1 (malicious adversaries, the ideal model): Let f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ ×
{0, 1}∗ be a functionality, where f1(x, y) (resp., f2(x, y)) denotes the first (resp., second) element of
f(x, y). Let C = (C1, C2) be a pair of polynomial-size circuit families representing adversaries in
the ideal model. Such a pair is admissible (in the ideal malicious model) if for at least one i ∈ {1, 2}
we have Ci(I) = I and Ci(I, O) = O. The joint execution under C in the ideal model (on input pair
(x, y)), denoted idealf,C(x, y), is defined as follows

• In case C2(I) = I and C2(I, O) = O (i.e., Party 2 is honest),

(C1(x,⊥) , ⊥) if C1(x) = ⊥ (32)

(C1(x, f1(C1(x), y),⊥) , ⊥) if C1(x) 6= ⊥ and C1(x, f1(C1(x), y)) = ⊥ (33)

(C1(x, f1(C1(x), y)) , f2(C1(x), y)) otherwise (34)

• In case C1(I) = I and C1(I, O) = O (i.e., Party 1 is honest),

(⊥ , C2(y,⊥)) if C2(y) = ⊥ (35)

(f1(x, y) , C2(y, f2(x,C2(y))) otherwise (36)

Equation (32) represents the case where Party 1 aborts before invoking the trusted party (and
outputs a string which only depends on its input; i.e., x). Equation (33) represents the case where
Party 1 invokes the trusted party with a possibly substituted input, denoted C1(x), and aborts
while stopping the trusted party right after obtaining the output, f1(C1(x), y). In this case the
output of Party 1 depends on both its input and the output it has obtained from the trusted party.
In both these cases, Party 2 obtains no output (from the trusted party). Equation (34) represents

34In the definition, the circuits C1 and C2 represent all possible actions in the model. In particular, C1(x) = ⊥
represents a decision of Party 1 not to enter the protocol at all. In this case C1(x,⊥) represents its local-output.
The case C1(x) 6= ⊥, represents a decision to hand an input, denoted C1(x), to the trusted party. Likewise, C1(x, z)
and C1(x, z,⊥), where z is the answer supplied by the trusted party, represents the actions taken by Party 1 after
receiving the trusted party answer.
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the case where Party 1 invokes the trusted party with a possibly substituted input, and allows the
trusted party to answer to both parties (i.e., 1 and 2). In this case, the trusted party computes
f(C1(x), y), and Party 1 outputs a string which depends on both x and f1(C(x), y). Likewise,
Equation (35) and Equation (36) represent malicious behavior of Party 2; however, in accordance
to the above discussion, the trusted party first supplies output to Party 1 and so Party 2 does not
have an option analogous to Equation (33).

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exist no trusted third parties). In this case, a malicious party
may follow an arbitrary feasible strategy; that is, any strategy implementable by polynomial-size
circuits. In particular, the malicious party may abort the execution at any point in time, and when
this happens prematurely, the other party is left with no output. In analogy to the ideal case, we
use circuits to define strategies in a protocol.

Definition A.2 (malicious adversaries, the real model): Let f be as in Definition A.1, and Π be
a two-party protocol for computing f . Let C = (C1, C2) be a pair of polynomial-size circuit families
representing adversaries in the real model. Such a pair is admissible (w.r.t Π) (for the real malicious
model) if at least one Ci coincides with the strategy specified by Π. The joint execution of Π under C
in the real model (on input pair (x, y)), denoted realΠ,C(x, y), is defined as the output pair resulting
of the interaction between C1(x) and C2(y).

We assume that the circuit representing the real-model adversary (i.e., the Ci which does not follow
Π) is deterministic. This is justified by standard techniques.

Security as emulation of real execution in the ideal model. Having defined the ideal and
real models, we obtain the corresponding definition of security. Loosely speaking, the definition
asserts that a secure two-party protocol (in the real model) emulates the ideal model (in which a
trusted party exists). This is formulated by saying that admissible adversaries in the ideal-model are
able to simulate (in the ideal-model) the execution of a secure real-model protocol (with admissible
adversaries).

