
OAEP Reconsidered

Victor Shoup
IBM Zurich Research Lab, Säumerstr. 4, 8803 Rüschlikon, Switzerland

sho@zurich.ibm.com

November 18, 2000

Abstract

The OAEP encryption scheme was introduced by Bellare and Ro-
gaway at Eurocrypt ’94, and is widely believed to be secure against
adaptive chosen ciphertext attack. The main justification for this be-
lief is a proof of security in the random oracle model.

This paper shows conclusively that this justification is invalid.
First, it observes that there appears to be a non-trivial gap in the
proof. Second, it proves a theorem that essentially says that this gap
cannot be filled using standard proof techniques of the type used in
Bellare and Rogaway’s paper, and elsewhere in the cryptographic lit-
erature.

It should be stressed that these results do not imply that RSA-
OAEP in insecure. They simply undermine the justification that no
attacks are possible in general.

In fact, we make the observation that RSA-OAEP with encryption
exponent 3 actually is provably secure in the random oracle model,
but the argument makes use of special properties of the RSA function.
However, this should not necessarily be viewed as a good reason to use
RSA-OAEP with encryption exponent 3.

The paper also presents a new scheme OAEP+ along with a com-
plete proof of security in the random oracle model. OAEP+ is essen-
tially just as efficient as OAEP.

1 Introduction

It is generally agreed that the “right” definition of security for a public key
encryption scheme is security against adaptive chosen ciphertext attack, as
defined in [RS91]. This notion of security is equivalent to other useful no-
tions, such as the notion of non-malleability, as defined in [DDN91, DDN00].

1

[DDN91] proposed a scheme that is provably secure in this sense, based
on standard intractability assumptions. While this scheme is useful as a
proof of concept, it is quite impractical. [RS91] also propose a scheme that is
also provably secure; however, it too is also quite impractical, and moreover,
it has special “public key infrastructure” requirements.

In 1993, Bellare and Rogaway proposed a method for converting any
trapdoor one-way permutation into an encryption scheme [BR93]. They
proved that this scheme is secure against adaptive chosen ciphertext at-
tack in the random oracle model, provided the underlying trapdoor one-way
permutation scheme is secure.

In the random oracle model, one analyzes the security of the scheme
by pretending that a cryptographic hash function is really a random oracle.
Now, a proof of security in the random oracle model does not necessarily
imply anything about real security (see [CGH98]). Nevertheless, it seems
that designing a scheme so that it is provably secure in the random oracle
model is a good engineering principle, at least when all known schemes that
are provably secure without the random oracle heuristic are too impracti-
cal. Subsequent to [BR93], many other papers have proposed and analyzed
cryptographic schemes in the random oracle model.

The encryption scheme in [BR93] is very efficient from the point of view
of computation time. However, it has a “message expansion rate” that is
not as good as some other encryption schemes.

In 1994, Bellare and Rogaway proposed another method for convert-
ing any trapdoor one-way permutation into an encryption scheme [BR94].
This scheme goes by the name OAEP. The scheme when instantiated with
the RSA trapdoor function [RSA78] goes by the name RSA-OAEP, and is
the industry-wide standard for RSA encryption (PKCS#1 version 2, IEEE
P1363). It is just as efficient computationally as the scheme in [BR93], but
it has a better message expansion rate. With RSA-OAEP, one can encrypt
messages whose bit-length is up to just a few hundred bits less than the
number of bits in the RSA modulus; moreover, the resulting ciphertext is
the same size as the RSA modulus itself.

Besides its efficiency in terms of both time and message expansion, and
its compatibility with more traditional implementations of RSA encryption,
perhaps one of the reasons that OAEP is so popular is the widespread belief
that the scheme is provably secure in the random oracle model, provided
the underlying one-way trapdoor permutation is secure.

In this paper we argue that this belief is unjustified. Specifically, we
argue that in fact, no complete proof of the general OAEP method has ever
appeared in the literature. Moreover, we prove that no proof is attainable

2

using standard “black box” reductions (even in the random oracle model).
We then present a variation, OAEP+, and a complete proof of security in
the random oracle model. OAEP+ is essentially just as efficient as OAEP.

There is one more twist to this story: we observe that RSA-OAEP with
encryption exponent 3 actually is provably secure in the random oracle
model; the proof, of course, is not a “black box” reduction, but exploits
special algebraic properties of the RSA function. However, a note of cau-
tion is in order. It could be the case that RSA with exponent 3 is easier
to invert than large exponent RSA, and so this should not necessarily be
viewed as a good reason to use RSA-OAEP with encryption exponent 3. It
seems better to recommend the use of OAEP+.

Note that although the precise specification of standards (PKCS#1 ver-
sion 2, IEEE P1363) differ in a few minor points from the scheme described
in [BR94], none of these minor changes affect the arguments we make here.

1.1 A missing proof of security

[BR94] contains a valid proof that OAEP satisfies a certain technical prop-
erty which they call “plaintext awareness.” Let us call this property PA94.
However, it is claimed without proof that PA94 implies security against cho-
sen ciphertext attack and non-malleability. Moreover, it is not even clear
if the authors mean adaptive chosen ciphertext attack (as in [RS91]) or
indifferent (a.k.a. lunchtime) chosen ciphertext attack (as in [NY90]).

Later, in [BS99], a new definition of “plaintext awareness” is given. Let
us call this property PA99. It is claimed in [BS99] that OAEP is “plaintext
aware.” It is not clear if the authors mean to say that OAEP is PA94 or
PA99; in any event, they certainly do not prove anything new about OAEP
in [BS99]. Furthermore, [BS99] contains a valid proof that PA99 implies
security against adaptive chosen ciphertext attack.

Notice that nowhere in this chain of reasoning is a proof that OAEP is
secure against adaptive chosen ciphertext attack. What is missing is a proof
that either OAEP is PA99, or that PA94 implies security against adaptive
chosen ciphertext attack.

