
RSA–OAEP is Still Alive!

Eiichiro Fujisaki1, Tatsuaki Okamoto1, David Pointcheval2, and Jacques Stern2

1 NTT Labs, 1-1 Hikarinooka, Yokosuka-shi 239-0847 Japan.
E-mail: {fujisaki,okamoto}@isl.ntt.co.jp.

2 Dépt d’Informatique, ENS – CNRS, 45 rue d’Ulm, 75230 Paris Cedex 05, France.
E-mail: {David.Pointcheval,Jacques.Stern}@ens.fr

URL: http://www.di.ens.fr/~{pointche,stern}.

December 1, 2000

Abstract. Very recently Victor Shoup showed that the security result (security against
adaptive chosen ciphertext attack) of OAEP, claimed by Bellare and Rogaway, is wrong.
The flaw in their technique occurs when they simulate the decryption oracle. This
paper presents a complete proof of the security of OAEP, and proves that OAEP is
(semantically) secure (against adaptive chosen ciphertext attack) in the random oracle
model, under the partial one-wayness of the underlying permutation, which is stronger
than the originally claimed assumption, one-wayness of the underlying permutation.
Since the partial one-wayness of the RSA function is equivalent to its one-wayness, as
a result, although the security reduction is not tight, the security of RSA–OAEP can
be proven under the RSA assumption.

1 Introduction

The OAEP conversion was introduced by Bellare and Rogaway in 1994 [3] and
it was believed to provide semantically secure schemes against adaptive chosen
ciphertext attacks [5, 6], relative to the one-wayness of a trapdoor permutation,
using the (corrected) definition of plaintext-awareness [1].

Very recently, however, Victor Shoup [9] claimed that OAEP cannot be
proven secure under the proof technique introduced by [3, 1]. He indicated that
their proof technique, based on the (corrected) plaintext-awareness [1] cannot
possibly yield a proof of the security, especially the non-malleability, of OAEP.
He also proposed a modified version of OAEP, called OAEP+, which can be
proven to be secure.

Does his result mean that OAEP is no more secure, or is it impossible to
prove the security of OAEP? No! His result only implies that there is no hope
of proving the plaintext-awareness of OAEP. In other words, his result does not
deny the possibility of proving the security of OAEP by using another type of
reduction technique.

This paper employs a different reduction technique: in our reduction, a com-
putational assumption is introduced to prove the existence of a simulator of the
decryption oracle. Based on this technique, we prove that OAEP is semantically
secure against adaptive chosen ciphertext attack in the random oracle model [3],
under the partial one-wayness of the underlying permutation, which is stronger
than the originally claimed assumption, one-wayness of the underlying permu-
tation. Since the partial one-wayness of the RSA function [7] is equivalent to its
one-wayness, the security of RSA-OAEP can be proven under the one-wayness
of the RSA function.

2 Review of OAEP

2.1 The Underlying Problems

Let us consider the permutation

f : {0, 1}k −→ {0, 1}k,

which can also be seen as

f : {0, 1}n+k1 × {0, 1}k0 −→ {0, 1}n+k1 × {0, 1}k0 ,

with k = n + k0 + k1. In the OAEP description [3], it is only required to be a
trapdoor one-way permutation. However, in the following, we consider two more
kinds of problems related to the one-wayness of f : the partial one-wayness of f
and the set partial one-wayness:

– (τ, ε)-One-Wayness of f , means that for any adversary A whose running
time is bounded by τ , its success probability Succow(A) is upper-bounded
by ε, where

Succow(A) = Pr
s,t

[A(f(s, t)) = (s, t)];

– (τ, ε)-Partial-One-Wayness of f , means that for any adversary A whose run-
ning time is bounded by τ , its success probability Succp−ow(A) is upper-
bounded by ε, where

Succp−ow(A) = Pr
s,t

[A(f(s, t)) = s].

– (k, τ, ε)-Set Partial-One-Wayness of f , means that for any adversaryA which
outputs a set of k elements within a time bound τ , its success probability
Succsp−ow(A) is upper-bounded by ε, where

Succsp−ow(A) = Pr
s,t

[s ∈ A(f(s, t)].

We denote by Succow(τ), (resp. Succp−ow(τ) and Succsp−ow(k, τ)) the maximal
success probability Succow(A) (resp. Succp−ow(A) and Succsp−ow(A)) over all the
adversaries whose running times are bounded by τ , and which output k-long
sets in the latter case.

However, by randomly selecting an element in the k-long set returned by
an adversary the Set Partial One-Wayness, one breaks the Partial One-Wayness
with probability Succsp−ow(A)/k, and thus

1

k
× Succsp−ow(k, τ) ≤ Succp−ow(τ) ≤ Succow(τ).