Definition A.3 (security in the malicious model): Let f and Π be as in Definition A.2, Protocol Π
is said to securely compute f (in the malicious model) if there exists a polynomial-time computable
transformation of pairs of admissible polynomial-size circuit families A = (A1, A2) for the real
model (of Definition A.2) into pairs of admissible polynomial-size circuit families B = (B1, B2) for
the ideal model (of Definition A.1) so that

{idealf,B(x, y)}x,y s.t. |x|=|y|
c≡ {realΠ,A(x, y)}x,y s.t. |x|=|y|

Implicit in Definition A.3 is a requirement that in a non-aborting (real) execution of a secure
protocol, each party “knows” the value of the corresponding input on which the output is obtained.
This is implied by the equivalence to the ideal model, in which the party explicitly hands the
(possibly modified) input to the trusted party. For example, say Party 1 uses the malicious strategy
A1 and that realΠ,A(x, y) is non-aborting. Then the output values correspond to the input pair
(B1(x), y), where B1 is the ideal-model adversary derived from the real-model adversarial strategy
A1.
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Secrecy and Correctness: By the above definition, the output of both parties together must
be indistinguishable in the real and ideal models. The fact that the adversarial party’s output is
indistinguishable in both models formalizes the secrecy requirement of secure computation. That
is, an adversary cannot learn more than what can be learned from his private input and output.
On the other hand, the indistinguishability requirement on the honest party’s output relates to
the issue of correctness. Loosely speaking, the correctness requirement states that if a party is
computing f(x, y), then the adversary cannot cause him to receive f ′(x, y) for some f ′ 6= f . This is
of course true in the ideal model as a trusted party computes f . Therefore the indistinguishability
of the outputs means that it also holds in the real model (this is not to be confused with the
adversary changing his own private input which is always possible). It is furthermore crucial that
the secrecy and correctness requirements be intertwined, see [14] regarding this issue.

General plausibility results: Assuming the existence of trapdoor permutations, one may pro-
vide secure protocols for any two-party computation (allowing abort) [47], as well as for any
multi-party computations with honest majority [28]. Thus, a host of cryptographic problems are
solvable assuming the existence of trapdoor permutations. Specifically, any desired (input–output)
functionality can be enforced, provided we are either willing to tolerate “early abort” (as defined
above) or can rely on a majority of the parties to follow the protocol.

A.2 String Commitment

Commitment schemes are a basic ingredient in many cryptographic protocols. They are used to
enable a party to commit itself to a value while keeping it secret. In a latter stage the commitment
is “opened” and it is guaranteed that the “opening” can yield only a single value determined in the
committing phase.

Loosely speaking, a commitment scheme is an efficient two-phase two-party protocol through which
one party, called the sender, can commit itself to a value so that the following two conflicting
requirements are satisfied.

1. Secrecy (or hiding): At the end of the first phase, the other party, called the receiver, does not
gain any knowledge of the sender’s value (this can be formalized analogously to the definition
of indistinguishability of encryptions). This requirement has to be satisfied even if the receiver
tries to cheat.

2. Unambiguity (or binding): Given the transcript of the interaction in the first phase, there
exists at most one value that the receiver may later (i.e., in the second phase) accept as a
legal “opening” of the commitment. This requirement has to be satisfied even if the sender
tries to cheat.

The first phase is called the commit phase, and the second phase is called the reveal phase. Without
loss of generality, the reveal phase may consist of merely letting the sender send, to the receiver,
the original value and the sequence of random coin tosses that it has used during the commit phase.
The receiver will accept the value if and only if the supplied information matches its transcript of
the interaction in the commit phase.

Our informal definition above describes a perfectly binding commitment scheme. That is, there
exists only a single value that the receiver will accept as a decommitment. Therefore, even if the
sender is computationally unlimited, he cannot cheat.
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We now present a construction of a non-interactive, perfectly binding bit commitment using
one-way permutations. Specifically, we use a one-way permutation, denoted f , and a hard-core
predicate for it, denoted b. In fact, we may use any 1–1 one-way function.

1. Commit Phase: To commit to a bit τ ∈ {0, 1}, the sender uniformly selects r ∈ {0, 1}n and
sends the pair (f(r), b(r)⊕ τ).

2. Reveal Phase: The sender reveals the bit τ and the string r used in the commit phase. The
receiver accepts τ if f(r) = α and b(r) ⊕ τ = β where (α, β) is the receiver’s view of the
commit phase.

It is easy to see that this construction is a secure commitment scheme.

In order to commit to a string of n bits, τ = τ1 · · · τn, the sender simply commits to each τi
separately as above. We denote the commitment by Commit(τ) = C(τ, r) where the randomness
used by the sender is r = r1, . . . , rn (∀i ri ∈R {0, 1}n).