We should point out, however, that PA94 is trivially seen to imply se-
curity against indifferent chosen ciphertext attack, and thus OAEP is se-
cure against indifferent chosen ciphertext attack. However, this is a strictly
weaker and much less useful notion of security than security against adaptive
chosen ciphertext attack.

3

1.2 Our contributions

In §4, we give a rather informal argument that there is a non-trivial obstruc-
tion to obtaining a complete proof of security for OAEP against adaptive
chosen ciphertext attack (in the random oracle model).

In §5, we give more formal and compelling evidence for this. Specifically,
we prove that if one-way trapdoor permutation schemes with an additional
special property exist, then OAEP when instantiated with such a one-way
trapdoor permutation scheme is in fact insecure. We do not know how to
prove the existence of such special one-way trapdoor permutation schemes
(assuming, say, that one-way trapdoor permutation schemes exist at all).
However, we prove that there exists an oracle, relative to which such special
one-way trapdoor permutation schemes exists. It follows that relative to an
oracle, the OAEP construction is not secure.

Actually, our proofs imply something slightly stronger: relative to an
oracle, OAEP is malleable against a chosen plaintext attack.

Of course, such relativized results do not necessarily imply anything
about the ordinary, unrelativized security of OAEP. But they do imply that
standard proof techniques, in which the adversary and the trapdoor function
are treated as “black boxes,” cannot possibly yield a proof of security, since
they would relativize. Certainly, all of the arguments in [BR94] and [BS99]
involve only “black box” reductions, and so they cannot possibly yield a
proof of security.

In §6, we present a new scheme, called OAEP+. This is a variation of
OAEP that is essentially just as efficient in all respects as OAEP, but for
which we provide a complete, detailed proof of security against adaptive
chosen ciphertext attack.

We conclude the paper in §7 on a rather ironic note. After considering
other variations of OAEP, we sketch a proof that RSA-OAEP with encryp-
tion exponent 3 actually is secure in the random oracle model. This fact,
however, makes essential use of Coppersmith’s algorithm [Cop98] for solving
low-degree modular equations. This proof of security does not generalize to
large encryption exponents, and in particular, it does not cover the popular
encryption exponent 216 + 1.

Part of the irony of this observation is that Coppersmith viewed his
own result as a reason not to use exponent 3, while here, it ostensibly gives
one reason why one perhaps should use exponent 3. But as we have already
cautioned, this observation does not necessarily imply that using exponent-3
RSA-OAEP is a good idea.

Let us be clear about the implications of our results. They do not imply

4

a specific attack on PKCS #1 version 2. They only imply that the main
justification for the belief that OAEP (and hence PKCS #1 version 2) is
resistant against adaptive chosen ciphertext attack is invalid. Indeed, as we
observe, some particular instantiations of OAEP are in fact provably secure.

Before moving ahead, we recall some definitions in §2, and the OAEP
scheme itself in §3.

2 Preliminaries

2.1 Security against chosen ciphertext attack

We recall the definition of security against adaptive chosen ciphertext attack.
We begin by describing the attack scenario.

Stage 1 The key generation algorithm is run, generating the public key and
private key for the cryptosystem. The adversary, of course, obtains the
public key, but not the private key.

Stage 2 The adversary makes a series of arbitrary queries to a decryption
oracle. Each query is a ciphertext y that is decrypted by the decryp-
tion oracle, making use of the private key of the cryptosystem. The
resulting decryption is given to the adversary. The adversary is free
to construct the ciphertexts in an arbitrary way—it is certainly not
required to compute them using the encryption algorithm.

Stage 3 The adversary prepares two messages x0, x1, and gives these to
an encryption oracle. The encryption oracle chooses b ∈ {0, 1} at
random, encrypts xb, and gives the resulting “target” ciphertext y′ to
the adversary. The adversary is free to choose x0 and x1 in an arbitrary
way, except that if message lengths are not fixed by the cryptosystem,
then these two messages must nevertheless be of the same length.

Stage 4 The adversary continues to submit ciphertexts y to the decryption
oracle, subject only to the restriction that y 6= y′.

Stage 5 The adversary outputs b′ ∈ {0, 1}, representing its “guess” of b.

That completes the description of the attack scenario.

The adversary’s advantage in this attack scenario is defined to be |Pr[b′ =
b]− 1/2|.

5

A cryptosystem is defined to be secure against adaptive chosen ciphertext
attack if for any efficient adversary, its advantage is negligible.

Of course, this is a complexity-theoretic definition, and the above de-
scription suppresses many details, e.g., there is an implicit security param-
eter which tends to infinity, and the terms “efficient” and “negligible” are
technical terms, defined in the usual way. One can work in a uniform (i.e.,
Turing machines) or a non-uniform model (i.e., circuits) of computation.
This distinction will not affect any results in this paper.

The definition of security we have presented here is from [RS91]. It is
called IND-CCA2 in [BDPR98]. It is known to be equivalent to other no-
tions, such as non-malleability [DDN91, BDPR98, DDN00], which is called
NM-CCA2 in [BDPR98].

It is fairly well understood and accepted that this notion of security is
the “right” one, in the sense that a general-purpose cryptosystem that is
to be deployed in a wide range of applications should satisfy this property.
Indeed, with this property, one can typically establish the security of larger
systems that use such a cryptosystem as a component.

There are other, weaker notions of security against chosen ciphertext
attack. For example, [NY90] define a notion that is sometimes called security
against indifferent chosen ciphertext attack, or security against lunchtime
attack. This definition of security is exactly the same as the one above,
except that Stage 4 is omitted—that is, the adversary does not have access
to the decryption oracle after it obtains the target ciphertext. While this
notion of security may seem natural, it is actually not sufficient in many
applications. This notion is called NM-CCA1 in [BDPR98].

2.2 Trapdoor one-way permutations

We recall the notion of a trapdoor one-way permutation scheme. This con-
sists of a probabilistic generator algorithm that outputs (descriptions of) two
algorithms f and g, such that the function computed by f is a permutation
on the set of k-bit strings, and the function computed by g is its inverse. Of
course, this generator takes as input a security parameter; the parameter k,
as well as the running times of f and g, should be bounded by a polynomial
in this security parameter.

