
In this paper we seek to explore the possibility of extending Shannon security (albeit, with some sacri-
fice) into smaller size keys.  Such extension can be accomplished through variable size keys of no
preset limit.
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“Shannon Security” is attainable for stream ciphers where the key is as long as the message.  One
asks:  what if the key is of variable (secret) size without a preset high limit?  Formally this case is a
generalization of the former, but it also allows for Shannon Security to apply for smaller key length,
which is where it becomes interesting.  We explore the circumstances where one may achieve “Meta
Shannon Security” without the burden of a message-size key.

Introduction
Cryptography today is haunted by the specter of accelerated brute force attack.  In a typical case the
exposed ciphertext is doomed to eventually yield its hidden secret.  Users simply hope that it would
take long enough for a persistent cryptanalyst to dig out the buried plaintext.  Such hope is well founded
against hackers and code crackers who are not as clever, or not smarter than the cryptographer who
designed the system.  In other words, modern cryptography bets against innovation; it discounts the
prospect of an ingenious shortcut that would violate its prized security.  But doubts linger.

The one remedy for this concern is known as Shannon Security.  This is a situation where the ciphertext
will not betray its trusted secret even in the face of overwhelming computing power.  More dramati-
cally:  A Shannon Security ciphersystem is immunized against future mathematical insight.  Its prin-
ciple:  equivocation defeats cryptanalysis.  The ciphertext may be linked to several plausible plaintexts
which are cryptographically equivalent, but only one of them is the true plaintext.

While a Shannon security algorithm was invented in 1917 (The Vernam Cipher, or One Time Pad --
OTP), its use was rather limited since it requires a key as long as the encrypted message.  It was widely
believed that this is the lower limit for the required key size.



Narrow Interpretation of Shannon Security
Shannon Security is defined as a situation where capturing the ciphertext is not at all helpful for the
effort to retrieve the hidden plaintext.  The familiar “One Time Pad” (OTP) cipher exhibits Shannon
Security:  any ciphertext, C, can be matched with same size plaintext, P, by XOR-ing it with a key, K

which  in turn, is computed as:  K = C r P

Strictly speaking the OTP ciphertext does give some information about the corresponding plaintext P
(its size).  And hence one might opt for the following -- call it narrow -- definition of Shannon Security:
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Where E is the encryption system.

We may further designate such a system as exhibiting Shannon Security of Order n.

Naturally, the higher the n value, the better the security.  Even for n=1, the cryptanalyst will exhaust his
or her analytic effort by identifying P

0
 and P

1
, without being able to further distinguish between them.

Formally a Shannon Security of Order 0 is a “no Shannon Security.”  It means that for a given ciphertext
C there exists only a single plaintext, P

0
 which is both plausible and corresponds to C through some

valid key K
0
.

RSA, DES and all other prevailing ciphersystems exhibit zero Shannon Security in the general case.
(In some rare particular circumstances a higher level of Shannon Security may be registered).

As a corollary we may use the notion of deniability.  Shannon Security of order n amounts to crypto-
graphic deniability of order n. Meaning:  the user will be able to deny that message P

0
 was encrypted

into C, and claim that it was rather P
i
.  (i=1,2,...n).

In general the OTP comes with Shannon security of an extremely large order. (Based on the size of the
message and its entropy).  However, in a practical case the number (n+1) of plausible messages may be
much smaller.  Yet all the plausible (even non plausible) messages will easily be linked to the given
ciphertext C via a corresponding key.  That is the nature of One Time Pad.

The Advantage of Variable Size Key of No Preset Limit

The advantage of variable size key is the added key variability in comparison to a fixed size key.
The cryptanalyst is burdened with an additional uncertainty which is not only quantitative but also
qualitative.  A cryptographic system where the key may grow beyond any preset limit can not be



brute-force exhausted.  The latter is an important theoretical advantage but it may be reduced into
practical insignificance because of the tedium and undue burden of using extremely large keys.  The
no-limit attribute should be used as a “teaser” option to confound the cryptanalyst, while in most real
life cases, a very small key should be selected.

Below we discuss some key size aspects, and develop the notion of decoy keys and decoy plaintexts
(deniability).

Small (False) Keys Are Easy to Use, but Hard to Find
The issue arises only with respect to a general case cryptography where the volume of messages en-
crypted with a single key is very large.  (Variable key size of no set limit is readily useful for short
messages).