A.3 Non-Malleable String Commitment

Loosely speaking, a non-malleable string commitment scheme is a commitment scheme with the
additional requirement that given a commitment, it is infeasible to generate a commitment to a
related value. We note that the commitment scheme presented in Section A.2 is easily malleable.
The concept of non-malleability was introduced by Dolev et. al. in [19], where they also provide a
perfectly binding, (interactive) non-malleable commitment scheme based on any one-way function.

We now bring an informal definition of a non-malleable commitment scheme. Let A be an adversary
who plays the receiver in a commitment protocol with a sender S. Furthermore, A concurrently
plays the sender in a commitment protocol with a receiver T (one can look at S and T as executing
a commitment protocol, with A playing a man-in-the-middle attack). The sender S commits to a
string α ∈R D for some distribution D, and A wishes to cause T to receive a commitment to β
where β 6= α. (A is allowed to copy S’s commitment and this is not considered a breach of security.)
For a given polynomial-time computable relation R, we denote by Π(A, R), the probability that A
generates β such that (α, β) ∈ R.

On the other hand, we consider an adversarial simulator A′ who does not participate as the
receiver in a commitment protocol with S. Rather, A′ sends T a commitment to β and we denote
by Π′(A′, R) the probability that (α, β) ∈ R for α ∈R D. That is, A′ must generate a “related”
commitment without any help.

We say that a string commitment scheme is non-malleable if for every distribution D, every
polynomial-time relation R and every adversary A, there exists an adversarial simulator A′ such
that |Π(A, R)−Π′(A′, R)| is negligible. Therefore, the fact that A “saw” a commitment to α did
not noticeably help her generate a commitment to β; she could do it by herself anyway. This
formalization is conceptually similar to that of semantic security for encryptions.

A.4 The Zero-Knowledge Proof of Richardson and Kilian

We first review the notion of zero-knowledge. Loosely speaking, zero-knowledge proofs are proofs
which yield nothing beyond the validity of the assertion. That is, a verifier obtaining such a proof
only gains conviction in the validity of the assertion. Using the simulation paradigm this require-
ment is stated by postulating that anything that is feasibly computable from a zero-knowledge
proof is also feasibly computable from the valid assertion alone.
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The above informal paragraph refers to proofs as to interactive and randomized processes. That
is, here a proof is a (multi-round) protocol for two parties, call verifer and prover, in which the
prover wishes to convince the verifier of the validity of a given assertion. Such an interactive
proof should allow the prover to convince the verifier of the validity of any true assertion, whereas
NO prover strategy may fool the verifier to accept false assertions. Both the above completeness
and soundness conditions should hold with high probability (i.e., a negligible error probability is
allowed). The prescribed verifier strategy is required to be efficient. Zero-knowledge is a property of
some prover strategies. More generally, we consider interactive machines which yield no knowledge
while interacting with an arbitrary feasible (i.e., probabilistic polynomial-time) adversary on a
common input taken from a predetermined set (in our case the set of valid assertions).

Definition A.4 (zero-knowledge [30]): A strategy P is zero-knowledge on inputs from S if, for
every feasible strategy V ∗, there exists a feasible computation M∗ so that the following two probability
ensembles are computationally indistinguishable:

1. {(P, V ∗)(x)}x∈S
def= the output of V ∗ when interacting with P on common input x ∈ S; and

2. {M∗(x)}x∈S
def= the output of M∗ on input x ∈ S.

Note that whereas P and V ∗ above are interactive strategies, M∗ is a non-interactive computation.
The above definition does not account for auxiliary information which an adversary may have
prior to entering the interaction. Accounting for such auxiliary information is essential for using
zero-knowledge proofs as subprotocols inside larger protocols.

A general plausibility result [27]: Assuming the existence of commitment schemes, there exist
zero-knowledge proofs for membership in any NP-language. Furthermore, the prescribed prover
strategy is efficient provided it is given an NP-witness to the assertion that is proven.

The protocol of Richardson and Kilian [41]

We actually simplify their presentation in a way that suffices for our own purposes. In essence, the
protocol consists of two parts. In the first part, which is independent of the actual common input,
m instances of coin tossing into the well [8] are sequentially executed where m is a parameter (to
be discussed below). Specifically, the first part consists of m iterations, where the ith iteration
proceeds as follows: The verifier uniformly selects vi ∈ {0, 1}n, and commits to it using a perfectly
hiding commitment scheme. Next, the prover selects pi ∈R {0, 1}n, and sends a perfectly binding
commitment to it. Finally, the verifier decommits to vi. (The result of the ith coin-toss is defined
as vi ⊕ pi and is known only to the prover.)