An attack against a trapdoor one-way permutation scheme proceeds as
follows. First the generator is run, yielding f and g. The adversary is given
f , but not g. Additionally, the adversary is given a random y ∈ {0, 1}k.
The adversary then computes and outputs a string w ∈ {0, 1}k.

The adversary’s success probability is defined to Pr[f(w) = y].

6

The scheme is is defined to be secure if for any efficient adversary, its
success probability is negligible.

3 OAEP

We now describe the OAEP encryption scheme, as described in §6 of [BR94].
The general scheme makes use of a one-way trapdoor permutation. Let

f be the permutation, acting on k-bit strings, and g its inverse. The scheme
also makes use of two parameters k0 and k1, which should satisfy k0+k1 < k.
It should also be the case that 2−k0 and 2−k1 are negligible quantities. The
scheme encrypts messages x ∈ {0, 1}n, where n = k − k0 − k1.

The scheme also makes use of two functions, G : {0, 1}k0 → {0, 1}n+k1 ,
and H : {0, 1}n+k1 → {0, 1}k0 . These two functions will be modeled as
random oracles in the security analysis.

We describe the key generation, encryption, and decryption algorithms
of the scheme.

Key generation This simply runs the generator for the one-way trapdoor
permutation scheme, obtaining f and g. The public key is f , and the
private key is g.

Encryption Given a plaintext x, the encryption algorithm randomly
chooses r ∈ {0, 1}k0 , and then computes

s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , w ∈ {0, 1}k, y ∈ {0, 1}k

as follows:

s = G(r)⊕ (x ‖ 0k1), (1)
t = H(s)⊕ r, (2)
w = s ‖ t, (3)
y = f(w). (4)

The ciphertext is y.

Decryption Given a ciphertext y, the decryption algorithm computes

w ∈ {0, 1}k, s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , r ∈ {0, 1}k0 ,
z ∈ {0, 1}n+k1 , x ∈ {0, 1}n, c ∈ {0, 1}k1

7

as follows:

w = g(y), (5)
s = w[0 . . . n+ k1 − 1], (6)
t = w[n+ k1 . . . k], (7)
r = H(s)⊕ t, (8)
z = G(r)⊕ s, (9)
x = z[0 . . . n− 1], (10)
c = z[n . . . n+ k1 − 1]. (11)

If c = 0k1 , then the algorithm outputs the cleartext x; otherwise, the
algorithm rejects the ciphertext, and does not output a cleartext.

4 An informal argument that OAEP cannot be
proven secure

We first recall the main ideas of the proof in [BR94] that OAEP is “plaintext
aware” in the random oracle model, where G and H are modeled as random
oracles.

The argument shows how a simulator that has access to a table of in-
put/output values for the points at which the adversary queried G and H
can simulate the decryption oracle without knowing the private key.

To make our arguments clearer, we introduce some notation. First, any
ciphertext y implicitly defines values w, s, t, r, z, x, c. Let y′ denote the tar-
get ciphertext, and let w′, s′, t′, r′, z′, x′, c′ be the corresponding implicitly
defined values for y′. Note that x′ = xb and c′ = 0k1 .

Let SG the set of values r at which G was evaluated by the adversary.
Also, let SH be the set of values s at which H was evaluated by the adversary.
Further, let S′G = SG ∪ {r′} and S′H = SH ∪ {s′}, where r′, s′ are the values
implicitly defined by y′, as described above. We view these sets as growing
incrementally as the adversary’s attack proceeds—elements are added to
these only when a random oracle is queried by the adversary or by the
encryption oracle.

Suppose the simulator is given a ciphertext y to decrypt. One can show
that if r /∈ S′G, then with overwhelming probability the actual decryption
algorithm would reject y; this is because in this case, s and G(r) are inde-
pendent, and so the probability that c = 0k1 is 2−k1 . Moreover, if s /∈ S′H ,
then with overwhelming probability, r /∈ S′G; this is because in this case, t

8

and H(s) are independent, and so r is independent of the adversary’s view.
From this argument, it follows that the actual decryption algorithm would
reject with overwhelming probability, unless r ∈ S′G and s ∈ S′H .

If the decryption oracle simulator (a.k.a., plaintext extractor) has access
to S′G and S′H , as well as the corresponding outputs of G and H, then it
can effectively simulate the decryption without knowing the secret key, as
follows. It simply enumerates all r∗ ∈ S′G and s∗ ∈ S′H , and for each of these
computes

t∗ = H(s∗)⊕ r∗, w∗ = s∗ ‖ t∗, y∗ = f(w∗).

If y∗ is equal to y, then it computes the corresponding x∗ and c∗ values, via
the equations (10) and (11); if c∗ = 0k1 , it outputs x∗, and otherwise rejects.
If no y∗ equals y, then it simply outputs reject.

Given the above arguments, it is easy to see that this simulated decryp-
tion oracle behaves exactly like the actual decryption oracle, except with
negligible probability. Certainly, if some y∗ = y, the simulator’s response
is correct, and if no y∗ = y, then the above arguments imply that the real
decryption oracle would have rejected y with overwhelming probability.

From this, one would like to conclude that the decryption oracle does not
help the adversary. But this reasoning is invalid. The problem is, the above
simulator should have access to SG and SH , along with the corresponding
outputs of G and H, and not have access to r′, G(r′), s′,H(s′). The reason
is that if the decryption simulator has access to r′, G(r′), s′,H(s′), then the
proof that the adversary’s advantage in guessing the bit b is closely related
to the success probability of computing f−1(y′) is doomed to failure: if the
simulator needs to “know” r′ and s′, then it must also “know” w′, and so
one can not hope use the adversary to compute an unknown f -inverse of y′

On closer observation, it is clear that the decryption simulator does not
need to know s′, G(s′): if s = s′, then it must be the case that t 6= t′, which
implies that r 6= r′, and so c = 0k1 with negligible probability. Thus, it is
safe to reject all ciphertexts y such that s = s′.

