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Abstract

We present a general framework for describing cryptographic protocols and analyzing their
security. The framework allows specifying the security requirements of practically any crypto-
graphic task in a unified and systematic way. Furthermore, in this framework the security of
protocols is preserved under a general protocol composition operation, called universal composi-
tion.

The proposed framework with its security-preserving composition operation allows for mod-
ular design and analysis of complex cryptographic protocols from simpler building blocks. More-
over, within this framework, protocols are guaranteed to maintain their security in any context,
even in the presence of an unbounded number of arbitrary protocol instances that run concur-
rently in an adversarially controlled manner. This is a useful guarantee, which allows arguing
about the security of cryptographic protocols in complex and unpredictable environments such
as modern communication networks.
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1 Introduction

Rigorously demonstrating that a protocol “does its job securely” is an essential component of
cryptographic protocol design. Doing so requires coming up with an appropriate mathematical
model for representing protocols, and then formulating, within that model, a definition of security
that captures the requirements of the task at hand. Once such a definition is in place, we can
show that a protocol “does its job securely” by demonstrating that its mathematical representation
satisfies the definition of security within the devised mathematical model.

However, devising a good mathematical model for representing protocols, and even more so
formulating adequate definitions of security within the devised model, turns out to be a tricky
business. First, the model should be rich enough to represent all realistic adversarial behaviors,
as well as the plethora of prevalent design techniques for distributed systems and networks. Next,
the definition should guarantee that the intuitive notion of security is captured with respect to any
adversarial behavior under consideration.

One main challenge in formulating the security of cryptographic protocols is capturing the
threats coming from the execution environment, and in particular potential “bad interactions”
with other protocols that are running in the same system or network. Another, related challenge
is the need to come up with notions of security that allow for modular design of cryptographic
protocols and applications from simpler building blocks in a way that guarantees overall security.
Addressing these challenges is the focal point of this work.

Initial definitions of security for specific cryptographic tasks (e.g. [gm84, gmra89]) considered
simplified models which capture only a single execution of the analyzed protocol. This is indeed
a good choice for first-cut definitions of security. In particular, it allows for relatively concise and
intuitive problem statement, and for simpler analysis of protocols. However, in many cases it turned
out that these initial definitions were insufficient when used within contexts and applications of
interest. Examples include Encryption, where the basic notion of semantic security [gm84] was later
augmented with several flavors of security against chosen ciphertext attacks [ny90, ddn00, rs91,
bdpr98] in order to address general protocol settings; Commitment, where the original notions
were later augmented with some flavors of non-malleability [ddn00, dio98, ff00] and equivocation
[bcc88, b96] in order to address the requirement of some applications; Zero-Knowledge protocols,
where the original notions [gmra89] were shown not to be closed under composition, and new
notions and constructions were needed [go94, gk89, f91, dns98, rk99, bggl04]; Key Exchange,
where the original notions allow protocols that fail to provide secure communication, even when
combined with secure symmetric encryption and authentication protocols [br93, bck98, sh99,
ck01, gl01]; Oblivious Transfer [r81, egl85, gm00] and secure multiparty funtion evaluation
[gl90, b91, mr91, pw00, c00, dm00, g04] where the first definitions do not guarantee security
under concurrent composition.

One way to capture the security concerns that arise in a specific protocol environment or in a
given application is to directly represent the given environment or application within an extended
definition of security. Such an approach is taken, for instance in the cases of key-exchange [br93,
ck01, gl01], non-malleable commitments [ddn00], concurrent zero-knowledge [dns98], and general
concurrently secure protocols [p04, bs05] where the definitions explicitly model several adversarially
coordinated instances of the protocol in question. This approach, however, results in definitions
with ever-growing complexity, and whose scope is inherently limited to specific environments and
concerns.

An alternative approach, taken in this work, is to use definitions that consider the protocol in
isolation, but guarantee secure composition. In other words, here definitions of security refer only
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to a single instance of the protocol “in vitro”. Security “in vivo”, namely in more realistic settings
where a protocol instance may run concurrently with other protocols, is obtained by formulating
the definitions of security in a way that guarantees the preservation of security under a general com-
position operation on protocols. This approach considerably simplifies the process of formulating
a definition of security and analyzing protocols. Furthermore, it guarantees security in arbitrary
protocol environments, even ones which have not been explicitly considered.

In order to make such an approach meaningful, we first need to have a general framework
for representing cryptographic protocols and their security properties. Indeed, otherwise it is not
clear what “preserving security when running alongside other protocols” means, especially when
these other protocols and their security properties are arbitrary. Several general definitions of
secure protocols were developed over the years, e.g. [gl90, mr91, b91, bcg93, pw94, c00, hm00,
psw00, dm00, pw00]. These definitions are obvious candidates for such a general framework.
However, the composition operations considered in those works fall short of guaranteeing general
secure composition of cryptographic protocols, especially in settings where security holds only for
computationally bounded adversaries and multiple protocol instances may be running concurrently
in an adversarially coordinated way. We further elaborate on these works and their relation to the
present one in Appendix A.

This work proposes yet another framework for representing and analyzing the security of cryp-
tographic protocols. Within this framework, we formulate a general methodology for expressing the
security requirements of cryptographic tasks. Furthermore, we define a general formal operation for
composing protocols, and show that notions of security expressed within this framework preserve
security under this composition operation. We call this composition operation universal composition
and say that definitions of security in this framework (and the protocols that satisfy them) are uni-
versally composable (UC). Consequently, we dub this framework the UC security framework.1 As we
shall see, the fact that security in this framework is preserved under universal composition implies
that a secure protocol for some task remains secure even it is running in an arbitrary and un-
known multi-party, multi-execution environment. In particular, this implies significantly stronger
and more general variants of some standard security concerns, such as non-malleability and secu-
rity under concurrent composition: Here security is preserved even with respect to an unbounded
number of instances of either the same protocol or other protocols.

A fair number of frameworks for defining security of protocols in a way that guarantees security-
preserving composition have been proposed since the first publication of this work [c01]. Many of
these works are influenced by this work, and many of them influenced later versions of this work,
this one included. Here let us mention only [n03, ps04, w05, k06, bpw07, cdpw07, mr11, kt13,
mt13, hs11, ccl15]. Specific influences are mentioned when relevant.

The rest of the introduction is organized as follows. Section 1.1 presents the basic definitional
approach and the ideas underlying the formalism. Section 1.2 presents the universal composition
operation and theorem. Section 1.3 discusses the issues associated with instantiating the general
approach within a framework that is both expressive and usable. Related work, including both
prior work and work that was done following the publication of the first version of this work, is
reviewed in Appendix A.

1We use similar names for two very different objects: A notion of security and a composition operation. We do
so since we believe that the two are intimately tied together. We note that elsewhere (e.g. [g04, Section 7.7.2])
the terminology is decoupled, with security being called environmental security and composition being articulated as
concurrent.
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1.1 The definitional approach

We briefly sketch the proposed framework and highlight some of its properties. The overall defini-
tional approach is the same as in most other general definitional frameworks mentioned above, and
goes back to the seminal work of Goldreich, Micali and Wigderson [gmw87]: In order to determine
whether a given protocol is secure for some cryptographic task, first envision an ideal process for
carrying out the task in a secure way. In the ideal process all parties hand their inputs to a trusted
party who locally computes the outputs, and hands each party its prescribed output. This ideal
process can be regarded as a “formal specification” of the security requirements of the task. A
protocol is said to securely realize the task if running the protocol “emulates” the ideal process for
the task, in the sense that any “damage” that can be caused by an adversary interacting with the
protocol can also be caused by an adversary in the ideal process for the task.

Prior formalisms. Several formalizations of this general definitional approach exist, including
the definitional works mentioned above. These formalisms provide a range of secure composability
guarantees in a variety of computational models. To better understand the present framework, we
first briefly sketch the definitional framework of [c00], which provides a basic instantiation of the
“ideal process paradigm” for the traditional task of secure function evaluation, namely evaluating
a known function of the secret inputs of the parties in a synchronous and ideally authenticated
network.

A protocol is a computer program (or several programs), intended to be executed by a number
of communicating computational entities, or parties. In accordance, the model of protocol execution
consists of a set of interacting computing elements, each running the protocol on its own local input
and making its own random choices. (The same model is considered also in [g04, Section 7.5.1].)
Throughout the introduction, we refer to these elements as machines.2 An additional computing
element, called the adversary, represents an entity that controls some subset of the parties and in
addition has some control over the communication network. The machines running the protocol and
adversary interact (i.e., exchange messages) in some specified manner, until each entity eventually
generates local output. The concatenation of the local outputs of the adversary and all parties is
called the global output.

In the ideal process for evaluating some function f , all parties ideally hand their inputs to an
incorruptible trusted party, who computes the function values and hands them to the parties as
specified. Here the adversary is limited to interacting with the trusted party in the name of the
corrupted parties. That is, the adversary determines the inputs of the corrupted parties and learns
their outputs.

Protocol π securely evaluates a function f if for any adversary A (that interacts with the protocol
and controls some of the parties) there exists an ideal-process adversary S, that controls the same
parties as A, such that the following holds: For any input values given to the parties, the global
output of running π with A is indistinguishable from the global output of the ideal process for f
with adversary S.

This definition suffices for capturing the security of protocols in a “stand-alone” setting where
only a single protocol instance runs in isolation. Indeed, if π securely evaluates f , then the parties
running π are guaranteed to generate outputs that are indistinguishable from the values of f on

2Formally, these elements are modeled as interactive Turing machines (ITMs). However, the specific choice of
Turing machines as the underlying computational model is somewhat arbitrary. Any other imperative model that
provides a concrete way to measure the complexity of realistic computations would be adequate, the RAM and PRAM
models being quintessential examples.
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the same inputs. Furthermore, the only pertinent information learned by any set of corrupted
parties is their own inputs and outputs from the computation, in the sense that the output of any
adversary that controls the corrupted parties is indistinguishable from an output generated (by a
simulator) given only the relevant inputs and outputs. However, this definition provides only limited
guarantees regarding the security of systems that involve the execution of two or more protocols.
Specifically, general secure composition is guaranteed only as long as no two protocol instances
that run concurrently are subject to a coordinated attack against them. Indeed, there are natural
protocols that meet the [c00] definition but are insecure when as few as two instances are active at
the same time and subject to a coordinated attack against them. We refer the reader to [c00, c06]
for more discussions on the implications of, and motivation for, this definitional approach. Some
examples for the failure to preserve security under concurrent composition are given in [c06, c13].

The UC framework. The UC framework preserves the overall structure of the above approach.
The difference lies in new formulations of the model of computation and the notion of “emulation”.
As a preliminary step towards presenting these new formulations, we first present an alternative
and equivalent formulation of the [c00] definition. In that formulation a new algorithmic entity,
called the environment machine, is added to the model of computation. (The environment machine
represents whatever is external to the current protocol execution. This includes other protocol
executions and their adversaries, human users, etc.) The environment interacts with the protocol
execution twice: First, before the execution starts, the environment hands arbitrary inputs of its
choosing to the parties and to the adversary. Next, once the execution terminates, the environment
collects the outputs from the parties and the adversary. Finally, the environment outputs a single
bit, which is interpreted as saying whether the environment thinks that it has interacted with the
protocol, π, or with the ideal process for f . Now, say that π securely evaluates a function f if
for any adversary A there exists an “ideal adversary” S such that no environment E can tell with
non-negligible probability whether it is interacting with π and A or with S and the ideal process
for f . (The above description corresponds to the static-corruptions variant of the [c00] definition,
where the set of corrupted parties is fixed in advance. In the case of adaptive corruption, the [c00]
definition allows some additional interaction between the environment and the protocol at the event
of corrupting a party.) The main difference between the UC framework and the basic framework of
[c00] is in the way the environment interacts with the adversary. Specifically, in the UC framework
the environment and the adversary are allowed to interact at any point throughout the course of
the protocol execution. In particular, they can exchange information after each message or output
generated by a party running the protocol. If protocol π securely realizes function f with respect
to this type of “interactive environment” then we say that π UC-realizes f .

This seemingly small difference in the formulation of the models of computation is in fact very
significant. From a conceptual point of view, it represents the fact that the “flow of information”
between the protocol instance under consideration and the rest of the system may happen at any
time during the run of the protocol, rather than only at input or output events. Furthermore,
at each point the information flow may be directed both “from the outside in” and “from the
inside out”. Modeling such “circular” information flow between the protocol and its environment
is essential for capturing the threats of a multi-instance concurrent execution environment. (See
some concrete examples in [c06].)

From a technical point of view, the environment now serves as an “interactive distinguisher”
between the protocol execution and the ideal process. This imposes a considerably more severe
restriction on the ideal adversary S, which is constructed in the proof of security: In order to make
sure that the environment E cannot tell the difference between a real protocol execution and the
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ideal process, S now has to interact with E throughout the execution, just as A did. Furthermore, S
cannot “rewind” E , and thus it cannot “take back” information that it previously sent E . Indeed, it
is this pattern of intensive interaction between E andA that allows proving that security is preserved
under universal composition. (Indeed, this restriction on S is incompatible with the “black-box
simulation with rewinding” technique which underlies much of traditional cryptographic protocol
analysis; alternative techniques are thus called for.)

An additional difference between the UC framework and the basic framework of [c00] is that the
UC framework allows capturing not only secure function evaluation but also reactive tasks where
new input values are received and new output values are generated throughout the computation.
Furthermore, new inputs may depend on previously generated outputs, and new outputs may de-
pend on all past inputs and local random choices. This is obtained by extending the “trusted party”
in the ideal process for secure function evaluation to constitute a general algorithmic entity called
an ideal functionality. The ideal functionality, which is modeled as another machine, repeatedly
receives inputs from the parties and provides them with appropriate output values, while main-
taining local state in between. This modeling guarantees that the outputs of the parties in the
ideal process have the expected properties with respect to their inputs, even when new inputs are
chosen adaptively based on previous outputs and the protocol communication. We note that this
extension of the model is “orthogonal” to the previous one, in the sense that either extension is
valid on its own (see e.g. [g04, Section 7.7.1.3] or Section 7.4). Other differences from [c00], such
as capturing different communication models and the ability to dynamically generate programs,
are discussed in later sections.

1.2 Universal Composition

As mentioned earlier on, the universal composition operation can be thought of as a natural ex-
tension of the “subroutine substitution” operation from the context of sequential algorithms to the
context of distributed protocols. Specifically, consider a protocol ρ where the parties make “subrou-
tine calls” to some ideal functionality F . That is, in addition to the standard set of instructions, ρ
may include instructions to provide F with some input value; furthermore, ρ contains instructions
for the case of obtaining outputs from F . (Recall that an instance of ρ typically involves multiple
machines; this in particular means that a single instance of F operates as a subroutine of multiple
machines.)

Furthermore, we allow ρ to call multiple instances of F , and even have multiple instances of F
run concurrently. We provide ρ with a general mechanism for “naming” the instances of F in order
to distinguish them from one another, but leave it up to ρ to decide on the actual naming method.
The instances of F run independently of each other, without any additional coordination.

Now, let π be a protocol that UC-realizes F , according to the above definition. Construct the
composed protocol ρF→π by starting with protocol ρ, and replacing each call to an instance of F
with a call to an instance of π. Specifically, an input given to an instance of F is now given to
an machine in the corresponding instance of π, and outputs of an machine in an instance of π are
treated by ρ as outputs obtained from the corresponding instance of F .3

The universal composition theorem states that running protocol ρF→π is “at least as secure” as

3In prior versions of this work, as well as elsewhere in the literature, the original protocol is denoted ρF and the
composed protocol is denoted ρπ. However that notation suggests a model operation that “attaches” some fixed
protocol (either F or π) to any subroutine call made by ρ. In contrast, we wish to consider situations where ρ makes
multiple subroutine calls, to different protocols, and where only calls to F are replaced by calls to π, whereas other
calls remain unaffected.
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running the original protocol ρ. More precisely, it guarantees that for any adversary A there exists
an adversary S such that no environment machine can tell with non-negligible probability whether
it is interacting with A and parties running ρF→π, or with S and parties running ρ. In particular,
if ρ UC-realizes some ideal functionality G then so does ρF→π.

Essentially, the universal composition theorem considers an environment that, together with the
adversary, runs a “coordinated attack” against the various instances of π, along with the “high-level
part of ρF→π.” The theorem guarantees that any such coordinated attack can be translated to an
attack against the “high-level part of ρ” plus a set of attacks, where each such attack operates
separately against a single instance of F .

On the universality of universal composition. Many different ways of “composing together”
protocols into larger systems are considered in the literature. Examples include sequential, parallel,
and concurrent composition, of varying number of protocol instances, where the composed instances
are run either by the same set of parties or by different sets of parties, use either the same program
or different programs, and have either the same input or different inputs (as in e.g. [dns98, ck02,
cf01, clos02]). A more detailed taxonomy and discussion appears in [c06, c13].

All these composition methods can be captured as special cases of universal composition. That
is, any such method for composing together protocol instances can be captured via an appropriate
“calling protocol” ρ that uses the appropriate number of protocol instances as subroutines, provides
them with appropriately chosen inputs, and arranges for the appropriate synchronization in message
delivery among the various subroutine instances. Consequently, it is guaranteed that a protocol
that UC-realizes an ideal functionality G continues to UC-realize G even when composed with other
protocols using any of the composition operations considered in the literature.

Universal composition also allows formulating new ways to put together protocols (or, equiva-
lently, new ways to decompose complex systems into individual protocols). A salient example here
is the case where two or more protocol instances have some “joint state”, or more generally “joint
subroutines”. Said otherwise, this is the case where a single instance of some protocol γ serves as
a subroutine of two or more different instances of protocol π. Furthermore, γ may also serve as a
subroutine of the “calling protocol” ρ or of other protocols in the system. Still, we would like to be
able to analyze each instance separately in vitro, and deduce the security of the overall system - in
very much the same way as the traditional case where the instances of π do not share any state.
Situations where this type of (de-)composition becomes useful include the commonplace settings
where multiple secure communication sessions use the same long-term authentication modules, or
where multiple protocol instances use the same shared reference string or same randomly chosen
hash function Universal composition in such situations was initially investigated in [cr03], for the
case of protocols that share subroutines only with other instances of themselves, and in [cdpw07]
for the case of protocols that share subroutines with arbitrary, untrusted protocols. See further
discussion at the end of Section 2.

Implications of the composition theorem: Modularity and stronger security. Tradition-
ally, secure composition theorems are treated as tools for modular design and analysis of complex
protocols. (For instance, this is the main motivation in [mr91, c00, dm00, pw00, pw01].) That is,
given a complex task, first partition the task to several, simpler sub-tasks. Then, design protocols
for securely realizing the sub-tasks, and in addition design a protocol for realizing the given task
assuming that secure realization of the sub-tasks is possible. Finally, use the composition theorem
to argue that the protocol composed from the already-designed sub-protocols securely realizes the
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given task. Note that in this interpretation the protocol designer knows in advance which protocol
instances are running together and can control how protocols are scheduled.

The above implication is indeed very useful. In addition, this work articulates another impli-
cation of the composition theorem, which is arguably stronger: Protocols that UC-realize some
functionality are guaranteed to continue doing so within any protocol environment - even environ-
ments that are not known a-priori, and even environments where the participants in a protocol
execution are unaware of other protocol instances that may be running concurrently in the system
in an adversarially coordinated manner. This is a very useful (in fact, almost essential) security
guarantee for protocols that run in complex, unpredictable and adversarial environments such as
modern communication networks.

1.3 Making the framework useful: Simplicity and Expressibility

In order to turn the general definitional approach described in Sections 1.1 and 1.2 into an actual
definition of security that can be used to analyze protocols of interest, one has to first pinpoint
a formal model that allows representing protocols written for distributed systems. The model
should also allow formulating ideal functionalities, and make sure that there is a clear and natural
interpretation of these ideal functionalities as specifications (correctness, security and otherwise)
for tasks of interest. In particular, the model should allow rigorous representation of executions of
a protocol alongside an adversary and an environment, as well as the ideal processes for an ideal
functionality alongside a simulator and an environment, as outlined in Sections 1.1 and 1.2. In
addition, the model should allow representing the universal composition operation and asserting
the associated theorem.

Devising such a model involves multiple “design choices” on various levels. These choices affect
the level of detail and formality of the resulting definition of security, its expressive power (in terms
of ability to capture different situations, tasks, and real-life protocols), its faithfulness (in terms of
ability to capture all realistic attacks), as well as the complexity of describing the definition and
working with it. The goal, of course, is to devise a model which is simple and intuitive, while
being as expressive and faithful to reality as possible; however, simplicity, expressive power, and
faithfulness are often at odds.

This work presents two such models, providing two points of tradeoff among these desiderata.
The first model is a somewhat simplistic one, whose goal is to highlight the salient points in the
definitional approach with minimal formalism. This come at the price of restricting the class
of protocols and tasks that can be naturally modeled. The second model is significantly more
expressive and general, at the price of some additional formalism. The rest of this section highlights
several of the definitional choices taken. More elaborate discussions of definitional choices appear
throughout this work.

One aspect that is common to both models is the need to rigorously capture the notion of
“subroutine machines” and “subroutine protocol instances”. (Here we use the term “machine” to
denote a computational entity without getting into specific details.) This in particular involves
making rigorous the concept of providing an input to a subroutine machine, obtaining output from
a subroutine machine, and an machine that is a subroutine of multiple machines.

Next we mention three observations that are used in both models and significantly simplify
the treatment. The first observation is that there is no need to devise separate formalisms for
representing protocols and representing ideal functionalities. Similarly, there is no need to formalize
the ideal process separately from the process of protocol execution. Instead we allow representing
ideal functionalities as special cases of protocols. We then let the ideal process be the same as the
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process of executing a protocol alongside an adversary and an environment, where the protocol is
one that represents an ideal functionality. One caveat here is that the model will need to formalize
the ability of machines to interact directly with the adversary, to enable representing the capabilities
of ideal functionalities.

The second simplifying observation is that there is no need to directly formalize within the
basic model of computation an array of different “corruption models”, namely different ways by
which parties turn adversarial and deviate from the original protocol. (Traditional models here
are “honest-but-curious” and “Byzantine” corruption models, where the set of corrupted parties
is chosen either statically or adaptively, as well as a variety of other attacks such as side-channel
leakage, coercion, transient break-ins, and others.) In fact, the basic model need not formally model
corruption at all. Instead, the different corruption models can be captured by having the adversary
deliver special corruption messages to parties, and considering protocols whose behavior changes
appropriately upon receipt of such messages.

The third observation is that there is no need to directly formalize an array of communica-
tion and synchronization models as separate models of computation. (Traditionally, such models
would include authenticated communication, private communication, synchronous communication,
broadcast, etc.) Instead, communication can be captured by way of special “channel machines”
that are subroutines of two or more other machines, where the latter machines represent the com-
municating entities. Different communication models are then captured via different programs for
the channel machines, where these programs may include communication with the adversary. The
meaningfulness of this approach is guaranteed by the UC theorem: Indeed, if we compose a protocol
ρ that was designed in a model where some communication abstraction is captured via an ideal
functionality F , with a protocol π that UC-realizes F , where π operates in a communication model
that is captured via some ideal functionality G, then the composed protocol ρF→π is a protocol that
uses only calls to G, and at the same time UC-emulates ρ. This approach also provides flexibility
in expressing multiple variants of common communication models.

The tradeoff between simplicity and expressibility comes to play in the level to which the mod-
els dynamically changing systems and networks. In the first, simplistic variant of the model, we
postulate a static system with a fixed set of computational entities, with fixed identities and pro-
grams, and where each such entity can communicate only with an a-priori fixed set of entities with
known identities. Similarly the sets of computational entities that constitute “protocol instances”
are fixed ahead of time.

While this modeling is indeed simpler to present and argue about, it is not amenable to cap-
turing realistic settings where the number, the identities, the programs, and the connectivity of
computational entities changes as the system progresses. Natural examples include servers that
need to interact with clients whose identities are not known in advance and may be dynamically
chosen, peer-to-peer protocols whose membership is open and dynamic, or where participants are
instructed to execute code that was dynamically generated by others, or even just systems which
allow for an adversarially-controlled number of independent instances of a simple protocol where
the number of instances is not known to the protocol.

The more general model provides built-in mechanisms for capturing such situations. In particu-
lar, it allows representing dynamically generated processes, with dynamically generated programs,
identities, and communication patterns. The model also provides a natural way to delineate an
“instance of a protocol” even when an a-priori unbounded number of processes join the instance
dynamically throughout the computation, without global coordination.

We note that the latter modeling approach stands apart from existing models of distributed
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computing. Indeed, existing models typically impose more static restrictions on the system; this
results in reduced ability to express protocols, scenarios and threats that are prevalent in modern
networks.

Another choice relates to the level of formalism: While we strive to pin down the details of
the model as much as possible, we do not provide much in terms of syntax and a “programming
language” for expressing protocols and their execution. Instead, we rely on the basic minimal syntax
of Turing machines. We leave it to future work to develop more formal and abstract domain-specific
programming languages that will facilitate mechanized representation and analysis of protocols and
ideal functionalities within this framework.

Finally, we note that the models of computation presented here are different than the one
in the first public version of this work [c00a, version of 2000]. Indeed the model has evolved
considerably over time, with the main steps being archived at [c00a, later versions]. In addition, a
number of works in the literature provide different tradeoffs between simplicity and expressibility,
e.g. [n03, w05, w16, sh99, ccl15]. See the Appendix for more details on these works as well as
on previous versions of the present work.

1.4 Overview of the rest of this paper

The simplified model of computation is presented in Section 2. To further increase readability, the
presentation in that section is somewhat informal.

Section 3 presents a general model for representing distributed systems. While this model is, of
course, designed to be a basis for formulating definitions of security and asserting composability, we
view it as a contribution of independent interest. Indeed, this model is quite different from other
models in the literature for representing distributed computations: First, as mentioned above, it
captures fully dynamic and evolving distributed systems. Second, it accounts for computational
costs and providing the necessary mechanisms and “hooks” for more abstract concepts such as
protocol instances, subroutines, emulation of one protocol by another, and composition of protocols.

Section 4 presents the basic model of protocol execution in the presence of an adversary and an
environment, as well as the general notions of protocol emulation. It also presents some variants of
the basic definition of protocol emulation and asserts relationships among them.

Section 5 presents the concept of an ideal functionality, and defines what it means for a protocol
to realize an ideal functionality.

Section 6 presents the universal composition operation, and then states and proves the universal
composition theorem.

Section 7 exemplifies the use of the framework. It first proposes some conventions for expressing
various party corruption operations. Next it presents a handful of ideal functionalities that capture
some salient communication and corruption models.

Finally, the Appendix reviews related work and its relationship with the present one. It also
briefly reviews previous versions of this work.

2 Warmup: A simplified model

This section presents a simplified version of the definition of security and the composition theo-
rem. We obtain simplicity by somewhat restricting the model of computation, thereby somewhat
restricting the expressive power of the resulting definition and the applicability of the composition
theorem. On the positive side, the restriction allows us to highlight the main ideas of the definition
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and composition theorem with minimal formalism. To further improve readability, we also allow
ourselves to be somewhat informal in this section.

Section 2.1 defines the main object of interest, namely protocols. Section 2.2 presents the
definition of security. Section 2.3 presents the universal composition theorem for this model, and
sketches its proof.

2.1 Machines and Protocols

As discussed earlier, the main objects we wish to analyze are algorithms, or computer programs,
written for a distributed system. (We often use the term protocols when referring to such algo-
rithms.) In contrast with an algorithm written for standard one-shot sequential execution, a pro-
tocol consist of several separate programs, where each program is intended to run independently of
(and potentially concurrently with) all others. In particular each program obtains its own inputs
and random inputs, and generates its own outputs. During their execution, the programs interact
by transmitting information to each other. In the rest of this subsection we provide some basic
formalism that will allow defining and arguing about protocols. We start with formalism regarding
the individual programs (which we call machines), and then move on to formalizing protocols as
collections of machines with certain properties.

The reader should keep in mind that the formalism presented below will differ in a number
of ways from the traditional cryptographic view of a protocol as a “flat” collection of programs
(machines) where each program represents the overall actions of a “party”, or “principal”, namely
an actual real-world entity. First, to enable the use of composition we allow a “party” to have
multiple machines, where each machine may have several subroutine machines. Second, we use the
same construct (machines) to represent both computational processes that physically execute on an
actual processor, as well as abstract processes that do not actually execute on any physical machine
but rather represent ideal functionalities as per the modeling sketched in the introduction. We will
also allow machines to be the subroutines of multiple “caller machines”, where some of these caller
machines represent different real-world entities. This will be useful for capturing “multi-party”
ideal functionalities. (For instance, the traditional notion of a communication channel between
machines A and B will be captured via a “channel machine” that is a subroutine of both A and
B.)

As for the formalism itself: We almost completely refrain from defining the syntax of machines.
(In Section 3 we do propose some rudimentary syntax based on interactive Turing machine [gmra89,
g01], but any other reasonable model or syntax will do.) Still, we define the following constructs.

First, we let each machine have a special value called the identity of the machine. The identity
remains unchanged throughout the computation. Second, we require that incoming information
to a machine be labeled either as input (representing inputs from a “calling machine”), or as
subroutine-output (representing output from subroutines of the machine). We also allow a third
form of incoming information, called backdoor, which will be used to model information coming
from the adversary (to be defined in Section 2.2), or disclosed to it.

Third, we provide each machine µ with a communication set, which lists the set of identities
of machines that µ can send information to, including the type of information: input, subroutine-
output, or backdoor. That is, the communication set C of µ consists of a sequence of pairs (ID, L),
where ID is an identity string and L ∈ {input, subroutine-output, backdoor}. (As we’ll see shortly,
we will restrict attention to collections of machines where a machine µ can provide input to machine
µ′ if and only if µ′ can provide subroutine-output to µ, and µ can provide backdoor information to
µ′ if and only if µ′ can provide backdoor information to µ. Thus the set of machines that can send
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inputs, subroutine-outputs or backdoor information to a given machine µ can be inferred from its
own communication set.)

In all, a machine is a triple µ = (ID, C, µ̃) where ID is the identity, C is the communication set,
and µ̃ is the program of the machine. See Figure 2.1 for a graphical depiction of a machine.

input

backdoor

subroutine-output

ID

subroutine-output

input

backdoor

Figure 1: The basic computing unit (machine). Each machine has an identity that remains unchanged
throughout the computation. Information from the outside (i.e., from other machines) is labeled as either
input or subroutine-output. Information sent to other machines is labeled similarly. In addition, a machine
can receive information from and send information to the adversary; this information is labeled as backdoor.
For graphical clarity, in future drawings we draw inputs as lines coming from above, subroutine outputs as
lines coming from below, and backdoor communication as lines coming from either side. The communication
set of the machine is not depicted.

Protocols. The next step is to define “multi-party protocols,” namely collections of programs
that are designed for a joint goal, but are to be executed separately from each other by different
“parties” while exchanging information. In our formalism, a protocol will simply be set of machines
(with some minimal consistency requirements from the communication sets). It should be kept in
mind, however, that our formalism allows for multiple machines to represent a single “party”, as
well as machines that do not represent any specific “party.”

We turn to defining when a collection of machines is called a protocol. First, we formally define
caller, subroutine and subsidiary identities: Machine µ is a caller of identity ID′ if the communication
set of µ allows µ to provide input to identity ID′ (i.e., the communication set of µ contains the
entry (input,ID′)). Machine µ′ is a subroutine of identity ID if the communication set of µ′ allows
µ′ to provide subroutine-output to identity ID.

Consider set of machines π = (µ1, ..., µn) where µi = (IDi, Ci, µ̃i). Machine µi ∈ π is a sub-
routine of machine µj ∈ π if µi is a subroutine of identity IDj . Machine µi ∈ π is a subsidiary of
machine µj ∈ π if µi is a subroutine of µj or of another machine µk ∈ π that is a subsidiary of µj .

A set of machines π = (µ1, ..., µn) is called a protocol if the identities of the machines are unique,
and the communication sets of the machines satisfy the following requirements:

• If π contains a machine µ = (ID, C, µ̃) that is a caller of identity ID′ then π also contains a
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machine µ′ = (ID′, C ′, µ̃′) that is a subroutine of identity ID.