In the second part, the prover provides a witness indistinguishable (WI) proof [21] that either
the common input is in the language or one of the outcomes of the m coin-tosses is the all-zero
string (i.e., vi = pi for some i). Intuitively, since the latter case is unlikely to happen in an actual
execution of the protocol, the protocol constitutes a proof system for the language. However, the
latter case is the key to the simulation of the protocol in the concurrent zero-knowledge model.
We utilize this in our setting as well, when setting m to be equal to the total number of rounds in
our own protocol (not including this subprotocol) plus any non-constant function of the security
parameter n. The underlying idea is that whenever the simulator may cause vi = pi to happen for
some i, it can simulate the rest of the protocol (and specifically Part 2) by merely running the WI
proof system with vi (and the prover’s coins) as a witness. (By the WI property, such a run will

78



be indistinguishable from a run in which an NP-witness for the membership of the common input
(in the language) is used.)

A.5 Seed-Committed Pseudorandom Generators

A seed-committed pseudorandom generator is an efficiently computable deterministic function G
mapping a seed to a (commitment,sequence) pair that fulfills the following conditions:

• The sequence is pseudorandom, even given the commitment.

• The partial mapping of the seed to the commitment is 1–1.

We use the following implementation ([11, 10]) of a seed-committed generator. Let f be a 1–1
one-way function and b a hard-core of f . Then define

G(s) = 〈f2n(s), b(s)b(f(s)) · · · b(f2n−1(s))〉

This generator clearly fulfills the requirements: f2n(s) is the commitment and b(s) · · · b(f2n−1(s))
is the sequence.

We note that the following naive implementation does not work. Let G be any pseudorandom
generator and consider the seed as a pair (s, r). Then define the mapping (s, r) 7→ (C(s, r), G(s))
where C(s, r) is a commitment to s using randomness r. It is true that the sequence is pseudorandom
given the commitment. Furthermore, for every s 6= s′ and for every r, r′ we have that C(s, r) 6=
C(s′, r′). However, there may be an s and r 6= r′ for which C(s, r) = C(s, r′) and therefore the
mapping of the seed to the commitment is not necessarily 1–1.

A.6 Message Authentication Codes (MACs)

A Message Authentication Code, or MAC, enables parties A and B who share a joint secret key
to achieve data integrity. That is, if B receives a message which is purportedly from A, then by
verifying the MAC, B can be sure that A indeed sent the message and that it was not modified
by any adversary on the way. A Message Authentication Scheme is comprised of the following
algorithms:

1. A Key Generation algorithm that returns a secret key k.

2. A Tagging algorithm that given a key k and a message m, returns a tag t = MACk(m).

3. A Verification algorithm that given a key k, a message m and a candidate tag t, returns a bit
b = Verifyk(m, t).

We now briefly, and informally, describe the security requirements of a MAC. Let AMACk(·) be a
ppt adversary with oracle access to the tagging algorithm and let m1, . . . ,mq be the list of A’s
oracle queries during her execution. Upon termination, A outputs a pair (m, t). We say that A
succeeds if for every i, m 6= mi and furthermore Verifyk(m, t) = 1 (i.e., A generates a valid tag for
a previously unseen message). Then, a MAC is secure if for every ppt machine A, the probability
that A succeeds is negligible.

This ensures integrity, because if an adversary modifies a message sent from A to B to one
not previously seen, then B’s verification will surely fail (there is an issue of replay attacks which
we ignore here). The property that A cannot find an appropriate tag t for a “new” m, is called
unpredictability.

It is easy to see that any pseudorandom function is a secure implementation of a MAC. This is
because any random function is unpredictable and any non-negligible success in generating t such
that f(m) = t (for an “unseen” m), must mean that f is not random.
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B A Password Attack on the Protocol without the MAC