If one could make an analogous argument that the decryption simulator
does not need to know r′, G(r′), we would be done. This is unfortunately
not the case, as the following example illustrates.

4.1 An example

Suppose that we have an algorithm that actually can invert f . Now of
course, in this case, we will not be able to construct a counter-example to
the security of OAEP, but we will argue that the proof technique fails. In
particular, we show how to build an adversary that uses the f -inverting

9

algorithm to break the cryptosystem, but it does so in such a way that no
simulator given black box access to the adversary and its random oracle
queries can use our adversary to compute f−1(y′) for a given value of y′.

We now describe adversary. Upon obtaining the target ciphertext y′,
the adversary computes w′ using the algorithm for inverting f , and then
extracts the corresponding values s′ and t′. The adversary then chooses an
arbitrary, non-zero ∆ ∈ {0, 1}n, and computes:

s = s′ ⊕ (∆ ‖ 0k1),
t = t′ ⊕H(s′)⊕H(s),
w = s ‖ t,
y = f(w).

It is easily verified that y is a valid encryption of x = x′ ⊕ ∆, and clearly
y 6= y′. So if the adversary submits y to the decryption oracle, he obtains
x, from which he can then easily compute x′.

This adversary clearly breaks the cryptosystem—in fact, its advantage
is 1/2. However, note in this attack, the adversary only queries the oracle
H at the points s and s′. It never queries the oracle G at all. In fact r = r′,
and the attack succeeds just where the gap in the proof was identified above.

What information has a simulator learned by interacting with the adver-
sary as a black box? It has only learned s′ and s (and hence ∆). So it has
learned the first n+ k1 bits of the pre-image of y′, but the last k0 remain a
complete mystery to the simulator, and in general, they will not be easily
computable from the first n+k1 bits. The simulator also has seen the value
y submitted to the decryption oracle, but it does not seem likely that this
can be used by the simulator to any useful effect.

5 Formal evidence that the OAEP construction is
not sound

In this section, we present strong evidence that the OAEP construction is
not sound. First, we show that if a special type of one-way trapdoor function
f0 exists, then in fact, we can construct another one-way trapdoor function
f such that OAEP using f is insecure. Although we do not know how to
explicitly construct such a special f0, we can show that there is an oracle
relative to which one exists. Thus, there is an oracle relative to which OAEP
is insecure.

10

Definition 1 We call a trapdoor one-way permutation scheme XOR-
malleable if the following property holds. There exists an efficient algo-
rithm U , such that for infinitely many values of the security parameter,
U(f0, f0(t), δ) = f0(t+ δ) with nonnegligible probability. Here, the probabil-
ity is taken over the random bits of the one-way permutation generator, and
random bit strings t and δ in the domain {0, 1}k0 of f0.

Theorem 1 If there exists an XOR-malleable one-way trapdoor permuta-
tion scheme, then there exists a one-way trapdoor permutation scheme such
that when OAEP is instantiated with this scheme, the resulting encryption
scheme is insecure (in the random oracle model).

We now prove this theorem, which is based on the example presented in
§4.1.

Let f0 be the given XOR-malleable trapdoor one-way permutation on k0-
bit strings. Let U be the algorithm that computes f0(t⊕δ) from (f0, f0(t), δ).
Choose n > 0, k1 > 0, and set k = n + k0 + k1. Let f be the permutation
on k-bit strings defined as follows: for s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , f(s ‖ t) =
s ‖ f0(t).

It is clear that f is a one-way trapdoor permutation.
Now consider the OAEP scheme that uses this f as its trapdoor one-way

permutation, and uses the parameters k, n, k0, k1 for the padding scheme.
Recall our notational conventions: any ciphertext y implicitly de-

fines values w, s, t, r, z, x, c, and the target ciphertext y′ implicitly defines
w′, s′, t′, r′, z′, x′, c′.

We now describe adversary. Upon obtaining the target ciphertext y′, the
adversary decomposes y′ as y′ = s′ ‖ f0(t′). The adversary then chooses an
arbitrary, non-zero ∆ ∈ {0, 1}n, and computes:

s = s′ ⊕ (∆ ‖ 0k1),
v = U(f0, f0(t′),H(s′)⊕H(s)),
y = s ‖ v.

It is easily verified that y is a valid encryption of x = x′ ⊕ ∆, provided
v = f0(t′ ⊕ H(s′) ⊕ H(s)), which by our assumption of XOR-malleability
occurs with non-negligible probability. So if the adversary submits y to the
decryption oracle, he obtains x, from which he can then easily compute x′.

This adversary clearly breaks the cryptosystem. That completes the
proof of the theorem.

11

Of course, one might ask if it is at all reasonable to believe that XOR-
malleable trapdoor one-way permutations exist at all. First of all, note
that the standard RSA function is a one-way trapdoor permutation that is
not XOR-malleable, but is still malleable in a very similar way: given α =
(ae mod N) and (b mod N), we can compute ((ab)e mod N) as (α · (be mod
N)). Thus, we can view the RSA function itself as a kind of malleable
trapdoor one-way permutation, but where XOR is replaced by multiplication
mod N . In fact, one could modify the OAEP scheme so that t,H(s) and r
are numbers mod N , and instead of the relation t = H(s)⊕ r, we would use
the relation t = H(s) · r mod N . It would seem that if there were a proof
of security for OAEP, then it should go through for this variant of OAEP
as well. But yet, this variant of OAEP is clearly insecure, even though the
underlying trapdoor permutation is presumably secure.

Beyond this, we can show the following.

Theorem 2 There exists an oracle, relative to which XOR-malleable trap-
door one-way permutations exist.

Theorems 1 and 2 imply the following.

Corollary 1 There exists an oracle, relative to which the OAEP construc-
tion is insecure.