But in some particular cases, more efficient reductions exists. Furthermore, in
some cases, all these problems are polynomially equivalent (which is the case of
the RSA permutation [7], hence the result in section 5).

2

2.2 The OAEP Cryptosystem

Let us now consider the OAEP conversion (K, E ,D) obtained from this permu-
tation f , whose inverse is denoted by g. We need G and H, two hash functions:

G : {0, 1}k0 −→ {0, 1}k−k0 and H : {0, 1}k−k0 −→ {0, 1}k0 .

Then,

– K(1k): specifies such a function f , and its inverse g. The public key pk is
therefore the function f and the secret key sk is the function g.

– Epk(m): on any message m ∈ {0, 1}n, and a random value r
R← {0, 1}k0 , one

computes

s = m‖0k1 ⊕G(r) and t = r ⊕H(s),

then the ciphertext is c = f(s, t).
– Dsk(c): thanks to the secret key, one extracts (s, t) = g(c), then

r = t⊕H(s) and M = s⊕G(r),

eventually, if [M]k1 = 0k1 , then it returns [M]n, otherwise it returns “Reject”.

In above description, [M]k1 denotes the k1 least significant bits of M , while [M]n

denotes the n most significant bits of M .

3 Security Result

Let us turn to the security analysis. Indeed, we want to prove that this scheme is
IND-CCA in the random oracle model [2], relative to the (partial) one-wayness of
the function f . More precisely, one can claim the following exact security result.

Theorem 1. For any CCA–adversary A against the “semantic security” of the
OAEP conversion (K, E ,D), within a time bounded by t, after qD, qG and qH
queries to the decryption oracle, and the hash functions G and H respectively,
his advantage ε is upper-bounded by

2×
Succow(t′) + qH × Succp−ow(t′) + qD ×

(
1

2k1−1
+

2qG + 1

2k0

)
+

qG
2k−1

1− qG
2k0
− qH

2k−k0

,

where

t′ ≤ t+ qG · qH · (Tf +O(1)) ,

and Tf denotes the time complexity of the function f .

Instead of proving this general theorem relative to the partial one-wayness of the
permutation, one can state it relative to the set partial one-wayness. Then, above
theorem directly comes from the previous inequality, and the lemma claimed
below.

3

Lemma 1. For any CCA–adversary A against the “semantic security” of the
OAEP conversion (K, E ,D), within a time bounded by t, after qD, qG and qH
queries to the decryption oracle, and the hash functions G and H respectively,
his advantage ε is upper-bounded by

2×
Succow(t′) + Succsp−ow(t′) + qD ×

(
1

2k1−1
+

2qG + 1

2k0

)
+

qG
2k−1

1− qG
2k0
− qH

2k−k0

,

where

t′ ≤ t+ qG · qH · (Tf +O(1)) ,

and Tf denotes the time complexity of the function f .

4 Proof of the Lemma 1

For proving this lemma, we will proceed in two stages. The first one considers
the classical semantic security of OAEP against chosen-plaintext attacks, under
the one-wayness of the permutation f . We then provide a simulator for the
decryption oracle, which is correct with an overwhelming probability under the
partial one-wayness of permutation f . The latter part differs from the original
proof [3], and corrects the flaw recently spotted [9].

4.1 Semantic Security

Thus, let us first claim the classical result about the IND-CPA of OAEP.

Lemma 2. Let us consider a CPA–adversary A against the “semantic securi-
ty” of (K, E ,D), within a time bounded by t, with advantage ε, after qG and qH
queries to the hash functions G and H respectively. Then there exists an adver-
sary B against the one-wayness of the permutation f , with a success probability
ε′, within a time bound t′ where

ε′ ≥ ε

2
×
(

1− qG
2k0
− qH

2k−k0

)
− qG

2k−1
,

t′ ≤ t+ qG · qH · (Tf +O(1)) .

Proof. The semantic security of this scheme intuitively comes from the fact that
for any adversary, in order to have any information about the encrypted message
m, she must have asked the query r to G. But in order to have any information
about the correct r, she must have asked s to H. Then the r and the s can
be found in the queries asked to G and H, then t = r ⊕ H(s). The pair (s, t)
provides the pre-image of the ciphertext c by the function f (hence the inversion
of f .) This part is similar to the original one [3], then we postpone the complete
proof in appendix A. ut

4

4.2 Simulation of the Decryption.

If one wants to furthermore consider A as a chosen-ciphertext adversary, B has
to be able to simulate the decryption oracle. Let us describe the behavior of a
decryption simulator DS. Then, we analyze the success probability of such a
simulator.