In this appendix, we describe an attack on the protocol obtained from our protocol by omitting
the MAC. The attack is such that C can learn a bit of w in every invocation of the modified
protocol. The idea underlying this attack is to utilize the (possible) “malleability” of secure two-
party protocols. That is, assuming that C is reliable, B’s output from the augmented polynomial
evaluation is always Q(w1 · · ·wn), where w = w1 · · ·wn. If the polynomial evaluation is malleable,
then it may be possible for C to launch a man-in-the-middle attack in which he causes B to receive
Q(0w2 · · ·wn) instead of Q(w1 · · ·wn). However, notice that if w1 = 0, then Q(0w2 · · ·wn) =
Q(w1 · · ·wn) and the parties should notice no difference between this malicious execution and one
where C does nothing (recall that as there is no MAC, the parties have no way of detecting such
intervention by C). That is, the session-key protocol should succeed and the parties should both
output accept. On the other hand, if w1 = 1, then A and B have different pre-keys (in fact, by
the pairwise independence of Q, the pre-keys Q(w1 · · ·wn) and Q(0w2 · · ·wn) are independently
distributed). Therefore, the session-key protocol should fail and (by the key-match requirement
indeed satisfied) at least one of the parties should output reject.35 Since C receives the parties’
accept/reject output bits, he can infer whether w1 = 0 or w1 = 1. We now show that this attack is
indeed possible, and that a well-known secure two-party computation protocol is malleable in the
above sense.

The attack is on an implementation of the polynomial evaluation using Yao’s protocol for secure
two-party computation [47]. Loosely speaking, in Yao’s protocol party A (with input Q) generates
an “encrypted” circuit computing Q(·) and sends it to party B. The circuit is such that it reveals
nothing in its encrypted form and therefore the value of Q is not learned by B. Furthermore, given
a certain series of “keys”, the circuit may be decrypted revealing a single value Q(w). Specifically,
in order for B to learn Q(w), party A defines 2n keys k0

i and k1
i (1 ≤ i ≤ n) such that given keys

kw1
1 , . . . , kwn

n , the value Q(w1 · · ·wn) (and only this value) may be computed from the circuit. Then
for every i, party B obtains kwi

i by 1-out-of-2 oblivious transfer [20]. That is, if wi = 0 then B will
obtain k0

i , otherwise k1
i . Given these keys and the encrypted circuit, B is able to compute Q(w)

(and only Q(w)) as required. On the other hand, A learns nothing from the protocol, as B obtains
the keys by oblivious transfer. The crucial point regarding the malleability of this secure protocol
is that B executes an independent oblivious transfer for each bit of his input.

We now show that Yao’s protocol is malleable as previously described. Specifically, we show
that channel C can cause B to receive Q(0w2 · · ·wn) instead of Q(w). The strategy of C is to pass,
without modification, (almost) all messages of the protocol between A and B. The only exception
is that C causes B to receive k0

1 (instead of kw1
1 ) in the first oblivious transfer described above. C

can easily do this by playing the receiver in the first oblivious transfer with A and obtaining k0
1.

Next, C plays the sender in the first oblivious transfer with B, where he defines both the 0 and 1
strings to be k0

1. In this way, whatever B inputs into the oblivious transfer, he receives k0
1. This

attack can be generalized so that for any i, party B receives Q(w1 · · ·wi−10wi+1 · · ·wn) instead of
Q(w) (i.e., the i’th bit is always 0).

Now, let A and B be parties running a modified version of our session-key protocol via C, where
no MAC is sent by A in the validation stage. Furthermore, let the protocol implementation be such
that the polynomial evaluation is executed using Yao’s protocol. Then, the above strategy can be
used by C to learn any single bit of w in each invocation of the protocol. C does this by reliably
passing all messages between A and B during the protocol execution, except that C causes B to

35We note that in our proofs, we refer to the MAC only in the proof of password secrecy. That is, the other
properties of the protocol, and in particular the key-match property, hold even when the MAC is omitted.
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receive Q(w1 · · ·wi−10wi+1 · · ·wn) in the polynomial evaluation. Then, at the conclusion of the
protocol, C receives B’s accept/reject bit. As we have described, if B accepts then wi must equal
0, because otherwise A and B have different pre-keys. On the other hand, if B rejects, then wi
must equal 1. This is because C did not interfere in any other part of the protocol. Furthermore,
since the MAC is omitted, B cannot detect C’s intervention in the polynomial evaluation. Thus B
can only reject if wi = 1. Notice also that the attack always succeeds. Thus, for some D (for which
w ∈R D is equally likely to have wi = 0 and wi = 1), an adversary attacking the modified protocol
can distinguish the true password w ∈R D from w̃ ∈R D with a probability gap of at least 1/2.
This is in violation to the password secrecy condition (which requires that the probability gap is
at most O(ε)).

Relating to the multi-session setting, by the above strategy, C can learn one bit (its choice) of
the password in every invocation. Thus after just |w| invocations, C can learn the entire password.
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