• If π contains a machine µ′ = (ID′, C ′, µ̃′) that is a subroutine of identity ID, and in addition
π contains a machine µ with identity ID, then µ is a caller of identity ID′.

If ID is not an identity of any machine in π, then we say that µ′ is a main machine of π, and
that ID is an external identity of µ with respect to π. if machine µ ∈ π is not a main machine
of π then we say that µ is an internal machine of π.

• π contains no “subroutine cycles”. That is, π contains no machine that is a descendant of
itself.

Using this terminology, translating the traditional notion of an m-party protocol into the present
formalism results in a protocol that has m main machines, and potentially other internal machines.
The internal machines that are subsidiaries of a single main machine represent modules within the
program of the corresponding traditional party. Internal machines that are subsidiaries of more
than one main machine naturally correspond to abstract constructs such as ideal functionalities
(e.g. the channel functionalities mentioned above).

.

2.2 Defining security of protocols

As discussed in the introduction, the security of protocols with respect to a given task is defined
by comparing an execution of the protocol to an ideal process where the outputs are computed by
a single trusted party that obtains all the inputs. We substantiate this approach as follows.

First, we formulate the process of executing a (potentially multi-party) protocol within an
adversarial execution environment.

Next, as a preliminary step towards defining security, we formulate a general notion of corre-
spondence between protocols, called protocol emulation. This notion applies to any two protocols:
Essentially, protocol π emulates protocol φ if π “successfully mimics the behavior of φ” within any
execution environment. Said otherwise, if π emulates φ then, from the point of view of the rest of
the system, interacting with π is “no worse” than interacting with φ.

Finally we define the ideal process for carrying out a distributed computational task by formu-
lating a special “ideal protocol” for the task at hand. We then say that protocol π securely realizes
a given task if π emulates the ideal protocol for the task.

2.2.1 Protocol execution and protocol emulation

We first present the formal model of protocol execution and the notion of protocol emulation, with
minimal discussion. Next we discuss and motivate a number of aspects of the formalism. (In
particular we remind the reader that, as discussed in Section 1.3, the model of execution does
not explicitly represent network communication between machines, nor does it directly represent
corrupted machines. The discussion sketches how these crucial mechanism can be modeled on top
of the present formalism.)

The model of execution for protocol π consists of the machines in π plus two additional ma-
chines, called the environment E and the adversary A. The environment has identity 0, and its
communication set allows it to provide inputs to A and to the main machines of π. The adversary
A has identity 1, and its communication set allows it to provide backdoor information to all ma-
chines. (We assume that the none of the identities of the machine in π, nor the external identities
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of the main machines in π, are 0 or 1.) The communication sets of the machines of π are augmented
to include the ability to provide backdoor information to identity 1, namely to A. (As discussed in
the introduction, the environment and the adversary represent different aspects of the “rest of the
system” and its interaction with π. The environment represents the interaction via inputs given
to the protocol and outputs received from it, namely via the “official channels.” The adversary
represent “side effects”, namely information leakage form the protocol execution and influence on
it via other means of information transfer. We consider both machines as adversarial, in the sense
that the definition of security will later quantify over all polynomial time E and A.)

An execution of π with adversary A and environment E , on initial input z, starts by running
E on input z. From this point on, the machines take turns in executing as follows: Once machine
µ = (ID, C, µ̃) performs an instruction to transmit information to some identity ID′ ∈ C, the
execution of µ is suspended. Next:

1. If µ = E then the message (which in this case is an input) is added to the state of the machine
µ′ whose identity is ID′ together with some source identity chosen by E out of the external
identities of µ, along with the label input. If µ′ = A then no source identity is added. Next
the execution of µ′ begins (or resumes) until the point where µ′ either pauses or instructs to
transmit information to another machine.

2. If µ 6= E and the identity ID′ exists in the system, then the message is added to the state of
machine µ′ whose identity is ID′, along with the label and the source identity ID. Next µ′

begins (or resumes) executing.

3. Else (identity ID′ is an external identity for π), the message is added to the state of E , along
with the identities ID and ID′, and E resumes executing. (Observe that in this case µ is a
main machine of π and the message is subroutine-output.)

If µ pauses without sending information then the execution of E resumes. The execution ends when
E halts. We assume that E has a special binary output variable. The output of the execution is the
contents of that variable when E halts. A graphical depiction of the model of protocol execution
appears in Figure 2 on page 14.

Let execπ,A,E(z) denote the random variable (over the local random choices of all the involved
machines) describing the output of an execution of π with environment E and adversary A, on
input z, as described above.n Let execπ,A,E denote the ensemble {execπ,A,E(z)}z∈{0,1}∗ .

Protocol emulation. Next we define what it means for protocol π “emulate” another protocol
φ. The idea is to directly capture the requirement that no environment should be able to tell
whether it is interacting with π and an adversary of choice, or with φ and some other adversary.

We require that all machines are polytime in the sense that the overall number of steps taken
by each machine is bounded by a polynomial in a global security parameter, taken to be the length
of the initial input to the environment. Jumping ahead, this will mean that an execution of any
protocol can be simulated on a standard probabilistic Turing machine in time polynomial in the
security parameter and the number of machines. All other asymptotics are also taken over the
security parameter.

Definition 1 (UC-emulation, simplified model) Protocol π UC-emulates protocol φ if for any
polytime adversary A there exists a polytime adversary S such that, for any polytime environment E,
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Figure 2: The model of execution of protocol π. The environment E writes the inputs and reads the
subroutine-outputs of the main machines of π. In addition, E and A interact freely. The main machines of
π may have subroutines, to which E has no direct access.

the ensembles execπ,A,E and execφ,S,E are indistinguishable. That is, for any input, the probability
that E outputs 1 after interacting with A and π differs by at most a negligible amount from the
probability that E outputs 1 after interacting with S and φ.

Discussion. We discuss some aspects of the model of execution and the notion of protocol emu-
lation. See additional discussion in Section 3.3.

On UC-emulation. UC-emulation guarantees strong correspondence between protocols. It requires
the ability to turn any real-world attack on the emulating protocol (by A) into an attack on the
emulated protocols (by S), so that the combined view of any environment from interacting with π
on the input/output links, and at the same time interacting with π on the trapdoor links (via A)
cannot be distinguished from its view of interacting with φ and S.

This in particular means that the number of main machines in π, as well as their identities,
are exactly the same as those of φ. In addition, it is guaranteed that outputs provided by π
are distributed indistinguishably from those provided by φ on the same inputs. At the same
time, it is guaranteed that any information learnt by A is “simulatable”, in the sense that it is
indistinguishable from information that is generated by S given only the information provided to
it by φ. When the output of φ is randomized, it is guaranteed that the joint distribution of the
outputs of the main machines of π is indistinguishable from the joint distribution of their outputs
of the main machines of φ; furthermore, this holds even when the outputs are viewed jointly with
the output of A or S, respectively.

As discussed in the introduction, what sets this notion of emulation from previous ones is
that the present notion considers an environment that takes an active role in trying to distinguish
between the emulated protocol φ and the emulating protocol π. That is, environment should be
unable to distinguish between the process of running protocol π with adversary A and the process
of running protocol φ with simulator S even given the ability to interact with these processes as
they evolve. Indeed, the interactive nature of the definition plays a crucial role in the proof of the
universal composition theorem.
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Modeling network and inter-process communication. As discussed above, the present model only
allows machines to communicate via inputs and outputs, and does not provide direct representation
of a “communication link”. Instead, communication links can be captured via dedicated machines
that exhibit the properties of the channels modeled.

For sake of illustration, let us describe the machine, µ[1,2], that represents authenticated asyn-
chronous communication from machine µ1 to machine µ2. Machine µ[,2] proceeds as follows: (a)
Upon receiving input m from machine µ1, machine µ[1,2] records m and sends m to A as backdoor
information. (b) Upon receiving ‘ok’ as backdoor, µ[1,2] outputs m to µ2. Indeed, the fact that
A learns m means that the channel does not provide any secrecy guarantees; the ability of A to
arbitrarily delay the delivery of the message represents the asynchrony of the communication; the
fact that µ[1,2] only delivers messages sent by µ1 means that the communication is ideally authentic.
Other types of communication are modeled analogously.

We argue that leaving the modeling of the communication links outside the basic model of com-
putation helps keep the model simple, and at the same time general and expressive. In particular,
different types of communication channels can be captured via different programs for the chan-
nel machine; in particular the type of information the channel machine discloses to the adversary
via the random tape, and the way it responds to instructions coming from the adversary on the
backdoor tape, determines the properties of the channel.

Modeling party corruption. The above model of protocol execution does not contain explicit con-
structs for representing adversarial behavior of parties (or, machines). As mentioned in Section
1.3, this too is done for sake of keeping the basic model and definition of security simple, while
preserving generality and expressibility. We sketch how adversarial behavior is represented within
this model.

Adversarial behavior of parties is captured by way of having the adversary “assume control”
over a set of machines, by handing a special corruption instruction to the target machines as backdoor
information. Protocols should then contain a set of formal instructions for following the directives
in these messages. The specific set of instructions can be considered to be part of a more specialized
corruption model, and should represent the relevant expected behavior upon corruption.

This mechanism allows representing many types of corruption, such as outright malicious
(dubbed Byzantine) behavior, honest-but-curious behavior, side-channel leakage, transient failures,
coercion. For instance, adaptive Byzantine corruptions can be modeled by having the corruption
instruction include a new program, and having the machine send its entire current state to the
adversary, and from now on execute the new program instead of the original program. To model
static Byzantine corruptions, the switch to the new program will happen only if the corruption
instruction arrives at the very first activation.

To keep the definition of protocol emulation meaningful even in the presence of machine cor-
ruption, we will need a mechanism that guarantees that the corruptions performed by S are “com-
mensurate” to the corruptions performed by A. One way to handle this issue is to postulate that
the adversary (either A or S) corrupts a machine only when specifically instructed to do so by the
environment. However, this mechanism implicitly mandates that the internal machine structure of
the emulating protocol π be identical to that of the emulated protocol φ, which is too restrictive
(indeed, we would typically like φ to be simpler than π).

Instead, we devise a more general mechanism that allows the environment to obtain information
regarding which machines are currently under control of the adversary: To each protocol we add a
special “record-keeping” machine, that is notified by each machine of the protocol upon corruption.

15



The environment can then learn about the current corruption activity by querying the special
machine. The special machine can be programmed to disclose either full or partial information
on the current corruption activity; Determining which information to disclose to the environment
should be viewed as part of the security specification of the protocol. See further discussion in
Section 7.1.

A bit more generally, we note that the above modeling of the traditional operation of “party
corruption” heavily relies on using parts of the code of machines as “modeling pieces” rather than
actual code that is to be executed in actual real-life machines. Indeed, this is a powerful model-
ing technique that allows keeping the model simple and at the same time flexible and expressive.
However, to preserve meaningfulness one has to clearly delineate the separation between the “mod-
eling code” and the “real code”. Such delineation is formalized later on (Section 5.1) and used
extensively.

On the order of activations and “true concurrency”. Recall that the definition postulates a single-
threaded and simplistic model of executing protocols: Only one machine is active at any point
in time, and the next machine to be activated is determined exclusively by the currently active
machine (subject to some basic model restrictions).

One might wonder whether this model adequately represents concurrent systems. Indeed, the
model appears at first to stand in contrast with the physical nature of distributed systems, where
computations take place in multiple physically separate places at the same time. It is also different
than traditional mathematical modeling of concurrent executions of processes in distributed sys-
tems. Still we argue that, in spite of its simplicity, the model does capture all salient situations
and concerns. Let us elaborate.

Traditionally, executions of systems that include concurrent executions of physically separate
processes are mathematically captured by first considering the un-ordered collection of the execu-
tions of the locally sequential processes, and then considering all possible ways to interleave the
local executions so as to form a single “sequentialized” execution, subject to certain causality con-
straints. (This modeling is often dubbed “non-deterministic scheduling”.) Here the granularity of
“atomic events” (namely, events that are assumed to be executed at a single location and without
interruption) is a key factor in determining the level of concurrency under consideration, and thus
the expressive power of the model.

The model (or, “mental experiment”) considered here is simpler: Instead of determining the
granularity of “atomic events” ahead of time, and then considering “all possible interleavings” of
these atomic events, the present model lets the processes themselves determine both the granu-
larity of atomic events (by deciding when to send a message to another machine) and the specific
interleaving of events (by deciding which machine to send a message to). The result is a single
sequential execution that is determined by the aggregate of the local decisions made algorithmically
by each machine.

Observe however that the formal simplicity does not restrict its expressive power: Indeed, it
is possible to capture any granularity of atomic events, by programming the machines to send
messages at the end of the desired atomic sequence of operations. Arbitrary and adversarial in-
terleaving of events is captured by including in the system adversarial processes that represent
the variability in timing and ordering of events (as exemplified by the modeling of asynchronous
communication channels sketched in a previous comment). Furthermore, the ability to restrict
attention to computationally bounded scheduling of events - as opposed to fully non-deterministic
scheduling - is crucial for capturing security guarantees that hold only against computationally
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bounded adversaries.

2.2.2 Realizing deal functionalities

Recall that security of protocols is defined by way of comparing the protocol execution to an ideal
process for carrying out the task at hand, and that the ideal process takes the form of running
a special protocol called the ideal protocol for the task. A key ingredient in the ideal protocol
is the ideal functionality, which is a single machine that captures the desired functionality, or the
specification, of the task by way of a set of instructions for a “trusted party”.

More specifically, an ideal protocol for capturing a task for m participants consists of the ideal
functionality machine F , plus m special machines called dummy parties. Upon receiving input,
each dummy party forwards this input to F , along with the identity of the caller machine. Upon
receiving an output value from F , along with a destination identity, a dummy party forwards the
value to its destination.

A graphical depiction of the ideal protocol for F , denoted idealF , appears in Figure 3. (Using
the terminology of Section 2.1, the main machines of idealF are the dummy parties. F is an
internal machine of idealF .)

F 

A 

D1
F 

 

… D𝑚
F 

 

Figure 3: The ideal protocol idealF for an ideal functionality F . The main machines of idealF , denoted

DF1 , ..., D
F
m, are “dummy parties”: they only relay inputs to F , and relay outputs of F to the destination

machines. The adversary A communicates with F (and only with F) by providing and receiving backdoor

information.

Defining when protocol π realizes an ideal functionality F is now straightforward:

Definition 2 (realizing an ideal functionality, simplified model) Protocol π UC-realizes ideal
functionality F if π UC-emulates idealF .

Discussion. We motivate some aspects of the design of ideal functionalities and ideal protocols:

Backdoor communication with the adversary. The backdoor communication between F and A pro-
vides a flexible and expressive way to “fine-tune” the security guarantees provided by F . Indeed,
as discussed in the introduction, a natural way to represent tasks that allow some “disclosure of
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information” (say, via corruption or protocol messages) is by having F explicitly provide this in-
formation to A. Similarly, tasks that allow some amount of “adversarial influence” on the outputs
of the participants (again, via corruption, message scheduling, or other means) can be represented
by letting F take into account information received from A.

Capturing stateful and reactive tasks. Also, note that F can naturally capture the security require-
ments from reactive tasks. Indeed, it can maintain local state and each of its outputs may depend
on all the inputs received and all random choices so far.

The role of the dummy parties. At first glance, the dummy parties may look redundant: One
could potentially have the ideal protocol consist of only F : All inputs would be sent directly to
F , and F would directly send all outputs to their destination machines. However, in that case the
ideal protocol would be easily distinguishable from any distributed implementation of it since the
environment could tell whether it is interaction with a single machine (in particular a single identity)
or else with multiple machines. Indeed, the role of the dummy parties is to allow the environment
to treat the ideal process as a distributed process which consists of multiple separate computational
entities, each taking inputs and generating outputs separately from the other entities, and at the
same time have the actual computational process be done centrally in F . The dummy parties are
not meant to play any other role. In particular, they ignore backdoor information (coming from
A). This means that A can meaningfully communicate only directly with F .

2.3 Universal Composition

We present the universal composition operation and theorem. We concentrate on the case of
composing general protocols, noting that the case of ideal functionalities and ideal protocols follows
as a special case.

Subroutine protocols. In order to present the composition operation, we first define subroutine
protocols. Let ρ be a protocol, and let φ ⊂ ρ, namely φ is a subset of the machines in ρ. We say
that φ is a subroutine protocol of ρ if φ is in itself a valid protocol. In this case we call the set ρ \ φ
the caller part of ρ with respect to φ.

The universal composition operation. case The universal composition operation is a natural
generalization of the “subroutine substitution” operation from the case of sequential algorithms
to the of distributed protocols. Specifically, say that protocol π is compatible with protocol φ if
there is an identity-preserving injective correspondence between the main machines of π and those
of φ. Furthermore, the external identities in the communication set C of each main machine of
π, namely the identities in C that are not part of π, appear also in the communication set of the
corresponding main machine of φ.

Let ρ, φ and π be protocols such that φ is a subroutine protocol of ρ, π and ρ and φ are
compatible, and no machine in π has the same identity as a machine in ρ \ φ. The composed
protocol, denoted ρφ→π, is identical to ρ, except that the subroutine protocol φ is replaced by
protocol π. Given our interpretation of protocols as sets of machines, we have ρφ→π = (ρ \ φ) ∪ π.
Since π is compatible with φ, we have that ρφ→π is a valid protocol. For notational simplicity
we use ρF→π instead of ρ(idealF )→π. Figure 4 presents a graphical depiction of the composition
operation:
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Figure 4: The universal composition operation for the case where ρ has two main machines and uses an ideal
protocol idealF with two main machines (left figure). idealF is replaced by a two-machine protocol π (right
figure). The solid lines represent inputs and outputs. The dashed lines represent backdoor communication.

The composition theorem. Let protocol φ be a subroutine of protocol ρ. Say that protocol π
is identity-compatible with ρ and φ if no machine in π has the same identity as a machine in ρ \ φ.
In its general form, the composition theorem says that if π UC-emulates φ, then the composed
protocol ρφ→π UC-emulates the original protocol ρ:

Theorem (universal composition for the simplified model): Let ρ, φ, π be protocols such
that φ is a subroutine of ρ, π UC-emulates φ, and π is identity-compatible with ρ and φ. Then
protocol ρφ→π UC-emulates ρ.

Discussion. See Section 1.2 for interpretation and discussion of universal composition. In ad-
dition, we mention the following corollaries: (a) If protocol π UC-realizes an ideal functionality
F , and ρ uses as subroutine protocol idealF (i.e., the ideal protocol for F), then the composed
protocol ρF→π UC-emulates ρ. (b) If ρ UC-realizes an ideal functionality G, then so does ρF→π.

Also note that the UC theorem can be applied repeatedly to substitute multiple subroutine
protocols of ρ with protocols that UC-realize them. Furthermore, repeated applications of the
theorem may use nested subroutine protocols.

Proof (sketch): The main observation that underlies the proof is that, since UC-emulation allows
unrestricted exchange of information between the environment and the adversary, the interaction
between A and ρφ→π can be separated out to two distinct (interleaved) interactions: An interaction
with π, and an interaction with the caller part of ρφ→π with respect to π. Simulating the overall
interaction can then be done by separately simulating each one of the two interleaved interactions:
The first interaction is simulatable because π UC-emulates φ, and the second interaction is trivially
simulatable because the caller part of ρφ→π with respect to π is identical to the caller part of ρ with
respect to φ.

To make good of this observation, we first define a special adversary, called the dummy adversary,
that merely serves as a “transparent channel” between E and the protocol. That is, D expects to
receive in its input requests to deliver given trapdoor messages to given machines. D carries out
these requests. In addition, any incoming backdoor message (from some protocol machine) is
forwarded by D to its environment, along with the identity of the sending machine. Note that D
is stateless, and in particular “separable” to many independent adversaries.
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Figure 5: The operation of the simulator S (left figure) and of the environment Eπ (right figure). For visual
clarity, each (potentially multi-party) protocol is depicted as a single box.

The proof of the theorem now proceeds as follows (see Figure 5). Since π UC-emulates φ,
we know that there exists an adversary (“simulator”) Sπ,D, such that no environment can tell
whether it is interacting with π and D or with φ and Sπ,D. Given an adversary A (that is geared
to interact with ρφ→π), we now construct the following simulator S (that is geared to interact
with ρ). Simulator S runs A and channels the communication between A and the environment
without any change. Similarly, the communication between A and the caller part of ρ is channeled
without change. The communication between A and the machines of φ is “pipelined” via Sπ,D;
that is, messages generated by A to the machines of π are forwarded to Sπ,D as inputs from the
environment; incoming messages from the machines of φ are forwarded to Sπ,D without change.
Messages generated by Sπ,D to the machines of φ are forwarded without change, and outputs of
Sπ,D to its environment are forwarded to A as messages coming from the machines of π.

Intuitively, the simulation makes sense since the instance of A run by S behaves exactly like the
environment that Sπ,D expects. More concretely, the validity of the simulation is demonstrated via
a reduction to the validity of Sπ: Given an environment E that distinguishes between an execution
of ρ with A, and an execution of ρφ→π with S, we construct an environment Eπ that distinguishes
between an execution of π with D and an execution of φ with Sπ. Essentially, Eπ orchestrates for
E an entire interaction with ρ, where the interaction with the subroutine protocol (either φ or π)
is relayed to the external system that Eπ interacts with. We then argue that if Eπ interacts with π,
then E , run by Eπ, “sees” an interaction with ρφ→π. Similarly, if Eπ interacts with an instance of φ,
then E “sees” an interaction with ρ. Here we crucially use the fact that an execution of an entire
system can be efficiently simulated on a single machine. (A more detailed proof can be derived
from the one in Section 6.)

Finally we remark that D is in fact the “hardest adversary to simulate”, in the following
sense: If, for some protocols π and φ, it is possible to successfully simulate the dummy adversary
for any environment, then it is possible to successfully simulate any polytime adversary, for any
environment. This observation, which is proven with respect to the more general model in Claim
10, is used to simplify the full proof of the UC theorem. �
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3 The model of computation

The treatment of Section 2 considers only systems where the number, identities, programs and
connectivity of computing elements are fixed and known in advance. In fact, many definitional
frameworks for distributed systems share similar limitations. While helpful in keeping the model
simple, these restrictions do not allow representing many realistic situations, protocols, and threats.

This section extends the model to account for fully dynamic and evolving distributed systems of
computational entities. In contrast to the treatment of Section 2, here we present this basic model
separately from the model of executing a protocol (with environment and adversary). The model
of protocol execution is then formulated (in Section 5) within that basic model. Indeed, this model
may be of interest in of itself, regardless of these definitions. In particular, it may potentially be
used as a basis for different notions of security and correctness of distributed computation.

We strive to completely pinpoint the model of computation. When some details do not seem
to matter, we say so but choose a default. This approach should be contrasted with the approach
of, say, Abstract Cryptography, or the π-calculus [mr11, m99] that aim at capturing abstract
properties that hold irrespective of any specific implementation or computational considerations.

Section 3.1 presents the basic model. Section 3.2 presents the definition of resource-bounded
computation. To facilitate reading, we postpone longer discussions and comparison with other
models to Section 3.3.

3.1 The basic model

As in Section 2, we start by defining the basic object of interest, namely protocols. Here however
the treatment of protocols is very different than there. Specifically, recall that in Section 2 protocols
come with a fixed number of computing elements, including the identities and connectivity of the
elements. In contrast, here we let the identities, connectivity, and even programs of computing
elements be chosen adaptively as part of the execution process. In particular the model captures
systems where new computational entities get added dynamically, with dynamically generated
identities and programs. It also captures the inevitable ambiguities in addressing of messages that
result from local and partial knowledge of the system, and allows representing various behaviors of
the communication media in terms of reliability. Further, the model facilitates taking into account
the computational costs of addressing and delivery of information. We note that many of the choices
here are new, and require re-thinking of basic concepts such as addressing of messages, identities,
“protocol instances”, and resource-bounded computation.

We proceed in two main steps. First (Section 3.1.1), we define a syntax, or a rudimentary
“programming language” for protocols. This language, which extends the notion of interactive
Turing machine [gmra89], contains data structures and instructions needed for operating in a
distributed system. Next (Section 3.1.2), we define the semantics of a protocol, namely an execution
model for distributed systems which consist of one or more protocols as sketched above. To facilitate
readability, we postpone most of the motivating discussions to Section 3.3. We point to the relevant
parts of the discussion as we go along.

3.1.1 Interactive Turing Machines (ITMs)

Interactive Turing machines (ITM) extend the standard Turing machine formalism to capture
a distributed algorithm (protocol). A definition of interactive Turing machines, geared towards
capturing pairs of interacting machines, is given in [gmra89] (see also [g01, Vol I, Ch. 4.2.1]).
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That definition adds to the standard definition of a Turing machine a mechanism that allows a pair
of machines to exchange information via writing on special “shared tapes”. Here we extend this
formalism to accommodate protocols written for systems with multiple computing elements, and
where multiple concurrent executions of various protocols co-exist. For this purpose, we define a
somewhat richer syntax for ITMs. The semantics of the added syntax are described as part of the
model of execution of systems of ITMs, in Section 3.1.2.

We note that the formalism given below aims to use only minimal syntax programming ab-
stractions. This is intentional, and leaves the door open to building more useful programming
languages on top of this one. Also, as mentioned in the introduction, the use of Turing machines
as the underlying computational ‘device’ is mainly due to tradition. Other computational models
that allow accounting for computational complexity of programs can serve as a replacement. RAM
or PRAM machines, Boolean or arithmetic circuits are quintessential candidates. See additional
discussion in Section 3.3.

Definition 3 An interactive Turing machine (ITM) µ is a Turing machine (as in, say, [si05]) with
the following augmentations:

Special tapes (i.e., data structures):

• An identity tape. This tape is “read only”. That is, µ cannot write to this tape. The
contents of this tape is interpreted as two strings. The first string contains a description,
using some standard encoding, of the program of µ (namely, its state transition function
and initial tape contents). We call this description the code of µ. The second string is
called the identity of µ. The identity of µ together with its code is called the extended
identity of µ.

(Informally, the contents of this tape is used to identify an “instance” of an ITM within
a system of ITMs.)

• An outgoing message tape. Informally, this tape holds the current outgoing message gen-
erated by µ, together with sufficient addressing information for delivery of the message.

• Three externally writable tapes for holding information coming from other computing
devices:

– An input tape. Informally, this tape represents information that is to be treated as
inputs from “calling programs” or an external user.

– A subroutine-output tape. Informally, this tape represents information that is to be
treated as outputs of computations performed by programs or modules that serve as
“subroutines” of the present program.

– A backdoor tape. Informally, this tape represents information “coming from the ad-
versary.” This information is used to capture adversarial influence on the program.
(It is stressed that the messages coming in on this tape are only a modeling artifact;
they do not represent messages actually sent by protocol principals.)

These three tapes are read-only and read-once. That is, the ITM cannot write into these
tapes, and the reading head moves only in one direction.

• A one-bit activation tape. Informally, this tape represents whether the ITM is currently
“in execution”.

New instructions:
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• An external-write instruction. Informally, the effect of this instruction is that the message
currently written on the outgoing message tape is possibly written to the specified tape
of the machine with the identity specified in the outgoing message tape. More concrete
specification is postponed to Section 3.1.2.

• A read next message instruction. This instruction specifies a tape out of {input, subroutine-
output, backdoor}. The effect is that the reading head jumps to the beginning of the next
message on that tape. (To implement this instruction, we assume that each message
ends with a special end-of-message (eom) character.)4

Definition 4 A configuration of an ITM µ consists of the contents of all tapes, as well as the
current state and the location of the head in each tape. A configuration is active if the activation
tape is set to 1, else it is inactive.

An instance M of an ITM µ consists of the contents of the identity tape alone. (Recall that the
identity tape of µ contains the code µ, plus a string id called the identity. That is, M = (µ, id).
Also, the contents of the identity tape remains unchanged throughout an execution.) We say that a
configuration is a configuration of instance M if the contents of the identity tape in the configuration
agrees with M , namely if the program encoded in the identity tape is µ and the rest of the identity
tape holds the string id.

An activation of an ITM instance (ITI) M = (µ, id) is a sequence of configurations that cor-
respond to a computation of µ starting from some active configuration of M , until an inactive
configuration is reached. (Informally, at this point the activation is complete and M is waiting for
the next activation.) If a special sink (halt) state is reached then we say that M has halted; in
this case, it does nothing in all future activations (i.e., upon activation it immediately resets its
activation bit).

Throughout this work we treat an ITM instance (ITI) as a run-time object (a “process”)
associated with program µ. Indeed, the fact that the identity tape is read-only makes sure that it
remains immutable during an execution (i.e. all configurations of the same computation contain
the same value of M). In the language of Section 2, an ITI corresponds to a machine, with the
exception that the communication set of the machine is not specified.

3.1.2 Executing ITMs

We specify the semantics of executing ITMs. As we’ll see, an execution, even of a single ITM,
might involve multiple ITIs. We thus add to our formalism another construct, called the control
function, which regulates the transfer of information between ITIs. That is, the control function
determines which “external-write” instructions are “allowed” within the present execution. In the
language of Section 2, the control function corresponds to the collection of all the communication
sets of all the machines in the system; it is, however, significantly more general, providing greater
flexibility, expressive power, and clarity in defining models of distributed computing. (See more
discussion in Section 3.3.) We proceed to the formal description.

Systems of ITMs. Formally, a system of ITMs is a pair S = (I, C) where I is an ITM, called
the initial ITM, and C : {0, 1}∗ → {allow, disallow} is a control function.

4 If a RAM or PRAM machine is used as the underlying computing unit then this instruction is redundant.
However it is needed in the Turing machine setting to handle incoming messages with unbounded length. See more
discussion in Section 3.3.
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Executions of systems of ITMs. An execution of a system S = (I, C) on input z consists
of a sequence of activations of ITIs. The first activation is an activation of I, starting from the
configuration where the identity tape contains the code I followed by identity 0, the input tape
contains the value x, and a sufficiently long random string is written on the random tape.5 In
accordance, the ITI (I, 0) is called the initial ITI in this execution.

An execution ends when the initial ITI halts (that is, when a halting configuration of the initial
ITI is reached). The output of an execution is the contents of first cell in the outgoing message
tape of the initial ITI when it halts. An execution prefix is a prefix of an execution.

To complete the definition of an execution, it remains to specify: (a) The effect of an external-
write instruction, and (b) How to determine the first configuration in the next activation, once an
activation is complete. These points are described next.

Writing to a tape of another ITI and invoking new ITIs. The mechanism that allows
communication between ITIs is the external-write instruction. The same instruction is used also for
invoking new ITIs. Specifically, the effect of an external-write instruction is the following.

Let M = (µ, id) denote the ITI which executes the instruction. Then the current contents of
the outgoing message tape of M is interpreted (using some standard encoding) as a tuple:

(f,M ′, t, r,M,m)

where M ′ is an extended identity of a “target ITI”, t is a tape name out of {input, subroutine-output,
backdoor}, r ∈ {0, 1} is a reveal-sender-id flag, f ∈ {0, 1} is a forced-write flag, and m ∈ {0, 1}∗ is
the message. Consider the result of applying the control function C to the current execution prefix,
including (f,M ′, t, r,M,m). If this result is disallow, then the instruction is not carried out and
the initial ITI is activated next (i.e., its activation tape is set to 1). If C outputs allow, then:

1. If f = 1 then M ′ is interpreted as an extended identity M ′ = (µ′, id′). In this case:

(a) If the ITI M ′ = (µ′, id′) currently exists in the system (namely, one of the past config-
urations in the current execution prefix has extended identity M ′), then the message m
is written to tape t of M ′, starting at the next blank space. If the reveal-sender-id flag is
set (i.e., r = 1), then the extended identity M = (µ, id) of the writing ITI is also written
on the same tape. The target ITI M ′ is activated next. (That is, a new configuration of
M ′ is generated; this configuration is the previous configuration of M ′ in this execution,
with the new information written on the incoming messages tape. The activation tape
in this configuration is set to 1.)