Description of the Decryption Simulation. On a query c = f(s, t) to
the decryption oracle, DS looks into all the query-answer (γ,Gγ) ∈ G-List and
(δ,Hδ) ∈ H-List. For each pair of such query-answer, it defines

σ = δ, τ = γ ⊕Hδ, µ = Gγ ⊕ δ,

and checks whether for some pair

c = f(σ, τ) and [µ]k1 = 0k1 .

If, for one of them, both equalities hold, then it outputs [µ]n. Otherwise, “Reject”
is returned.

Security Claim. About this simulation, we can claim the following result,
which repairs the previous proof [3], thanks to a computational assumption.
Indeed, we show that the new cases to consider, because of the new definition of
plaintext-awareness [1], are very unlikely under the partial one-wayness of the
permutation f :

Lemma 3. The decryption simulation DS, on a ciphertext c, while at most one
ciphertext c? has been directly obtained from the encryption oracle, can correctly
decrypt c with probability greater than ε′, within a time bound t′, where

ε′ ≥ 1−
(

Succsp−ow(t′) +
1

2k1−1
+

2qG + 1

2k0

)
t′ ≤ qG · qH · (Tf +O(1)) .

Before any analysis, let us recall that the plaintext-extractor is given the
ciphertext c to be decrypted, as well as the ciphertext c? obtained from the
decryption oracle and both lists G-List and H-List based on the interactions with
the random oracles G and H. Let us first see that this simulation uniquely
defines a possible plaintext, and thus can output the first one it finds. Indeed,
with above definition, many pairs could make the equalities to be satisfied. But
since the function f is one-to-one, the value of σ = s is uniquely defined, and
thus δ and Hδ. The same way, τ = t is uniquely defined, and thus γ and Gγ: at
most one µ may be selected. Then either [µ]k1 = 0k1 or not.

For above remark, eventually note that the lists G-List and H-List correspond
to input-output of functions G and H. And thus at most one output is related
to a given input.

Furthermore, if the ciphertext has been correctly built by the adversary (r
has been asked to G and s to H), the simulation will output the correct answer.

5

However, it will output “Reject” in any other situation, whereas the adversary
may have built a valid ciphertext without asking both queries to the random
oracles G and H.

More accurately, we can prove the following lemma which will be useful for
evaluating the failure probability after many queries to the decryption simulator.

Lemma 4. The decryption simulation DS, on a ciphertext c, while at most one
ciphertext c? = f(s?, t?) has been directly obtained from the encryption oracle,
but s? has not been asked to H, can correctly decrypt c with probability greater
than ε′, within a time bound t′, where

ε′ ≥ 1−
(

1

2k1−1
+

2qG + 1

2k0

)
t′ ≤ qG · qH · (Tf +O(1)) .

Notations. In order to proceed to the analysis of the success probability of
above plaintext-extractor, one needs to fix the notations. First, as done in the
previous part, we denote with a ? all the variables related to the challenge cipher-
text c?, obtained from the encryption oracle. Indeed, this ciphertext, of either
m0 or m1, implicitly defines some hash values, but maybe without appearing
in the G nor H lists. All the other variables refer to the decryption query c,
asked by the adversary to the decryption oracle, and thus to be decrypted by
this simulation.

We also have to consider some events:

– as above, we denote by AskH the event that s? has been asked to H;
– SBad denotes the event that s = s?;
– RBad denotes the event that r = r?, which means that

H(s)⊕ t = H(s?)⊕ t?;

– Bad denotes the union of these bad events, Bad = RBad ∨ SBad;
– AskR denotes the event that r has been asked to G;
– AskS denotes the event that s has been asked to H;
– AskRS denotes the intersection of these events, AskRS = AskR ∧ AskS, and

thus that both r and s have been asked to G and H respectively;
– Fail denotes the event that the above plaintext-extractor outputs a wrong

decryption answer.

Remark that the Fail event is limited to the situation that the plaintext-extractor
rejects a ciphertext whereas it would be accepted by the decryption oracle.
Indeed, as soon as it accepts, it means that the ciphertext is really valid, with
the output plaintext.