We now prove Theorem 2.
Let W be chosen at random from the set of all functions on {0, 1}∗ such

that for any n ≥ 0, W restricted to {0, 1}n acts as a permutation on {0, 1}n.
Let F be a family of permutations, such that for every positive integer

k0, and for every pk ∈ {0, 1}k0 , Fpk is a random permutation on {0, 1}k0 .
Our oracle O responds to four different types of queries:

O1: Given sk ∈ {0, 1}∗, return pk = W (sk).

O2: Given pk , δ ∈ {0, 1}∗ with |pk | = |δ|, return Fpk (δ).

O3: Given sk , v ∈ {0, 1}∗ with |sk | = |v|, return F−1
W (sk)(v).

O4: Given pk , v, δ ∈ {0, 1}∗ with |pk | = |v| = |δ|, return Fpk (F−1
pk (v)⊕ δ).

The idea here is that the function W can be used to generate public
key/secret key pairs for a random trapdoor permutation. If one chooses
secret key sk ′ at random, then pk ′ = W (sk ′) is the corresponding public
key. This can be accomplished using the O1 query.

12

The O2 query can be used to compute the permutation in the forward
direction using pk ′. Using O3 with the trapdoor sk ′, one can compute the
inverse permutation.

Query O4 is what makes our trapdoor permutation XOR-malleable.

To make a rigorous and precise proof, we state and prove the following
very simple, but useful lemma, which we will also use for some other proofs
in the paper.

Lemma 1 Let E, E′, F , and F ′ be events defined on a probability space
such that Pr[E ∧¬F] = Pr[E′∧¬F ′] and ε = Pr[F] = Pr[F ′]. Then we have∣∣Pr[E]− Pr[E′]

∣∣ ≤ ε.
Proof. If ε = 0 or ε = 1, the lemma is trivially true, so assume 0 < ε < 1.
We have

Pr[E] = Pr[E|¬F](1− ε) + Pr[E|F]ε

and
Pr[E′] = Pr[E′|¬F ′](1− ε) + Pr[E′|F ′]ε.

Subtracting these two equations, noting that Pr[E|¬F] = Pr[E′|¬F ′], and
taking absolute values, we have∣∣Pr[E]− Pr[E′]

∣∣ = ε
∣∣Pr[E|F]− Pr[E′|F ′]

∣∣ ≤ ε.
2

Theorem 2 will now follow from the following lemma.

Lemma 2 Any adversary that makes at most m oracle queries, succeeds in
inverting a permutation on k0 bits with probability O(m2/2k0).

We can assume that whenever the adversary makes an O3 query with a
given value of sk , he has previously made an O1 query with the same value.
Any adversary can be modified to conform to this convention, increasing m
by a constant factor.

Let G0 be the original attack game. Let (sk ′, pk ′) be secret key/public
key of the generated trapdoor permutation. Let f0 = Fsk ′ denote this per-
mutation, and assume that it is a permutation on {0, 1}k0 . Let v′ ∈ {0, 1}k0

be the string whose f0-inverse the adversary is trying to compute, and let t′

be this inverse. Let S0 denote the event that the adversary succeeds.
We consider a modified attack game, G1, defined as follows. Game G1 is

exactly the same as G0, except that in game G1, if the adversary ever inputs

13

sk ′ to the O1 oracle, which can be detected by testing if the output equals
pk ′, it politely halts. Conceptually, G0 and G1 are games that operate on
the same probability space, but the rules of the game are different. Let S1

be the event that the adversary succeeds in G1, and let F0 be the event that
in game G0 (or equivalently, G1), the adversary inputs sk ′ to the O1 oracle.
Then Lemma 1 applies with (S0, S1, F0, F0), and moreover, it is clear that
Pr[F0] = O(m/k0). Therefore,

|Pr[S0]− Pr[S1]| = O(m/k0). (12)

By construction, the only information the adversary learns about f0 in
game G1 is through its initial input v′, and calls to the oracles O2 and O4.

We now define a game G′1 that is completely equivalent to game G1,
but formulated in a slightly different way. In this game, we process O1 and
O3 queries just as in game G1. Also, we process O2 and O4 queries with
pk 6= pk ′ just as in game G1. However, we process O2 and O4 queries with
pk = pk ′ differently.

At the outset of the game, we generate a vector (v1, . . . , v2k0) that is a
random permutation of {0, 1}k0 . We also generate a sequence (s1, . . . , sm),
where each si is uniformly and independently drawn from {0, 1}k0 .

Now, we shall also define sequences (t0, t1, t2, . . .) and (D1, D2, . . .) in-
crementally as the game proceeds. Each ti is a bit string of length k0. Each
Di is a pair (j, δ), where j is an integer and δ is a bit string of length k0.
We will maintain two counters, a and b, and it will always be the case that
Di is defined for 1 ≤ i ≤ a, and that tj is defined for 0 ≤ j ≤ b.

Conceptually, the permutation f0 is implicitly defined by f0(tj⊕δ) = vi,
where Di = (j, δ), 1 ≤ i ≤ a, and 0 ≤ j ≤ b.

At the outset of the game, we set a = 1, b = 1, t0 = 0k0 , t1 = s1, and
D1 = (1, 0k0). We also set v′ = v1 and t′ = t1. We give v′ to the adversary—
this is the element whose inverse the adversary is supposed to compute. At
the end of the game, the adversary succeeds if its output is equal to t′.

Now consider an O2 query with input (pk ′, δ). We first test if there is
an i with 1 ≤ i ≤ a, such that Di = (0, δ). If so, we let the oracle output
the corresponding vi. Otherwise, we test if there exists an i with 1 ≤ i ≤ a,
Di = (j, δ̃), and 1 ≤ j ≤ b, such that

δ = tj ⊕ δ̃, (13)

If so, we let the oracle output the corresponding vi. Otherwise, we increment
a, and set Da = (0, δ), and output va.

14

Now consider an O4 query with input (pk ′, v, δ).
Case 1. v = vi for some 1 ≤ i ≤ a:

• If Di = (0, δ̃) for some δ̃, then we process this O4 query just like an
O2 query with input (pk ′, δ ⊕ δ̃).