The longer the message P (which can be referred to as the aggregate message encrypted by a single
key), the more impractical it is to use a message-size key.  Or say, the more likely is it that the user
employed a key which is much smaller than the message.

On the other hand, the smaller the key, the more difficult it is to fit a given pair of ciphertext-plaintext
with a matching key.  As we see it with the prevailing fixed-size key cryptographies, an arbitrary
random ciphertext string (if it=s  long enough) will not have a corresponding key (in the finite key
space) which will generate a match with a plausible plaintext.

In particular with stream ciphers:  it is quite easy to generate an endless pseudo-random number list
from a small as desired seed.  The reverse is where difficulties mount.

Say then that if a given ciphertext, C, can be matched with two pairs of plaintext-key:

C = E(P
1
,K

1
) = E(P2,K2

)

Where E is the encryption function, and if one key is much smaller than the other:

K
1
 << K

2

then it would be a “sound guess” to claim that P
1
 is the true message which is hidden in C, while P

2
 is

a decoy message.

If E is a stream cipher, then one can use K
1
 to encrypt P

1
, and then point to an arbitrary message P

2
 for

which one would easily find K
2
 as large as P (K

2
 = C r P

2
 ), and mount a feeble, yet theoretical claim

that it is mathematically unclear which is the true message and which the decoy.

The subject of decoy keys and decoy plaintexts is further elaborated below.

Decoy Keys; Decoy Messages



A cryptographic system that employs a key of variable size which, in turn, may become as large as
necessary, is akin to message-size key system in as much as the latter is a special case ( a subset) of the
former.  Hence, if the circumstances allow for (n+1) plausible plaintexts, then the variable size no limit
key system will always be able to find a key that will match each and every one of these (n+1) plausible
messages with a proper key.  In that respect the variable size no limit system is as effective as the
message size key system.  But this theoretical equivalence is of little interest.

The variable size key system will deserve attention only if it helps relieve the tedium and burden of the
message size key.

In other words, one would attempt to use a moderate size key, K
0
, to encrypt message P

0
 into C, and

subsequently be able to point to another plausible (decoy) message P
1
 which will correspond to same C

via another key (decoy) K
1.
  And same for additional plausible messages P
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Since the size of the key is part of the system secrecy, the user will always be able to match P
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n

with corresponding keys which are as long as C.

So, theoretically this will work.  Only that if the size of K
0
 is much smaller than C (which is the

essential attraction of the system), and  K
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 are all of the length of C, then it would be

difficult to argue that any of  P
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  are the real message.  P

0
 will stand out.

This brings us to the notion of the deniability key list.

The Deniability Key List
Given a cryptographic system based on a variable size and no preset limit key, and given a ciphertext C
generated by such system, one may wish to list all the plausible plaintext messages P
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and their smallest corresponding keys:  K
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n
 in the order of key size.

Let P
0
 represent the actual message that was encrypted into C (the intended reader and the writer both

use K
0
).  Let the rest of the indices:  1,2,3,...n be assigned by sorted size order.  So that for i=1,2,...(n-1),

it will hold that the size of K
i
 is not larger than the size of K

(i+1)
:
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Let S(K) be the size of K, then:  if S(K
0
) << S(K

1
), the formal deniability of the system is not very

effective in practice.  Say, if S(K
0
) << S(C) and S(K

i
) = S(C) for i=1,2,...n, then K

0
 stands out as the



right key.  We must recall that for all plausible messages P
i
 there exists at least one key K

i 
of size S(C)

that would match Pi with C.

Say then that the above ordered key list determines the practicality of the system.

If there exists a value j > 1 such that:

S(K
j 
) # S(K

0
) #S(K 

j+1
)

Then the system offers good deniability.  A cryptanalyst who will uncover the list (but will be  aware
only of C, and not of K

0
) will have to conclude that messages  P
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 . are at least as plausible

as P
0
 (the real message), since they employ keys of equal or smaller size.  This will amount to an

effective deniability of order j.

Realistically if S(K
j+1

), S(K
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), ..S(K
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) 6 S(K
0
) then the effective deniability order will be j+t.  All this

assumes that the messages P
0
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  are of equal likelihood (or above a threshold likelihood)

as far as any non-cryptographic evidence might suggest.  In such cases the size of the key is the only
discriminator.

The Key-List Condition
All this leads us to conclude that for a variable size key cryptography to claim a measure of Shannon
Security, it must employ a key which is not much smaller than the smallest key that will fit for another
plausible plaintext.  We designate this condition as the key list condition.