Success Probability. Clearly, we are interested in the probability of the event
Fail, while ¬AskH occurred, which may be split due to other events:

pr[Fail | ¬AskH] = pr[Fail ∧ Bad | ¬AskH] + pr[Fail ∧ ¬Bad | ¬AskH]

= pr[Fail ∧ Bad | ¬AskH] + pr[Fail ∧ ¬Bad ∧ ¬AskRS | ¬AskH]

+pr[Fail ∧ ¬Bad ∧ AskRS | ¬AskH]

6

We can already simplify this expression, since the latter case cannot occur.
About the previous one, if one note than

pr[¬AskRS] = pr[¬AskR ∨ ¬AskS] = pr[¬AskR] + pr[¬AskS ∧ AskR],

and
pr[¬Bad] = pr[¬RBad ∧ ¬SBad] ≤ min{pr[¬RBad], pr[¬SBad]}.

then,

pr[Fail ∧ ¬Bad ∧ ¬AskRS] = pr[Fail ∧ ¬Bad ∧ ¬AskR]

+pr[Fail ∧ ¬Bad ∧ (AskR ∧ ¬AskS)]

≤ pr[Fail ∧ ¬RBad ∧ ¬AskR]

+pr[Fail ∧ ¬SBad ∧ (AskR ∧ ¬AskS)]

≤ pr[Fail | ¬AskR ∧ ¬RBad]× pr[¬AskR ∧ ¬RBad]

+pr[Fail |AskR ∧ ¬AskS ∧ ¬SBad]

×pr[AskR ∧ ¬AskS ∧ ¬SBad]

≤ pr[Fail | ¬AskR ∧ ¬RBad]

+pr[AskR ∧ ¬AskS ∧ ¬SBad]

≤ pr[Fail | ¬AskR ∧ ¬RBad]

+pr[AskR | ¬AskS ∧ ¬SBad]× pr[¬AskS ∧ ¬SBad]

≤ pr[Fail | ¬AskR ∧ ¬RBad]

+pr[AskR | ¬AskS ∧ ¬SBad].

But without having asked r to G, and furthermore ¬RBad, G(r) is unpredictable,
and thus the probability that [s⊕G(r)]k1 = 0k1 is less than 2−k1 . On the other
hand, the probability of having asked r to G, without any information about
H(s) and thus about r (H(s) not asked, and s 6= s?), is less than qG · 2−k0 .
Therefore

pr[Fail ∧ ¬Bad ∧ ¬AskRS] ≤ 2−k1 + qG · 2−k0 .

Furthermore, this event is independent of AskH, and thus

pr[Fail | ¬AskH] ≤ pr[Fail ∧ Bad | ¬AskH] + 2−k1 + qG · 2−k0 .

Now, let us focus on the first term, Fail ∧ Bad, while ¬AskH, which was missing
in the original proof [3]. It can be split due to the disjoint sub-cases of Bad =
SBad ∨ (¬SBad ∧ RBad):

pr[Fail ∧ Bad | ¬AskH] = pr[Fail ∧ SBad | ¬AskH]

+pr[Fail ∧ RBad ∧ ¬SBad | ¬AskH]

≤ pr[Fail | SBad ∧ ¬AskH] + pr[RBad | ¬SBad ∧ ¬AskH].

The latter event means that RBad occurs provided that s 6= s? and the adversary
has not asked for s? to H. When s? is not asked to H and s 6= s?, H(s?) is
unpredictable and independent from H(s) as well as t and t?. Then, event RBad,

7

H(s?) = H(s)⊕ t⊕ t?, occurs with probability at most 2−k0 . The former event
can be furthermore split due to AskR, and then is equal to

pr[Fail |AskR ∧ SBad ∧ ¬AskH]× pr[AskR | SBad ∧ ¬AskH]

+pr[Fail | ¬AskR ∧ SBad ∧ ¬AskH]× pr[¬AskR | SBad ∧ ¬AskH]

≤ pr[AskR | SBad ∧ ¬AskH] + pr[Fail | ¬AskR ∧ SBad ∧ ¬AskH].

The former event means that r is asked to G whereas s = s? and H(s?) is
unpredictable, thus H(s) is unpredictable. Since r is unpredictable, the prob-
ability of this event is at most qG · 2−k0 (the probability of asking r to G).
On the other hand, the latter event means that the simulator rejects the valid
ciphertext c whereas H(s) is unpredictable and r is not asked to G. This proba-
bility is simply 2−k1 . To sum up, pr[Fail | SBad∧¬AskH] ≤ 2−k1 + qG · 2−k0 , thus
pr[Fail ∧ Bad | ¬AskH] ≤ 2−k1 + (qG + 1) · 2−k0 . As a consequence,

pr[Fail | ¬AskH] ≤ 1

2k1−1
+

2qG + 1

2k0
.