• Otherwise, Di = (j, δ̃) for some 1 ≤ j ≤ b and some δ̃. If there exists
an i′, with 1 ≤ i′ ≤ a such that Di′ = (j, δ ⊕ δ̃), then we output vi′ .

• Otherwise, we test there exists an i′, with 1 ≤ i′ ≤ a, Di′ = (j′, δ̃′),
0 ≤ j′ ≤ b, and j′ 6= j, such that

tj ⊕ δ̃ ⊕ δ = tj′ ⊕ δ̃′. (14)

(Note that we allow j′ = 0.) If so, we output vi′ .

• Otherwise, we increment a, set Da = (j, δ ⊕ δ̃), and output va.

Case 2. v 6= vi for all 1 ≤ i ≤ a:

• Let
T = {tj ⊕ δ̃ : Di = (j, δ̃), 1 ≤ i ≤ a}.

We increment b, and then we define tb as follows. First, we test if

sb ∈ T. (15)

If so, we choose tb at random from {0, 1}k0\T ; otherwise, we set tb = sb.

• Next, we increment a. Let a′ be such that va′ = v. By construction, we
have a′ ≥ a. We now swap va and v′a. Next, we define Da = (b, 0k0),
and then perform the actions in case 1.

Let S′1 be the event that the adversary succeeds in game G′1. It is
straightforward to verify that

Pr[S1] = Pr[S′1]. (16)

Now we define a game G2 that is just like G′1, except that we simply
behave as if the tests (13), (14), and (15) always fail. Conceptually, we view
G′1 and G2 as operating on the same probability space; in particular, the
vectors (v1, . . . , v2k0) and (s1, . . . , sm) are the same in both games. Note
that in game G2 it no longer makes sense to speak of an implicitly defined
permutation f0; however, we can still define the event S2 that the adversary
outputs t′. Let F2 be the event that in game G2, one of these tests (13),

15

(14), and (15) passes (even though this is ignored in game G2). Notice that
in game G2, the values vi seen by the adversary, and hence the inputs to
the oracle, are independent of the values sj . It follows F2 is equivalent to
the event that one of O(m2) equations holds, where each equation is of the
form sj = δ, where δ and sj are independent, or of the form sj ⊕ sj′ = δ,
where j 6= j′, and δ, sj , and sj′ are independent. Each equation is satisfied
with probability 1/2k0 , and hence Pr[F2] = O(m2/2k0). One also sees that
Pr[S2 ∧ ¬F2] = Pr[S′1 ∧ ¬F2], since both games proceed identically up until
the first point where F2 occurs. So we apply Lemma 1 with (S′1, S2, F2, F2),
and we obtain

|Pr[S′1]− Pr[S2]| = O(m2/2k0). (17)

Finally, observe that

Pr[S2] = O(1/2k0), (18)

since in this game, the value t′ is independent of the adversary’s view.
So finally, Lemma 2, and hence Theorem 2, follows from (12), (16), (17),

and (18).

Remark. The proof above is quite similar to proofs of lower bounds for
the discrete logarithm problem presented in [Sho97] (in particular, Theo-
rem 2 in that paper). There are a few technical differences, and the proof we
have presented here is much more complete. We should also point out that
Lemma 2 is fairly tight, in the sense that the well-known baby step/giant
step attack for the discrete logarithm (c.f., §3.6.2 of [MvOV97]) can be easily
adapted to inverting XOR-malleable permutations, provided the algorithm
U is highly reliable.

6 OAEP+

We now describe the OAEP+ encryption scheme, which is just a slight
modification of the OAEP scheme.

The general scheme makes use of a one-way trapdoor permutation. Let
f be the permutation, acting on k-bit strings, and g its inverse. The scheme
also makes use of two parameters k0 and k1, which should satisfy k0+k1 < k.
It should also be the case that 2−k0 and 2−k1 are negligible quantities. The
scheme encrypts messages x ∈ {0, 1}n, where n = k − k0 − k1.

The scheme also makes use of three functions:

G : {0, 1}k0 → {0, 1}n,

16

H ′ : {0, 1}n+k0 → {0, 1}k1 ,

H : {0, 1}n+k1 → {0, 1}k0 .

These three functions will be modeled as independent random oracles in the
security analysis.

We describe the key generation, encryption, and decryption algorithms
of the scheme.

Key generation This simply runs the generator for the one-way trapdoor
permutation scheme, obtaining f and g. The public key is f , and the
private key is g.

Encryption Given a plaintext x, the encryption algorithm randomly
chooses r ∈ {0, 1}k0 , and then computes

s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , w ∈ {0, 1}k, y ∈ {0, 1}k

as follows:

s = (G(r)⊕ x) ‖H ′(r ‖x), (19)
t = H(s)⊕ r, (20)
w = s ‖ t, (21)
y = f(w). (22)

The ciphertext is y.

Decryption Given a ciphertext y, the decryption algorithm computes

w ∈ {0, 1}k, s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 ,
r ∈ {0, 1}k0 , x ∈ {0, 1}n, c ∈ {0, 1}k1

as follows:

w = g(y), (23)
s = w[0 . . . n+ k1 − 1], (24)
t = w[n+ k1 . . . k], (25)
r = H(s)⊕ t, (26)
x = G(r)⊕ s[0 . . . n− 1], (27)
c = s[n . . . n+ k1 − 1]. (28)

If c = H ′(r ‖x), then the algorithm outputs the cleartext x; otherwise,
the algorithm rejects the ciphertext, and does not output a cleartext.

17

Theorem 3 If the underlying trapdoor one-way permutation scheme is se-
cure, then OAEP+ is secure against adaptive chosen ciphertext attack.

We start with some notations and conventions.
Let G0 be the original attack game. Let b and b′ be as defined in §2.1,

and let S0 be the event that b = b′.
Let qG, qH , and qH′ bound the number of queries made by the adversary

to oracles G, H, and H ′ respectively, and let qD bound the number of
decryption oracle queries.

We assume without loss of generality that whenever the adversary makes
a query of the form H ′(r ‖x), for any r ∈ {0, 1}k0 , x ∈ {0, 1}n, the adversary
has previously made the query G(r).