Implementation Procedures
Having derived the key-list condition we may now point to the message size (or ciphertext size) as the
critical factor in devising a practical procedure for the variable size key.

Naturally if C is of small size then the size of K
n
 (the largest key in the key list) is also small ( K

n
 is at

most as large as C), and hence all the keys in the key list are of plausible size.

It is for large C that there is an issue to consider.  Generally the larger C, the more difficult it should be
to find a practically small key that would serve as decoy, or deniability argument.

Cryptographic procedures call for a-priori key identification (and distribution).  That means that K
0

must be selected before P
0
 is known.  It must be selected so that the resultant C will allow for one to

build the key list so that K
0
-P

0
 will fit somewhere inside it.  This need, for any variable size system will

determine the aggregate size of C that a given key K
0
 should generate.

A good variable size key system is one where a single small size K
0
 will generate even a large C such

that the user (or anyone else) will be able to construct a sufficiently large key list and fit K
0
 inside.

In practice one may look for a stream cipher with a “closed loop” or say, expansion-reduction



(reversal)  algorithm.  (See below).

Existence and Discovery
The key list condition poses a question of existence and discovery.  Given a system of variable size
key, does it satisfy the key list condition for a given cipher and set of plausible messages?
And if it does, how difficult is it to discover that list?  A subsequent question is:  who should discover
it?

As a minimal requirement a user might argue that existence is sufficient, since the adversarial cryptanalyst
will pick it up as a matter of course.  What is necessary, is that the opponent will come up with the list
and be confused by it.

A more rigorous user will want to build the list on his own.  This requirement creates a unique situation.
The user and his opponent will be busy with the same task:  building the key list.  The user will know
(P

0
,K

0
), but will have to crack his own ciphertext to identify (P

1
,K

1
), (P

2
,K

2
), etc.  Which is exactly what

the opponent will have to do.  Only that the opponent will  need to also find the (P
0
,K

0
) pair, and then

discriminate between it, and the decoys.

This duality brings into question the desirability of easy discovery.  It is not clear whether the user
would wish that effort to be small or large.  The former option will help the user build the key list; the
latter will make it difficult for the opponent to do the same.

In general, the larger K
0
, the more likely it is to find the key list, since there exist a better chance to find

a decoy key of equal or smaller size.  Thus to insure deniability of high order, it is advisable to use large
K

0
.

A variable-size key cryptography might pose the question:  is a given key list -- the best?  Is K
i
 the

smallest key that would link plaintext P
i
 with ciphertext C?  Unlike the prevailing cryptographies, the

key variability in the variable-size case may lead to a situation where there are several keys that would
link a (P

i,
C) pair.  A good list will put forward the smallest ones.  For a given cryptography one might

concern himself with the question of proving that a given key is indeed the smallest.

For every proposed variable-size key ciphersystem one would be advised to analyze the existence and
the discovery effort of an effective key list.

Expansion-reduction Stream Cipher Algorithms
Normally a stream cipher is constructed as a one way function whereby a small seed generates an
expanded binary stream which is used as a pseudo-random message-size key.  Elsewhere in cryptog-
raphy one is searching for the reverse:  one-way reduction algorithms (Hash functions).  For the
purpose at hand the interest is focused on a two-way algorithm which can be used for both purposes:
expansion and reversal  reduction.  Such an expansion-reduction algorithm  will serve as a



regular stream cipher system, but will also facilitate a search for small seeds that would serve as decoy
keys to achieve what we may call: Meta Shannon Security; namely:  Shannon Security of a compara-
tively small order, which nonetheless offers a fundamental advantage:  it can not be brute-force ex-
hausted.  Its security can not be torn down neither by raw computer power, nor through clever new
mathematics.

This paper analyzed the existence and desirability of cryptographic systems based on variable size key
of no preset limit.  It has shown that the much coveted Shannon security can be extended to such
systems, and while the extent of such security is not as extensive as is offered by the One Time Pad, it
is nonetheless substantial, and it offers a novel advantage:  achieving Shannon Security (alternatively
called deniability) without having to employ the unwieldy large keys which are necessary for OTP.
The combination of mathematical security and small or moderate size keys renders these cryptogra-
phies into a class of great promise and much interest.

Further Reading

Conclusion

Meta Shannon Security algorithms are featured in Daniel and related products distributed by D&G
Sciences – Virginia Technology Corporation, P.O.Box 1022 McLean VA 22101-1022   http://
www.dgsciences.com