(b) If the ITI M ′ = (µ′, id′) does not currently exist in the system, then a new ITI M ′ with
code µ′ and identity id′ is invoked. That is, a new configuration is generated, with code
µ′, the value M ′ written on the identity tape, and the random tape is populated as in
the case of the initial ITI. Once the new ITI is invoked, the external-write instruction is
carried out as in Step 1a. In this case, we say that M invoked M ′.

2. If f = 0 then M ′ is interpreted as a predicate P on extended identities. Let M ′′ be earliest-
invoked ITI such that P (M ′′) holds. Then, the message m is delivered to M ′′ as in Step 1a.
If no ITI M ′′ exists such that P (M ′′) holds, then the message is not delivered and the initial
ITI is activated.

5Without loss of generality, the random tape is read-once (i.e. the head can only move in one direction). This
means that the tape can be thought of as infinitely long and each new location read can be thought of as chosen at
random at the time of reading.
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When an ITI M writes a value x to the backdoor tape of ITI M ′, we say that M sends backdoor
message x to M ′. When M writes a value x onto the input tape of M ′, we say that M passes input
x to M ′. When M ′ writes x to the subroutine-output tape of M , we say that M ′ passes output x
(or simply outputs x) to M .

We allow the receipient ITI M to reject an incoming message. Rejecting a message means
that M , after reading the message, returns to its state prior to reading the message and ends the
activation without further action. The initial ITI is activated next. We sometimes say that M
ignores the message, with the same meaning.

Notation. We use the following notation. Let outI,C(z) denote the random variable describing
the output of the execution of the system (I, C) of ITMs when I’s input is z. Here the probability
is taken over the random choices of all the ITMs in the system. Let outI,C denote the ensemble
{outI,C(z)}z∈{0,1}∗ .

Discussion: On the uniqueness of identities. Section 3.3 discusses several aspects of the external-
write instruction, and in particular motivates the differences from the communication mechanisms
provided in other frameworks. At this point we only observe that the above invocation rules for
ITIs, together with the fact that the execution starts with a single ITI, guarantee that each ITI
in a system has unique extended identity. That is, no execution of a system of ITIs has two ITIs
with the same identity and code. This property makes sure that the present addressing mechanism
is unambiguous. Furthermore, the non-forced-write writing mode (where f = 0) allows ITIs to
communicate unambiguously even without knowing the full code, or even the full ID of each other.
(This is done by setting the predicate P to represent the necessary partial knowledge of the intended
identity M ′.)

Extended systems. The above definition of a system of ITMs provides mechanisms for ITIs to
communicate, while specifying the code and identity of the ITIs it transmits information to. It
also provides mechanisms for an ITI to know the identity (and sometimes the code) of the ITIs
that transmitted information to it. These constructs provide a basic, yet sufficient formalism for
representing distributed computational systems.

However, our definitions of security, formulated in later sections, make some additional require-
ments from the model. Recall that these definitions involve a “mental experiment” where one
replaces some protocol instance with an instance of another protocol. Within the present frame-
work, such replacement requires the ability to create a situation where some ITI M sends a message
to another ITI M ′, but the message is actually delivered to another ITI, M ′′ - where M ′′ has, say,
different code than M ′. Similarly, M ′′ should be able to send messages back to M , whereas it
appears to M that the sender is M ′. Other modifications of a similar nature need to be supported
as well.

The mechanism we use to enable such situations is the control function. Recall that in a system
S = (I, C) the control function C outputs either allowed or disallowed. We extend the definition
of a control function so that it can also modify the external-write requests made by ITIs. That
is, an extended system is a system (I, C) where the output of C given external-write instruction
(f,M ′, t, r,M,m) consists of completely new set of values, i.e. a tuple (f̃ , M̃ ′, t̃, r̃, M̃ , m̃) to be
executed as above.

We note that, although the above definition of an extended system gives the control function
complete power in modifying the external-write instructions, the extended systems considered in
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this work use control functions that modify the external-write operations only in very specific cases
and in very limited ways.

Subroutines, etc. If M has passed input to M ′ in an execution and M ′ has not rejected this
input, or M ′ has passed output to M and M has not rejected this output, then We say that M ′ is
a subroutine of M in this execution. (Note that M ′ may be a subroutine of M even when M ′ was
invoked by an ITI other than M .) If M ′ is a subroutine of M then we say that M is a caller of M ′.
M ′ is a subsidiary of M if M ′ is a subroutine of M or of another subsidiary of M .

Note that the basic model does not impose a “hierarchical” subroutine structure for ITIs. For
instance, two ITIs can be subroutines of each other, an ITI can also be a subroutine of itself, and
an ITI can be a subroutine of several ITIs. Some restrictions are imposed later in specific contexts.

Protocols. A protocol is defined as a (single) ITM as in Definition 3. As already discussed,
the goal is to capture the notion of an algorithm written for a distributed system where physically
separated participants engage in a joint computation; namely, the ITM describes the program to be
run by each participant in the computation. If the protocol specifies different programs for different
participants, or “roles”, then the ITM should describe all these programs. (Alternatively, protocols
can be defined as sets, or sequences of machines, where different machines represent the code to
be run by different participants. However, such a formalism would add unnecessary notational
complexity to the basic model.)

Protocol instances. The notion of a running instance of a protocol has strong intuitive appeal.
However, rigorously defining it in way that’s both natural and reasonably general turns out to be
tricky. Indeed, what would be a natural way to delineate, or isolate, a single instance of a protocol
within an execution of a dynamic system where multiple ITIs run multiple pieces of code?

Traditionally, an instance of a protocol in a running system is defined as a fixed set of machines
that run a predefined program, often with identities that are fixed in advance. (Indeed, this is
the case in the framework of Section 2.) Such a definitional approach, however, does not account
for protocol instances where the identities of the participants, and perhaps even the number of
participants, are determined dynamically as the execution unfolds. It also does not account for
instances of protocols where the code has been determined dynamically, rather than being fixed at
the onset of the execution of the entire system. Thus, a more flexible definition is desirable.

The definition proposed here attempts to formalize the following intuition: “A set of ITIs in
an execution of a system belong to the same instance of some protocol π if they all run π, and in
addition they were invoked with the intention of interacting with each other for a joint purpose.”
In fact, since different participants in an instance are typically invoked within different physical
entities in a distributed system, the last condition should probably be rephrased to say: “...and in
addition the invoker of each ITI in the instance intends that ITI to participate in a joint interaction
with the other ITIs in that instance.”

We provide a formal way for an invoker of an ITI to specify a protocol instance for the ITI to
participate in. The construct we use for this purpose is the identity string. That is, we interpret
(via some standard unambiguous encoding) the identity of an ITI as two strings, called the session
identifier (SID) and the party identifier (PID). We then say that a set of ITIs in a given execution
prefix of some system of ITMs is an instance of protocol π if all these ITIs have the code π and all
have the same SID. The PIDs are used to differentiate between ITIs within a protocol instance;
they can also be used to associate ITIs with “clusters”, such as physical computers in a network.
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More discussion on the SID/PID mechanism appears in Section 3.3.

Consider some execution prefix of some system of ITMs. Each ITI in a protocol instance in this
execution is called a party of that instance. (Sometimes we use the terms main party or main ITI of
the protocol instance, with the same meaning.) A sub-party of a protocol instance is a subroutine
either of a party of the instance or of another sub-party of the instance. (A sub-party of a protocol
instance may - but need not - have the same code, SID, or PID as any of the main partied of the
instance.) The extended instance of some protocol instance includes all the parties and sub-parties
of this instance. If two protocol instances I and I ′ have the property that each party in instance I
is a subroutine of a party in instance I ′ then we say that I is a subroutine instance of I ′.6

Comparison with the modeling of Section 2.1. Recall that the notion of a protocol in
Section 2.1 is different than here: There, a protocol is a fixed set of machines, with essentially one
restriction: All subroutines of a machine in a protocol should also be machines in the same protocol.
In this sense, a protocol as per Section 2.1 most closely corresponds to an extended instance of
a protocol as per the current definition, with the exception that here we impose the additional
restriction that the main parties of the protocol instance have the same code and SID. (In a way,
this restriction is the price paid for the ability to model a more dynamic protocol structure.) See
more discussion in Section 3.3.2.

3.2 Polynomial time ITMs and parameterized systems

We adapt the standard notion of “resource bounded computation” to the distributed setting con-
sidered in this work. This requires accommodating systems with dynamically changing number
of components and communication patterns, and where multiple protocols and instances thereof
co-exist. As usual in cryptography, where universal statements on the capabilities of any feasible
computation are key, notions of security depend in a strong way on the precise formulation of re-
source bounded computation. However, as we’ll see, current formulations do not behave well in a
dynamically changing distributed setting such as the one considered in this work. We thus propose
an extension that seems adequate within the present model.

Before proceeding with the definition itself, we first note that the notion of “resource bounded
computation” is typically used for two quite different purposes. One is the study of efficient
algorithms. Here we’d like to examine the number of steps required as a function of the complexity
of the input, often interpreted as the input length. Another purpose is bounding the power of
feasible computation, often for the purpose of security. Here we typically do not care whether the
computation is using “asymptotically efficient algorithms”; we are only concerned with what can
be done within the given resource bounds.

At first glance it appears that for security we should be only interested in the second inter-
pretation. However, recall that to argue security we often provide an algorithmic reduction that
translates an attacker against the scheme in question to an attacker against some underlying con-
struct that’s assumed to be secure. We would like this reduction to be efficient in the former,
algorithmic sense. Furthermore, the very definition of security, formulated later, will require pre-
senting an efficient transformation from one feasible computation to another. We conclude that a
good model should capture both interpretations.

6It is stressed that the extended instance of a protocol instance consists only of the parties and sub-parties of the
instance. In particular, an ITI M that is not a sub-party of some protocol instance I is not part of the extended
instance of I, even if there exists an ITI M ′ that is in the same protocol instance with M , and is at the same time a
sub-party of instance I.
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Let T : N→ N. Traditionally, a Turing machine µ is said to be T -bounded if, given any input
of length n, µ halts within at most T (n) steps. There are several ways to generalize this notion
to the case of ITMs. One option is to require that each activation of the ITM completes within
T (n) steps, where n is either, say, the length of the current incoming message, or, say, the overall
length of incoming messages on all externally writable tapes to the ITM. However, this option
does not bound the overall number of activations of the ITM; this allows a system of ITMs to
have unbounded executions, thus unbounded “computing power”, even when all its components
are resource bounded. This does not seem to capture the intuitive concept of resource bounded
distributed computation.

Another alternative is then to let T bound the overall number of steps taken by the ITM since
its invocation, regardless of the number of activations. But what should n be, in this case? One
option is to let n be the overall length of incoming messages on all externally writable tapes of the
ITM. However, this would still allow a situation where a system of ITMs, all of whose components
are T -bounded, consumes an unbounded number of resources. This is so since ITIs may send each
other messages of repeatedly increasing lengths. In [gmra89] this problem was solved by setting n
to be the length of the input only. Indeed, in the [gmra89] setting, where ITMs cannot write to
input tapes of each other, this solution is adequate. However, in our setting no such restrictions
exist; thus, when n is set to the overall length of the input received so far, infinite runs of a systems
are possible even if all the ITIs are T -bounded. Furthermore, infinite “chains” of ITIs can be
created, where each ITI in the chain invokes the next one, again causing potentially infinite runs.

We prevent this “infinite runs” problem via the following simple mechanism. We expect each
message to include a special field, called the import field of the message. The import field contains a
natural number called the import of the message. We then define the run-time budget, n, of an ITI at
a certain configuration to be the sum of the imports of the messages received by the ITI, minus the
imports of the messages sent by the ITI. An ITI is T -bounded if, at any configuration, the number
of steps it took since invocation is at most T (n). As we’ll see, this provision allows guaranteeing
that, for all “reasonable” functions T (specifically, whenever T is increasing and super-additive),
the overall number of steps taken in a system of ITMs which are all T -bounded is finite. In fact,
this number is bounded by T (n), where n is the import of the initial input to the system (namely,
the import of the message written on the input tape of the initial ITI in the initial configuration).
Intuitively, this provision treats the imports of messages as “tokens” that provide run-time. An ITI
receives tokens when it gets incoming messages with import, and gives out tokens to other ITIs by
writing messages with import to other ITIs. This way, it is guaranteed that the number of tokens
in the system remains unchanged, even if ITIs are generated dynamically and write on the tapes
of each other.

Definition 5 (T -bounded, PPT) Recall that the import of a message is the value written in the
import field of the message. Let T : N→ N. An ITM µ is locally T -bounded if, at any prefix of an
execution of a system of ITMs, any ITI M with program µ satisfies the following condition. The
overall number of computational steps taken by M so far is at most T (n), where n = nI − nO, nI
is the overall imports of the messages written by other machines on the externally writable tapes
of M , and nO is the overall imports of the messages written by M on externally writable tapes of
other machines.

T -bounded ITMs are defined inductively: A locally T -bounded ITM that does not make external-
writes with forced-write is T -bounded. In addition, a locally T -bounded ITM, all of whose external-
writes with forced-write specify a recipient ITM which is T -bounded, is T -bounded as well. ITM µ
is PPT if there exists a polynomial p such that µ is p-bounded. A protocol is PPT if it is PPT as
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an ITM.

Let us briefly motivate two ways in which Definition 5 departs from the traditional formulation
of resource-bounded computation. First, in contrast to the traditional notion where only inputs
count for the resource bound, here we allow even messages written to other tapes of the recipient
to “provide run-time”. One use of this extra generality is in modeling cases where ITIs are invoked
(i.e., activated for the first time) via a message that’s not an input message.

Second, here the import is represented in binary, instead of the traditional “length of message”
convention. This allows the import of a message to be separate from its length and the amount
of information it contains. Furthermore, it provides additional flexibility in distributing run-time
among multiple subroutines. (For instance, consider the following two situations: In one situation
we have an algorithm that uses a large number ` of subroutines, where all subroutines expect
to receive a single input message and take the same number, n, of computational steps. In the
other situation, it is known that one of the subroutines will eventually need n computational steps,
whereas the remaining subroutines will require only m steps, where m� n. Still, it is not known
in advance which of the subroutines will need n steps. The traditional length-of-input formalism
does not distinguish between the two situations, since in both the overall algorithm must take time
`n. (Indeed, it takes `n time only to invoke the ` subroutines.) In contrast, the present formalism
allows distinguishing between the two situations: In the first one the overall algorithm runs in time
`n, whereas in the second it runs in time only `(m+ log n) + n.)

For clarity and generality we refrain from specifying any specific mechanism for making sure
that ITMs are T -bounded by some specific function T . In Section 3.3.4 we informally discuss
some specific methods, as well as other potential formulations of resource-bounded distributed
computation.

Consistency with standard notions of resource-bounded computation. We show that
an execution of a resource-bounded system of ITMs can be simulated on a standard TM with
comparable resources. That is, recall that T : N→ N is super-additive if T (n+n′) ≥ T (n) +T (n′)
for all n, n′. We have:

Proposition 6 Let T : N → N be a super-additive increasing function. If the initial ITM in
a system (I, C) of ITMs is T -bounded, and in addition the control function C is computable in
time T ′(·), then an execution of the system can be simulated on a single (non-interactive) Turing
machine µ, which takes for input the initial input x and runs in time O(T (n)T ′(T (n))) where n
is the import of x. The same holds also for extended systems of ITMs, as long as all the ITMs
invoked are T -bounded.

In particular, if both I and C are PPT then so is µ. Furthermore, if the import of x is taken
to be its length, then µ is PPT in the standard length-of-input sense.

Proof: We first claim that the overall number of configurations in an execution of a system (I, C)
where I is T -bounded is at most T (n), where n is the import of the initial input of I. As mentioned
above, this can be seen by treating the bits of resource messages as “tokens” that give run-time.
Initially, there are n tokens in the system. The tokens are “passed around” between ITIs, but their
number remains unchanged throughout. More formally, recall that an execution of a system of
ITMs consists of a sequence of activations, where each activation is a sequence of configurations of
the active ITI. Thus, an execution is essentially a sequence of configurations of ITIs. Let mi be
the set of ITIs that were active up till the ith configuration in the execution. For each M ∈ mi
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let nM,i be the overall import of the messages received by ITI M at the last configuration where it
was active before the ith configuration in the execution, minus the overall import of the messages
written by M to other ITIs in all previous configurations. Since I is T -bounded we have that M is
also T -bounded, namely for any i, the number of steps taken by each M ∈ mi is at most T (nM,i).
It follows that i =

∑
M∈mi(# steps taken by M) ≤

∑
M∈mi T (nM,i). By super-additivity of T we

have that i ≤
∑

M∈mi T (nM,i) ≤ T (
∑

M∈mi nM,i). However,
∑

M∈mi nM,i ≤ n. Thus i ≤ T (n).

The machine µ that simulates the execution of the system (I, C) simply writes all the configu-
rations of (I, C) one after the other, until it reaches a halting configuration of I. It then accepts if
this configuration accepts. To bound the run-time of µ, it thus remains to bound the time spent
on evaluating the control function C. However, C is evaluated at most T (n) times, on inputs of
import at most T (n) each. The bound follows. �

We note that the control functions of all the systems in this work run in linear time.

Parameterized systems. The definition of T -bounded ITMs guarantees that an execution of a
system of bounded ITMs completes in bounded time. However, it does not provide any guarantee
regarding the relative computing times of different ITMs in a system. To define security of protocols
we will want to bound the variability in computing power of different ITMs. To do that, we assume
that there is a common value, called the security parameter, that serves as a minimum value for
the initial run-time budget of each ITI. More specifically, we say that an ITM is parameterized with
security parameter k if it does not start running unless its overall import is at least k. A system of
ITMs is parameterized with security parameter k if all the ITIs ever generated in the system are
parameterized with security parameter k.

Subsequent sections will concentrate on the behavior of systems where the import of the initial
input to the system, i.e. the import of the input to the initial ITI, is at most some function of
(specifically, polynomial in) the security parameter.

3.3 Discussion

Other general models of distributed computation with concurrently running processes exist in the
literature, some of which explicitly aim at modeling security of protocols. A very incomplete list
includes the CSP model of Hoare [h85], the CCS model and π-calculus of Milner [m89, m99] (that
is based on the λ-calculus as its basic model of computation), the spi-calculus of Abadi and Gordon
[ag97] (that is based on the π-calculus), the framework of Lincoln et al. [lmms98] (that uses
the functional representation of probabilistic polynomial time from [mms98]), the I/O automata
of Merritt and Lynch [ly96], the probabilistic I/O automata of Lynch, Segala and Vaandrager
[sl95, lsv03], the Abstract Cryptography model of Maurer and Renner [mr11], and the equational
approach of Micciancio and Tessaro [mt13]. (Other approaches are mentioned in the Appendix.)
Throughout, we briefly compare the present model with some of these approaches.

We very roughly partition the discussion to four parts. It is stressed however that the parti-
tioning is somewhat arbitrary and all topics are of course inter-related.

3.3.1 Motivating the use of ITMs

A first definitional choice is to use an explicit, imperative formalism as the underlying compu-
tational model. That is, a computation is represented as a sequence of mechanical steps (as in
Turing machines) rather than as a “thought experiment” as in functional languages (such as the
λ-calculus), or in a denotational way as in Domain Theory. Indeed, while this imperative model is
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less “elegant” and not as easily amenable to abstraction and formal reasoning, it most directly cap-
tures the complexity of computations, as well as side-effects that result from the physical aspects
of the computation. Indeed, this modeling provides a direct way of capturing the interplay be-
tween the complexity of local computation, communication, randomness, “physical side channels,”
and resource-bounded adversarial activity. This interplay is often at the heart of the security of
cryptographic protocols.

Moreover, the imperative formalism strives to faithfully represent the way in which existing
computers operate in a network. Examples include the duality between data and code, which
facilitates the modeling of dynamic code generation, transmission and activation (“download”),
and the use of a small number of physical communication channels to interact with a large (in fact,
potentially unbounded) number of other parties. It also allows considering “low level” complexity
issues that are sometimes glossed over, such as the work spent on the addressing, sending, and
receiving of messages as a function of the message length or the address space.

Another advantage of using imperative formalism that directly represents the complexity of com-
putations is that it facilitates the modeling of adversarial, yet computationally bounded, scheduling
of events in a distributed system.

Finally, our imperative formalism naturally allows for a concrete, parametric treatment of se-
curity, as well as asymptotic treatment that meshes well with computational complexity theory.

Several imperative models of computations exist in the literature, such as the original Turing
machine model, several RAM and PRAM models, and arithmetic and logical circuits. Our choice of
using Turing machines is mostly based on tradition, and is by no means essential. Any other “rea-
sonable” model that allows representing resource-bounded computation together with adversarially
controlled, resource bounded communication would do.

On the down side, we note that the ITM model, or “programming language” provides only a
relatively low level abstraction of computer programs and protocols. In contrast, current literature
describes protocols in a much higher-level (and often informal) language. One way to bridge this
gap is to develop a library of subroutines, or even a programming language that will allow for
more convenient representation of protocols while not losing the correspondence to ITMs (or, say,
interactive RAM machines). An alternative way is to demonstrate “security preserving correspon-
dences” between programs written in more abstract models of computation and limited forms of
the ITMs model, such as the correspondences in [ar00, mw04, ch11, c+05]. We leave this line of
research for future work.

3.3.2 On the identity mechanism

The extended identity, i.e. the contents of the identity tape, is the mechanism used by the model
to distinguish between ITIs (representing computational processes) in a distributed computation.
That is, the model guarantees that no two ITIs have the same extended identity. Furthermore, the
identity of an ITI M is determined by the ITI that invokes (creates) M . While it is fully accessible
to the ITI itself, the extended identity cannot be modified throughout the execution. Finally, the
extended identity is partitioned into three parts: The code (program), the session ID, and the party
ID. We motivate these choices.

Identities are algorithmically and externally chosen. The fact that the identity is deter-
mined by the process that creates the new ITI is aimed at representing natural software engineering
practice. Indeed, when one creates a new computational process, one usually provides the program
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- either directly or via some proxy mechanism - plus sufficient information for identifying this pro-
cess from other ones. Furthermore, it has been demonstrated that externally chosen identities are
essential for performing basic tasks such as broadcast and Byzantine agreement within a general
distributed computing framework such as the present one [llr02].

Allowing the creating ITI to determine identities algorithmically allows expressing this natural
real-world ability within the model. The protocol of [b+11] is an example for how this ability can
be meaningfully used, and then analyzed, within the present model.

Preventing an ITI from modifying its own identity is done mainly to simplify the delineation
of individual computational processes in a system. We allow ourselves to do it since no expressive
power appears to be lost (indeed, ITIs can always invoke other ITIs with related identities and
programs).

Including the code in the identity. Including the ITI’s code in the (extended) identity is
a useful tool in the identification of properties of ITIs by other ITIs. Indeed, the external-write
mechanism (discussed at more length later on) allows the recipient ITI to sometimes see the code
of the sending ITI. It also allows the delivery of messages to depend on the code of the recipient
ITI. This convention might appear a bit odd at first, since it is of course possible to write the code
of an ITI in an extremely generic way (e.g. as a universal Turing machine) and then include the
actual program in the first message that the ITI receives. Furthermore, verifying practically any
interesting property of arbitrary code is bound to be impossible.

Still, general undecidability notwithstanding, it is indeed possible to write code that will make it
easy to verify that the code has certain desirable properties, e.g. that it implements some algorithm,
that it does not disclose some data, that it only communicates with certain types of other ITIs,
that its run-time is bounded, etc. This allows the protocol designer to include in the protocol π
instructions to verify that the ITIs that π interacts with satisfy a basic set of properties. As we’ll
see, this is an extremely powerful tool that makes the framework more expressive.

On globally unique identities. The guarantee that extended identities are globally unique
throughout the system simplifies the model and facilitates protocol analysis. However, it might
appear at first that this “model guarantee” is an over-simplification that does not represent reality.
Indeed, in reality there may exist multiple processes that have identical programs and identities,
but are physically separate and are not even aware of each other. To answer this concern we note
that such situations are indeed expressible within the present model - simply consider protocols
that ignore a certain portion of the identity. (We note that other formalisms, such as the IITM
model [dkmr05, k06, kt13], mandate having part of the identity inaccessible to the program.)

Furthermore, the model allows multiple ITIs in an execution have the same (non-extended)
identity - as long as they have different programs. This again underlines the fact that identity does
not guarantee uniqueness in of itself.

On the SID mechanism. The SID mechanism provides a relatively simple and flexible way to
delineate individual protocol instances in a dynamically changing distributed system. In particular
it allows capturing, within the formal model, the intuitive notion of “creating an instance of a
distributed protocol” as a collection of local actions at different parts of the system.

Indeed, some sort of agreement or coordination between the entities that create participants
in a protocol instance is needed. The SID mechanism embodies this agreement in the form of a
joint identifier. We briefly consider a number of common methods for creating logically-separate
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protocol instances in distributed systems and describe how the SID mechanism fits in. Finally we
point out some possible relaxations.

One simple method for designing a system with individual protocol instances is to set all the
protocol instances statically, in advance, as part of the system design. The SID mechanism fits such
systems naturally - indeed, here it is trivial (and convenient) to ensure that all ITIs in a protocol
instance have the same SID.

Another, more dynamic method for designing systems with multiple individual protocol in-
stances is to have each protocol instance start off with a single ITI (representing a computational
process within a single physical entity) and then have all other ITIs that belong to that protocol
instance be created indigenously from within the protocol instance itself. This can be done even
when these other ITIs model physical processes in other parts of the system, and without prior
coordination - say by sending of messages, either directly or via some subroutine. Indeed, most
prevalent distributed protocols (in particular, client-server protocols) fall into this natural category.

The SID mechanism allows capturing such protocols in a straightforward way: The first ITI in
a protocol instance (π, s) is created, by way of an incoming input that specifies code π and SID s.
All the other ITIs of this instance are created, with the same SID and code, by way of receiving
communication from other ITIs in this instance. (Jumping ahead, we note that in the model of
protocol execution described in the next sections, receiving network communication is modeled by
way of receiving subroutine-output from an ITI that models the actual communication. This ITI is
a subroutine of both the sending ITI and of the receiving ITI.) All the functionalities in Section 7
are written in this manner.

Alternatively, one may wish to design a system where protocol instances are created dynamically,
but computational processes that make up a new protocol instance are created “hierarchically” via
inputs from existing processes rather than autonomously from within the protocol instance itself.
Here again the SID mechanism is a natural formalism. Indeed, if the existing processes (ITIs)
have sufficient information to create new ITIs that have the same SID, then the creation of a new
protocol instance can be done without additional coordination. When this is not the case, additional
coordination might be needed to agree on a common SID. See [blr04, b+11] for a protocol and
more discussion of this situation.

Either way, we stress that the session ID should not be confused with values that are determined
(and potentially agreed upon) as part of the execution of the protocol instance. Indeed, the SID is
determined before the instance is invoked and remains immutable throughout.

One can also formulate alternative conventions regarding the delineation of protocol instances.
For example one may allow the SIDs of the parties in a protocol instance to be related in some other
way, rather than being equal. Such a more general convention may allow more loose coordination
between the ITIs in a protocol instance. (For instance, one may allow the participants to have
different SIDs, and only require that there exists some global function that, given a state of the
system and a pair of SIDs, determines whether these SIDs belong to the same instance.) Also, SIDs
may be allowed to change during the course of the execution. However, such mechanisms would
further complicate the model, and the extra generality obtained does not seem essential for our
treatment.

Finally we remark that other frameworks, such as [hs11], put additional restrictions on the
format of the SIDs. Specifically, in [hs11] the SID of a protocol instance is required to include
the SID of the calling protocol instance, enforcing a “hierarchical” SID structure. While this is
a convenient convention in many cases, it is rather limiting in others. Furthermore, the main
properties of the model hold regardless of whether this convention is adhered to or not.
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Deleting ITIs. The definition of a system of ITMs does not provide any means to “delete” an
ITI from the system. That is, once an ITI is invoked, it remains present in the system for the rest
of the execution, even after it has halted. In particular, its identity remains valid and “reserved”
throughout. If a halted ITI is activated, it performs no operation and the initial ITI is activated
next. The main reason for this convention is to avoid ambiguities in addressing of messages to ITIs.
Modeling ephemeral and reusable identities can be done via protocol-specific structures that are
separate from the identity mechanism provided by the model.

3.3.3 On the external-write mechanism and the control function

As discussed earlier, traditional models of distributed computation model inter-component com-
munication via “dedicated named channels”. That is, a component can, under various restrictions,
write information to, and read information from a “channel name.” Channel names are typically
treated as static “system parameters”, in the sense that they are not mutable by the programs
running in the system. Furthermore, sending information on a channel is treated as a single com-
putational step regardless of the number of components in the system or the length of the message.

That modeling of the communication is clean and elegant. It also facilitates reasoning about
protocols framed within the model. In particular, it facilitates analytical operations that separate
a system into smaller components by “cutting the channels”, and re-connecting the components in
different ways. However, as discussed earlier, this modeling does not allow representing realistic
situations where the number and makeup of components changes as the system evolves. It also does
not capture commonplace situations where the sender has only partial information on the identity
or code of the recipient. It also doesn’t account for the cost of message addressing and delivery; in
a dynamically growing systems this complexity may be an important factor. Finally, it does not
account for dynamic generation of new programs.

The external-write instruction, together with the control function, are aimed at providing a suf-
ficiently expressive and flexible mechanism that better captures the act of transmitting information
from one process (ITI) to another. We highlight and motivate salient aspects of this mechanism.

Invoking new ITIs. The model allows for dynamic invocation of new ITIs as an algorithmic
step. This feature is important for modeling situations where parties join a computation as it
unfolds, and moreover where parties “invite” other parties to join. It is also crucial for modeling
situations where the numbers of ITIs and protocol instances that run in the systems are not known
in advance.

Indeed, such situations are commonplace. Examples include open peer-to-peer protocols (such
as, e.g., public blockchain systems), client-initiated interaction with a server where the server learns
that the client exists only via a message of the protocol itself, and programs or software updates
that are generated algorithmically, and then “downloaded” and incorporated in a computation “on
the fly”.

Identifying the recipient ITI. A basic tenet of the external-write mechanism is that the writing
ITI is responsible for identifying the recipient ITI in a sufficiently unambiguous way. The external-
write operation provides two different modes for identifying the recipient. These modes are captured
by the value of the forced-write flag. When the flag is set, an external-write to an ITI that does not
exist in the sysem results in the creation of a new ITI. When the flag is not set, an external-write
to an ITI that does not exist in the system is either directed to an existing ITI that best matches
the specification provided in the operation, or fails if no existing ITI matches the specification.
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The two modes represent two different real-life operations: The first mode represents the cre-
ation of a new computational process. Here the full information regarding the identity and program
of the process must be provided. In contrast, the second mode represents information passed to an
existing process without intent to create a new one. Here there is no need to completely specify
the identity and program of the recipient; one only needs to specify the recipient well enough so as
to enable delivery. This flexibility is convenient in situations where the sender does not know the
full code, or even the full identity, of the recipient.

Two additional comments are in order here: First it is stressed that the writing ITI is not
notified whether the target ITI M ′ currently exists in the system. Indeed, incorporating such a
“built-in” notification mechanism would be unnatural for a distributed system.7

Second, we note that the predicate-based mechanism for determining the recipient ITI in case
that f = 0 allows much flexibility - all the way from completely determining the target extended
identity to allowing almost any other ITI. One can restrict the set of predicates allowed by setting
appropriate control functions. We also note that the convention of picking the first-created ITI
that satisfies the given predicate P is convenient in that it guarantees consistency: If at any point
in the execution a message with predicate P was delivered to an ITI M then all future messages
that specify predicate P will be delivered to M . This holds even when there are multiple ITIs that
satisfy P , and even when new ITIs that also satisfy P are added to the system.

Identifying the sending ITI. The external-write mechanism provides two modes regarding the
information that the recipient ITI learns about the identity and program of the writing ITI: If the
writing ITI sets the reveal-sender-id flag to 1, then the recipient ITI learns the extended identity
of the sending ITI. If the flag is 0, then the receiving ITI does not get any information regarding
the identity of the writing ITI.