Also, let T0 bound the total running of the adversary’s attack in game
G0—this running time includes that of the adversary’s own algorithm, as
well as the that of the other system components (key generation, encryption
oracle, and decryption oracle). Let Tf denote the time needed to evaluate
f .

Finally, let InvAdv(T) be the maximal advantage that any adversary
that runs in time T has of inverting the given one-way trapdoor permutation
scheme.

We shall show that

|Pr[S0]− 1/2| ≤ InvAdv(O(T0 + qGqHTf))+
(qH′ + 2qD)/2k1 + (qD + 1)qG/2k0 .

(29)

We shall define a sequence G1,G2, . . . of modified attack games. In each
of these games, there are well-defined quantities b and b′. For any i ≥ 1, we
let Si be the event that b = b′ in game Gi. Also, for i ≥ 1, let Ti bound the
total running of the adversary’s attack in game Gi.

Any ciphertext y implicitly defines values w, s, t, r, x, c. Let y′ denote the
target ciphertext, and let w′, s′, t′, r′, x′, c′ be the corresponding implicitly
defined values for y′. Note that x′ = xb and c′ = H(r′ ‖x′).

We define sets SG and SH , as in §4, as follows. Let SG the set of values
r at which G was evaluated by the adversary. Also, let SH be the set of
values s at which H was evaluated by the adversary. We view these sets
as growing incrementally as the adversary’s attack proceeds—elements are
added to these only when a random oracle is queried by the adversary.

Game G1. Now we modify game G0 to define a new game G1. We view
G0 and G1 as being “driven” from the same underlying probability space—
just the rules of how functions on this probability space are computed are
different.

18

We modify the decryption oracle as follows. Given a ciphertext y, the
new decryption oracle computes w, s, t, r, x, c as usual. If the old decryption
oracle rejects, so does the new one. But the new decryption oracle also
rejects if r /∈ SG. More precisely, if the new decryption oracle computes r via
equation (26), and finds that r /∈ SG, then it rejects right away, without ever
evaluating G(r). Thus, in game G1, the decryption oracle never evaluates
G at a point at which the adversary has not already evaluated G.

Let F1 be the event that a ciphertext is rejected in G1, but not rejected in
G0. Unless either the adversary or the encryption oracle invoked H ′(r ‖x),
then this value is independent of all the other values available (directly
or indirectly) to the adversary, and hence in game G0 we will reject with
probability 1 − 1/2k1 . Since y 6= y′, either x 6= x′ or r 6= r′. If r = r′,
then we must have x 6= x′, and so although the encryption oracle has made
the query H ′(r′ ‖x′), this will not “help” the adversary. So in any case, the
adversary must have explicitly made the query H ′(r ‖x) himself if it is to
be made at all, and if this occurs, then by our convention, the adversary has
already queried G(r).

From the above, it follows that Pr[F1] ≤ qD/2k1 . Moreover, it is clear
by construction that Pr[S0 ∧ ¬F1] = Pr[S1 ∧ ¬F1], since the two games
proceed identically until the event F1 occurs. So applying Lemma 1 with
(S0, S1, F1, F1), we have

|Pr[S0]− Pr[S1]| ≤ qD/2k1 . (30)

Game G2. Now we modify game G1 to obtain a new game G2. In this new
game, we modify the decryption oracle yet again. Given a ciphertext y, the
new decryption oracle computes w, s, t, r, x, c as usual. If the old decryption
oracle rejects, so does the new one. But the new rejection oracle also rejects
if s /∈ SH . More precisely, if the new decryption oracle computes s via
equation (24), and finds that s /∈ SH , then it rejects right away, without ever
evaluating H(s). Thus, in game G2, the decryption oracle never evaluates
G or H at points other than those at which the adversary did.

Let F2 be the event that a ciphertext is rejected in G2, but not rejected
in G1. Consider a ciphertext y 6= y′.

We consider two cases.
Case 1. s /∈ SH , s = s′: Now, s = s′ and y 6= y′ implies t 6= t′. Moreover,

s = s′ and t 6= t′ implies that r 6= r′. If this ciphertext is rejected in game
G2 but not in G1, it must be the case that H ′(r′ ‖x′) = H ′(r ‖x). The
probability that such a collision can be found over the course of the attack
is (qH′ + qD)/2k1 . Note that r′ is fixed by the encryption oracle, and so
“birthday attacks” are not possible.

19

Case 2. s /∈ SH , s 6= s′: In this case, the oracle H was never evaluated
at s by either the adversary, the encryption oracle, or the decryption oracle.
Since t = H(s)⊕ r, the value r is independent of all values accessible by the
adversary, directly or indirectly. It follows that the probability that r ∈ SG
is at most qG/2k0 . Over the course of the entire attack, these probabilities
sum to qDqG/2k0 .

It follows that Pr[F2] ≤ (qH′ + qD)/2k1 + qDqG/2k0 . Moreover, it is clear
by construction that Pr[S1 ∧ ¬F2] = Pr[S2 ∧ ¬F2]. So applying Lemma 1
with (S1, S2, F2, F2), we have

|Pr[S1]− Pr[S2]| ≤ (qH′ + qD)/2k1 + qDqG/2k0 . (31)

Game G3. Now we modify game G2 to obtain an equivalent game G3. We
modify the decryption oracle so that it does not make use of the trapdoor
for f at all. The new decryption oracle simply enumerates all r∗ ∈ SG and
s∗ ∈ SH , and for each of these computes

t∗ = H(s∗)⊕ r∗, w∗ = s∗ ‖ t∗, y∗ = f(w∗).

If y∗ is equal to y, then it computes the corresponding x∗ and c∗ values, via
the equations (27) and (28); if c∗ = H ′(r∗ ‖x∗), it outputs x∗, and otherwise
rejects. If no y∗ equals y, then it simply outputs reject.