Thus, the decryption is correctly simulated with probability greater than

1−
(

1

2k1−1
+

2qG + 1

2k0

)
,

provided that ¬AskH happened. The running time of this simulator just includes
the computation of f(σ, τ) for all the possible pairs and thus is bounded by
qG · qH · (Tf +O(1)).

4.3 Combining Semantic Security with the Plaintext-Extractor

After qD queries to the decryption oracle, all the decryptions will be correctly
simulated with probability greater than(

1−
(

1

2k1−1
+

2qG + 1

2k0

))qD
,

provided that ¬AskH happened, which is upper-bounded by

1− qD ×
(

1

2k1−1
+

2qG + 1

2k0

)
.

Therefore, the probability of failure in at least one decryption simulation is

pr[one Fail] = pr[one Fail | ¬AskH]× pr[¬AskH] + pr[one Fail |AskH]× pr[AskH]

≤ pr[one Fail | ¬AskH] + pr[AskH]

≤ qD ×
(

1

2k1−1
+

2qG + 1

2k0

)
+ pr[AskH]

The latter part is upper bounded by Succsp−ow(qH , t
′). Indeed, at the end of the

game, or after a time bound t′ fixed in advance, depending on the expected

8

running time of the reduction, s? is one element amongst the qH queries asked
to H, and this set can be returned to break the set partial one-wayness of the
function f .

As a consequence, our simulator can make qD queries to this plaintext ex-
tractor, and output the whole pre-image of c? with probability greater than

ε

2
×
(

1− qG
2k0
− qH

2k−k0

)
− qG

2k−1
− qD ×

(
1

2k1−1
+

2qG + 1

2k0

)
− Succsp−ow(qH , t

′).

The running time of the overall simulation is still

t′ ≤ t+ qG · qH · (Tf +O(1)) ,

because all f computations can be done just once for each new hash query.
However, the success probability of our simulator is upper-bounded by Succow(t′),
and thus

ε ≤ 2×
Succow(t′) + Succsp−ow(qH , t

′) + qD ×
(

1

2k1−1
+

2qG + 1

2k0

)
+

qG
2k−1

1− qG
2k0
− qH

2k−k0

,

where
t′ ≤ t+ qG · qH · (Tf +O(1)) .

hence the theorem.

5 Application to RSA–OAEP

The main application of OAEP is certainly the famous RSA-OAEP, which has
been used to update the PKCS #1 standard [8]. Therefore, in his paper [9],
Shoup tried to repair the security result for a small exponent, e = 3, using
the Coppersmith’s algorithm [4]. However, our result can be applied for any
exponent for repairing RSA–OAEP. Indeed, thanks to random self-reducibility
of RSA, the partial one-wayness of RSA is equivalent to that of the whole RSA
problem, as soon as a constant fraction of the most significant bits of the pre-
image can be recovered.

One may furthermore remark that the following argument can be applied to
any random (multiplicatively) self-reducible problem, such as the Rabin func-
tion. Before presenting the global reduction, let us consider the problem of find-
ing small solutions for a linear modular equation.

Lemma 5. Let us be given an equation

t+ αu = c mod N

for which we are looking for small solutions for t and u. For all the α, excepted
a small fraction 22k+6/N of them, one can find t and u, smaller than 2k, within
a time bounded by O((logN)3).

9

Proof. Let us consider the lattice

L(α) = {(x, y) ∈ Z2 | x− αy = 0 mod N}.

Depending on α, some are good, others are bad. We say that L(α) is an `-good
lattice (and thus that α is an `-good value) if there is no non-zero vector of length
at most ` (using the Euclidean Norm). The other are called `-bad lattices (and
`-bad values respectively). It is clear that there are approximately less than π`2

`-bad lattices, which we bound by 4`2. Indeed, each bad value for α corresponds
to a point with integer coordinates in the disk of radius `. Then the proportion
of bad values for α is less than 4`2/N .

Now, let us assume that we have an `-good lattice, on which one applies
the Gaussian reduction. One then gets within time O((logN)3) a basis of L(α)
consisting of two non-zero vectors U and V such that

‖U‖ ≤ ‖V ‖ and |(U, V)| ≤ 1

2
‖U‖.

Let us consider a vector T = (t
u
), where (t, u) is a solution of the equation

t+ αu = c mod N , with both t and u less than 2k:

T = λU + µV, for some real λ, µ.

‖T‖2 = λ2‖U‖+ µ2‖V ‖+ 2λµ(U, V)

≥ (λ2 + µ2 − λµ)× ‖U‖
≥
(
(λ− µ/2)2 + 3µ2/4

)
× ‖U‖

≥ 3µ2/4× ‖U‖ ≥ 3

4
µ2`2.