These two modes represent two “extremes:” The first mode represents the more traditional
“fixed links communication” where the recipient fully knows the identity and program of the sending
entity. This makes sense, for instance, where the recipient ITI is the one that invoked the sender
ITI as a subroutine, and the current message is an output of the subroutine, returned to its caller.
(In this case, the target tape will be the subroutine-output tape.)

The other extreme represents situations where the recipient ITI has no knowledge of the sending
ITI, such as an incoming message on a physical communication link coming from a remote and
unknown source.

It is of course possible to extend the formalism to represent intermediate situations, such as
the natural situation where the recipient learns the identity of the sending ITI but not its code,
or perhaps only some partial information on the identity and code. We chose not to do it for
sake of simplicity, as the present two modes suffice for our purposes. (Also, one can capture these
intermediate situations within the model by having the sending ITI perform a two-step send: The
sending ITI M creates a new ITI M ′′ that receives the message from M with reveal-sender-id flag 1,
and sends it to the recipient M ′ along with the partial information on M , with the reveal-sender-id
1. This way, the recipient learns the specified partial information on M . Seeing the code of M ′′

7We remark that previous versions of this work did, unintentionally, provide such an implicit notification mecha-
nism. Specifically, they did not allow the co-existence of ITIs with the same identity and different codes. This meant
that an external-write to an ITI that differs from an existing ITI only in its code would fail. This allowed some
unnatural ‘model attacks’ where an ITI A, that knows that an ITI B is planning to invoke an ITI C could affect the
behavior of B by simply creating an ITI C′ that has the same identity as C but different code. This would cause B‘s
request to create C to fail. Such transmission of information from A to B without explicitly sending messages does
not reflect realistic attacks, and interferes with the definitions of security in later sections.
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allows the recipient to trust that the partial information on M , provided by M ′′, is correct.)

Allowing the recipient to see the code of the sending ITI enables the recipient to make meaningful
decisions based on some non-trivial properties of that code. (The mechanism proposed in the
previous paragraph is an example of such usage, where M ′ verified properties of the code of M ′′.)
We note that this requires writing code in a way that allows salient properties to be “recognizable”
by the recipient. This can be done using standard encoding mechanisms. Indeed, a peer may accept
one representation of a program, and reject another representation, even though the two might be
functionally equivalent.

Jumping to the next received message. Recall that Definition 3 allows an ITM to move, in
a single instruction, the reading head on each of the three incoming data tapes to the beginning
of the next incoming message. At first, this instruction seems superfluous: Why not let the ITM
simply move the head in the usual way, namely cell by cell?

The reason is that such an instruction becomes necessary in order to maintain a reasonable
notion of resource-bounded computation in a heterogeneous and untrusted network, where the
computational powers of participants vary considerably, and in addition some participants may be
adversarial. In such a system, powerful participants may try to “overwhelm” less powerful par-
ticipants by simply sending them very long messages. In reality, such an “attack” can be easily
thwarted by having parties simply “drop” long messages, namely abort attempt to interpreted
incoming messages that become too long. However, without a “jump to the next message” instruc-
tion, the ITM model does not allow such an abortion, since the reading head must be moved to the
next incoming message in a cell-by-cell manner. (There are of course other ways in which powerful
parties may try to “overwhelm” less powerful ones. But, with respect to these, the ITM model
seems to adequately represent reality.)

We remark that the above discussion exemplifies the subtleties involved with modeling systems
of ITMs. In particular, the notions of security in subsequent sections would have different technical
meaning without the ability to jump to the beginning of the next incoming message. (In contrast,
in a RAM machine model, such a provision would not be necessary.) A similar phenomenon has
been independently observed in [p06] in the context of Zero-Knowledge protocols.

The control function as an ITM. The control function is a convenient mechanism, in that it
allows separating the definition of the basic communication model from higher-level models that
are then used to capture more specific concerns and definitions of security. Indeed, a number of
other definitions (such as [dkmr05, cv12, ccl15, csv16]) can be captured within the present basic
framework, by using appropriate control functions.

We note that an alternative and equivalent formulation of a system of ITMs might replace the
control function by a special-purpose “router ITM” C that controls the flow of information between
ITIs. Specifically, in this formulation the external input to the system is written on the input tape
of C. Once activated for the first time, C copies its input to the input tape of the initial ITM I.
From now on, all ITIs are allowed to write only to the input tape of C, and C is allowed to write to
any externally writable tape of anther ITI. In simple (non-extended) systems, C always writes the
requested value to the requested tape of the requested recipient, as long as the operation is allowed.
In extended systems, C may write arbitrary values to the externally writable tapes of ITIs.
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3.3.4 On capturing resource-bounded computations

Recognizing PPT ITMs. One general concern regarding notions of PPT Turing machines is
how to decide whether a given ITM is PPT. Of course, it is in general undecidable whether a given
ITM is PPT. The standard way of getting around this issue is to specify a set of rules on encodings
of ITMs such that: (a) it is easy to verify whether a given string obeys the rules, (b) all strings
obeying these rules encode PPT ITMs, and (c) for essentially any PPT ITM there is a string that
encodes it and obeys the rules. If there exists such a set of rules for a given notion of PPT, then
we say that the notion is efficiently recognizable.

It can be readily seen that the notion of PPT in Definition 5 is efficiently recognizable. Specif-
ically, an encoding σ of a locally PPT ITM will first specify an exponent c. It is then understood
that the ITM encoded in σ counts its computational steps and halts after nc steps. An encod-
ing of a PPT ITM will guarantee in addition that that all the codes specified by the external
write operations are also nc

′
-bounded with an exponent c′ ≤ c. These are simple conditions that

are straightforward to recognize. We note that other notions of PPT protocols, such as those in
[hmu09, hs11] are not known to be efficiently recognizable. This may indeed be regarded as a
barrier to general applicability of these notions.

An alternative notion of time-bounded computation: Imposing an overall bound. Re-
call that it does not suffice to simply bound the run-time of each individual activation of an ITI
by some function of the length of the contents of the externally writable tapes. This is so since, as
discussed prior to Definition 5, we might still have unbounded executions of systems even when all
the ITMs are bounded. Definition 5 gets around this problem by making a restriction on the overall
number of steps taken by the ITI so far. An alternative approach might be to directly impose an
overall bound on the run-time of the system. For instance, one can potentially bound the overall
number of bits that are externally written in the execution. This approach seems attractive at
first since it is considerably simpler; it also avoids direct “linking” of the run-time in an activation
of an ITM to the run-times in previous activations of this ITM. However this approach has a
severe drawback: It causes an execution of a system to halt at a point which is determined by the
overall number of steps taken by the system, rather than by the local behavior of the last ITI to
be activated (namely the initial ITI). This provides an “artificial” way for the initial ITI to obtain
global information on the execution via the timing in which the execution halts. (For instance,
the initial ITI I can start in a rejecting state, and then pass control to another ITI M . If I ever
gets activated again, it moves to an accepting state. Now, whether I gets activated again depends
only on whether the computation carried out by M , together with the ITIs that M might have
invoked, exceeds the allotted number of steps, which in turn may be known to I. Thus, we have
that whether I accepts depends on information that should not be “legitimately available” to I in
a distributed system.)

Jumping ahead, we note that this property would cause the notions of security considered in
the rest of this work to be artificially restrictive. Specifically, the environment would now be able
to distinguish between two executions as soon as the overall number of steps in the two executions
differs even by one operation. In contrast, we would like to consider two systems equivalent from
the point of view of the environment even in cases where the overall number of computational steps
and communicated bits in the two systems might differ by some polynomial amount.

Bounding the run-time by a function of the security parameter alone. Another al-
ternative way to define resource bounded ITMs is to consider parameterized systems as defined
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above, and then restrict the number of steps taken by each ITI in the computation by a function
of the security parameter alone. That is, let the overall number of steps taken by each ITI in
the system be bounded by T (k), where k is the security parameter. This formulation is actually
quite popular; In particular, it is the notion of choice in earlier versions of this work as well as in
[c00, pw00, bpw04, bpw07, mms03, c+05].

Bounding the run-time this way is simpler than the method used here. It also allows proving a
proposition akin to Proposition 6. However, it has a number of drawbacks. First, it does not allow
capturing algorithms and protocols which work for any input size, or alternatively work for any
number of activations. For instance, any signature scheme that is PPT in the security parameter
alone can only sign a number of messages that’s bounded by a fixed polynomial in the security
parameter. Similarly, it can only sign messages whose length is bounded by a fixed polynomial in the
security parameter. In contrast, standard definitions of cryptographic primitives such as signature
schemes, encryption schemes, or pseudorandom functions require schemes to handle a number of
activations that’s determined by an arbitrary PPT adversary, and thus cannot be bounded by any
specific polynomial in the security parameter. Consequently, bounding the run-time by a fixed
function of the security parameter severely restricts the set of protocols and tasks that can be
expressed and analyzed within the framework.8

Furthermore, when this definition of bounded computation is used, security definitions are
inevitably weaker, since the standard quantification over “all PPT adversaries” fails to consider
those adversaries that are polynomial in the length of their inputs but not bounded by a polynomial
in the security parameter. In fact, there exist protocols that are secure against adversaries that
are PPT in the security parameter, but insecure against adversaries that are PPT in the length of
their inputs (see e.g. the separating example in [hu05]).

Another drawback of bounding the run-time by a fixed function of the security parameter is
that it does not allow taking advantage of the universality of computation and the duality between
machines and their encodings. Let us elaborate, considering the case of PPT ITMs: When the
run-time can vary with the length of the input, it is possible to have a single PPT ITM U that
can “simulate” the operation of all PPT ITMs, when given sufficiently long input. (As the name
suggests, U will be the universal Turing machine that receives the description of the ITM to be
simulated, plus sufficiently long input that allows completing the simulation.) This universality is
at the heart of the notion of “feasible computation”. Also, this property turns out to be useful in
gaining assurance in the validity of the definition of security, defined later in this work.

Bounding the run-time of ITMs by a function of the security parameter alone does not seem to
allow for such a natural property to hold. Indeed, as discussed in Section 4.3, some of the properties
of the notion of security defined here no longer hold when the run-time of ITMs is bounded this
way.

Thanks. We thank Oded Goldreich, Dennis Hofheinz, Ralf Küsters, Yehuda Lindell, Jörn Müller-
Quade, Rainer Steinwandt and Dominic Unruh for very useful discussions on modeling PPT ITMs
and systems, and for pointing out to us shortcomings of the definition of PPT ITMs in earlier
versions of this work and of some other definitional attempts. Discussions with Dennis and Ralf
were particularly instructive.

8We remark that the difference is not only “cosmetic.” For instance, pseudorandom functions with respect to
a number of queries that is bounded by a fixed polynomial in the security parameter can be constructed without
computational assumptions, whereas the standard notion implies one-way functions.
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4 Protocol execution and UC-emulation

This section presents the model of protocol execution, as well as the definition of UC-emulation
which will be a central tool in defining security of protocols. At a high level, the definition is the
same as the one in Section 2.2; however, it is formulated within the general model of computation
of Section 3. Since the notion of security in the present model is significantly more nuanced than
that of Section 2.2, we present it separately from the more basic notion of protocol emulation (see
Section 5).

Section 4.1 presents the model for protocol execution. Section 4.2 defines protocol emulation.
Sections 4.3 and 4.4 present some simplified alternative formulations and variants of the definitions.

4.1 The model of protocol execution

The model of protocol execution extends the model of protocol execution from Section 2.2 to
the more expressive formalism of Section 3.1. As there, the model does not explicitly represent
“communication links,” nor does it include an explicit provision for representing “corrupted par-
ties.” Section 7 discusses and exemplifies how to capture several common communication and
party-corruption models on top of the basic model of execution presented in this section.

Formally, the model of protocol execution is defined in terms of a system of ITMs, as formulated
in Section 3.1.1. Recall that a system of ITMs consists of an initial ITM and a control function. The
initial ITM will correspond to the environment. The control function will encode the adversary,
the protocol, and the rules of how the various ITIs can communicate with each other.

Before proceeding to the actual definition, let us highlight some of the challenges in extending the
definitional ideas from the setting of Section 2.2 to the present setting. Recall that the mechanism
for ITI communication, namely the external-write mechanism, mandates that the writing ITI be
aware of the identity (and sometimes program) of the recipient. Furthermore, the mechanism
sometimes allows the recipient ITI to know the identity and program of the sender. This appears
to be incompatible with the “subroutine substitution” composition operation - at least as defined in
Section 2. Indeed, subroutine substitution replaces the program of the subroutine with a different
program, and furthermore the calling ITI should be oblivious to this replacement. The model will
thus need to provide a way to reconcile these two contradicting requirements.

Furthermore, since our model involves a single environment machine that takes on the role of
multiple processes (ITIs), we must also provide a mechanism for making inputs coming from the
environment appear, to the recipient, as inputs coming from ITIs other than the environment.

The model of computation will reconcile these requirements, as well as other similar ones, via
an appropriate control function.

The model. Given ITMs π, E ,A, the model consists of the extended, parameterized system of
ITMs (E , Cπ,Aexec), where the initial ITM of the system is the environment E , the input z to E
represents some initial state of the actual environment in which the protocol execution takes place,
and the control function Cπ,Aexec is defined below and summarized in Figure 6.

The effect of external-writes made by E. The environment E may pass inputs (and only in-
puts) to ITIs of its choice, as long as all of these ITIs have the same session ID. The control
function sets the code of all these ITIs to π. E can also specify the code and ID of the writing
ITI to values other than its own. The adversary is identified by having party ID �. That
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Execution of protocol π with environment E and adversary A

An execution of protocol π, adversary A, and environment E is a run of an extended, parameterized
system of ITMs (see Section 3.1.1) with initial ITM E , and the following control function Cπ,Aexec:

1. E may pass inputs to ITIs of its choice, as long as all of these ITIs have the same session ID.
The control function sets the code of all these ITIs to π. E can also specify the code and ID
of the writing ITI to values other than its own. In addition, E may pass inputs to A, who is
identified by having party ID �. The test session ID, s, is the session ID of the ITIs written
to by E . The test instance of π is the instance of π with session ID s.

2. A may write only to the backdoor tapes of existing ITIs. In particular, A’s external-write
requests must have the forced-write flag unset.

3. external-write operations by ITIs other than E and A must always include the sender extended
identity in the outgoing message, namely the “reveal-sender-id” flag must be set.

These ITIs are allowed to write to the backdoor tape of A. (Here the forced-write flag must
be unset, the recipient code must not be specified, and the import must be 0.)

In addition, these ITIs may pass inputs and outputs to any ITI other than A and E , with the
following modification: If the writing ITI is a main ITI of the test session of π, the target tape
is the subroutine-output tape, and the target ITI is not part of the extended test session of
π, then the message is written to the subroutine-output tape of E . Here E receives the sender
identity, but not the sender code.

Figure 6: A summary of the model for protocol execution

is, if the party ID of the target ITI is � then the code of the target ITI is set by the control
function to be A.

More precisely, an external-write operation (f,M ′, t, r,M,m) by E , where f ∈ {0, 1} is the
forced-write flag, M ′ is an extended identity of a “target ITI”, t is the tape name, r is the
reveal-sender-id flag, M is an extended identity of a “source ITI”, and m is the message, is
handled as follows.

If t is not the input tape or f = 0, or the session ID of M ′ is different than the session ID of
any other M ′ that appeared in an external-write operation of E in the execution so far, then
the operation is rejected.

Else, if the PID of M ′ is �, then m is written to the input tape of the ITI whose identity is
that of M ′ and whose code is A. (As usual, if no such ITI exists then one is invoked.)

Else m is written to the input tape of the ITI whose identity is that of M ′ and whose code is
π. In that case, if r = 0 then no sender identity appears on the recipient input tape. If r = 1
then M appears on the input tape of the recipient as the source extended identity.

The session identifier of the ITIs written to by E is called the test session ID. The test session
of π is the set of all ITIs whose code is π and whose session ID is test session ID.

The effect of external-writes made by A. The control function allows the adversary A (i.e.,
the ITI with party ID �) to write only to the backdoor tapes of ITIs. In addition, it can only
write to tapes of existing ITIs; that is, A’s external-write requests must have the forced-write
flag unset.9

9Allowing transfer of import to the adversary only from the environment serves to simplify the modeling and
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The effect of external-writes made by other ITIs. external-write operations by ITIs other
than E and A must always include the sender extended identity in the outgoing message -
namely the “reveal-sender-id” flag must be set.

These ITIs are allowed to write to the backdoor tape of A. Here the forced-write flag must
be unset, and the recipient code must not be specified. (This way the message is delivered
regardless of the code of the adversary.) Furthermore, these messages cannot have any import.

In addition, ITIs other than E and A may pass inputs and outputs to any ITI other than
A and E , subject to the following modification: If the target tape is the subroutine-output
tape, the source ITI is a main party of the test session of π, and the target ITI is not part of
the extended test session of π, then the value is written on the subroutine-output tape of E ,
along with the target extended ID and sender identity (but not the sender code).10

Let execπ,A,E(z)
def
= outE,Cπ,Aexec

(z).

4.2 UC-emulation

This section formalizes the general notion of one protocol emulating another protocol, extending
the definition of Section 2.2 to the present model. We start by setting language for expressing more
nuanced variants of the concept of an environment machine. Specifically, we formulate the notions
of identity-bounded environments and balanced environments.

External identities and identity-bounded environments So far, the model of protocol ex-
ecution allows the environment to assume any identity when providing inputs to the main parties
of the test session. (That is, the environment can set the extended identity of the source of any
input it generates to any value.) We call these identities external. Allowing the environment to use
external identities is essential for the meaningfulness of the model, in that it allows representing
situations where the main parties of the protocol instance under consideration receive input from
entities that are external to the protocol. (Indeed, requiring the protocol to consider such environ-
ments will be crucial for the composition theorem to hold.) Still, it will be convenient to consider
also restricted environments that can use only external identities of some form. Specifically, for a
set ξ of identities, an environment is ξ-identity-bounded if it uses only external identities in ξ. More
generally, the set of allowed identities can be determined dynamically depending on the execution
so far. That is, ξ can be a (PT) predicate that takes as input an entire configuration of the system
at the moment where the environment provides input to a protocol party, and determines whether
to accept the source identity assumed by the environment.11

Balanced environments. In order to keep the notion of protocol emulation from being unneces-
sarily restrictive, we restrict attention to environments that satisfy some basic conditions regarding

analysis of security, as well as the proofs of structural results about the model such as Lemma 10 and Theorem 20.
Furthermore, these restrictions arguably do not affect the expressive power of the model.

10We note that the writing ITI may not always know if the target ITI is part of the extended test session of π.
In fact, deciding which is the case may require global view of the system. Indeed, demonstrating that one protocol
UC-emulates another might well require arguing about the behavior of the two protocols in such cases.

11Jumping ahead, we note that the more restricted the predicate ξ, the easier it will be to prove that π emulates φ
(for some given protocols π, φ), and the harder it will be to use this fact later on - specifically in the context of the
composition theorem. Indeed, the decision of which extended identities to designate as external ones can be viewed as
part of the protocol design process. (See more discussion following the definition of compliant protocols in Section 6.)
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the relative imports given to the protocol ITIs and the adversary. Recall that we have already
restricted ourselves to parameterized systems where the import given to each ITI must be at least
the security parameter. Furthermore, the definition of protocol emulation concentrates on the case
where the import of the input to the environment is polynomial in the security parameter.

However, these restrictions do not limit the relative imports of the inputs that the environment
provides to the adversary and to the other ITIs; the difference can be any arbitrary polynomial in
the security parameter, and the ratio can be arbitrary. Consequently, the model still allows the
environment to create situations where the import to the protocol, hence the protocol’s complexity
and communication complexity, are arbitrarily large relative to the import given to and complexity
of the adversary. Such situations seem unnatural; for instance, with such an environment no
polytime adversary can read or deliver even a fraction of the protocol’s communication. Indeed,
if we allow such situations then the definition of UC-emulation (Definition 8) may become overly
restrictive.12

To avoid such situations, we restrict attention to environments where the amount of resources
given to the adversary (namely, the overall import of the inputs that the adversary receives) is
comparable to the amount of resources given to the other ITIs in the system. Specifically, we say
that an environment is balanced if, at any point in time during the execution, the overall import of
the inputs given to the adversary is at least the sum of the imports of all the other inputs given to
all the other ITIs in the system so far. That is, if at a certain point in an execution the environment
provided import n1, ..., nk to k ITIs overall, then the overall import of the inputs to the adversary
is at least n1 + ...+nk. It is stressed that the import given to the adversary can still be arbitrarily
(but polynomially) large relative to the overall imports given by the environment to the protocol
parties (ITIs).

Distribution ensembles and indistinguishability. Towards the formal definition, we recall
the definitions of distribution ensembles and indistinguishability. A probability distribution ensemble
X = {X(k, z)}k∈N,x∈{0,1}∗ is an infinite set of probability distributions, where a distribution X(k, z)
is associated with each k ∈ N and z ∈ {0, 1}∗. The ensembles considered in this work describe
outputs of computations where the parameter z represents input, and the parameter k represents
the security parameter. As we’ll see, it will suffice to restrict attention to binary distributions, i.e.
distributions over {0, 1}.

Definition 7 Two binary probability distribution ensembles X and Y are indistinguishable (written
X ≈ Y ) if for any c, d ∈ N there exists k0 ∈ N such that for all k > k0 and all z ∈ ∪κ≤kd{0, 1}κ
we have:

|Pr(X(k, z) = 1)− Pr(Y (k, z) = 1)| < k−c.

The probability distribution ensembles considered in this work represent outputs of systems
of ITMs, namely outputs of environments. More precisely, we consider ensembles of the form

execπ,A,E
def
= {execπ,A,E(k, z)}k∈N,z∈{0,1}∗ . It is stressed that Definition 7 considers the distribu-

tions X(k, z) and Y (k, z) only when the import of z is polynomial in k. This essentially means that

12 For instance, let π and π′ be identical protocols, except that in π′ some ITI sends to the adversary an additional
random message of length proportional to its import (the message carries no import). Then π′ does not UC-emulate
π according to Definition 8: Let A be the linear-time adversary that delivers all protocol messages until it hits its
run-time bound and halts. Now, to mimic the behavior of A, the simulator S needs to have additional run-time to
handle the additional message. But for any polytime S there exists an environment that gives the said ITI more
import than the run-time of S.
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we consider only situations where the initial input to the environment is some polynomial function
of the security parameter. We are finally ready to formally define UC protocol emulation:

Definition 8 Let π and φ be PPT protocols, and let ξ be a predicate on extended identities. We
say that π UC-emulates φ with respect to ξ-identity-bounded environments (or, π ξ-UC-emulates φ)
if for any PPT adversary A there exists a PPT adversary S such that for any balanced, PPT,
ξ-identity-bounded environment E we have:

execφ,S,E ≈ execπ,A,E .

If π ξ-UC-emulates φ with ξ = {0, 1}∗ then we simply say that π UC-emulates φ.

We refer the reader to Section 2.2 for discussion and interpretations of this definition.

4.3 Alternative formulations of UC-emulation

We present some alternative formulations of UC-emulation (Definition 8).

Environments with non-binary outputs. Definition 8 quantifies only over environments that
generate binary outputs. One may consider an extension to the models where the environment
has arbitrary output; here the definition of security would require that the two output ensembles
execπ,A,E and execφ,S,E (that would no longer be binary) be computationally indistinguishable, as
defined by Yao [y82] (see also [g01]). It is easy to see, however, that this extra generality results
in a definition that is equivalent to Definition 8. We leave the proof as an exercise.

Deterministic environments. Since we consider environments that receive an arbitrary exter-
nal input of polynomial length, it suffices to consider only deterministic environments. That is,
the definition that quantifies only over deterministic environments is equivalent to Definition 8.
Again, we omit the proof. Note however that this equivalence does not hold for the case of closed
environments, where the environment has no input other than import value.

4.3.1 Emulation with respect to the dummy adversary

We show that Definition 8 can be simplified as follows. Instead of quantifying over all possible
adversaries A, it suffices to require that the ideal-protocol adversary S be able to simulate, for
any environment E , the behavior of a specific and very simple adversary. This adversary, called
the “dummy adversary”, only delivers messages generated by the environment to the specified
recipients, and delivers to the environment all messages generated by the protocol parties. Said
otherwise, we essentially show that the dummy adversary is “the hardest adversary to simulate”, in
the sense that simulating this adversary implies simulating all adversaries. Intuitively, the reason
that the dummy adversary is the “hardest to simulate” is that it gives the environment full control
over the communication with the protocol. It thus leaves the simulator with very little “wiggle
room.”

More specifically, the dummy adversary, denoted D, proceeds as follows. When activated with
an input (i, (m, id, c, i′)) from E , where i is the import of the input, m is a message to be delivered,
id is an identity, c is a code for an ITI, and i′ is the import to be given out, D writes (i′,m) on the
backdoor tape of the ITI with identity id and code c, subject to the run-time limitations described
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below. When activated with a message m on its backdoor tape, adversary D passes m as output
to E , along with the extended identity of the sender. (Recall that these messages carry no import.)

To make sure that D is polynomially bounded, we add the following mechanism. D keeps a
variable ν which holds the total import received so far from E , minus the import given out on the
backdoor tape, minus the total lengths of all inputs and all incoming messages on the backdoor
tape. If at any activation the variable ν holds a value that is smaller than the security parameter
k then D ends this activation without sending any message. With this mechanism in place, D can
be implemented in linear time.

Definition 9 Let π and φ be PPT protocols and let ξ be a predicate on extended identities. We
say that π ξ-UC-emulates protocol φ if there exists a PPT adversary S such that for any balanced,
PPT, ξ-identity-bounded environment E we have execφ,S,E ≈ execπ,D,E .

We show:

Claim 10 Let π, φ be PPT protocols, and let ξ be a predicate on extended identities. Then π
ξ-UC-emulates φ (as in Definition 8) if and only if π ξ-UC-emulates φ.

Discussion. From a technical point of view, emulation with respect to the dummy adversary is
an easier definition to work with, since it involves one less quantifier, and furthermore it restricts
the interface of the environment with the adversary to be very simple. Indeed, we almost always
prefer to work with this notion. However, we chose not to present this formulation as the main
notion of protocol emulation, since we feel it is somewhat less intuitively appealing than Defini-
tion 19. In other words, we find it harder to get convinced that this definition captures the security
requirements of a given task. In particular, it looks farther away from the the basic notion of
security in, say, [c00]. Also, it is less obvious that this definition has some basic closure properties
such as transitivity (see Claim 17).13 14

Proof: Fix some predicate ξ on extended identities. For the rest of the proof we consider and
construct only ξ-identity-bounded environments. Clearly, if π ξ-UC-emulates φ as in Definition 8
then π ξ-UC-emulates φ with respect to the dummy adversary. The idea of the implication in the
other direction is that, given direct access to the communication sent and received by the parties,
the environment can run any adversary by itself. Thus quantifying over all environments essentially
implies quantification also over all adversaries. More precisely, let π, φ be protocols and let SD be
the adversary guaranteed by the definition of emulation with respect to dummy adversaries. (That
is, SD satisfies execφ,SD,E ≈ execπ,D,E for all balanced PPT E .) We show that π UC-emulates
φ according to Definition 8. For this purpose, given an adversary A we construct an adversary S
such that execφ,S,E ≈ execπ,A,E for all balanced PPT E . Adversary S runs simulated instances of
A and SD. Then:

13At the same time, UC-emulation with respect to the dummy adversary makes it easier to see that UC security
is a natural relaxation of the notion of observational equivalence of processes (see, e.g., [m89]). Indeed, observational
equivalence essentially fixes the entire system that interacts with either π or φ, whereas UC-emulation with respect
to the dummy adversary allows the analyst to insert a simulator that translates between the adversarial interface
provided by φ and the adversarial interface provided by π, so as to make sure that the rest of the external system
cannot distinguish between π and φ.

14One might be tempted to further simplify the notion of UC-emulation with respect to the dummy adversary, by
removing the dummy adversary altogether and letting the environment interact directly with the ITIs running the
protocol. We note however that this definition would be over-restrictive, since in this definition the environment is
inherently un-balanced. See further discussion in Footnote 12. (In fact, if this notion of emulation were to be used,
then there would exist simple protocols that do not even emulate themselves.)
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1. When S obtains input x with import n from E , it operates as follows:

(a) S locally activates A with input x and import n, and runs A till it completes its activa-
tion. (Note that S does not really “give away run-time tokens” here, since A is simulated
within S.)

(b) Let m be the outgoing message that A generates in this activation, and let id, c be
the identity and code of the target ITI of this message, and let i be the import of this
message. If id = 0 (i.e., the target ITI is the environment), then S writes m on the
subroutine-output tape of E .

If id 6= 0 then S activates SD with input (m, id, c). The import of this input is set
to i + pπ,φ(n̂) − pπ,φ(n̂ − n), where pπ,φ(·) is the maximum between the polynomials
bounding protocols π and φ, and n̂ is the overall import in the inputs received by S
in the execution so far. (Observe that this way, the overall import received by SD at
any point is pπ,φ(n̂). Since the environment is balanced, we have that SD should be
simulating a dummy adversary that never runs out of run-time to deliver its messages.
This will be crucial for the validity of S.) Next, S follows the instructions of SD regarding
generating an outgoing message. That is, S generates the outgoing message specified by
SD to the recipient specified by SD.

2. When S obtains a message on its backdoor tape, it operates as follows:

(a) S activates SD with the incoming message on the backdoor tape, and runs SD until SD
completes its activation.

(b) If in this activation, SD generates a message to be written to the backdoor tape of an
ITI other than E , then S follows the instructions of SD regarding writing this message.

(c) If the message s generated by SD is directed at E , then S parses s = (m, id, c) and
activates A with message m from ITI id with code c (written on A’s backdoor tape). If
the output of SD carries any import then S halts. (This last instruction guarantees that
S remains PPT even when SD is faulty.)

(d) Next S runs A: If in this activation A generates an outgoing message to E , then S
generates this message to E . If the message generated by A is aimed at another ITI,
then S activates SD with input (m, id, c), with no import, where m is the message, (id, c)
are the identity and code of the recipient ITI. S then follows the instructions of SD for
generating an outgoing message.

A graphical depiction of the operation of S appears in Figure 7.

Analysis of S. We first argue that S is PPT. The running time of S is dominated by the run-time
of the A module plus the run-time of the SD module (with some simulation overhead). Consider a
state of S: Let n̂ be the overall import of the inputs received so far by S, and recall that A and
S receives no import on their backdoor tapes. This means that the overall running time of the A
module is at most pA(n̂), where pA is the polynomial bounding the run-time of A. The overall
import of inputs received by the SD module within S is pπ,ψ(n̂). It follows that the run-time of SD
is bounded by:

pS(·) = pA(·) +O(pSD(pπ,φ(·))), (1)
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Figure 7: The operation of simulator S in the proof of Claim 10. Both A and SD are simulated internally
by S. The same structure represents also the operation of the shell adversary in the definition of black-box
simulation (see Section 4.3.2).

where pSD denotes the polynomial bounding the run-time of SD. We note that this fact is used
also in the proof of Claim 16 below.

Next we assert the validity of S. Assume for contradiction that there is an adversary A and a
balanced environment E such that execφ,S,E 6≈ execπ,A,E . We construct a balanced environment
ED such that execφ,SD,ED 6≈ execπ,D,ED . Environment ED runs internally an interaction between
simulated instances of E and A. That is:

1. When E generates an input x with import n to some ITI other than the adversary, ED does
the same.

2. When E generates an input x with import n to its adversary, ED operates as follows:

(a) ED activates A with input x and import n, and runs A till A completes its activation.

(b) If in its activation A generates an output m to its environment, then ED activates E again
with output m coming from the adversary. If A does not generate any outgoing message,
then ED activates E again with no new incoming message. Else, Let m be the outgoing
message that A generates in this activation, let id be the identity of the target ITI, let
c be the code of the target ITI, and let i be the import of m. Then, similarly to S, ED
activates the external adversary on input (m, id, c) with import i+pπ,φ(n̂)−pπ,φ(n̂−n),
where n̂ is the sum of all the imports given to the external adversary so far.

3. When ED obtains, on its subroutine-output tape, an output value from an ITI other than the
adversary, it forwards that output value to E .