It is clear that
Pr[S3] = Pr[S2]. (32)

Moreover, by using appropriate data structures,

T3 = O(T0 + qGqHTf). (33)

Game G4. In game G4, we modify the encryption oracle in game G3.
Instead of computing y′ using the encryption algorithm, we simply choose
it at random. To avoid confusion, we denote this value in game G4 as y′′.

Now, y′′ determines values w′′, s′′, t′′, r′′, x′′, c′′ as usual. Let F3 be the
event that the adversary in game G3 evaluates G(r′). Let F4 be the event
that the adversary in game G4 evaluates G(r′′). Now, by inspection, one
sees that Pr[F3] = Pr[F4], and that Pr[S3∧¬F3] = Pr[S4∧¬F4]. So Lemma 1
applies with (S3, S4, F3, F4), and we obtain

|Pr[S3]− Pr[S4]| ≤ Pr[F4].

So it remains to bound Pr[F4]. Let F ′4 be the event that the adversary
queries H(s′′) in game G4. We have

Pr[F4] = Pr[F4 ∧ F ′4] + Pr[F4|¬F ′4] Pr[¬F ′4]

≤ InvAdv(O(T0 + qGqHTf)) + qG/22k0
.

20

This follows from the fact that

Pr[F4 ∧ F ′4] ≤ InvAdv(O(T0 + qGqHTf)),

which follows from the observation that if the adversary evaluates G at r′′

and H at s′′, then we can easily convert the attack into an algorithm that
computes f−1(y′′) for random y′′. Also, it is clear that

Pr[F4|¬F ′4] ≤ qG/22k0
,

since if the adversary never queries H at s′′, then r′′ is independent of all
values accessible to the adversary.

So we conclude that

|Pr[S3]− Pr[S4]| ≤ InvAdv(O(T0 + qGqHTf)) + qG/22k0
. (34)

Further, we observe that

Pr[S4] = 1/2. (35)

This follows from the fact that in game G4, all values accessible to the
adversary are independent of the hidden bit b, so the probability that the
adversary outputs b is 1/2.

Equations (30), (31), (32), (34), (35) together imply (29).
That completes the proof of Theorem 3.

7 Further Observations

7.1 Other variations of OAEP

Instead of modifying OAEP as we did, one could also modify OAEP so that
instead of adding the data-independent redundancy 0k1 in (1), one added the
data-dependent redundancy H ′′(x), where H ′′ is a hash function mapping n-
bit strings to k1-bit strings. This variant of OAEP—call it OAEP′—would
also be secure against adaptive chosen ciphertext attack, but its security
would be quantitatively inferior to that of OAEP+. Indeed, OAEP′ can be
attacked using the technique in the proof of Theorem 1, combined with an
“birthday attack” that finds collisions in H ′′.

21

7.2 But RSA-OAEP with exponent 3 is provably secure

Consider RSA-OAEP. Let N be the modulus and e the encryption exponent.
Then this scheme actually is secure in the random oracle model, provided
k0 ≤ log2N/e. This condition is satisfied by typical implementations of
RSA-OAEP with e = 3.

We sketch very briefly why this is so.
We first remind the reader of the attempted proof of security of OAEP

in §4, and we adopt all the notation specified there.
Suppose an adversary submits a ciphertext y to the decryption oracle.

We observed in §4 that if the adversary never explicitly queried H(s), then
with overwhelming probability, the actual decryption oracle would reject.
The only problem was, we could not always say the same thing about G(r)
(specifically, when r = r′).

For a bit string v, let I(v) denote the unique integer such that v is a
binary representation of I(v).

If a simulated decryption oracle knows s (it will be one of the adversary’s
H-queries), then X = I(t) is a solution to the equation

(X + 2k0I(s))e ≡ y (mod N).

To find I(t), we can apply Coppersmith’s algorithm [Cop98]. This algorithm
works provided I(t) < N1/e, which is guaranteed by our assumption that
k0 ≤ log2N/e.

More precisely, for all s∗ ∈ SH , the simulated decryption oracle tries to
find a corresponding solution t∗ using Coppersmith’s algorithm. If all of
these attempts fail, then the simulator rejects y. Otherwise, knowing s and
t, it decrypts y in the usual way.

We can also apply Coppersmith’s algorithm in the step of the proof
where we use the adversary to help us to extract a challenge instance of the
RSA problem.

Not only does this prove security, but we get a potentially more efficient
reduction—the implied inverting algorithm has a running time roughly equal
to that of the adversary, plus O(qDqSTC), where TC is the running time of
Coppersmith’s algorithm.

References

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations
among notions of security for public-key encryption schemes. In
Advances in Cryptology–Crypto ’98, pages 26–45, 1998.

22

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. In First ACM Confer-
ence on Computer and Communications Security, pages 62–73,
1993.

[BR94] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In
Advances in Cryptology—Eurocrypt ’94, pages 92–111, 1994.

[BS99] M. Bellare and A. Sahai. Non-malleable encryption: equivalence
between two notions, and an indistinguishability-based charac-
terization. In Advances in Cryptology–Crypto ’99, pages 519–536,
1999.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle
model, revisted. In 30th Annual ACM Symposium on Theory of
Computing, 1998.

[Cop98] D. Coppersmith. Finding a small root of a univariate modular
equation. In Advances in Cryptology–Eurocrypt ’98, pages 155–
165, 1998.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography.
In 23rd Annual ACM Symposium on Theory of Computing, pages
542–552, 1991.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography.
SIAM J. Comput., 30(2):391–437, 2000.

[MvOV97] A. Menesez, P. van Oorschot, and S. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably se-
cure against chosen ciphertext attacks. In 22nd Annual ACM
Symposium on Theory of Computing, pages 427–437, 1990.

[RS91] C. Rackoff and D. Simon. Noninteractive zero-knowledge proof
of knowledge and chosen ciphertext attack. In Advances in
Cryptology–Crypto ’91, pages 433–444, 1991.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Com-
munications of the ACM, pages 120–126, 1978.

23

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related
problems. In Advances in Cryptology–Eurocrypt ’97, 1997.

24