Since we furthermore have ‖T‖2 ≤ 2× 22k,

|µ| ≤ 2
√

2 · 2k√
3 · `

and |λ| ≤ 2
√

2 · 2k√
3 · `

by symmetry.

If one has considered ` = 2k+2 > 2k+2
√

2/3 from the beginning, then

−1

2
< λ, µ <

1

2
.

Let us now choose any integer solution T0 = (t0
u0

) of the considered equation, and
thus by simply choosing a random integer u0 and then t0 = c−αu0 mod N . Let
us write it in the basis (U, V): T0 = ρU + σV with real numbers ρ and σ. These
coordinates can be found, and then, T − T0 is a solution to the homogeneous
equation, and thus is a lattice point: T − T0 = aU + bV , with unknown integers
a and b. But,

T = T0 + aU + bV = (a+ ρ)U + (b+ σ)V = λU + µV,

with −1/2 ≤ λ, µ ≤ 1/2. As a conclusion, a and b are the closest integers to
−ρ and −σ respectively. With a, b, ρ and σ, one can easily recover λ and µ and
thus t and u, which are necessarily unique. ut

10

Lemma 6. Let us consider an algorithm A which outputs a q-set which contains
half of the most significant bits of the e-th root (partial RSA, for any N < 22k0),
within a time bound t, with probability ε. Then there exists an algorithm B which
solves the RSA problem (N, e) with a success probability ε′, within a time bound
t′ where

ε′ ≥ ε× (ε− 22k0−k+6),

t′ ≤ 2t+ q2 ×O(k3).

Proof. Thanks to the random self-reducibility of RSA, with half the bits of
the e-th root of X = (x · 2k0 + r)e mod N , and the e-th root of Y = Xαe =
(y · 2k0 + s)e mod N , for a randomly chosen α, one gets both x and y. Thus,

(y · 2k0 + s) = α× (x · 2k0 + r) mod N

αr − s = (y − xα)× 2k0 mod N

which is a linear modular equation with two unknowns r and s which are known
to have small solutions. It can be solved using lemma 5.

The algorithm B just runs twice A, and then runs the Gaussian reduction
on all the q2 pairs of elements in both sets. If the partial pre-images are in the
sets, they will be found, unless the random α is a bad one (cf. the Gaussian
reduction in lemma 5.) ut

Remark 1. Above lemma can be extended to the case where a constant fraction
Θ of the most significant bits of the e-th root is found. The reduction runs A
1/Θ times, and the success probability decreases to approximately ε1/Θ.

Theorem 2. Let us consider a CCA–adversary A against the “semantic secu-
rity” of RSA–OAEP, within a time bounded by t, with advantage ε, after qD,
qG and qH queries to the decryption oracle, and the hash functions G and H
respectively. Then the RSA problem can be solved with probability ε′ greater than

ε2

16
×
(

1− qG
2k0−1

− qH
2k−k0−1

)
− ε×

(
qD

2k1+1
+
qD(2qG + 1)

2k0+2
+

qG
2k+1

+
1

2k−2k0−4

)
within a time bound t′ ≤ 2t+ qH · (qH + qG)×O(k3).

Proof. In any case, we have Succow(t′′) ≤ Succp−ow(t′′) ≤ Succsp−ow(t′′), for any
t′′, and thus the success probability ε of an adversary against RSA–OAEP within
a time bound t is less than

2

1− qG
2k0
− qH

2k−k0

×
(

2× Succsp−ow(t′′) +
qD

2k1−1
+
qD(2qG + 1)

2k0
+

qG
2k−1

)
.

Therefore,

Succsp−ow(t′′) ≥ ε

4
×
(

1− qG
2k0
− qH

2k−k0

)
− qD

2k1
− qD(2qG + 1)

2k0+1
− qG

2k
,

with
t′′ ≤ t+ qG · qH · (Tf +O(1)) .

11

With previous relation between qH-set partial-RSA and RSA, we have

Succow(t′)≥ Succsp−ow(t′′)× (Succsp−ow(t′′)− 22k0−k+6)

≥ ε2

16
×
(

1− qG
2k0−1

− qH
2k−k0−1

)
−ε×

(
qD

2k1+1
+
qD(2qG + 1)

2k0+2
+

qG
2k+1

+
1

2k−2k0−4

)
with

t′ ≤ 2t′′ + q2
H ×O(k3) ≤ 2t+ qH · (qH + qG)×O(k3).

ut

6 Conclusion

Our conclusion is that one can still trust the security of RSA–OAEP, but the
reduction is more costly than the original one. For other OAEP applications,
however, more care is needed, since the security does not actually rely on the
one-wayness of the permutation, only on the partial one-wayness.