4. When ED obtains an output (m, id, c) from the external adversary, it operates as follows:

(a) ED activates A with incoming message m from ITI id with code c, and runs A till A
completes its activation.

(b) If in this activation A generates an outgoing message to its environment, then ED for-
wards this message to E . If the message generated by A is aimed at another ITI, then
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ED activates its external adversary with input (m, id, c) with no import, where m is the
message and id, c are the identity and code of the recipient ITI.

We argue that environment ED is balanced. This is so since E is balanced, and at any point in
time during the execution of ED the overall import that ED gives its external adversary is at least
the overall import that E gives its own external adversary; Furthermore, the import that ED gives
to each other ITI is at most the import that E gives this ITI.

It can also be verified that ensembles execπ,D,ED and execπ,A,E are identical. In particular, D
never stops due to insufficient run-time.

Similarly, execφ,SD,ED and execφ,S,E are identical. In particular, the views of SD in the two
experiments, including the import values, are identically distributed in the two experiments. �

4.3.2 Emulation with respect to black-box simulation

Another alternative formulation of Definition 8 imposes the following technical restriction on the
simulator S: Instead of allowing a different simulator for any adversary A, let the simulator have
“black-box access” to A, and require that the code of the simulator remains the same for all A.
Restricting the simulator in this manner does not seem to capture any tangible security concern;
still, in other contexts, e.g. in the classic notion of Zero-Knowledge, this requirement results in a
strictly more restrictive notion of security than the definition that lets S depend on the description
of A, see e.g. [gk88, b01]. We show that in the UC framework security via black-box simulation
is equivalent to the standard notion of security.

We formulate black-box emulation in a way that keeps the overall model of protocol execution
unchanged, and only imposes restrictions on the operation of the simulator. Specifically, say that an
adversary is composite if it consists of a main program or ITM and a subroutine, whose program is
another ITM. Upon activation of a composite adversary, the main program is activated. The main
program invokes and activates the subroutine at will and obtains the outputs of the subroutine,
but does not have access to the program or internal state of the subroutine. Furthermore the
subroutine does not have access to the outgoing message tape of the overall composite ITM. A
black-box simulator S is the main program of a composite adversary. We let SA denote the composite
adversary that consists of the main program S with subroutine ITM A. Black-box simulator S is
PPT with bounding polynomial ps(·) if, for any PPT A, the number of computational steps taken
by the main program of SA is bounded by ps(n−n′), where n is the overall import received by SA
on its input tape, and n′ is the overall import that S provides to A.

Definition 11 Let ξ be a predicate on extended identities. Say that protocol π ξ-UC-emulates pro-
tocol φ with black-box simulation if there exists a PPT black-box adversary S such that for any PPT
adversary A, and any balanced, PPT, ξ-identity-bounded environment E, we have execφ,SA,E ≈
execπ,A,E .

We observe that UC-emulation with black-box simulation is equivalent to plain UC-emulation:

Claim 12 Let π, φ be PPT multiparty protocols, and let ξ be a predicate on extended identities.
Then π ξ-UC-emulates φ as in Definition 8 if and only if π ξ-UC-emulates φ with black-box simu-
lation.

Proof: The ‘only if’ direction follows from the definition. For the ‘if’ direction, observe that
simulator S in the proof of Claim 10 is in fact a black-box simulator, where the shell consists of
the main program of S together with SD. See Figure 7. �
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Discussion. The present formulation of security via black-box simulation is considerably more
restrictive than that of standard cryptographic modeling of black-box simulation. In particular, in
the standard modeling the black-box simulator controls also the random tape of A and can thus
effectively “rewind” and “reset” A to arbitrary previous states in its execution. In contrast, here
the communication between S and A is restricted to obtaining outputs of complete executions
with potentially hidden randomness. Still, the present definition is equivalent to the plain (non
black-box) notion of security.

We remark that the present formulation of black-box simulation is reminiscent of the notions
of strong black-box simulation in [dkmr05] and in [pw00]. However, in these works black-box
simulation is not equivalent to the basic definition, due to different formalizations of probabilistic
polynomial time.

4.3.3 Letting the simulator depend on the environment

Consider a variant of Definition 8, where the simulator S can depend on the code of the environment
E . That is, for any A and E there should exist a simulator S that satisfies execφ,S,E ≈ execπ,A,E .
Following [l03], we call this variant emulation with respect to specialized simulators. A priori, it
may appear that emulation with respect to specialized simulators is not sufficiently strong so as to
provide the guarantees promised by UC security. Indeed, jumping ahead, we note that the proof of
the UC theorem crucially uses the fact that the same simulator works for all environments. However
it turns out that, in the present framework, emulation with respect to specialized simulators is
actually equivalent to full-fledged UC security:

Claim 13 A protocol π ξ-UC-emulates protocol φ as in Definition 8 if and only if π ξ-UC-emulates
φ with respect to specialized simulators.

Proof: Clearly, if π UC-emulates φ as in Definition 8 then UC-emulates φ with respect to specialized
simulators. To show the other direction, assume that π UC-emulates φ with respect to specialized
simulators. That is, for any PPT adversary A and PPT environment E there exists a PPT simulator
S such that execφ,S,E ≈ execπ,A,E . Consider the “universal environment” Eu which expects its
input to consist of (〈E〉, z, t), where 〈E〉 is an encoding of an ITM E , z is an input to E , and t
is a bound on the running time of E . (t is also the import of the input.) Then, Eu runs E on
input z for up to t steps, outputs whatever E outputs, and halts. Clearly, machine Eu is PPT.
(In fact, it runs in linear time in its input length). We are thus guaranteed that there exists a
simulator S such that execφ,S,Eu ≈ execπ,A,Eu . We claim that execφ,S,E ≈ execπ,A,E for any
balanced PPT environment E . To see this, fix a PPT machine E as in Definition 5, and let c be the
constant exponent that bounds E ’s running time. For each k ∈ N and z ∈ {0, 1}∗, the distribution
execφ,S,E(k, z) is identical to the distribution execφ,S,Eu(k, zu), where zu = (〈E〉, z, |z|c). Similarly,
the distribution execπ,A,E(k, z) is identical to the distribution execπ,A,Eu(k, zu). Consequently, for
any d ∈ N we have:

{execφ,S,E(k, z)}k∈N,z∈{0,1}≤kd = {execφ,S,Eu(k, zu)}
k∈N,zu=(〈E〉,z∈{0,1}≤kd ,|z|c)

≈ {execπ,A,Eu(k, zu)}
k∈N,zu=(〈E〉,z∈{0,1}≤kd ,|z|c)

= {execπ,A,E(k, z)}k∈N,z∈{0,1}≤kd .

In particular, as long as |z| is polynomial in k, we have that |zu| is also polynomial in k (albeit
with a different polynomial). Consequently, execφ,S,E ≈ execπ,A,E . (Notice that if |zu| were not
polynomial in k then the last derivation would not hold.) �
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Remark: Claim 13 is an extension of the equivalence argument for the case of computationally
unbounded environment and adversaries, discussed in [c00]. A crucial element in the proof of
this claim is the fact that the class of allowed environments permits existence of an environment
Eu that is universal with respect to all allowed environments. In the context of computationally
bounded environments, this feature becomes possible when using a definition of PPT ITMs where
the running time may depend not only on the security parameter, but also on the input. Indeed,
in [c00] and in previous versions of this work, which restrict ITMs to run in time that is bound
by a fixed polynomial in the security parameter, standard security and security with respect to
specialized simulators end up being different notions (see, e.g., [l03, hu05]).

4.4 Some Variants of UC-emulation

Next we present some variants of the basic notion of UC-emulation, specifically statistical emulation,
emulation with respect to closed environments, and two other, more quantitative notions of UC-
emulation. We then make note additional observations.

On statistical and perfect emulation. Definition 8 can be extended to the standard notions of
statistical and perfect emulation (as in, say, [c00]). That is, when A and E are allowed unbounded
complexity, and the simulator S is allowed to be polynomial in the complexity of A, we say that π
statistically UC-emulates φ. If in addition execφ,S,E and execπ,A,E are required to be identical then
we say that π perfectly UC-emulates φ. Another variant allows S to have unlimited computational
power, regardless of the complexity of A; however, this variant provides a weaker security guarantee,
as discussed in [c00].

On security with respect to closed environments. Definition 8 considers environments
that take input (of some polynomial length) that was generated in an arbitrary way, perhaps not
even recursively. This input represents some initial joint state of the system and the adversary.
Alternatively, one may choose to consider only “closed environments”, namely environment that
do not receive meaningful external input. Here the notion of security considers only environments
whose external input contains no information other than import. Such environments would choose
the inputs of the protocol parties using some internal stochastic process. We note that Claim 13
does not hold for closed environments. Indeed, jumping ahead, it can be seen that: (a) The UC
theorem does not hold with respect to closed environments and specialized simulators. (b) As long
as there is a single simulator that works for all environments, the UC theorem holds even with
respect to closed environments.

More quantitative notions of emulation. The notion of protocol emulation as defined above
only provides a “qualitative” measure of security. That is, it essentially only gives the guarantee
that “any feasible attack against π can be turned into a feasible attack against φ,” where “fea-
sible” is interpreted broadly as “polynomial time”. We formulate more quantitative variants of
this definition. We note that, besides being informative in of itself, the material here will prove
instrumental in later sections.

We quantify two parameters: the emulation slack, meaning the probability by which the environ-
ment distinguishes between the interaction with π from the interaction with φ, and the simulation
overhead, meaning the difference between the complexity of the given adversary A and that of the
constructed adversary S. Recall that an ITM is T -bounded if the function bounding its running
time is T (·) (see Definition 5), and that a functional is a function from functions to functions. Then:
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Definition 14 Let π and φ be protocols, let ξ be a predicate on extended identities, and let ε, g
be functionals. We say that π ξ-UC-emulates φ with emulation slack ε and simulation overhead g
(or, in short, π (ε, g, ξ)-UC-emulates φ), if for any polynomial pA(·) and any pA-bounded adversary
A, there exists a g(pA)-bounded adversary S, such that for any polynomial pE , any pE -bounded,
ξ-identity-bounded environment E, any large enough value k ∈ N and any input x ∈ {0, 1}pE(k) we
have:

|execφ,S,E(k, x)− execπ,A,E(k, x)| < εpA,pE (k).

Including the security parameter k is necessary when the protocol depends on it. Naturally,
when k is understood from the context it can be omitted. A more concrete variant of Definition
14 abandons the asymptotic framework and instead concentrates on a specific value of the security
parameter k:

Definition 15 Let π and φ be protocols, let k ∈ N, let g, ε : N → N, and let ξ be a predicate on
extended identities. We say that π (k, e, g, ξ)-UC-emulates φ if for any tA ∈ N and any adversary
A that runs in time tA there exists an adversary S that runs in time g(tA) such that for any tE ∈ N,
any ξ-identity-bounded environment E that runs in time tE , and any input x ∈ {0, 1}tE we have:

|execφ,S,E(k, x)− execπ,A,E(k, x)| < ε(k, tA, tE).

It is stressed that Definition 15 still quantifies over all PPT environments and adversaries of all
polynomial complexities. One can potentially formulate a definition that parameterizes also the run-
times of the environment, adversary and simulator. That is, this weaker definition would quantify
only over environments and adversaries that have specific complexity. It should be noted, however,
that such a definition would be considerably weaker than Definition 15, since it guarantees security
only for adversaries and environments that are bounded by specific run-times. Furthermore, both
the protocols and the simulator can depend on these run-times. In contrast, Definition 15 bounds
the specified parameters for any arbitrarily complex environment and adversary.

Indeed, with such a fully parametric definition, the universal composition theorem, the dummy-
adversary and black-box-simulation theorems would need to account for the appropriate quantita-
tive degradation in the simulation overhead and the emulation slack.

The simulation overhead is always additive. An interesting property of the notion of UC-
emulation is that the simulation overhead can be always bounded by an additive polynomial factor
that depends only on the protocols in question, and is independent of the adversary. That is:

Claim 16 Let π and φ be protocols and let ξ be a predicate such that π (ε, g, ξ)-UC-emulates φ
as in Definition 14. Then there exists a polynomial α such that π (ε, g′, ξ)-UC-emulates φ, where
g′(pA)(·) = pA(·) + α(·).

Said otherwise, if π (ε, g, ξ)-UC-emulates φ then it is guaranteed that the overhead of running
S rather than A can be made to be at most an additive polynomial factor α(·) that depends only
on π and φ. Furthermore, this can be done with no increase in the emulation slack or changing the
predicate ξ. We call α(·) the intrinsic simulation overhead of π with respect to φ.

Proof. The claim follows from the proof of Claim 10. Indeed, the proof of Claim 10 shows how
to construct, for any adversary A, a valid simulator whose complexity is bounded by pA(n) +
α(n), where pA is the polynomial bounding the running time of A and α(·) is polynomial in the
complexities of π and φ (see Equation (1)). �
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4.5 UC-emulation is transitive

The following observation is straightforward:

Claim 17 Let π1, π2, π3 be protocols and let ξ1, ξ2 be predicates. Then, if π1 ξ1-UC-emulates π2,
and π2 ξ2-UC-emulates protocol π3, then π1 ξ3-UC-emulates π3, where ξ3 = ξ1 ∪ ξ2.

Moreover, if π1 (e1, g1, ξ1)-UC-emulates π2, and π2 (e2, g2, ξ2)-UC-emulates π3, then π1 (e1+e2, g2 ◦
g1, ξ1 ∪ ξ2)-UC-emulates π3. (Here e1 + e2 is the functional that output the sum of the outputs
of e1 and e2, and ◦ denotes composition of functionals.) Transitivity for any number of protocols
π1, ..., πn follows in the same way. Note that if the number of protocols is not bounded by a constant
then the complexity of the adversary may no longer be bounded by a polynomial. Still, when there
is an overall polynomial bound on the intrinsic simulation overheads of each πi w.r.t. πi+1, Claim
16 implies that the simulation overhead remains polynomial as long as the number of protocols is
polynomial. Similarly the emulation slack remains negligible as long as the number of protocols is
polynomial.

We stress that transitivity of UC-emulation should not be confused with the case of UC-
emulation for multiply nested protocols, which has to do with repeated applications of the UC
theorem and is discussed in Section 6.3.

5 Defining security of protocols

We now turn to applying the general machinery of UC-emulation, developed in Section 4, to-
wards one of the main goals of this work, namely defining security of protocols via realizing ideal
functionalities.

We first formulate an additional, more structural class of protocols, called subroutine respecting
protocols. Essentially, these are protocols where only the main ITIs of each instance take inputs
from, and generate subroutine-output to, ITIs which are not members of the extended instance.
To facilitate presenting this additional structure, we formulate a general framework for making
structural requirements from protocols. We will make extensive use of this framework, which we
dub the body and shell structure, throughout the rest of this paper, in order to capture a variety of
real-life situations and security concerns within the basic formal framework of Sections 3 and 4.

Section 5.1 presents the body and shell structure. Section 5.2 presents subroutine respecting
protocols. Section 5.3 defines ideal functionalities and ideal protocols for carrying out a given
functionality, followed by the definition of securely realizing an ideal functionality.

5.1 Structured protocols

We present a mechanism for fine-tuning the basic model of protocol execution so as capture realistic
attacks and security concerns in a more nimble way. The idea is simple: Instead of directly
analyzing the security of the given protocol π, we will consider a protocol π′ that differs from
π in some prescribed way: Essentially, π′ will run π “encapsulated” within some “wrapper”, or
“shell” code that monitors and sometimes modifies the communication between π and the outside.
Conceptually, the body will contain the “actual real-life code”, and the shell will contain the model-
related instructions that are part of the “mental experiment” of security analysis. The advantage
in using this mechanism is that, while different shells capture different actual settings, they all
result in a legal protocol as per the modeling of Section 4, hence all the structural results of that
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section apply. (Jumping ahead, we note that this mechanism is the one that will later allow us
to capture corruption and communication within the basic model, as sketched in the introduction.
See Sections 1.3 and 7.1).

More specifically, say that a protocol (or, ITM) is structured if it consists of two separate parts,
or “sub-processes”, called a body and a shell. It will be convenient to formalize the shell and the
body of a structured ITM µ as two separate ITMs. The shell ITM has read and write access to
the tapes of the body. The body does not have access to the tapes of the shell. The externally
writable tapes of µ are the externally writable tapes of the shell, and the outgoing message tape of
µ is the outgoing message tape of the shell. The externally writable and outgoing message tape of
the body become internal tapes of µ and are writable and readable by the shell, respectively. The
identity of µ consists of the identity of the shell followed by the identity of the body. That is, the
identity tape of µ consists of the identities of the shell and the body, followed by the code of the
shell and the code of the body. (In particular, the identity of the body need not be the same as
the identity of the shell.)15

An activation of µ starts by activating the shell, which may or may not activate the body.
(Activating the body is done by setting its activation bit to 1.) In case the body executes, it keeps
executing until it completes its activation, at which point the shell resumes executing. It is stressed
that only the shell may send outgoing messages or complete an activation of µ. (The shell may, but
is not required to, copy outgoing messages from the body’s outgoing message tape to the outgoing
message tape of µ.) The run-time of µ includes the run-time of both the shell and the body.16

We henceforth assume that all protocols are structured. Furthermore, the body of a structured
protocol may be structured in of itself. That is, protocols might have multiple shells, where each
shell is unaware of the outer shells, and treats the inner shells as part of the body. In fact, such
situations will be useful later on. We note that the “innermost” body would naturally correspond
to actual , real-life code. (Such code does not generate messages whose destination is the backdoor
tape, nor does it expect to receive messages on its own backdoor tape.)

5.2 Subroutine respecting protocols

The model of protocol execution of Section 4.1 is a highly simplified rendering of an execution of
a single protocol instance within a general execution environment where the protocol session is
created by, and runs alongside, other ITIs. In particular, this model does not allow for ITIs other
than E , A, and a single extended session of π. Furthermore, neither E nor A are allowed to provide
inputs to the ITIs which are not main ITIs of the single session of π. This in particular means
that the ITIs that are members in the extended session of π are never faced with a situation where
they might obtain subroutine-output from an ITI which is not already a member of this extended
session. Similarly, subsidiaries of this session of π are never faced with a situation where they might
obtain input from an ITI which is not already a member of this extended session. Furthermore,
when providing input to another ITI, members of the extended session of π do not face situations
where the recipient ITI already exists in the system but is not currently a member of this extended
session.

In contrast, when executed as a component of a larger system where other ITIs may coexist,

15A slightly more general formulation would let the shell determine the code and identity of the body at first
activation. However the present formulation will suffice for our needs.

16As in the definition of ITMs, we allow the shell to copy incoming messages from its own externally writable
tapes the those of the body in unit time. As discussed in Footnote 4, this added lenience is not necessary in the
RAM/PRAM models.
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such situations might indeed happen, and might lead to attacks. It should be stressed, however,
that not all attacks are possible in all execution environments, e.g. there may exist execution
environments that physically prevent subsidiaries of a protocol instance from sending information
to or receiving information from external processes.

We thus bridge the gap between the “in vitro” model of protocol execution and general execu-
tion environments in two steps. First we define a set of “behavioral requirements” from protocols,
formulated in terms of restrictions on the pattern of message receipt and generation, and with-
out making specific how these requirements might be implemented. Protocols that satisfy these
behavioral requirements are called subroutine respecting.

Next, we formulate a specific mechanism that implements these behavioral requirements. This
mechanism models a specific and natural real-world setting.

Definition 18 Protocol π is subroutine respecting if any session s of π satisfies the following four
requirements, in any execution of any protocol ρ with any adversary and environment, as per the
definition of protocol execution of Section 4.1. (It is stressed that these requirements must be satisfied
even when session s of π is a subroutine of ρ, and in particular when the execution involves ITIs
which are not part of the extended session s.)

1. The subsidiaries of session s reject all inputs passed from an ITI which is not already a main
party or subsidiary of session s. (Recall that rejecting a message means that the recipient ITI
returns to its state prior to receiving the message and ends the activation without sending any
message; See Section 3.1.2.)

2. The main parties and subsidiaries of session s reject all incoming subroutine-outputs passed
from an ITI which is not already a main party or subsidiary of session s.

3. The subsidiaries of session s pass subroutine-outputs only to main ITIs or subsidiaries of
session s.

4. No main party or subsidiary of session s passes input to an existing ITI that is not already a
main party or subsidiary of session s.

Constructing subroutine respecting protocols. We first observe that in the basic model of
Section 2 all protocols are automatically subroutine-respecting. Indeed, the above requirements
are already “baked in” the static communication structure there (embodied in the construct of
communication sets).

As discussed above, the way in which one chooses to construct protocols that are subroutine
respecting would naturally depend on the level of physical separation between computational pro-
cesses, as well as on the level of control over inter-process communication, that is provided by the
physical system under consideration.

We exemplify this by sketching one such construction. Here the formalism of structured proto-
cols become useful: We define a shell that represents a very protective architecture, where the main
ITIs of each session of the analyzed protocol operate within an isolated “sandbox” that physically
mimics the model of Section 4.1. That is, only the main ITIs can receive inputs from external
ITIs, no input can be given to an existing external ITI, and no output can be given by a sub-
sidiary of the session to an external ITI. (Less protective execution environments can be captured
by appropriately relaxing the guarantees provided by this shell.)
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More formally, let π be a protocol and let s be a session ID for a structured protocol (i.e., s
consists of a session ID for a shell and a session ID for a body). We say that σ is a complete sandbox
shell for (π, s) if the shell code σ satisfies the following properties. (Let π′ be the body of the ITI
on which the shell σ is currently running. That is, the current ITI is M = ((π′, σ), s).)

1. At first activation, the shell σ verifies that either: (a) M is a main ITI of session s of (π, σ)
(i.e. the code of M is (π, σ) and the SID of M is s), or else (b) The shell of the caller ITI
is a complete sandbox shell for (π, s), and in addition the incoming message is an input (as
opposed to subroutine-output). If either (a) or (b) hold then the shell proceeds to Step 2.
Else the shell halts and remains inactive in all subsequent activations.

2. Upon receiving a message on an externally writable tape: If the message is an input, and M
is a main ITI of session s of (π, σ), then the input is transferred directly to the body. If M is
a subsidiary of session s, then first verify that the shell of the sending ITI M ′ is a complete
sandbox shell for (s, π). If so, then activate the body with the input. Else, reject the input.

Similarly, if the message is a subroutine-output from an ITI M ′, then first verify that the
shell of M ′ is a complete sandbox shell for (s, π). If so, then the shell activates the body with
the subroutine-output. Else, reject the subroutine-output.

Incoming backdoor messages are processed by the shell without activating the body.

3. When the body completes an activation with an outgoing message v to an ITI M ′: If the
outgoing message is a subroutine-output and M is a main ITI of session s of (π, σ), then
send the message. If M is a subsidiary of session s, then generate an instruction to provide
subroutine-output v to ITI M ′′, where M ′′ is the same as M ′ except that the code σ is added
to the code of M ′ as a new shell.

Similarly, if v is an input message then generate an instruction to provide input v to an ITI
M ′′, where M ′′ is the same as M ′ except that a the code σ is added to the code of M ′ as a
new shell.

It can be verified that a complete sandbox shell makes sure that the overall structured protocol
is subroutine respecting, regardless of how the body behaves. As discussed above, one can formulate
shell codes that provide weaker guarantees and put more of the burden on the body.

Thanks. Thanks to Christian Badertscher, Julia Hesse, Björn Tackmann and Vassilis Zikas for
pointing to inclarities and mistakes in previous formulations of subroutine respecting protocols and
for helping develop the current formalism.

5.3 Realizing ideal functionalities

As discussed in Section 2.2, security of protocols is defined by way of comparing the protocol
execution to an ideal process for carrying out the task at hand, where the ideal process takes the
form of running a special protocol called the ideal protocol for the task. Recall that the ideal protocol
consists of an ideal functionality, which is a single machine which captures the desired functionality
of the task by way of a set of instructions for a “trusted party”, plus multiple “dummy parties”
whose role is to make sure that the ideal protocol syntactically looks like a distributed protocol
that consists of multiple separate machines, while forwarding all inputs to the ideal functionality
and forwarding all outputs from the ideal functionality to their specified destinations.
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We extend the concepts of ideal functionalities and ideal protocols to the present model. An
ideal functionality is now simply an ITI. (The Party ID of an ideal functionality may often be
meaningless and set to ⊥, but this is not formally necessary.) Extending the notion of dummy
parties requires some care, given the dynamic character of the present formalism. Indeed, dummy
parties can now created ‘on the fly” and can be required to transmit an unbounded volume of
inputs and outputs.

The ideal protocol. The ideal protocol idealF for an ideal functionality F is defined as follows.
Let (p, s) be the party and session ID. Then:

1. When activated with input (v, eidc, id), where v is the actual input value, eidc is the extended
identity of the calling ITI, and id = (s, p): If the reveal-sender-identity flag not set, then do
nothing. Else, pass input (v, eidc) to an instance of F with identity (s,⊥), with the forced-
write reveal-sender-identity flags set. (Recall that setting the forced-write flag implies that if
ITI (F , (s,⊥)) does not exist, then one is invoked.)

2. When activated with subroutine-output (v, (s, p), eidt) from an ITI with code F and identity
(s,⊥), where v is the actual output value, pass output v to the ITI with extended identity
eidt with reveal-sender-identity and forced-write flags set.

3. Messages written on the backdoor tape, including corruption messages, are ignored. (The
intention here is that, in the ideal protocol, the adversary should give corruption instructions
directly to the ideal functionality. See more discussion in Section 7.2.)

In terms of body and shell, both the dummy parties and the ideal functionality are shell-only
protocols, in the sense that they are only part of the security analysis, and contain no “real life
code”. Note also that the ideal functionality F is, technically, a different protocol instance than
idealF , since its code is different. In particular, it can be accessed by the environment only via
the dummy parties.

To make sure that idealF is formally PPT without over-complicating the task of protocol
design, we let the polynomial bounding the run-time of the dummy parties be large enough so
that the dummy parties will need to “shave off” only a negligible fraction of the import passed
to and from the ideal functionality. Specifically, let p be the polynomial bounding the run-time
of F . The polynomial bounding the run-time of idealF will be p′(·) = p(q(·)), where q(·) is
some fixed (potentially large) polynomial. Upon receiving input of length k and with import n,
idealF will pass import n′ = n−q−1(n) to F . Similarly, upon receiving from F subroutine-output
with import n, idealF will pass pass import n′ = n − q−1(n) to the target ITI. (In both cases, if
p(n) < k then the activation ends without doing anything.) This mechanism guarantees that, when
activated on input or subroutine-output with import n, idealF “keeps for itself” import q−1(n),
which allows it to make p(q(q−1(n))) = p(n) steps - similarly to F . Furthermore, the larger q is,
the faster the ratio n′/n tends to 1 when n grows. This convention allows the protocol designer
to use the approximation n′ ∼ n without sacrificing much in the precision of the analysis. In
other words, the dummy parties are essentially ‘transparent’ in terms of the import of inputs and
subroutine-outputs.17

17Alternatively, one can simply keep the definition of idealF as described in items 1-3, and allow idealF to not
be polynomially bounded. This would not change the validity of the modeling and analysis, nor would it invalidate
any of the results in this work. (In particular, the conclusion of Proposition 6 would hold even if the system included
ideal protocols where idealF is as proposed in this footnote.) Still, for clarity and simplicity we make sure that
idealF is polytime.
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Thanks. We note that previous formulations of the ideal protocol ignored the need to keep
dummy parties polytime. Previous formulations of the dummy adversary had similar issues, leading
to incorrect proofs of Claims 10 and 12. We thank Ralf Küsters for pointing out these errors.

Realizing an ideal functionality. We are finally ready to define what it means for a protocol π
to meet its specification, where the specification consists of interdependent correctness, termination
and secrecy requirements, represented by way of an ideal functionality F . The basic idea is to
require that π UC-emulates the ideal protocol for F . However, as discussed in Section 5.2, this
requirement does not in of itself suffice for guaranteeing meaningful security, and one needs to
additionally require that π is subroutine respecting:

Definition 19 Let F be an ideal functionality, let π be a protocol, and let ξ be a predicate on
extended identities. We say that π ξ-UC-realizes F if π is subroutine respecting, and in addition it
ξ-UC-emulates idealF , the ideal protocol for F .

6 Universal composition

This section presents the universal composition operation, and then states and proves the universal
composition theorem, with respect to the definition of UC-emulation as formulated in Section 4.
Section 6.1 defines the composition operation and states the composition theorem. Section 6.2
presents the proof. Section 6.3 discusses and motivates some aspects of the theorem, and sketches
some extensions.

Both the composition operation and the proof of the composition theorem extend those in
Section 2.3 so as to hold in the present model of execution. The extensions are significant; in
particular, here the composition operation replaces in a single step multiple instances of the sub-
routine protocol with another one, while making sure that the change is “seamless” from the point
of view of both the calling protocol and the subroutine protocol. (For a graphical depiction of the
composition operation see Figure 4 on page 19.)

6.1 The universal composition operation and theorem

We present the composition operation in terms of an operator on protocols. Recall that this
operator, called the universal composition operator, is aimed to generalize the simple substitution
operation in Section 2.3, which in turn generalizes the natural “subroutine substitution” operation
on sequential algorithms.18

To define the universal composition operator uc() more formally, we again make use of the shell
and body mechanism. Specifically we add shell code to ρ that changes the target code, in inputs
given to the main ITIs of top-level instances of φ, from φ to π. Similarly, in outputs generated by
these ITIs, it changes the source code from π back to φ. To function properly the shell also copies
itself to all the subsidiaries of ρ, while making sure that the bodies of all the ITIs in the extended
session of the resulting structured protocol remain unaware of the existence of the shell19.

18Alternatively, one could define the composition operation as a model operation where the protocols remain
unchanged, and the only change is that the control function invokes instances of ρ instead of instances φ. While
technically equivalent, we find the present formulation, where the protocol determines the code run by its subroutines,
simpler and more intuitively appealing. In particular, it allows us to treat the composed protocol as a self-contained
object ρφ→π, without considering any specific model of protocol execution.

19It is stressed that the “φ to π” replacement takes place not only at the main ITIs of ρ, but rather at any subsidiary
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More formally, given a protocol ρ (that presumably makes subroutine calls to φ), and a protocol
π (that presumably UC-emulates φ), the composed protocol ρφ→π = uc(ρ, π, φ) is the structured
protocol whose body is ρ, and whose shell, denoted σπ,φ, proceeds as follows:

1. In the first activation, if the input has a shell-field, namely a field of the form (caller:ρ, s,
subr:π, s′), then store (ρ, s) in variable caller, and (π, s′) in variable subr. Else store the
code and session ID of the body of the present ITI in variable caller, and set subr ← ⊥.

2. When the body instructs to pass input (resp., output) v to an ITI running ψ with identity
(sid, pid), the shell passes input (resp., output) v′ to an ITI running code ψ′ with identity
(sid, pid), where:

(a) If v is an input, ψ = φ, and subr=⊥, then ψ′ = (π, σπ,φ), and v′ = (v,(caller:caller,
subr:π, sid).

(b) If v is an output, the code and session ID of the body of the present ITI equal those in
subr, and are different than (ψ, sid), then ψ′ = (ψ, σπ,φ), and v′ = (v, (caller:caller,subr:⊥)).

(c) If v is an output, the code and session ID of the body of the present ITI equal those in
caller, and are different than (ψ, sid), then ψ′ = ψ and v′ = v. (This case may occur
when the present ITI is a main ITI of ρ.)

(d) Else ψ′ = (ψ, σπ,φ), and v′ = (v, (caller:caller,subr:subr)).

3. When activated with input (resp., subroutine-output) v passed from an ITI with code ψ and
identity (sid, pid), the shell activates the body with input (resp., subroutine-output) v′ from
an ITI with code ψ′ and identity (sid, pid), where v′ is the same as v without the shell-field,
and ψ′ is determined as follows.

(a) If v is an input, the code and session ID of the body of the present ITI equal those in
caller, and are different than (ψ, sid), then ψ′ = ψ. (This case may occur when the
present ITI is a main ITI of ρ.)