Acknowledgments

We thank Victor Shoup, Don Coppersmith and Dan Boneh for fruitful com-
ments.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions of Security
for Public-Key Encryption Schemes. In Crypto ’98, LNCS 1462, pages 26–45. Springer-Verlag,
Berlin, 1998.

2. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New York, 1993.

3. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt with RSA. In
Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin, 1995.

4. D. Coppersmith. Finding a Small Root of a Univariate Modular Equation. In Eurocrypt ’96,
LNCS 1070, pages 155–165. Springer-Verlag, Berlin, 1996.

5. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences,
28:270–299, 1984.

6. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-Verlag, Berlin, 1992.

7. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

8. RSA Data Security, Inc. Public Key Cryptography Standards – PKCS.
Available from http://www.rsa.com/rsalabs/pubs/PKCS/.

9. V. Shoup. OAEP Reconsidered. Cryptology ePrint Archive 2000/060.

A Proof of Lemma 2

In this proof, we first recall how works the simulator, and then we analyze the
probability with which it extracts the whole pre-image of a given element.

12

A.1 Formalization.

We thus describe a simulator B which provides all the view of the adversary as
if she were in a real attack. Let us consider A = (A1, A2), an adversary against
the semantic security of (K, E ,D), using a chosen-plaintext attack. Within time
bound t, she asks qG and qH queries to the hash functions G and H respectively,
and distinguishes the right plaintext with an advantage greater than ε. Let us
describe the simulator B:

1. B first runs K(1k) to get a function f (defined by the public key);

2. B is then given c? ← f(s?, t?), for (s?, t?)
R← {0, 1}k−k0 ×{0, 1}k0 . B is aimed

to recover the pre-image (s?, t?).
3. B runs A1 on the public data, and gets a pair of messages {m0,m1} as well

as a state information st. It chooses a random bit b, and then outputs c?, as
the ciphertext of mb.

4. B runs A2(c?, st) and finally gets an answer b′. Then B outputs the pre-image
of c?, if one has been found among the queries asked to G and H (see below),
or Fail.

Of course, during all this simulation, the simulator also has to simulate the
random oracle answers, managing query/answer lists G-List and H-List for the
oracles G and H respectively, both initially set to empty lists:

– for a new query γ to G, for any query δ asked to H with answer Hδ (or for
any (δ,Hδ) ∈ H-List), one builds z = γ⊕Hδ, and checks whether c? = f(δ, z).
If for some δ that relation holds, then we have inverted the function f , and
we can still correctly simulate G, by answering Gγ = δ ⊕ mb‖0k1 . Remark
that Gγ is then a uniformly distributed value since δ = s?, and the latter is
uniformly distributed, by definition of x. Otherwise, one outputs a random
value Gγ. In both cases, the pair (γ,Gγ) is concatenated to the G-List.

– for a new query δ to H, one outputs a random value Hδ, and the pair (δ,Hδ)
is concatenated to the H-List. Note that once again, for any (γ,Gγ) ∈ G-List,
one may build z = γ ⊕ Hδ, and check whether c? = f(δ, z). If for some γ
that relation holds, then we have inverted the function f .

When we have found the pre-image of c?, and thus inverted f , one could output
it and stop the game. But for the analysis, we assume the game follows and
B only outputs the answer (or Fail, if no pre-image has been found) when A2

answers b′.
All this simulation is perfect, namely from the random oracle point of view.

Indeed, as we have seen, a new uniformly distributed value is returned for any
new query. However, the function property of the random oracles may fail: if two
distinct answers are given for a same query. Even if no answer is explicitly spec-
ified, excepted by a random value for new queries, some are implicitly defined.
Indeed, c? is defined to be a ciphertext of mb with a random tape r?:

r? ← H(s?)⊕ t? and G(r?)← s? ⊕mb‖0k1 .

Since H(s?) is randomly defined, r? can be seen as a random variable. Let us
denote by AskG the event that the query r? has been asked to G, and by AskH

13

the event that the query s? has been asked to H, and more specifically by FAskH
the event that the query s? has been asked to H during the find-stage (by A1).
Let us furthermore denote

– by FBad the event that r? has been queried to G in the find-stage (by A1),
but answered by something else than s? ⊕m0‖0k1 or s? ⊕m1‖0k1 ;

– and by GBad the event that the query r? has been asked to G in the guess-
stage (by A2), but answered by something else than s? ⊕ m0‖0k1 or s? ⊕
m1‖0k1 . Furthermore when this query has been asked, H(s?) has not been
asked before (otherwise the simulation of G is correct, because of the control
during the G-simulation presented above: Gγ ← δ ⊕mb‖0k1 = s? ⊕mb‖0k1 .)