(b) Else, ψ is interpreted as structured code, with body code ψ̃. If v is a subroutine-output,
and in addition ψ̃ = π and subr=⊥, then ψ′ = φ. Else ψ′ = ψ̃.

4. Backdoor messages from the adversary are forwarded to the body without change. Similarly,
backdoor messages generated by the body are forwarded to the adversary without change.

Observe that if protocols ρ, φ, and π are PPT then ρφ→π is PPT (with a bounding polynomial
which is essentially the maximum of the individual bounding polynomials).

When protocol φ is the ideal protocol idealF for some ideal functionality F , we denote the
composed protocol by ρF→π.

Compliant and subroutine-exposing protocols. As in Section 2.3, the UC theorem will
generally state that if protocol π UC-realizes φ then, for any protocol ρ, the protocol ρφ→π UC-
realized the original protocol ρ. However, in the present model we will need to impose a number
of restrictions on ρ, π and φ: First, we will need to require that the identities used by ρ when

of an instance of ρ, as long as the instance of φ is a “top-level instance” - namely, the caling ITI is not also a main
or subsidiary ITI of an instance of φ. We note that this provision was not made clear in prior versions of this work,
and we thank Björn Tackmann for calling out this omission.
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calling φ are compliant with the set ξ with respect to which π realizes φ. Second, we will need to
require that π and φ are subroutine respecting. Additionally π and φ will need to be constructed
so that their subroutine structure is exposed to the adversary, in the sense that there should be
a mechanism for the adversary to tell, given an extended identity of an ITI, whether this ITI is
currently a member a given instance of π (or φ).

In more detail, protocol ρ is called (π, φ, ξ)-compliant if:

• All external-writes made by main and subsidiary ITIs of ρ, where the target tape is the input
tape, use the forced-write mode. Similarly, all messages received on the subroutine-output
tapes of main and subsidiary ITIs of ρ are expected to have reveal-sender-id flag on; other
subroutine-outputs are rejected.

• No two external-write instructions made by main or subsidiary ITIs of an instance of ρ, where
one instruction has target code π, and the other instruction has target code φ, have the same
target session ID.

• The extended identities of all the ITIs in any extended instance of ρ, that pass inputs to ITIs
with code either π or φ, satisfy the predicate ξ.

The first two requirements re more syntactic and are aimed to make sure that the UC operation
works as expected. Also, as in the case of identity-bounded environments, ξ can be a polytime
predicate that takes as input an entire configuration of the system at the moment where the ITI
passes an input to a member of some protocol instance, and determines whether to accept that
input.

We proceed to specify the additional requirement from protocols π and φ. For sake of con-
creteness we set the following mechanism, which again makes use of the body and shell structure.
Protocol π is called subroutine exposing for session s if it is structured, and its shell code, denoted
χs, is the following:

1. Let> be a special identifier, interpreted as “directory”. Before performing a forced-write to an
input tape of ITI M , the shell of ITI (π, s, p) first sends input (invoking M) to ITI (π, s,>).
(See the instructions for ITI (π, s,>) in item 4 below.) Upon receiving subroutine-output ok
from (π, s,>), it resumes processing its external-write instruction.

2. In the first activation of an ITI with code π, session ID s and party ID p 6= >, the shell sends
input started with reveal-sender-identity and forced-write flags set to a special directory ITI
(π, s,>). Upon receiving ok from that directory ITI, it resumes processing its first activation.

3. When the body instructs to pass input v to some ITI with identity id and code µ, the shell
instructs to pass input v to a structured ITI with identity id, body code µ, and shell code χs.

It is stressed that the subsidiaries of instance s of π use the same directory ITI as instance s
of π. That is, the directory serves all the ITIs in the extended instance (π, s).

4. If the local identity is (π, s,>), then the body is never activated. Instead, when activated
by an ITI M with input started, where M is either a main ITI of instance s of π, or M is
recorded as eligible, then the shell records M as a member of the extended session of s. Next
(π, s,>) outputs ok to M .

When activated by an already-registered ITI M with input (invoking M ′), the shell records
M ′ as eligible and outputs ok to M .
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Upon receiving a backdoor message query from the adversary, the shell returns to the adver-
sary the full list of eligible ITIs.

To make sure that the directory ITI remains polytime, we require that each (invoking M) input
should carry enough import to cover the cost of registering M , plus the cost of answering a query.20

We are now ready to state the composition theorem. First we state a general theorem, to
be followed by two corollaries. A more quantitative statement of the UC theorem is discussed in
Section 6.3.

Theorem 20 (Universal composition: General statement) Let ρ, π, φ be PPT protocols and
let ξ be a PPT predicate, such that ρ is (π, φ, ξ)-compliant, φ and π are both subroutine respecting
and subroutine exposing, and π ξ-UC-emulates φ. Then protocol ρφ→π UC-emulates protocol ρ.

It is stressed that ρφ→π UC-emulates ρ with respect to environments which are not identity bounded
(namely, environments that can assume any identity when providing inputs to the main ITIs of ρ).

As a special case, we have:

Corollary 21 (Universal composition: using ideal functionalities) Let ρ, π be PPT proto-
cols, F be a PPT ideal functionality, and ξ be a PPT predicate, such that ρ is (π, idealF , ξ)-
compliant, π and idealF are both subroutine respecting and subroutine exposing, and π ξ-UC-
realizes F .Then protocol ρF→π UC-emulates protocol ρ.

Next we concentrate on protocols ρ that securely realize some ideal functionality G. The fol-
lowing corollary essentially states that if protocol ρ securely realizes G using calls to an ideal
functionality F , F is PPT, and π securely realizes F , then ρF→π securely realizes G.

Corollary 22 (Universal composition: Realizing ideal functionalities) Let F ,G be ideal func-
tionalities such that F is PPT. Let ρ be a subroutine exposing, (π, idealF , ξ)-compliant protocol
that ξ′-UC-realizes G, and let π be a subroutine exposing protocol that ξ-UC-realizes F . Then the
composed protocol ρF→π ξ′-UC-realizes G.

Proof: Let A be an adversary that interacts with ITIs running ρF→π. Theorem 20 guarantees
that there exists an adversary A′ such that execρ,A′,E ≈ execρF→π ,A,E for any environment E .
Since ρ ξ′-UC-realizes G (i.e., ρ UC-realizes G with respect to ξ′-identity-bounded environments),
there exists a simulator S such that execidealG ,S,E ≈ execρ,,AF ,E for any ξ′-identity-bounded E .
Using the transitivity of indistinguishability of ensembles we obtain that execidealG ,ρF→π ,S,E ≈
execρF→π ,A,E for any ξ′-identity-bounded environment E . �

6.2 Proof

We start with an outline of the proof, in Section 6.2.1. The full proof appears in Section 6.2.2.

We note that the proof here is significantly more complex than that of Section 2.3. One
complication is the need to handle replacing multiple instances of φ by instances of π. Another
source of complication is that the composite simulator S needs to be able to identify the types of
input and incoming backdoor messages; in the model of Section 2.3 this task is trivial.

20An alternative method for making sure that protocols are subroutine exposing, used in [hs11], mandates a
hierarchical tree-like subroutine structure for protocol invocations, and furthermore requires that the hierarchical
structure is represented in the session IDs. We note that this convention is sometimes overly restrictive, and also
does not always suffice.
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6.2.1 Proof outline

The proof uses the formulation of emulation with respect to dummy adversaries (see Claim 10).
While equivalent to the standard definition, this formulation considerably simplifies the proof.

Let ρ, φ, π and ξ be such that π ξ-UC-emulates φ and ρ is (π, φ, ξ)-compliant. Let ρφ→π =
uc(ρ, π, φ) be the composed protocol. We wish to construct an adversary S so that no PPT E will
be able to tell whether it is interacting with ρφ→π and the dummy adversary or with ρ and S. That
is, for any E , S should satisfy

execρφ→π ,D,E ≈ execρ,S,E . (2)

The general outline of the proof proceeds as follows. The fact that π ξ-UC-emulates φ guar-
antees that there exists an adversary (or, simulator) Sπ, such that for any ξ-identity-bounded
environment Eπ:

execπ,D,Eπ ≈ execφ,Sπ ,Eπ . (3)

We construct simulator S out of Sπ, and demonstrate that S satisfies (2). This is done by reduction:
Given an environment E that violates (2), we construct an environment Eπ that violates (3).

Construction of S. Simulator S operates as follows. Recall that E expects to interact with
ITIs running ρ. The idea is to separate the interaction between E and the backdoor tapes of the
protocol ITIa (via S) into several parts. To mimic the sending of backdoor messages to the main
and subsidiary ITIs of each session of π, and the receiving of backdoor messages from them, S
runs an instance of the simulator Sπ. To mimic the sending and receiving of backdoor messages
to/from the rest of the ITIs in the system, S interacts directly with these ITIs, mimicking the
dummy adversary. (Recall that these ITIs are the members of the extended session of ρ, which are
not members of any extended session of of π. We call these ITIs side-players.)

More specifically, recall that E delivers, via the dummy adversary, backdoor messages to the
members of ρ, to the members of all sessions of π, and to all their subsidiaries. In addition, E
expects to receive all backdoor messages sent by these ITIs to the dummy adversary.

To address these expectations, S internally runs an instance of the simulator Sπ for each session
of φ in the system it interacts with. When activated by E with message m to be sent to ITI M ,
S first finds out if M is to be treated as a side-party, or else it should be handled by one of the
instances of Sπ. This is done as follows:

If M is a main ITIs of one of the sessions of π, then the answer is clear: m is to be handled by
the corresponding instance of Sπ (and if no such instance of Sπ exists then one is created.) Else,
S generates an input to each one of the instanced of Sπ to check with the directory ITI of this
session of π whether M is a member of that extended session. If one of the instances of Sπ responds
positively, then the input is to be handled by this instance.

In this case, S generates an input to the said instance of Sπ with an instruction to deliver
backdoor message m to ITI M , and continues to follow the instructions of this instance of Sπ for
the rest of the activation. Here S makes sure that the overall import of the inputs to each Sπ equals
the overall import of the inputs to S so far.21

If none of the instances of Sπ answers positively, then S treats M as a side party, namely the
backdoor message m is delivered to ITI M . Note that since π is subroutine respecting, the situation
where M is a member of two extended instances of π does not occur.

21Having the import of each Sπ equal the import of S is done in order to make sure that the constructed environment
Eπ is balanced. This means that the polynomial bounding run-time of S should be t times the polynomial bounding
the run-time of Sπ, where t is the maximum number of sessions of φ generated by ρ.
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When activated with a backdoor message m sent by an ITI M , S again first finds out if M
is to be treated as a side-party, or else it should be handled by one of the instances of Sπ. A
similar mechanism is used: If M is a main ITI of one of the sessions of φ, then m is handed to the
corresponding instance of Sπ, and if no such instance of Sπ exist then one is created.

If M is not a main ITI of a session of φ, then S checks with the directory ITIs of all current
top-level sessions of φ whether M is a member of that extended session. If one of them respond
positively, then S activates this instance of Sπ with an incoming backdoor message m from M , and
continues to follow the instructions of this instance of Sπ for the rest of the activation. If none
of the directory ITIs responds positively, then S treats M as a side party, namely the message
is forwarded to E . Since φ is subroutine respecting, the situation where M is a member of two
top-level extended instances of φ never occurs.

If instances of φ recursively use other instances of φ as subroutines, only the “top-level” instances
of φ, namely only instances of φ that are not subsidiaries of other instances of φ, will have an instance
of Sπ associated with them. Other instances of φ, if they exist, will be “handled” by the instance
of Sπ associated with the corresponding top-level instance of φ.

Figure 8 presents a graphical depiction of the operation of S. A more complete description of
the simulator is deferred to the detailed proof.
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Figure 8: The operation of S in the proof of the composition theorem. Inputs from E that represent
backdoor messages directed at the ITIs which are not part of an extended session of π or φ are forwarded
to the actual recipients. Inputs directed at a session of π are re-directed to the corresponding instance of S.
Backdoor messages from an instance of S are directed to the corresponding actual session of φ. For graphical
clarity we use a single box to represent a session of a multi-party protocol.

Analysis of S. Assume that there exists an environment E that distinguishes with probability
ε between an interaction with S and ρ, and an interaction with D and ρφ→π, and let t be an
upper bound on the number of sessions of π that are invoked in an interaction. We construct
an environment Eπ that uses E to distinguish with probability ε/t between an interaction with D
and ITIs running a single session of π, and an interaction with Sπ and a single session of φ. The
construction and analysis of Eπ proceeds via a traditional hybrid argument. However, applying the
argument in our setting requires some care. Let us explain.

Naively, we would have liked the argument to proceed as follows: For 0 ≤ l ≤ t let ρl denote
the protocol where the first l sessions of φ remain unchanged, whereas the rest of the sessions of
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φ are replaced with sessions of π. Therefore, we would have ρ0 = ρφ→π and ρt = ρ. This in turn
would mean that, for a random l ∈ {1, ..., t}, E must distinguish with probability e/t between an
interaction with S and ρl−1, and an interaction with S and ρl. We would exploit this by having Eπ
run E , choose a random l ∈ {1, ..., t}, and making sure that if Eπ interacts with D and ρφ→π (resp.,
with Sπ and φ), then the internal instance of E sees an interaction with S and ρl−1 (resp., ρl).

However, while the overall plan is indeed solid, it is not clear how such a hybrid protocol ρl
would look like; in particular, the ITIs running ρl might not know which is the lth session to be
(globally) invoked. Furthermore, the simulator S might need to behave differently for different
top-level instances of π and φ, and might not have the necessary global view either.

We get around this by defining the t+ 1 hybrid experiments differently: We leave the protocol
ρφ→π as is, and instead define t + 1 control functions, where the lth control function replaces the
t− l+ 1 last top-level sessions of π back to being sessions of φ. Similarly, we modify the simulator
S so that it asks its environment, for each new top-level instance of π or φ, whether this instance
should be simulated or else the members of this instance should be treated as side-parties. We let Ŝ
denote this modified simulator. We then construct Eπ so that, for each l ∈ {1, ..., t}, if Eπ interacts
with D and ρφ→π (resp., with with Sπ and φ) then the internal instance of E sees the (l − 1)th
(resp., lth) hybrid experiment.

Specifically, Eπ chooses a random l ∈ {1, ..., t}, and then runs a simulated execution of E with
Ŝ and the lth control function sketched above, with the following exceptions. First, whenever Ŝ
asks whether to simulate a top-level instance of π or φ, Eπ answers positively only if this is one of
the first l top-level instances of π or φ.

Next, Eπ uses its actual interaction (which is either with φ and Sπ, or with ρ and D) to replace
the parts of the simulated execution that have to do with the interaction with the lth session of φ,
denoted φl. That is, whenever some simulated side-player passes an input x to a main or subsidiary
ITI of φl (i.e. the lth session of φ), the environment Eπ passes input x to the corresponding ITI
in the external execution. Outputs generated by an actual ITI running π are treated like outputs
from φl to the corresponding simulated side-player.

Similarly , whenever the simulated adversary Ŝ passes input value v to the instance of Sπ that
corresponds to φl, Eπ passes input v to the actual adversary it interacts with. Any output obtained
from the actual adversary is passed to Ŝ as an output from the corresponding instance of Sπ.

Once the simulated E halts, Eπ halts and outputs whatever E outputs. Figure 9 presents a
graphical depiction of the operation of Eπ.

6.2.2 A detailed proof

We proceed with a detailed proof of Theorem 20, substantiating the above outline.

Construction of S. Let ρ, φ, π and ξ be such that π UC-emulates φ with respect to ξ-identity-
bounded environments and ρ is (π, φ, ξ)-compliant, and let ρπ = ρφ→π = uc(ρ, π, φ) be the com-
posed protocol. Let Sπ be the simulator for a single instance of π, i.e. execφ,Sπ ,Eπ ≈ execD,π,Eπ
holds for any ξ-identity-bounded environment Eπ. Simulator S uses Sπ and is presented in Figure 10.

Validity of S. First, note that S is PPT. The polynomial p(·) bounding the running time of S
can be set to 2t times the polynomial bounding the running time of Sπ, where t is a bound on the
number of sessions of φ invoked by ρ. (Note that t ≤ n, where n is the import of the input to S.
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Figure 9: The operation of Eπ. An interaction of E with π is simulated, so that the first l − 1 sessions of φ
remain unchanged, the lth session is mapped to the external execution, and the remaining sessions of φ are
replaced by sessions of π. For graphical clarity we use a single box to represent a session of a multi-party
protocol.

This is so since E is balanced.)22

Now, assume that there exists a balanced environment machine E that violates the validity
of S (that is, E violates Equation (2)). We construct a balanced ξ-identity-bounded environment
machine Eπ that violates the validity of Sπ with respect to a single run of π. (That is, Eπ violates
Equation (3).) More specifically, fix some input value z and a value k of the security parameter,
and assume that

execρφ→π ,E(k, z)− execρ,S,E(k, z) ≥ ε. (4)

We show that
execπ,D,Eπ(k, z)− execφ,Sπ ,Eπ(k, z) ≥ ε/t (5)

where t = t(k, |z|) is a polynomial function.

22The factor-t increase in the complexity of S results from the fact that the import that S gives each instance of
Sπ is comparable to the entire import of S. This, in turn, is done to account for the fact that our model allows
different instances of φ to have very different imports, and S does not know the import of each instance. At the same
time, the view of each instance of Sπ should be consistent with an execution where its environment is balanced. We
thus resolve this issue by setting the import of each instance of Sπ to the maximal possible value, namely n. The
additional factor of 2 will be needed to guarantee that environment Eπ, defined later, remains balanced. (Essentially,
this factor accounts for the fact that the ITIs of the calling protocol ρ can obtain additional import via the backdoor
messages they obtain from the adversary and so the import given by ρ to each individual instance of φ can be larger
than the overall import that ρ received from its environment.)

In more restricted settings, where the imports given to the instances of ρ are known in advance, or alternatively
where all instances of φ have roughly equal imports, or alternatively where the run-time of Sπ depends only on the
import of the ITIs running φ, and where in addition the import of the instances of φ is not larger than the import of
ρ, the polynomial bounding the complexity of S becomes the maximum of the polynomials bounding the run-times
of ρ, ρφ→π, and Sπ. Here the convention that the import is represented in binary rather than in unary becomes key.
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Simulator S

Initially, no instances of Sπ are running. At each activation, if the total import received so far from
E , minus the import given out on the backdoor tape, minus the total lengths of all inputs and all
incoming messages on the backdoor tape, is smaller than the security parameter then S halts. Else:

1. When activated with input (i, (m,M, i′)) (coming from the environment E), where i, i′ are
the incoming and outgoing import, m is a message, and M = (id, c) is an ITI with identity
id = (sid, pid) and code c, do:

(a) Activate each running instance s of Sπ with an instruction, coming as input from the
environment, to ask the directory ITI of session s of π whether M appears in its database.
Next, when an instance s of Sπ sends a query to the directory ITI of instance s of φ, S
sends the query to that directory ITI, and forwards the response to that instance of Sπ.

(b) If the directory of instance s of Sπ responds positively then activate this instance of Sπ
with input (2i′′, (m,M, i′)), and follow the instructions of this instance of Sπ for the rest
of this activation. The value i′′ is set to the overall import of the inputs received by S
so far, minus the overall import given to Sπ so far. (Jumping ahead, we note that the
reason for doubling i′′ is to make sure that the distinguishing environment Eπ remains
balanced.)

(c) If all instances of Sπ answer negatively, then:

i. If M is a main ITI of an instance s′ of π, then invoke a new instance of Sπ with
session ID s′, and activate this instance of Sπ and follow its instructions as in
Step 1b.

ii. Else deliver the backdoor message m to ITI M , subject to the run-time restrictions
of the dummy adversary.

2. When activated with backdoor message m from an ITI M = (id, c), with id = (sid, pid) do:

(a) Query the directory ITI of each existing top-level instance s of φ whether M is in its
directory. If the directory ITI of any instance s responds positively then activate instance
s of Sπ with incoming backdoor message m from ITI M , and follow the instructions of
this instance of Sπ for the rest of this activation, with the same exception that S mimics
the time bounds of a dummy adversary.

(b) If all directory ITIs answer negatively then:

i. If M is a main ITI of an instance s′ of φ, then invoke a new instance of Sπ, with
session ID s′, activate this instance of Sπ, and follow its instructions as in Step 2a.

ii. Else forward (M,m) to E , subject to the run-time restrictions of the dummy adver-
sary.

Figure 10: The simulator for protocol ρ.

Towards constructing Eπ: The hybrid experiments. In preparation to presenting Eπ, we
define the following hybrid experiments. Consider an execution of protocol ρφ→π with adversary S
and environment E . Let t = t(k, |z|) be an upper bound on the number of top-level sessions of φ
within ρφ→π in this execution. (Say that a session of protocol π in an execution is top-level if it is
not a subsidiary of any other session of π in that execution. The bound t is used in the analysis
only. The ITIs running π need not be aware of t. Also, since E is PPT, t is polynomial in k, |z|.)

Recall that Cρ
φ→π ,S is the control function, defined in the model of protocol execution (Section

4.1), in the case where the protocol is ρφ→πand the adversary is S. For 0 ≤ l ≤ t, let the l-hybrid
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control function be the function Cρ
φ→π ,Ŝ,l that is identical to the control function Cρ

φ→π ,S , with
the following exceptions:

1. The external-write requests to input tapes of the main ITIs of the first l top-level sessions
of π to be invoked within the test session of ρφ→π are redirected (back) to the corresponding
sessions of φ. The external-write requests to the input tapes of the main ITIs of all other
sessions of π are treated as usual. That is, let sidi denote the SID of the ith top-level session
of π to be invoked within the test instance of ρφ→π; then, given an external-write request
made by some ITI to the input tape of ITI (π, id) where id = (sidi, pid) for i ≤ l and some
pid, the control function writes the requested value to the input tape of ITI (φ, (sidi, pid)).
If no such ITI exists then one is invoked. It is stressed that these modifications apply to
external-write requests by any ITI, including ITIs that participate in sessions of φ and π, as
well as subsidiaries thereof.

2. Similarly, whenever (φ, (sidi, pid)) requests to pass output to some ITI µ, the control function
changes the code of the sending ITI, as written on the subroutine-output tape of µ, to be π.

3. The adversary invoked by Cρ
φ→π ,Ŝ,l, denoted Ŝ, is identical to S with the following two

exceptions:

(a) When Ŝ receives an input that is aimed at a new session of π, it asks its environment
whether this session should be simulated. If yes, then Ŝ proceeds as S with respect to
this session (see Step (1(c)i in Figure 10) . If no, then from now on all the members of
this session are treated like side-parties (Step 1(c)ii there).

(b) Similarly, when Ŝ receives a backdoor message coming from a member of a new session
of φ, it asks its environment whether this session should be simulated (see Step 2(b)i
there). If yes, then Ŝ proceeds as S with respect to this session. If no, then from now
on all the members of this session are treated like side-parties (Step 2(b)ii there).

Construction and analysis of Eπ. Environment Eπ is presented in Figure 11. We first note
that Eπ is PPT. This follows from the fact that the entire execution of the system is completed in
polynomial number of steps. (Indeed, the polynomial bounding the run-time of Eπ can be bounded
by the maximum among the polynomials bounding the running times of E , ρ, ρφ→π, and S.) Also,
since ρ is (π, φ, ξ)-compliant we have that Eπ is ξ-identity-bounded; this holds in spite of the fact
that E need not be identity bounded.

Furthermore, we argue that Eπ is balanced. This is so since E is balanced, and at any point
during the execution we have that: (a) The overall import I0 that Eπ gave to the external adversary
so far is at least twice the import I1 that E gave its adversary so far, and (b) In any execution of
Eπ, the overall import, I2, received by the main ITIs of any top-level session of π or φ, is at most
the overall import I3 that the main ITIs of the test session of ρ receive from E , plus the import I4
that the members of ρ received from A so far (via the backdoor messages). However the overall
import received from A is bounded by the import that E gave its adversary so far, namely I4 ≤ I1.
Since E is balanced, we also have I3 ≤ I1. Thus we have I2 ≤ I3 + I4 ≤ 2I1 ≤ I0.

The rest of the proof analyzes the validity of Eπ, demonstrating (5). For 1 ≤ l ≤ t, let
execφ,Ŝ,Elπ

(k, z) (resp., execπ,Ŝ,Elπ
(k, z)) denote the distribution of execφ,Ŝ,Eπ(k, z) (respectively

execπ,Ŝ,Eπ(k, z)) conditioned on the event that Eπ chose value l.

65



Environment Eπ

Environment Eπ proceeds as follows, given a value k for the security parameter, and input z. The
goal is to distinguish between (a) the case where the test session runs π and the adversary is the
dummy adversary, and (b) the case where the test session runs φ and the adversary is Sπ.
We first present a procedure called Simulate(). Next we describe the main program of Eπ.

Procedure Simulate(σ, l)

1. Expect the parameter σ to contain a global state of a system of ITMs representing an execution

of environment E with the l-hybrid control function, Cρ
φ→π,Ŝ,l, Continue a simulated execution

from state σ (making the necessary random choices along the way), until one of the following
events occurs. Let sidl denote the SID of the lth top-level session of φ to be invoked within
the test session of ρφ→π in the simulated execution.

(a) The simulator Ŝ asks its environment whether some session, sid, is to be simulated.
If session sid is one of the l globally first top-level sessions of π or φ to be invoked,
then respond positively to Ŝ. Else, respond negatively. Either way, continue running Ŝ
without passing this output of Ŝ to the simulated E .

(b) Some simulated ITI M passes input x to an ITI M ′ which is a member of session sidl
of π. In this case, save the current state of the simulated system in σ, pass input x from
claimed source M to the external ITI M ′, and complete this activation.

(c) The simulated Ŝ passes input (m,M) to the simulated adversary Sπ,l. In this case, pass
the input (m,M) to the external adversary, and complete this activation.

(d) The simulated environment E halts. In this case, Eπ outputs whatever E outputs and
halts.

Main program for Eπ:

1. When activated for the first time, with input z, choose l
R← {1, ..., t}, and initialize a variable

σ to hold the initial global state of a system of ITMs representing an execution of protocol
ρφ→π in the l-hybrid model, with adversary Ŝ and environment E on input z and security
parameter k. Next, run Simulate(σ, l).

2. In any other activation, do:

(a) Update the state σ. That is:

i. If x, the new value written on the subroutine-output tape, was written by the
external adversary, then update the state of the simulated adversary Ŝ to include
an output v generated by the instance of Sπ that corresponds to session sidl of φ.

ii. If the new value x was written by another ITI, then interpret x = (M, t,m) where
M is an extended identity, t is a tape name and m is a value, and write m to tape
t of the internally simulated ITI M . If no such ITI currently exists in the internal
simulation, then one is invoked. (Recall that values written to the subroutine-output
tape of the environment include an extended identity and target tape of a target
ITI.)

(b) Simulate an execution of the system from state σ. That is, run Simulate(σ, l).

Figure 11: The environment for a single session of π.
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We observe that execφ,Ŝ,E0π
(k, z) is distributed identically to execρ,S,E ; Indeed, the view of E is

distributed identically in the two executions. Similarly , execπ,Ŝ,Etπ
(k, z) is distributed identically to

execρφ→π ,D,E ; Also here, the view of E is distributed identically in the two executions. Consequently,
Inequality (4) can be rewritten as:

execφ,Ŝ,E0π
(k, z)− execπ,Ŝ,Etπ

(k, z) ≥ ε. (6)

Furthermore, for all l = 1, ..., t we have:

execφ,Ŝ,El−1
π

(k, z) = execπ,Ŝ,Elπ
(k, z). (7)

Equation (7) follows from inspection of Eπ and Ŝ. Indeed, the view of the simulated E within Eπ
is distributed identically in the right and the in left experiments. (This view of E is also identical
to the view of E when interacting with ρφ→π and Ŝ in the l-hybrid experiment, namely with control

function Cρ
φ→π ,Ŝ,l, as long as the questions of Ŝ regarding which top-level sessions of π and φ to

simulate are answered as E lπ does.)

It is stressed that a crucial reason for the validity of this analysis is that π and φ are subrou-
tine respecting, namely that no subsidiary of any top-level instance of π or φ is passing input of
subroutine-output to, or receiving inputs or subroutine-outputs from any ITI outside that extended
instance.

From Equations (6) and (7) it follows that:

|execπ,D,Eπ(k, z)− execφ,Sπ ,Eπ(k, z)| = |1
t

t∑
l=1

(execφ,Ŝ,El−1
π

(k, z)− execπ,Ŝ,Elπ
(k, z))|

= |execφ,Ŝ,E0π(k, z)− execπ,Ŝ,Etπ
(k, z)|

≥ ε/t

in contradiction to the assumption that Sπ is a valid simulator for π.

6.3 Discussion and extensions

Some aspects of the universal composition theorem were discussed in Section 2.3. This section
highlights additional aspects, and presents some extensions of the theorem.

On composability with respect to closed environments. Recall that the closed-environment
variant of the definition of emulation (Definition 8) considers only environments that take external
input that contains no information other than its import. We note that the UC theorem still holds
even for this variant, with the same proof.

Composing multiple different protocols. The composition theorem (Theorem 20) is stated
only for the case of replacing sessions of a single protocol φ with sessions of another protocol.
The theorem holds also for the case where multiple different protocols φ1, φ2, ... are replaced by
protocols π1, π2, ..., respectively. (This can be seen either by directly extending the current proof,
or by defining a single “universal” protocol that mimics multiple different ones.)
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Nesting of protocol sessions. The universal composition operation can be applied repeatedly
to perform “nested” replacements of calls to sub-protocols with calls to other sub-protocols. For
instance, if a protocol π1 UC-emulates protocol φ1, and protocol π2 UC-emulates protocol φ2 using
calls to φ1, then for any protocol ρ that uses calls to φ2 it holds that the composed protocol

ρφ2→π
φ1→π1
2 = uc(ρ,uc(π2, π1, φ1), φ2) UC-emulates ρ.

Recall that the UC theorem demonstrates that the simulation overhead grows under composition
only by an additive factor that depends on the protocols involved. This means that security is
preserved even if the nesting has polynomial depth (and, consequently, the UC theorem is applied
polynomially many times).

The fact that the UC theorem extends to arbitrary polynomial nesting of the UC operation was
independently observed in [bm04] for their variant of the UC framework.

Beyond PPT. The UC theorem is stated and proven for PPT systems of ITMs, namely for the
case where all the involved entities are PPT. It is readily seen that the theorem holds also for other
classes of ITMs and systems, as long as the definition of the class guarantees that any execution of
any system of ITMs can be “simulated” on a single ITM from the same class.

More precisely, say that a class C of ITMs is self-simulatable if, for any system (I, C) of ITMs
where both I and C (in its ITM representation) are in C, there exists an ITM µ in C such that, on
any input and any random input, the output of a single instance of µ equals the output of (I, C).
(Stated in these terms, Proposition 6 on page 29 asserts that for any super-additive function T (),
the class of ITMs that run in time T () is self-simulatable.)

Say that protocol π UC-emulates protocol φ with respect to class C if Definition 8 holds when
the class of PPT ITMs is replaced with class C, namely when π, A, S, and E are taken to be ITMs
in C. Then we have:

Proposition 23 Let C be a self-simulatable class of ITMs, and let ρ, π, φ be protocols in C such
that π UC-emulates φ with respect to class C. Then protocol ρφ→π UC-emulates protocol ρ with
respect to class C.

It is stressed, however, that the UC theorem is, in general, false in settings where systems of
ITMs cannot be simulated on a single ITM from the same class. We exemplify this point for the
case where all entities in the system are bound to be PPT, except for the protocol φ which is not
PPT.23 More specifically, we present an ideal functionality F that is not PPT, and a PPT protocol
π that UC-realizes F with respect to PPT environments. Then we present a protocol ρ, that calls
two sessions of the ideal protocol for F , and such that ρF→π does not UC-emulate ρ. In fact, for
any PPT π′ we have that ρF→π

′
does not emulate ρ.