Note that each event FBad, or GBad, implies AskG. As seen above, FBad and
GBad are the only events which make the simulation not to be perfect, then let
us denote

Bad = FBad ∨ GBad.

A.2 Probabilities Analysis.

We denote by Pr[·] the probabilities in the real attack, and by pr[·] the proba-
bilities in the simulated game.

As remarked in the first intuition, because of the randomness of G, and of the
way the message is masked by G(r?), the adversary cannot gain any advantage,
in the real game, without having asked r? to G. Indeed the simulation in this case
is perfect, since ¬AskG implies ¬(FBad∨GBad), and it is clearly independent of
b: mb only appears when r is remarked to be asked to G. Thus the probability
of correctly guessing b is exactly of one half:

Advind(A) = 2× Pr[A = b |AskG ∧ AskH]× Pr[AskG ∧ AskH]

+2× Pr[A = b |AskG ∧ ¬AskH]× Pr[AskG ∧ ¬AskH]

+2× Pr[A = b | ¬AskG]× Pr[¬AskG]− 1

≤ 2× Pr[AskG ∧ AskH] + 2× Pr[AskG ∧ ¬AskH]

+(2× Pr[A = b | ¬AskG]− 1)

≤ 2× Pr[AskG ∧ AskH] + 2× Pr[AskG ∧ ¬AskH] + 0.

However, in the following, we are interested in the probabilities in the simulated
game, which is perfect unless FBad or GBad happens:

ε ≤ 2× (pr[(AskG ∧ AskH) | ¬Bad] + pr[(AskG ∧ ¬AskH) | ¬Bad]) .

But, one may remark that

(AskG ∧ ¬AskH) ∧ ¬Bad = (AskG ∧ ¬AskH) ∧ ¬(FBad ∨ GBad)

is exactly the event that r? has been asked to G, without having asked s? to
H. But since we furthermore want ¬(FBad ∨ GBad), the answer G(r?) has been
either s? ⊕m0‖0k1 or s? ⊕m1‖0k1 . The probability of such an event is less than

qG · 2−k0 × 2 · 2−k+k0 = 2qG · 2−k = qG · 2−k+1.

14

Therefore,

pr[(AskG ∧ AskH) | ¬Bad] ≥ ε/2− qG · 2−k+1/pr[¬Bad],

and thus,

pr[AskG ∧ AskH] ≥ pr[(AskG ∧ AskH) ∧ ¬Bad]

≥ pr[(AskG ∧ AskH) | ¬Bad]× pr[¬Bad]

≥ ε/2× pr[¬Bad]− qG · 2−k+1.

Therefore, we just have to evaluate the probability pr[Bad] = pr[FBad ∨ GBad]:

pr[Bad] = pr[Bad | ¬FAskH]× pr[¬FAskH] + pr[Bad |FAskH]× pr[FAskH]

≤ pr[FBad ∨ GBad | ¬FAskH] + pr[FAskH].

First, because of the randomness of s? (which is uniformly distributed in
{0, 1}k−k0 , but not used yet, and thus no information can be revealed about it),
the probability of having asked it to H, in the first stage, is less than qH/2

k−k0 :
pr[FAskH] ≤ qH · 2−k+k0 .

Furthermore, one has to note that the events FBad or GBad, knowing that
¬FAskH, mean that A asks r? to G without having asked s? to H yet. Therefore
the random variable r? is undefined at the moment of the actual query. Thus
FBad or GBad may be set to be true if, later, H(s?) is set to a value v such that
v ⊕ t? has been asked to G: pr[FBad ∨ GBad | ¬FAskH] ≤ qG · 2−k0 . Thus,

pr[Bad] ≤ qG · 2−k0 + qH · 2−k+k0 .

As a conclusion, the probability that B outputs the pre-image is greater than

ε/2× (1− qG · 2−k0 − qH · 2−k+k0)− qG · 2−k+1.

A.3 Complexity Analysis.

Note that during the running time of B, for any new G-query γ, it has to look
into all the query-answer (δ,Hδ) ∈ H-List, and to compute

s = δ, t = γ ⊕Hδ, f(s, t).

Furthermore, it needs to do that again to extract the pre-image if AskG and
AskH occur. But this can be done only once for each pair, when the query is
asked to the hash function. Thus, the time complexity of the overall reduction
is

t+ qG · qH · (Tf +O(1)),

where Tf denotes the time complexity for evaluating the function f .

15