In order to define F , we first recall the definition of pseudorandom ensembles of evasive sets,
defined in [gk89] for a related purpose. An ensemble S = {Sk}k∈N where each Sk = {sk,i}i∈{0,1}k
and each sk,i ⊂ {0, 1}k is a pseudorandom evasive set ensemble if: (a) S is pseudorandom, that is

for all large enough k ∈ N and for all i ∈ {0, 1}k we have that a random element x
R← sk,i is

computationally indistinguishable from x
R← {0, 1}k. (b) S is evasive, that is for any non-uniform

PPT algorithm A and for any z ∈ {0, 1}∗, we have that Prob[i
R← {0, 1}k : A(z, i) ∈ sk,i] is

negligible in k, where k = |z|. It is shown in [gk89], via a counting argument, that pseudorandom
evasive set ensembles exist.

23We thank Manoj Prabhakaran and Amit Sahai for this example.
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Now, define F as follows. F uses the ensemble S and interacts with one ITI only. Given security
parameter k, it first chooses i

R← {0, 1}k and outputs i. Then, given an input (x, i′) ∈ {0, 1}k× [2k],

it first checks whether x ∈ sk,i. If so, then it outputs success. Otherwise it outputs r
R← sk,i′ .

Protocol π for realizing F is simple: Given security parameter k it outputs i
R← {0, 1}k. Given

an input x ∈ {0, 1}k, it outputs r
R← {0, 1}k. It is easy to see that π UC-realizes F : Since S is

evasive, then the probability that the input x is in the set sk,i is negligible, thus F outputs success
only with negligible probability. Furthermore, F outputs a pseudorandom k-bit value, which is
indistinguishable from the output of π.

Now, consider the following F-hybrid protocol ρ. ρ runs two sessions of F , denoted F1 and
F2. Upon invocation with security parameter k, it activates F1 and F2 with k, and obtains the
indices i1 and i2. Next, it chooses x1

R← {0, 1}k, and feeds (x1, i2) to F1. If F1 outputs success

then ρ outputs success and halts. Otherwise, π feeds the value x2 obtained from F1 to F2. If F2

outputs success then ρ outputs success; otherwise it outputs fail. It is easy to see that ρ always
outputs success. However, ρF→π never outputs success. In fact, the separation is stronger: F any
PPT protocol π′ that UC-realizes F , we have that ρF→π

′
outputs success only with negligible

probability.

7 UC formulations of some computational models

As discussed earlier, the basic model of computation provides no explicit mechanism for modeling
communication over a network. It also provides only a single, limited mechanism for scheduling
processes in a distributed setting, and no explicit mechanism for expressing adversarial control over,
or infiltration of, computational entities. It also does not provide explicit ways to express leakage
of information from computing devices. Indeed, in of itself, the model does not directly provide
natural ways to represent realistic protocols, attacks, or security requirements.

This section puts forth mechanisms for capturing realistic protocols, attacks and security re-
quirements, by way of setting conventions on top of the basic model of Section 4.1. It also formulates
a number of basic ideal functionalities that capture common abstractions, or models of communi-
cation; As motivated in the introduction, these abstract models allow composing protocols that use
the ideal functionality as an abstract model with protocols that realize the functionality using less
abstract modeling, while preserving overall security.

In addition to capturing some specific conventions and ideal functionalities, this section exem-
plifies how the basic model can be used as a platform for more fine-tuned and expressive models.
It also provides a general toolbox of techniques for writing ideal functionalities that capture other
situations, concerns, and guarantees.

Section 7.1 presents a mechanism for expressing various forms of party corruption, namely the
situation where computational entities become under (either full or partial) control of the adversary.
Section 7.2 presents some useful conventions for writing ideal functionalities.

Section 7.3 then presents ideal functionalities that capture some commonplace abstract models
of communication, specifically authenticated, secure, and synchronous communication. Finally,
Section 7.4 presents an ideal functionality that captures non-concurrent protocol execution.

7.1 Modeling party corruption

The operation of party corruption is a common basic construct in modeling and analyzing the
security of cryptographic protocols. Party corruption is used to capture a large variety of concerns
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and situations, including preserving secrecy in face of eavesdroppers, adversarial (“Byzantine”)
behavior, resilience to viruses and exploits, resilience to side channel attacks, incoercibility, etc.

The basic model of protocol execution and the definition of protocol emulation from Section 5 do
not provide an explicit mechanism for modeling party corruption. Instead, this section demonstrates
how party corruption can be modeled via a set of conventions regarding protocol instructions to
be performed upon receiving a special backdoor message from the adversary. We argue that this
choice keeps the basic model simpler and cleaner, and at the same time provides greater flexibility
in capturing a variety of concerns via the corruption mechanism.

One issue that needs to be addressed by any mechanism for modeling party corruption within
the current framework is to what extent should the environment be made aware of the corruption
operation. On one extreme, if the environment remains completely unaware of party corruptions,
then our notion of protocol emulation would become rather loose; in particular protocol π could
emulate protocol φ even if attacks mounted on π without corrupting anyone can only be emulated
by attacks on φ that corrupt all participants. On the other extreme, if the environment learns the
entire extended ID of all corrupted ITIs then the emulated and emulating protocol would need to
be identical.

We provide the following mechanism for party corruption. This mechanism determines how the
behavior of an ITI changes as a result of a particular type of corruption. Furthermore, it specifies
how the information regarding which ITIs are currently corrupted is collected and made available
to the environment upon request. The idea here is to allow the protocol analyst to determine the
amount of information that the environment learns about the corruption operations, which in turn
affects the level of security provided by UC-emulation.

To corrupt an ITI M , the adversary writes (corrupt, cp) on the backdoor tape of M , where cp
is some parameter of the corruption. Let f : {0, 1}∗ → {0, 1}∗ be an “identity masking” function,
which partially masks the ITI’s identity. (See more discussion on this function below.)

Say that a protocol π is standard f -revealing corruption if the shell of π includes the following
instructions: (a) Upon receipt of a backdoor message (corrupt, cp) message, the shell of ITI (π, s, p)
first passes a (corrupt, cp, f(π, s, p)) input to a special corruption aggregation ITI (π, s,A ) where
A is a special identifier. Once the control returns to the corrupted ITI, the behavior of the shell
varies according to the specific corruption type. See some examples below. (b) When the body of
π instructs to send input to a subroutine ITI M , the shell of π ITI augments the code of M with
shell code so that the resulting code M ′ is a standard f -revealing corruption protocol.

The corruption aggregation ITI (π, s,A ) proceeds as follows: When invoked with a corruption
notification input (corrupt, cp) from ITI M , ITI (π, s,A ) records (p,M) and returns control to
M . When invoked with a (report) input (presumably from the environment), (π, s,A ) returns
the list of all notifications of corruption. (We note that the corruption aggregation machine plays
a similar role to the directory machine for subroutine exposing protocols, with the exception that
here the aggregate information is given to the environment rather than to the adversary. This
in particular means that the corruption aggregation machine needs to be a main ITI of protocol
instance π, s. Furthermore, when a corrupted ITI M is a subsidiary of multiple nested protocol
instances we might want to have M register as corrupted with the aggregation machines of some
or all of these protocol instances.)

On the identity masking function. The identity masking function is a mechanism that al-
lows specifying how much information the environment obtains about the corrupted ITIs, and in
particular how much information it obtains about the actual subroutine structure of the analyzed

70



protocol. This, in turn, determines the degree by which the subroutine structure of π can diverge
from the subroutine structure of φ, and still have π UC-emulate φ.

For instance, consider the case where f(π, id) = id, i.e. f outputs the identity (but not the code)
of the corrupted ITI. This means that the environment receives the identities of all the corrupted
ITIs. In this case, if protocols π and φ are standard f -revealing corruption and π UC-emulates φ,
then it must be the case that for each ITI in an extended instance of π there exists an ITI in the
extended instance of φ with the same identity.

A somewhat more relaxed identity-masking function returns only the pid of the corrupted ITI.
This makes sense when ITIs are naturally grouped into “clusters” where all the ITIs in a cluster have
the same pid, and allows hiding the internal subroutine structure within a cluster. (A cluster may
correspond to a single physical computer or a single administrative entity.) This identity-masking
function is instrumental in modeling pid-wise corruptions, discussed in Section 7.2.

Another natural identity-masking function considers the case where the sid is constructed in a
hierarchical way and includes the names of parent instances in the “subroutine graph”. Here the
identity-masking function returns the pid, plus information of some ancestors of the current sid.
This allows capturing cases where π and φ consist of multiple “sessions” of another protocol, where
the number and identity of sessions is the same in π and in φ, but the internal subroutine structure
within each session in π is different than in φ.

Finally we note that π can UC-emulate φ even when without having π and φ be standard
f -revealing corruption with respect to the same f . In particular, when φ is the ideal protocol for
some ideal functionality, its behavior in case of party corruption will often be very different. See
more details in Section 7.2.

7.1.1 Some corruption models

We sketch how several prevalent party corruption models can be expressed within the current
framework. (It should be kept in mind that if the body of the ITI is structured then the behavior
of the inner shells might change as a result of the corruption operation. At the same time, the
party corruption shell is unaware of, and cannot access, shells that are outer to it.)

Byzantine corruption. Perhaps the simplest form of corruption to capture is total corrup-
tion, often called Byzantine corruptions. A protocol (or, rather, a shell) is Byzantine-corruptions if,
upon receiving the (corrupt) message, the shell first complies with the above standard-corruption
requirement. From this point on, upon receiving value m on the backdoor tape, the shell external-
writes m (where m presumably includes the message, the recipient identity and all relevant flags).
In an activation due to an incoming input or subroutine-output, the shell sends the entire local state
to the adversary. The setting where data erasures are not trusted can be modeled by restricting to
write once protocols, i.e. protocols where each data cell can be written to at most once. Note that
here the body of π becomes inactive from the time of corruption on.

Non-adaptive (static) corruptions. The above formulation of Byzantine-corruption shells cap-
tures adaptive party corruptions, namely corruptions that occur as the computation proceeds, based
on the information gathered by the adversary so far. It is sometimes useful to consider also a weaker
threat model, where the identities of the adversarially controlled ITIs are fixed before the compu-
tation starts; this is the case of non-adaptive (or, static) adversaries. In the present framework, a
protocol is static-corruption if it instructs, upon invocation, to send a notification message to the
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adversary; a corruption message is considered only if it is delivered in the very next activation.
Later corruption messages are ignored.

Passive (honest-but-curious) corruptions. Byzantine corruptions capture situations where
the adversary obtains total control over the behavior of corrupted ITIs. Another standard corrup-
tion model only allows the adversary to observe the internal state of the corrupted ITI. We call such
adversaries passive. Passive corruptiogns can be captured by setting the reaction of the shell to a
(corrupt) message from the adversary, as follows. A protocol π is passive corruptions if, upon re-
ceiving a (corrupt) message, a corrupted flag is set. Upon receipt of an input or subroutine-output,
the shell activates the body, and at the end of the activation, if the corrupted flag is set, then it sends
the internal state to the adversary. If the next activation is due to an incoming (continue) message
from the adversary, then the shell performs the external-write operation instructed by the body in
the previous activation. Else the shell halts and remains inactive in all future activations. When
activated due to another incoming message from the adversary, the shell forwards the message to
the body, and delivers any message that the body prepares to write in this activation.

We make two additional remarks: First, the variant defined here allows the adversary to learn
whenever a passively corrupted ITI is activated; it also allows the adversary to make the ITI
halt. Alternative formulations are possible, where the adversary only learns the current state of a
corrupted ITI, and is not allowed to make the ITI halt.

Second, the variant defined here does not allow the adversary to modify input values to the
ITI. Alternative formulations, where the adversary is allowed to modify the inputs of the corrupted
ITIs, have been considered in the literature. Such formulations can be naturally represented here
as well. (Note however that with non-adaptive corruptions the two variants collapse to the same
one.)

Physical (“side channel”) leakage attacks. A practical and very realistic security concern is
protection against “physical attacks” on computing devices, where the attacker is able to gather
information on, and sometimes even modify, the internal computation of a device via physical access
to it. (Examples include the “timing attack” of [k96], the “microwave attacks” of [bdl97, bs97] and
the “power analysis” attacks of [cjrr99].) These attacks are often dubbed “side-channel” attacks
in the literature. Some formalizations of security against such attacks appear in [mr04, glmmr04].

This type of attacks can be directly modeled via different reaction patterns of ITIs to corruption
messages. For instance, the ability of the adversary to observe certain memory locations, or to detect
whenever a certain internal operation (such as modular multiplication) takes place, can be directly
modeled by having the corrupted ITI send to the adversary an appropriate function of its internal
state. In a way, leakage can be thought of as a more nuanced variant of passive corruption, where
the corrupted ITI discloses only some function of its internal state, and furthermore does it only
once (per leakage instruction).

In of itself, this modeling is somewhat limited in that it allows the adversary to only obtain
leakage information from individual processes (or, ITIs). To capture realistic settings where side-
channel attacks collect joint information from multiple protocol sessions that run on the same
physical device, and protocols that are resilient to such attacks, one needs to augment the formal
modeling of side channel attacks with a mechanism that allows for joint, non-modular leakage from
multiple ITIs. Such a mechanism is described in [bch12].
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Transient (mobile) corruptions and proactive security. All the corruption methods so
far represent “permanent” corruptions, in the sense that once an ITI gets corrupted it remains
corrupted throughout the computation. Another variant allows ITIs to “recover” from a corruption
and regain their security. Such corruptions are often called mobile (or, transient). Security against
such corruptions is often called proactive security. Transient corruptions can be captured by adding
a (recover) message from the adversary. Upon receiving a (recover) message, the ITI stops
reporting its incoming messages and inputs to the adversary, and stops following the adversary’s
instructions. (recover) messages are reported to the corruption aggregation ITI defined above in
the same way as corruption messages.

Coercion. In a coercion attack an external entity tries to influence the input that the attacked
ITI contributes to a computation, without physically controlling the attacked ITI at the time where
the input is being contributed. The coercion mechanism considered here is to ask the coerced party
to reveal, at some later point in time, its local state at time of obtaining the secret input, and then
verify consistency with the public transcript of the protocol.

Resilience to coercion is meaningful in settings where the participants are humans that are
susceptible to social pressure; Voting schemes are a quintessential example.

The idea is to provide the entities running the protocol with a mechanism by which they can
provide the attacker with “fake input” and “fake random input” that will be indistinguishable
for the adversary from the real input and random input that were actually used in the protocol
execution. This way, the attacker will be unable to tell whether the attacked party used the fake
input or perhaps another value.

In the present framework, coercion attacks can be modeled as follows, along the lines of [cg96,
cgp15]. We assume that the protocol description includes a “faking algorithm” F . Furthermore,
each ITI M has a “caller ITI”, which represents either an algorithm in of itself or a human user.
We say that a protocol is coercion compliant if, upon receipt of a coercion instruction, the shell of
the recipient ITI notifies its caller ITI that a coercion instruction was received. Then, if the caller
ITI returns a “cooperate” message, then the coerced ITI discloses its entire internal state to the
adversary. If the parent ITI returns a “report fake input v” message, then the coerced ITI runs F
on v and its current internal state, and sends the output of F to the adversary.

Incoercibility, or resilience to coercion attacks, is then captured by way of realizing an ideal
functionality F that guarantees ‘ideal incoercibility’ as follows: Upon receiving an instruction to
coerce some ITI P , the ideal functionality forwards this request to the caller ITI of P . If in return
the caller ITI inputs an instruction to cooperate, the ideal functionality reports to the adversary
the true input of P ; If the caller ITI returns an instruction to fake an input v, then the ideal
functionality simply reports v to the adversary.

Protocol π is incoercible if it is coercion compliant, and in addition it UC-realizes an ideal
functionality F that guarantees ideal incoercibility.

7.2 Some writing conventions

We present a number of conventions and mechanisms for writing ideal functionalities in a way that
captures some commonplace security requirements.

Determining the identities of ITIs that provide input and receive outputs. Recall that
the framework provides a way for an ideal functionality F to learn the extended identities of the
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ITIs that provide inputs to it, and to determine the extended identities of the ITIs that obtain
output from it. In fact, this holds not only with respect to the immediate callers of F , which are
the dummy parties in the ideal protocol for F . Rather, the code of the dummy parties (See Section
5.3 on page 54) guarantees that this holds also with respect to the ITIs that provide inputs to these
dummy parties, and the ITIs that obtain subroutine-outputs from them. We note that this feature
of the framework is crucial for the ability to capture realistic tasks. (A quintessential example for
this need is Fauth, the message authentication functionality, described in the next section.)

When writing ideal functionalities, we allow ourselves to say “receive input v from party P” and
mean “upon activation with an input value v, verify that the writing ITI is a dummy party which
received the input from an ITI with extended identity P”. Similarly we say “generate output v for
party P”, meaning “perform an external-write operation of value v to a dummy party that will in
turn write value v on the subroutine-output tape of ITI with extended identity P .” Note that the
dummy ITI, as well as ITI P , may actually be created as a result of this write instruction.

We also slightly abuse terminology and say that an ITI P is a parent of F even when P is a
parent of a dummy party in the ideal protocol for F .

Behavior upon party corruption. In the ideal protocol idealF , corruption of parties is mod-
eled as messages written by the adversary on the backdoor tape of the ideal functionality F . (Recall
that, by convention, backdoor messages delivered to the dummy parties are ignored.) Indeed, the
behavior of F upon receipt of a corruption message is an important part of the security specification
represented by F .

We first restrict attention to the case where F only accepts corruption instructions for identities
that match the identities of the existing dummy parties, or in other words the identities of the main
ITIs of idealF . Specifically, we say that an ideal functionality F is standard PID-wise corruption if
the following holds:

1. Upon receiving a (corrupt p) message from the adversary, where p is a party ID of a dummy
party for the present session of idealF , F marks p as corrupted and returns to the adversary
all the inputs and outputs of p so far. In addition, from this point on, input values from the
dummy party p are ignored Unstead, F now takes from the adversary input instructions for
p; that is, upon receipt of a backdoor message (input, p, v), F behaves as if it received
input v from p. Finally, all output values intended for p are sent to the adversary instead.

2. Upon receiving a (Report corruption status) input from some caller ITI, F returns the
list of corrupted identities to the caller.

The above set of instructions captures the standard behavior of the ideal process upon corruption
of a party in existing definitional frameworks, e.g. [c00, g04]. Note that here the “granularity” of
corruption is at the level of PID for the main ITIs of the instance. That is, a party can be either
uncorrupted or fully corrupted. This also means that the security requirements from any protocol
π that realizes F is only at the granularity of corrupting main ITIs. This is so even if the main
ITIs of π have subroutines and these subroutines are corrupted individually. (In particular, the
identity-masking function of π can only output identities of main parties of π.)

Alternatively, ideal functionalities might be written so as to represent more refined corruption
mechanisms, such as corruption of specific subroutines or sub-sessions, forward secrecy, leakage,
coercion, etc. Furthermore, ideal functionalities may change their overall behavior depending on
the identity or number of corrupted ITIs. We leave further discussion and examples out of scope.
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Delayed output. Recall that an output from an ideal functionality to a party is read by the
recipient immediately, in the next activation. In contrast, we often want to be able to represent
the fact that outputs generated by distributed protocols are inevitably delayed due to delays in
message delivery. One natural way to relax an ideal functionality so as to allow this slack is to
have the functionality “ask for the permission of the adversary” before generating an output. More
precisely, we say that an ideal functionality F sends a delayed output v to ITI M if it engages in the
following interaction: Instead of simply outputting v to M , F first sends to the adversary (on the
backdoor tape) a message that it is ready to generate an output to M . If the output is public, then
the value v is included in the note to the adversary. If the output is private then v is not mentioned
in this note. Furthermore, the note contains a unique identifier that distinguishes it from all other
messages sent by F to the adversary in this execution. When the adversary replies (say, by echoing
the unique identifier on F ’s backdoor tape), F outputs the value v to M .

Running arbitrary code. It is often convenient to let an ideal functionality F receive a de-
scription of an arbitrary code c from the adversary, and then run this code while inspecting some
properties of it. One use of this “programming technique” is for writing ideal functionalities with
only minimal, well-specified requirements from the implementation. For instance, F may receive
from the adversary a code for an algorithm; it will then run this algorithm as long as some set of
security or correctness properties are satisfied. If a required property is violated, F will output an
error message to the relevant ITIs. Examples of this use include the signature and encryption func-
tionalities as formalized in [ch11, c05], or non-interactive zero knowledge as in [?]. Other examples
exist in the literature. Another use for this technique is to enable expressing the requirement that
some adversarial processes be carried out in isolation from the external environment the protocol
runs in. An example for this use is the formulation of non-concurrent security in Section 7.4.

At first glance, this technique seems problematic in that F is expected to run algorithms of
arbitrary polynomial run-time, whereas F ’s own run-time is bounded by some fixed polynomial.
We get around this technicality by having F not run c directly, and instead invoke a subroutine
ITI γ for running c, where the polynomial bounding the run-time of γ is appropriately set by F .
The import to γ would be provided by the adversary, namely it would be included in the request
to run c (which is written on F ’s backdoor tape) and then handed over to γ by F .

7.3 Some communication models

We turn to capturing, within the UC framework, some abstract models of communication. We
consider four commonplace models: Completely unprotected (or, adversarially controlled) commu-
nication, authenticated point-to-point communication, secure point-to-point communication, and
synchronous communication.

We first note that the present bare framework, without additional ideal functionalities, already
provides a natural way for modeling communication over an unprotected communication medium
that provides no guarantees regarding the secrecy, authenticity, or delivery of the communicated
information. Specifically, sending of a message over such a communication medium amounts to
forwarding this message to the adversary. Receiving a message over such a medium amounts to
receiving the message from the adversary. (Expressing this high level specification in terms of
body and shell may proceed as follows: When the body completes an activation with an outgoing
message (network,m), the shell writes (network,m) on the backdoor tape of the adversary.
Similarly, when activated with a message (network,m) on the backdoor tape, the shell activates
the body with incoming message (network,m).)
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Capturing the other three abstractions requires more work. Sections 7.3.1, 7.3.2, and 7.3.3
present ideal functionalities for capturing authenticated, secure, and synchronous communication,
respectively.

7.3.1 Authenticated Communication

Ideally authenticated message transmission means that an entity R will receive a message m from
an entity S only if S has sent the message m to R. Furthermore, if S sent m to R only t times
then R will receive m from S at most t times. These requirements are of course meaningful only
as long as both S and R follow their protocols, namely are not corrupted. In the case of adaptive
corruptions, the authenticity requirement is meaningful only if both S and R are uncorrupted at
the time when R completed the protocol.

We assume that the sender S knows R, namely the identity of the receiver, at the onset of the
protocol. However, if S gets corrupted during the course of the protocol execution then the actual
receiver identity R′ may be different than the original intended identity, R. Furthermore, R′ may
be determined adversarially and adaptively during the protocol execution. The receiver may not
have any knowledge of S ahead of time, yet it learns the sender identity by the end of the protocol.

In the present framework, protocols that assume ideally authenticated message transmission can
be cast as protocols with access to an “ideal authenticated message transmission functionality”.
This functionality, denoted Fauth, is presented in Figure 12. In its first activation, Fauth expects its
input to be of the form (Send, sid,R,m) with sender ITI S. (Here S and R are extended identities,
namely codes and identities. We stress that these are not the dummy party for Fauth. Rather, S is
the ITI that provides input to the sender-side dummy parties and R is the ITI that gets output from
the receiver-side dummy party. Fauth then generates a public delayed output (Send, sid, S,R,m)

to R. That is, Fauth first sends this value to the adversary. When the adversary responds, Fauth

writes this value to the subroutine output tape of R. (More precisely, Fauth outputs this value to
a dummy party with identity (sid,R); that dummy party then outputs this value to R. )

Fauth is a standard corruption functionality as defined in Section 7.2 above. In addition, if the
adversary instructs to corrupt the sender before the output value was actually delivered to R, then
Fauth allows the adversary to provide new, arbitrary message m′ and recipient extended identity
R′. Fauth outputs (Send, sid,m′) to R′.

Functionality Fauth

1. Upon receiving an input (Send, sid,R,m) from party S, do: If this is the first (Send...)

input then record R,m and send (Sent,sid, S,R,m) to the adversary; else do nothing. When
receiving (ok) from the adversary for the first time, output (Sent,sid, S,R,m) to R and
halt.

2. Upon receiving (Corrupt, sid, P,m′, R′) from the adversary, where P ∈ {S,R}, disclose m to
the adversary. Next if P = S and not yet halted, then record R′,m′ instead of R,m.

Figure 12: The Message Authentication functionality, Fauth

We highlight several points regarding the security guarantees provided by Fauth. First, Fauth

allows the adversary to change the contents of the message and destination, as long as the sender
is corrupted at the time of delivery, even if the sender was uncorrupted at the point when it sent
the message. This provision captures the fact that in general the received value is not determined
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until the point where the recipient actually generates its output.24

Second, Fauth reveals the contents of the message, as well as the extended identities of the
sender and the receiver, to the adversary. This captures the fact that secrecy of the message and
of the sender and receiver identities is not guaranteed. (One might argue that revealing the code
of the sender and receiver is not called for and exposes too much about the participants; however,
this modeling issue can be easily overcome by designing protocols such that the codes of the actual
sender and receiver ITIs do not contain sensitive information.)

Third, Fauth guarantees “non-transferable authentication”: By interacting with Fauth, the
receiver R does not gain ability to run protocols with a third party V , whereby V reliably learns
that the message was indeed sent by the sender. In situations where this strong guarantee is not
needed or not achievable, it might suffice to use an appropriately relaxed variant of Fauth (see e.g.
[csv16]).

Finally, we highlight two modeling choices of Fauth. First, Fauth deals with authenticated
transmission of a single message. Authenticated transmission of multiple messages is obtained by
using multiple instances of Fauth, and relying on the universal composition theorem for security.
This is an important property: It allows different instances of protocols that use authenticated
communication to use different instances of Fauth, thereby making sure that these protocols can be
analyzed per instance, independently of other instances. This modeling also significantly simplifies
the analysis of protocols that obtain authenticated communication.

Another modeling aspect is that Fauth generates an output for the receiver without requiring
the receiver to provide any input. This means that the SID is determined exclusively by the sender,
and there is no need for the sender and receiver to agree on the SID in advance.25

On realizing Fauth. Fauth is used not only as a formalization of the authenticated communi-
cation model. It also serves as a way for specifying the security requirements from authentication
protocols. (As discussed earlier, the validity of this dual use comes from the universal composition
theorem.) We very briefly summarize some basic results regarding the realizability of Fauth.

As a first step, we note that it is impossible to realize Fauth in the bare model, except by
protocols that never generate any output. That is, say that a protocol is useless if, with any PPT
environment and adversary, no party ever generates output with non-negligible probability. Then,
we have:

Claim 24 ([c04]) Any protocol that UC-realizes Fauth in the bare model is useless.

Still, there are a number of ways to realize Fauth algorithmically, given some other abstractions
on the system. Following the same definitional approach, these abstractions are again formulated by
way of ideal functionalities. One such ideal functionality (or, rather, family of ideal functionalities)
allows the parties to agree on secret values in some preliminary stage, thus capturing a “pre-
shared key” or perhaps “password” mechanisms. Another family of ideal functionalities provide
the service of a trusted “bulletin board”, or “public ledger”, where parties can register public values

24Early formulations of of Fauth failed to let the adversary change the delivered message and recipient identity if
the sender gets corrupted between sending and delivery. This results in an unrealistically strong security guarantee,
that is not intuitively essential and is not provided by reasonable authentication protocols. This oversight was pointed
out in several places, including [hms03, af04].

25 We point out that this non-interactive formulation of Fauth makes crucial use of the fact that the underlying
computational model from Section 3.1 allows for dynamic addressing and generation of ITIs. Indeed, allowing such
simple and powerful formulation of Fauth and similar functionalities has been one of the main motivations for the
present formulation of the underlying computational model.
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(e.g., public keys), and where potential receivers can correctly obtain the public values registered
by a party.

In this context, different abstractions (ideal functionalities) represent different physical, social
and algorithmic mechanisms for providing authentication, or binding between long-term entities
and cryptographic constructs that can be used in message authentication. Indeed, different ideal
functionalities lead to different authentication protocols and mechanisms.

An important aspect of the modeling of these methods of binding between identities and keys
(whether these are based on pre-shared keys, on public-key infrastructure, or other means) is the fact
that realistic binding methods are typically long-lived, and are in particular used for authentication
of multiple messages, which may come from different contexts and protocols. This appears to be
incompatible with the formulation of Fauth as an ideal functionality that handles a single message.
Indeed, a protocol that UC-realizes Fauth using some long-term-binding module (say, a digital
signature algorithm along with public-key infrastructure) cannot be subroutine-respecting, unless
each instance of the protocol uses a new instance of the long-term-binding module - which does not
capture reality.

To allow for modular analysis of such situations, a number of mechanisms exist in the literature
for “decomposing” a protocol where multiple instances of Fauth (or of a protocol that realizes
Fauth) jointly use a single instance of a long-term authentication module, into multiple smaller
(and overlapping) components, where each component consists of a single instance ofFauth, a
long with a long-term authentication module. One can then use the UC theorem to assert the
security of the desired system (which consist of multiple instance of the protocol realizing Fauth

where all instances use the same instance of the long-term authentication module). We leave these
mechanisms out of scope; See details in [cr03, kt13].

7.3.2 Secure Communication

The abstraction of secure communication, often called secure message transmission, usually means
that the communication is authenticated, and in addition the adversary has no access to the contents
of the transmitted message. It is typically assumed that the adversary learns that a message was
sent, plus some partial information on the message (such as, say, its length, or more generally some
information on the domain from which the message is taken). In the present framework, having
access to an ideal secure message transmission mechanism can be cast as having access to the
“secure message transmission functionality”, Fsmt, presented in Figure 13. The behavior of Fsmt is
similar to that of Fauth with the following exception. Fsmt is parameterized by a leakage function
l : {0, 1}∗ → {0, 1}∗ that captures the allowed information leakage on the transmitted plaintext m.
That is, the adversary only learns the leakable information l(m) rather than the entire m. (In fact,
Fauth can be regarded as the special case of F lsmt where l is the identity function.)

Like Fauth, Fsmt only deals with transmission of a single message. Secure transmission of mul-
tiple messages is obtained by using multiple instances of Fsmt. Following our convention regarding
party corruption, when either the sender or the receiver are corrupted, Fsmt discloses (R,m) to the
adversary. In addition, like Fauth, Fsmt allows the adversary to change the contents of the message
and the identity of the recipient as long as the sender is corrupted before message delivery. This is
so even if the sender was uncorrupted at the point when it sent the message.

Another difference between Fsmt and Fauth is that Fsmt remains active even after the message
was delivered. This is done to capture information leakage that happens when either the sender or
the receiver are compromised even long after the protocol completed its execution.
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Functionality F lsmt

F lsmt proceeds as follows, when parameterized by leakage function l : {0, 1}∗ → {0, 1}∗.

1. Upon receiving an input (Send, sid,R,m) from party S, do: If this is the first (Send...)

input then record R,m and send (Sent,sid, S,R, l(m)) to the adversary; else do nothing.
When receiving (ok) from the adversary for the first time, output (Sent,sid, S,R,m) to R.

2. Upon receiving (Corrupt, sid, P,m′, R′) from the adversary, where P ∈ {S,R}, disclose m to
the adversary. Next if P = S and have not yet received (ok) from the adversary, then record
R′,m′ instead of R,m.

Figure 13: The Secure Message Transmission functionality parameterized by leakage function l.

Stronger variants. Forward Secrecy is the requirement that the message should remain secret
even if the sender and/or the receiver are compromised - as long as the compromise happened
after the protocol execution has ended. A natural way to capture forward secrecy in the present
formulation is to modify the behavior upon corruption of either the sender or the receiver, so as to
not disclose the plaintext message m to the adversary if the corruption happened after the message
has been delivered. The rest of the code of Fsmt remains unchanged.

Another common requirement is protection from traffic analysis. Recall that, whenever a party
S sends a message to some R, Fsmt notifies the adversary that S sent a message to R. This reflects
the common view that encryption does not hide the fact that a message was sent, namely there is
no protection against traffic analysis. To capture security against traffic analysis, modify Fsmt so
that the adversary does not learn that a message was sent, or alternatively learns that a message
was sent but not the sender or receiver.

On realizing Fsmt. Protocols that UC-realize Fsmt can be constructed, based on public-key
encryption schemes that are semantically secure against chosen plaintext attacks, by using each
encryption key for encrypting only a single message, and authenticating the communication via
Fauth. That is, let E = (gen, enc, dec) be an encryption scheme for domain D of plaintexts.
(Here gen is the key generation algorithm, enc is the encryption algorithm, dec is the decryp-
tion algorithm, and correct decryption is guaranteed for any plaintext in D.) Then, consider
the following protocol, denoted πE . When invoked with input (Send, sid,m) where m ∈ D and
sid = (S,R, sid′), πE first sends an initialization message to R, namely it invokes an session of
IFauth with input (Send, sid′′,init-smt), where sid′′ = (S,R, sid′), and with PID S. Upon invo-
cation with subroutine-output (Sent, sid′′,init-smt) and with identity (R, sid), πE runs algorithm
gen, gets the secret key sk and the public key pk, and sends (sid, pk) back to (sid, S), using Fauth

in the same way. Next, (sid, S) computes c = enc(pk,m), uses Fauth again to send c to (sid,R),
and returns. Finally, upon receipt of (sid, c), πE within R computes m = dec(sk, c), and outputs
(Sent, sid,m).

It can be verified that the above protocol UC-realizes Fsmt as long as the underlying encryption
scheme is semantically secure against chosen plaintext attacks. That is, given a domain D of
plaintexts, let lD be the “leakage function” that, given input x, returns ⊥ if x ∈ D and returns x
otherwise. Then:

Claim 25 If E is semantically secure for domain D as in [gm84, g01] then πE UC realizes F lDsmt
in the presence of non-adaptive corruptions.
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Furthermore, if E is non-committing (as in [cfgn96]) then πE UC-realizes F lDsmt with adaptive
corruptions. This holds even if data erasures are not trusted and the adversary sees all the past
internal states of the corrupted parties.

As in the case of Fauth, it is possible to realize multiple instances of Fsmt using a single
session of a more complex protocol, in a way that is considerably more efficient than running
multiple independent sessions of a protocol that realizes Fsmt. One way of doing this is to use
the same encryption scheme to encrypt all the messages sent to some party. Here however the
encryption scheme should have additional properties on top of being semantically secure. In [ckn03]
it is shown that replayable chosen ciphertext security (RCCA) suffices for this purpose for the case
of non-adaptive party corruptions. In the case of adaptive corruptions stronger properties and
constructions are needed, see further discussion in [n02, chk05]. Using the UC with joint state
mechanism [cr03], one can still design and analyze protocols that employ multiple independent
instances of Fsmt, in spite of the fact that all these instances are realized by a single (or few)
instances of an encryption protocol.

7.3.3 Synchronous communication

A common and convenient abstraction of communication networks is that of synchronous commu-
nication. Roughly speaking, here the computation proceeds in rounds, where in each round each
party receives all the messages that were sent to it in the previous round, and generates outgoing
messages for the next round.

Synchronous variants of the UC framework are presented in [n03, hm04a, kmtz13]. Here we
provide an alternative way of capturing synchronous communication within the UC framework: We
show how synchronous communication can be captured within the general, unmodified framework
by having access to an ideal functionality Fsyn that provides the same guarantees as the ones that
are traditionally provided in synchronous networks. We first present Fsyn, and then discuss and
motivate some aspects of its design.

Specifically, Fsyn is aimed at capturing a basic variant of the synchronous model, which provides
the following two guarantees:

Round awareness. All abstricipants have access to a common variable, representing the current
round number. The variable is non-decreasing.

Synchronized message delivery. Each message sent by an uncorrupted party is guaranteed to
arrive in the next round. In other words, all the messages sent to a party at round r − 1 are
received before the party sends any round-r messages.

The second guarantee necessarily implies two other ones:

Guaranteed delivery. Each party is guaranteed to receive all messages that were sent to it by
uncorrupted parties.

Authentic delivery. Each message sent by an uncorrupted party is guaranteed to arrive unmod-
ified. Furthermore, the recipient knows the real sender identity of each message.

We note that the first requirement is not essential, i.e. there exist meaningful notions of synchronous
communication which do not imply common knowledge of the round number. Still, for simplicity
we choose to express the stronger variant.
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Finally, we stress that the order of activation of parties within a round is assumed to be under
adversarial control, thus the messages sent by the corrupted parties may depend on the messages
sent by the uncorrupted parties in the same round. This is often called the “rushing” model for
synchronous networks.

Functionality Fsyn

Fsyn expects its SID to be of the form sid = (P, sid′), where P is a list of ITIs (i.e., extended
identities) among which synchronization is to be provided. It proceeds as follows.

1. At the first activation, initialize a round counter r ← 1, a boolean sρP ← 0, and a set Nρ
P ← ∅

for all ρ ≥ 0 and all P ∈ P. (sρP will hold whether P sent messages for round r, and Nρ
P will

hold the list of messages sent in round ρ to party P . That is, Nρ
P = {(S,m)} where S ∈ P is

the sender and m is a message.)

2. Upon receiving input (Send, sid,M) from party S ∈ P, where M is a set of pairs (R,m), do:

(a) Set srS ← 1.

(b) For each pair (R,m) in M , add (S,m) to Nr
R.

(c) If all uncorrupted parties in P have already provided their messages for round r (i.e., if
srP = 1 for all uncorrupted P ∈ P), then increment the round number: r ← r + 1.

(d) Send (sid, S,M, r) to the adversary.

3. Upon input (Receive, sid, r′) from R ∈ P, do: If r′ < r (i.e., r′ is a completed round) then
output (Received, sid,Nr′

R ) to R. Else (i.e. r′ ≥ r) output (Round r incomplete) to P .

4. Upon receiving a backdoor message (corrupt P) for some P ∈ P, mark P as corrupted.

Figure 14: The synchronous communication functionality, Fsyn.

Fsyn, presented in Figure 14, expects its SID to include a list P of parties among which syn-
chronization is to be provided. It also assumes that all parties in P are notified of the existence of
the present instance of Fsyn in other means. (Said otherwise, we separate out the task of letting
the ITIs in P know about sid. Indeed, there can be a variety of mechanisms for this task, that
make sense in different settings, and that provide different liveness guarantees.)

At the first activation, Fsyn initializes a round number r to 1. Next, Fsyn responds to two types
of inputs: Given input of the form (Send, sid,M) from party S ∈ P, Fsyn interprets M as a list of
messages to be sent to other parties in P. The list µ is recorded together with the sender identity
and the current round number, and is also forwarded to the adversary. (This is the only point where
Fsyn yields control to the adversary. Notice that guaranteed delivery of messages is not harmed
since in its next activation, Fsyn will continue without waiting for the adversary’s response.) At
this point Fsyn also checks whether all uncorrupted parties have already sent their messages for
this round. If so, then it marks the current round as complete and increments the round number.

Given an input (Receive, sid, r′) from a party R ∈ P, where r′ is a round number, Fsyn

proceeds as follows: If round r′ is completedm then Fsyn returns to R the messages sent to it in
round r′. IF round r′ is not yet complete then Fsyn reports this fact to R.

Upon receiving a (Corrupt, P) from the adversary, for some P ∈ P, Fsyn marks P as cor-
rupted.26

26The formulation of Fsyn in earlier versions of this work was slightly different: It explicitly sent a notification
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It is stressed that Fsyn does not deliver messages to a party until being explicitly requested by
the party to obtain the messages. This way, the functionality can make a set of values available
to multiple parties at the same time, thus guaranteeing both fairness and delivery of messages.
Indeed, a protocol that uses Fsyn can be guaranteed that as soon as all uncorrupted parties have
sent messages for a round, the round will complete and all sent messages will be available to their
recipients. Similarly, any protocol that realizes Fsyn must guarantee delivery of all messages sent
by uncorrupted parties.

Using Fsyn. To highlight the properties of Fsyn, let us sketch a typical use of Fsyn by a single
instance of some protocol, π. Here all parties of an instance of π use a single instance of Fsyn. This
instance can be invoked by any of the parties. Here we assume that all parties of the instance of π
know the session ID of the instance of Fsyn in use. (Say, the instance of Fsyn is derived from the
session ID of the instance of π, along with the party IDs of the parties.)

Each party of an instance of π first initializes a round counter to 1, and inputs to Fsyn a list
µ of first-round messages to be sent to the other parties of π. In each subsequent activation, the
party calls Fsyn with input (Receive, sid, r), where sid is typically derived from the current SID of
π and r is the current round number. In response, the party obtains the list of messages received in
this round, performs its local processing, increments the local round number, and calls Fsyn again
with input (Send, sid, µ) where µ contains the outgoing messages for this round. If Fsyn returns
(Round incomplete), this means that some parties have not completed this round yet. In this
case, π does nothing (thus returning the control to the environment).

Discussion. We make the following additional observtions:

• It can be seen that the message delivery pattern for such a protocol π is essentially the same
as in a traditional synchronous network. Indeed, Fsyn guarantees that all parties actively
participate in the computation in each round. That is, the round counter does not advance
until all uncorrupted parties are activated at least once and send a (possibly empty) list of
messages for that round. Furthermore, as soon as one uncorrupted party is able to obtain its
incoming messages for some round, all uncorrupted parties are able to obtain their messages
for that round.

• Each instance of Fsyn guarantees synchronous message delivery only within the context of the
messages sent using that instance. Delivery of messages sent in other ways (e.g., directly or via
other instances of Fsyn) may be arbitrarily faster or arbitrarily slower. This allows capturing,
in addition to the traditional model of a completely synchronous network where everyone
is synchronized, also more general and realistic settings such as synchronous execution of a
protocol within a larger asynchronous environment, or several protocol executions where each
execution is internally synchronized but the executions are mutually asynchronous.

• Even when using Fsyn, the inputs to the parties are received in an “asynchronous” way.
That is, inputs may be received at any time and there is no guarantee that all or most
inputs are received within the same round. Still, protocols that use Fsyn can deploy standard

message to the adversary at any advancement of the round number, and waited for a confirmation from the adversary
before advancing the round number. This allowed the adversary to block the advancement of the round number,
which meant that the functionality did not guarantee delivery of messages. This flaw is pointed out in [kmtz13],
where an different fix to the one used here is proposed.
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mechanisms for guaranteeing that the actual computation does not start until enough (or all)
parties have inputs.

• Including the set P of participating ITIs within the SID is aimed at capturing situations where
the identities of all participants are known to the initiator in advance. Situations where the
set of participants is not known a priori can be captured by letting parties join in as the
computation proceeds, and having Fsyn update the set P accordingly.

• To capture the case where the parties learn about the instance of Fsyn from Fsyn itself, can
add an initial stage for Fsyn, where Fsyn notifies all (or some) of the parties in P that the
execution started. Note that by so doing, Fsyn transfers control to the environment; still,
as long as Fsyn does not wait for a response from the environment or the adversary, it still
guarantees delivery of all messages, as discussed above.

On composing Fsyn-hybrid protocols. Within the present framework, where protocols are
bound to be subroutine-respecting, an instance of Fsyn cannot be used as a subroutine by two
different protocols instances (π, sid) and (π′, sid′), unless one instance is a subroutine of the other.
This means that if we want to consider a (perhaps composite) protocol where the communication
is synchronous across all parties of an instance of the protocol, then we must analyze the entire
protocol as a single unit and cannot meaningfully de-compose this protocol to smaller units that
can be analyzed separately.

Composability (or, rather, de-composability) can be regained via using either the Universal
Composition with Joint State (JUC) theorem or alternatively via the Generalized UC (GUC)
framework [cr03, cdpw07]. The JUC theorem provides a way (within the present framework) to
analyze individual instances of some protocol π, where each instance uses its own instance of Fsyn,
and then argue that the overall behavior does not change even if all instances of π use the same
instance of Fsyn. (Here care must be taken to account for protocols that take different number of
rounds to complete.)

Relaxations. The reliability and authenticity guarantees provided within a single instance of
Fsyn are quite strong: Once a round number advances, all the messages to be delivered to the
parties at this round are fixed, and are guaranteed to be delivered upon request. One may relax
this “timeliness” guarantee as follows. Fsyn may only guarantee that messages are delivered within
a given number, δ, of rounds from the time they are generated. The bound δ may be either known
in advance or alternatively unknown and determined dynamically (e.g., specified by the adversary
when the message is sent). The case of known delay δ corresponds to the “timing model” of
[dns98, g02, lpt04]. The case of unknown delay corresponds to the non-blocking asynchronous
communication model where message are guaranteed to be delivered, but with unknown delay (see,
e.g., [bcg93, cr93]).

7.4 Non-concurrent Security

One of the main features of the UC framework is that it guarantees security even when protocol
sessions are running concurrently in an adversarially controlled manner. Still, sometimes it may be
useful to capture within the UC framework also security properties that are not necessarily preserved
under concurrent composition, and are thus realizable by simpler protocols or with milder setup
assumptions.
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This section provides a way to express such “non-concurrent” security properties of protocols
within the present framework. That is, we present a general methodology for writing protocols so
that no attacks against the protocol, that involve executing other protocols concurrently with the
analyzed protocol, will be expressible in the model.

Recall that the main difference between the UC model and models that guarantee only non-
concurrent security is that in the UC model the environment expected to be able to interact with
the adversary at any point in the computation, whereas in non-concurrent models the environment
receives information from the adversary only once, at the end of the computation. The idea is to
write protocols in a way that essentially forces the UC environment to behave as if it runs in a
non-concurrent model.

In fact, we demonstrate how to transform any given protocol π into a protocol πnc, such that
πnc provides essentially the same functionality as π, except that πnc forces the enviroment to
behave non-concurrently. The idea is to replace all interaction between π and the adversary for
interaction between π and a special ideal functionality, called Fnc, that mimics the adversary for
π, and interacts with the actual adversary only in a very limited way.

That is, let πnc, the non-concurrent version of π, be identical to π except that: (a) upon initial
invocation, each party of πnc calls Fnc with a (init,s) input where s is the same session ID as
the local one (b) any external-write to the backdoor tape of the adversary is replaced be an input
to Fnc ; similarly, subroutine-outputs coming from Fnc are treated like messages coming on the
backdoor tape. Incoming messages from the actual trapdoor tape are ignored. (Formally, these
transofmrations can be implemented via appropriate shell code.)

Functionality Fnc is presented in Figure 15. It expects to be first ativated by an input (init,s).
It then notifies the adversary of the session ID s and waits to receive a code Â on its backdoor
tape. (Â represents an adversary in a non-concurrent model). Fnc then behaves in the same way
that adversary Â would in the non-concurrent security model. That is, Fnc runs Â, feeds it with
all the inputs messages from the parties of this extended instance of π, and follows its instructions
with respect to sending information back to the parties. (Of course, Â sends this information as
subroutine outputs rather than backdoor messages.) In addition, Fnc verifies that Â stays within
the allowed boundaries of the model, namely that it only delivers backdoor messages to existing
ITIs that are parties or subsidiaries of the session s of the calling protocol. (For this purpose, we
assume that π is subroutine-exposing.) As soon as Â generates an output v to the environment,
Fnc sends v to the external adversary and halts.

Notice that the above formalism applies also to protocols that assume some idealized communi-
cation model, say by using an ideal functionality that represents that model (e.g., Fauth or Fsyn).
Indeed, when applied to protocols that use an ideal functionality such as Fauth or Fsyn, the above
generic transformation would modify the ideal functionality (e.g. Fauth or Fsyn) so that it will
interact with Fnc instead of interacting with the adversary.

Equivalence with the definition of [c00]. Recall the security definition of [c00], that guar-
antees that security is preserved under non-concurrent composition of protocols. (See discussion in
Section 1.1.) More specifically, recall that the notion of [c00] is essentially the same as UC security
with two main exceptions: first, there the model of execution is synchronous, which is analogous
to the use of Fsyn. Second, there the environment E and the adversary A are prohibited from
sending inputs and outputs to each other from the moment where the first activation of a party of
the protocol until the last activation of a party of the protocol.

Here we wish to concentrate on the second difference. We thus provide an alternative formula-
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Functionality Fnc

1. init inputs are ignored, except for the inital one, Upon initial invocation (due to an (init,s)
input from some party, Report s to the adversary. (Subsequent init,s) input are ignored.)

2. When receiving message (Start,Â) from the adversary, where Â is the code of an ITM
(representing an adversary), invoke Â and change state to running.

3. When receiving input (Backdoor,m) from party (i.e., ITI) P , verify that the state is running,
and that P is a member of session s of π. If verification succeeds then activate Â with backdoor
message m from P . Then:

(a) If Â instructs to deliver a backdoor message m′ to party P ′ then verify that P ′ is a
member of session s of π. If so, then output (Backdoor,m′) to P ′.

(b) If Â generates an output v to the environment, then write v to the backdoor tape of the
external adversary and halt.

Figure 15: The non-concurrent communication functionality, Fnc.

tion of the [c00] notion, within the current framework. Say that an environment is non-concurrent
if it does not provide any input to the adversary other than the input provided to the adversary at
its first activation; furthermore, it ignores all outputs from the adversary other than the first one.
Then:

Definition 26 Let π and φ be PPT protocols and let ξ be a PPT predicate. We say that π ξ-
NC-emulates φ if for any PPT adversary A there exists a PPT adversary S such that for any
non-concurrent, balanced, ξ-identity-bounded PPT environment E, we have execφ,S,E ≈ execπ,A,E .

We argue (informally) that NC-emulation captures the essence of the notion of [c00]. In par-
ticular, we conjecture that the existing security analysis of known protocols (e.g., the protocol of
[gmw87], see [g04]) for realizing a general class of ideal functionalities with any number of faults,
assuming authenticated communication as the only set-up assumption, is essentially tantamount
to demonstrating that these protocols NC-emulate the corresponding ideal functionalities. This
stands in contrast to the impossibility results regarding the realizability of the same functionalities
in the unconstrained UC framework, even with authenticated communication.

Formally, what we show is that, for any protocol π and task φ, considering whether π NC-
emulates φ is the same as considering whether the transformed protocol πnc UC-emulates φ:

Proposition 27 Let π and φ be PPT protocols and let ξ be a PPT predicate. Then πnc ξ-UC-
emulates φ if and only if π ξ-NC-emulates φ.

Notice that Proposition 27, together with the UC theorem, provide an alternative (albeit some-
what indirect) formulation of the non-concurrent composition theorem of [c00]. In fact, the present
result is significantly more general, since it applies also to reactive protocols with multiple rounds
of inputs and outputs.

Proof: We first show that if πnc ξ-UC-emulates φ then π ξ-NC-emulates φ. Let A be an adversary
(geared towards interacting with π in a non-concurrent environment). We need to show a simulator
SA such that execπ,A,E ≈ execφ,SA,E for any non-concurrent environment E .

We construct SA in two steps. First, we consider the adversary Â which is the version of A
geared towards working with πnc. Specifically, upon initiial activation, Â forwards the code A to
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Fnc which is part of πnc). From then on, Â behaves like the dummy adversary. Observe that, as
long as E is non-concurrent, the ensembles execπ,A,E and execπnc,Â,E are identical. We now let

SA be the simulator for πnc and Â, that is SA is such that execπnc,Â,E ≈ execφ,SA,E for all E .
This direction follows.

It remains to show that if π ξ-NC-emulates φ then πnc ξ-UC-emulates φ. In fact, it suffices to
demonstrate that πnc UC-emulates φ with respect to the dummy adversary. Furthermore, we will
use Claim 13 and only show that πnc UC-emulates φ with respect to specialized simulators (i.e.,
when the simulator depends on the environment).

Let E be a general UC environment (that expects to interact with πnc and the dummy adver-
sary). Let Â denote the adversary code that is given by E in response to the firs backdoor message
from Fnc (forwarded by the dummy adversary). Note that E generates this code before obtaining
any output from any party.

Next, consider the following environment Enc Enc runs E . When E generates an input to a
main party of πnc, Enc forwards this inputs unchanged. Similarly, outputs from the main parties
of πnc are forwarded to E unchanged. Inputs from E to the adversary are ignored, except for the
first input that is directed at the backdoor tape of Fnc; this input (which contains the code Â) is
forwarded by Enc to its adversary. Once Enc receives an output value from its adversary, it hands
this value to E , outputs whatever E outputs, and halts.

Clearly, Enc is a non-concurrent environment. Therefore, since π ξ-NC-emulates φ, there ex-
ists a simulator S such that execπ,Â,Enc ≈ execφ,S,Enc . However, execπ,Â,Enc is identical to
execπnc,D,E , since the view of E is the same in the two executions. Similarly, consider the simula-

tor Ŝ that is identical to S except that Ŝ ignores all inputs from its environment other than the first
one, and withholds all outputs to the environment other than the very last one before halting. We
then have that execφ,S,Enc is distributed identically to execφ,Ŝ,E ; Indeed, the view of E is the same
in the two executions. We conclude that execπnc,D,E = execπ,Â,Enc ≈ execφ,S,Enc = execφ,Ŝ,E ,
namely π ξnc-UC-emulates φ. �

Modeling partial concurrency. Finally we remark that the methodology presented here can
be extended to analyzing “partial concurrency” of protocols, where “partial concurrency” can come
in multiple flavors. For instance, one can model bounded concurrency by allowing Fnc only limited
number of interactions with the external adversary, or alternatively only a limited number of bits
sent to (or received from) the external adversary. Alternatively, one can consider composite proto-
cols where some components cannot be run concurrently to each other, but concurrent executions
of other components (or of sub-components within a component) is allowed.
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A Related work

This section surveys some related work. For brevity, we concentrate on works that led to the present
framework or directly affect it. This includes works that affect the first version (from December
2000), as well as works that influenced subsequent revisions. Still, we omit many works that use
this framework, study it and extend it. The review sections in [c01, c06, c07, c08, c13] cover some
of these works. For simplicity of exposition we mostly present the works in a rough chronological
order rather than in thematic order. Also we concentrate on contributions to the definitional aspects
cryptographic protocols rather than protocol design (although the two naturally go hand in hand).

Prior work. Two works that laid the foundations of general notions of security for cryptographic
protocols are the work of Yao [y82], which explicitly expressed the need for a general “unified”
framework for expressing the security requirements of secure computation protocols, and the work
of Goldreich, Micali and Wigderson [gmw87] which put forth the “trusted-party paradigm”, namely
the approach of defining security via comparison with an ideal process involving a trusted party
(albeit in a very informal way).

Another work that greatly influenced the UC framework is the work of Dolev, Dwork and Naor
[ddn00]. This work points out some important security concerns that arise when cryptographic
protocols run concurrently within a larger system. In particular, making sure that the concerns
pointed out in [ddn00] are addressed is central to the present framework.

The first rigorous general definitional framework for secure protocols is due to Goldwasser and
Levin [gl90], and was followed shortly by the frameworks of Micali and Rogaway [mr91] and
Beaver [b91]. In particular, the notion of “reducibility” in [mr91] directly underlies the notion
of protocol composition in many subsequent works including the present one. Beaver’s framework
was the first to directly formalize the idea of comparing a run of a protocol to an ideal process.
(However, the [mr91, b91] formalisms only address security in restricted settings; in particular,
they do not deal with computational issues.) [gl90, mr91, b91] are surveyed in [c00] in more
detail.

The frameworks of [gl90, mr91, b91] concentrate on synchronous communication. Also, al-
though in [gmw87] the trusted-party paradigm was put forth for reactive functionalities, the three
frameworks concentrate on the task of secure function evaluation. An extension to asynchronous
communication networks with eventual message delivery is formulated in [bcg93]. A system model
and notion of security for reactive functionalities is sketched in Pfitzmann and Waidner [pw94].

The first ideal-process based definition of computational security against resource bounded
adversaries is given in [c95]. In [c00] the framework of [c95] is strengthened to handle secure
composition. In particular, [c00] defines a general composition operation, called modular compo-
sition, which is a non-concurrent version of universal composition. That is, only a single protocol
instance can be active at any point in time. (See more details in Section 7.4.) In addition, security
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of protocols in that framework is shown to be preserved under modular composition. A closely
related formulation appears in [g04, Section 7.7.2].

[c00] also sketches how to strengthen the definition there to support concurrent composition.
The UC framework implements these sketches in a direct way.

The framework of Hirt and Maurer [hm00] provides a rigorous treatment of reactive func-
tionalities. Dodis and Micali [dm00] build on the definition of Micali and Rogaway [mr91] for
unconditionally secure function evaluation, which is specific to the setting where the communica-
tion between parties is ideally private. In that setting, they prove that their notion of security is
preserved under a general concurrent composition operation similar to universal composition. They
also formulate an additional composition operation (called synchronous composition) that provides
stronger security guarantees, and show that their definition is closed under that composition op-
eration in cases where the scheduling of the various instances of the protocols can be controlled.
However, it is not clear how to extend their definition and modeling to settings where the adversary
has access to the communication between honest parties.

Lincoln, Mitchell, Mitchell and Scedrov [lmms98, lmms99] develop a process calculus, based
on the π-calculus of Milner [m89, m99], that incorporates random choices and computational lim-
itations on adversaries. (In [mms98] it is demonstrated how to express probabilistic polynomial
time within such a process calculus.) In that setting, their definitional approach has a number of
similarities to the simulation-based approach taken here: They define a computational variant of
observational equivalence, and say that a real-life process is secure if it is observationally equiva-
lent to an “ideal process” where the desired functionality is guaranteed. This is indeed similar to
requiring that no environment can tell whether it is interacting with the ideal process or with the
protocol execution. However, their ideal process must vary with the protocol to be analyzed, and
they do not seem to have an equivalent of the notion of an “ideal functionality” which is associated
only with the task and is independent of the analyzed protocol. This makes it harder to formalize
the security requirements of a given task.

The modeling of randomized distributed computation in an asynchronous, event-driven setting
is an important component of this work. Works that considerably influenced the present modeling
include Chor and Moscovici [cm89], Chor and Nelson [cn99], Bird et al. [B+91], and Canetti and
Krawczyk [ck01].

Concurrent work. The framework of Pfitzmann, Schunter and Waidner [psw00, pw00] is the
first to rigorously address concurrent universal composition in a computational setting. (This
work is based on the sketches in [pw94]). They define security for reactive functionalities in a
synchronous setting and prove that security is preserved when a single instance of a subroutine
protocol is composed concurrently with the calling protocol. An extension of the [psw00, pw00]
framework to asynchronous networks appears in [pw01].

At high level, the notion of security in [psw00, pw00, pw01], called reactive simulatability, is
similar to the one here. In particular, the role of their “honest user” can be roughly mapped to
the role of the environment as defined here. However, there are several differences. They use a
finite-state machine model of computation that builds on the I/O automata model of [ly96], as
opposed to the ITM-based model used in this work. Their model provides a rich set of methods
for scheduling events in an execution. Still, they postulate a static system where the number
of participants and their identities are fixed in advance (this is somewhat similar to the model
of Section 2 in this work). In particular, the number of protocol instances run by the parties is
constant and fixed in advance, thus it is impossible to argue about the security of systems where the
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number of protocol instances may be a non-constant function of the security parameter (even if this
number is known in advance). Other technical differences include the notion of polynomial time
computation (all entities are bounded by a fixed polynomial in the security parameter regardless
of the input length - see discussion in Section 3.3.4), and scheduling of events.

Subequent work. Backes, Pfitzmann and Waidner [bpw04] extend the framework of [pw01]
to deal with the case where the number of parties and protocol instances depends on the security
parameter (still it is otherwise static as in [pw00]). In that framework, they prove that reactive
simulatability is preserved under universal composition. The [bpw07] formulation returns to the
original approach where the number of entities and protocol instances is fixed irrespective of the
security parameter.

Mateus, Mitchell and Scedrov [mms03] and Datta, Küsters, Mitchell, and Ranamanathan
[dkmr05] (see also [d05]) extend the [lmms98, lmms99] framework to express simulatability as
defined here, cast in a process calculus for probabilistic polynomial time computation, and demon-
strate that the universal composition theorem holds in their framework. They also rigorously
compare certain aspects of the present framework (as defined in [c01]) and reactive simulatability
(as defined in [bpw07]). Tight correspondence between the [mms03] notion of security and the one
defined here is demonstrated in Almansa [a04]. We note that all of these frameworks postulate a
static execution model which is most similar to the one in Section 2.

Canetti et al. [c+05] extend the probabilistic I/O automata of Lynch, Segala and Vaandrager
[sl95, lsv03] to a framework that allows formulating security of cryptographic protocols along
the lines of the present UC framework. This involves developing a special mechanism, called the
task schedule, for curbing the power of non-deterministic scheduling; it also requires modeling
resource-bounded computations. The result is a framework that represents the concurrent nature
of distributed systems in a direct way, that allows for analyzing partially-specified protocols (such
as, say, standards), that allows some scheduling choices to be determined non-deterministically
during run-time, and at the same time still allows for meaningful UC-style security specifications.

Micciancio and Tessaro [mt13] provide an alternative, simplified formalism for composable
simulation-based security of protocol. The formalism, which is a generalization of Kahn networks
[k74], allows for equational (rather than temporal) representation and analysis of protocols and
their security.

Küsters and Tüngerthal [k06, kt13] formulate an ITM-based model of computation that al-
lows for defining UC-style notions of security. The model contains new constructs that facilitate
both flexible addressing of messages and a flexible notion of resource-bounded computation in a
distributed environment. This work also adapts abstract notations from the process calculus litera-
ture to an ITM-based model, allowing for succinct and clear presentation of composition theorems
and proofs. In particular the accounting of the import of messages in this work is influenced by
the modeling of [k06].

Hofheinz, Müller-Quade and Unruh [hmu09] give an alternative definition of polynomial time
ITMs (see discussion in Section 3.3.4). Hofheinz and Shoup [hs11] point to a number of flaws
in previous versions of this work and formulate a variant of the UC framework that avoids these
flaws. Their framework (called GNUC) differs from the present one in two main ways: First,
their notion of polynomial time is close to that of [hmu09]. Second, they mandate a more rigid
subroutine structure for protocols, as well as a specific format for session IDs that represents the said
subroutine structure. While indeed simplifying the argumentation on a natural class of protocols,
the GNUC framework does not allow representing and arguing about other natural classes (see e.g.
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Footnote 25).

Nielsen [n03], Hofheinz and Müller-Quade [hm04a], and Katz et al. [kmtz13] formulate syn-
chronous variants of the UC framework. Wikström [w05, w16], as well as Canetti, Cohen and
Lindell [ccl15] present simplified formulations of the UC framework, geared as simplifying the
presentation and analysis of protocols in more “standard” multiparty computation settings.

Previous versions of this work. Finally, we note that the present framework has evolved
considerably over the years; We highlight the main advances. (In addition, each revision corrects
multiple inaccuracies and modeling discrepancies in previous versions. See more details in [c00a,
Appendix B of Version of 2013].) The first versions of this work [c00a, Versions of 2000 and
2001] do not formulate a separate, rigorous model of distributed computation, and have different
models for the execution of a protocol and for the ideal process. Also different communication and
corruption models are treated as variants of the basic model.

The next revision [c00a, Version of 2005] introduces the notion of a system of ITMs and is the
first to treat communication models as additional constructs on top of a single basic model, where
the UC theorem is stated in the basic model. This version also moves from the restricted notion of
“polynomial time in the security parameter” to a more expressive notion that takes into account
input size, formally defines security with respect to the dummy adversary and demonstrates its
equivalence with plain UC security, and presents a more detailed proof of the composition theorem.

The next revision [c00a, Version of 2013] is the first to treat corruption models as additional
constructs on top of the basic model. It also provides an improved treatment of identities and the
need to translate identities in the composition operation, simplifies the notion of polynomial time,
and introduces the notions of balanced environments and subroutine respecting protocols.

The next version [c00a, Version of 2018] further improves the treatment of identities and
subroutine respecting protocols, introduces subroutine-exposing protocols as a tool to fix a flaw in
the composition theorem, generalizes the notion of polynomial runtime (using import), simplifies
the definition of systems of ITIs and the model of protocol execution, and introduces the simplified,
“static” model of computation of Section 2.

The present version further spells out model of Section 2, as well as the mechanism of bodies
and shells and its use to express subroutine respecting and subroutine exposing protocols, as well
as the composition operation and party corruption.
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