
Efficient Algorithms for Computing Differential
Properties of Addition (Submitted Version)

Helger Lipmaa
�

and Shiho Moriai
�

�
Helsinki University of Technology, Department of Computer Science

FI-02015 HUT, Espoo, Finland
helger@tml.hut.fi�

NTT Laboratories
1-1 Hikari-no-oka, Yokosuka, 239-0847 Japan

shiho@isl.ntt.co.jp

Abstract. In this paper we systematically study the differential properties of ad-
dition modulo

���
. We derive �	��
������� -time algorithms for most of the properties,

including differential probability of addition. We also present log-time algorithms
for finding good differentials. Despite the apparent simplicity of modular addi-
tion, the best known algorithms required naive exhaustive computation. Our re-
sults represent a significant improvement over them. In the most extreme case,
we present a complexity reduction from ��� ��� � � to �	��
�������� .

Keywords: modular addition, differential cryptanalysis, differential probability, impos-
sible differentials, maximum differential probability.

1 Introduction

One of the most successful and influential attacks against block ciphers is Differential
Cryptanalysis (DC), introduced by Biham and Shamir in 1991 [BS91a]. For some of
the block ciphers proposed since then, provable security against DC (defined by Lai,
Massey and Murphy [LMM91] and first implemented by Nyberg and Knudsen [NK95])
has been one of the primary criteria used to confirm the potential quality of each cipher.

Unfortunately, few approaches to proving security have been really successful. The
original approach of [NK95] has been used in MISTY [Mat97] and its variant KA-
SUMI [ETS99] (the new 3GPP block cipher standard). Another influential approach has
been the “wide trail” strategy of Daemen [Dae95], applied for example in the proposed
AES, Rijndael [DR98]. The main reason for the small number of successful strategies
is the complex structure of modern ciphers, which makes exact evaluation of their dif-
ferential properties infeasible. This has, unfortunately, led to a situation where security
of some block ciphers against DC is evaluated by using heuristic methods.

We approach the above problem by using the bottom-up methodology. That is, we
evaluate many sophisticated differential properties of one of the most-used “non-trivial”
block cipher cornerstones, addition modulo ��� for ��� � . We hope that this will help
one to come up with an evaluation of differential properties of larger composite cipher
parts like the Pseudo-Hadamard Transform and the entire cipher as a final goal. The

proposed algorithms will enable advanced cryptanalysis of block ciphers. Moreover,
addition is used in several stream ciphers and hash functions. Our results will also fa-
cilitate cryptanalysis of stream ciphers and collision analysis of hash functions.

Importance of differential properties of addition. Originally, DC was considered
with respect to XOR, and was generalized to DC with respect to an arbitrary group
operation in [LMM91]. In 1992, Berson [Ber92] observed that for many primitive op-
erations, it is significantly more difficult to apply DC with respect to XOR than with
respect to addition modulo � � � . Most interestingly, he classified DC of addition modulo
� � itself, with � sufficiently big, with respect to XOR to be hard to analyze, given the
(then) current state of theory.

Until now it has seemed that the problem of evaluating the differential properties of
addition with respect to XOR is hard. Hereafter, we omit the “with respect to XOR” and
take the addition to be always modulo � � . The fastest known algorithms for computing
the differential probability of addition

�������	��
������������������ � �!�#"%$'&(�*)+��#",)'�-�.$
�#&/)0�-�1�2�3�54

is exponential in � . The complexity of the algorithms for the maximum
differential probability

�6� � 798	: �	��
�*�;�<�>=@?BA C��6� � �D�E
1��������
, the double-maximum

differential probability
��� �F 798	: �	�-�G���>=H?IAKJ � C �6� � �D�E
1��������

, and many other differ-
ential properties of addition are also exponential in � .

With small � (e.g., � ��L
or even with � � �NM), exponential-in- � computation

is feasible, as demonstrated in the cryptanalysis of FEAL by Aoki et al. in [AKM98].
However, this is not the case when � �PO�� as used in the recent 128-bit block ciphers
such as MARS, RC6 and Twofish. In practice, if � �QO � , both cipher designers and
cryptanalysts have mostly made use of only a few differential properties of addition.
(For example, letting

"9R
be the least significant bit of

"
, they often use the property that�SR6)T�UR6)'�KRV�QW

.) It means that block ciphers that employ both XOR and addition
modulo � � are hard to evaluate the security against DC due to the lack of theory. This
has led to the general concern that mixed use of XOR and modular addition might add
more confusion (in Shannon’s sense) to a cipher but “none has yet demonstrated to
have a clear understanding of how to produce any proof nor convincing arguments of
the advantage of such an approach” [Knu99]. One could say that they also add more
confusion to the cipher in the layman’s sense.

There has been significant ongoing work on evaluating the security of such “confus-
ing” block ciphers against differential attacks. Some of these papers have also somewhat
focused on the specific problem of evaluating the differential properties of addition. The
full version of [BS91b] treated some differential probabilities of addition modulo � �
and included a few formulas useful to compute

�6� �
, but did not include any concrete

algorithms nor estimations of their complexities. The same is true for many later papers
that analyzed ciphers like RC5, SAFER, and IDEA. Miyano [Miy98] studied the sim-
pler case with one addend fixed and derived a linear-time algorithm for computing the
corresponding differential probability.

Our Results. We develop a framework that allows the extremely efficient evaluation
of many interesting differential properties of modular addition. In particular, most of
the algorithms described herein run in time, sublinear in � . Since this would be impos-
sible in the Turing machine model, we chose to use a realistic unit-cost RAM (Random

Access Machine) model, which executes basic � -bit operations like Boolean operations
and addition modulo � � in unit time, as almost all contemporary microprocessors do.

The choice of this model is clearly motivated by the popularity of such micropro-
cessors. Still, for several problems (although sometimes implicitly) we also describe
linear-time algorithms that might run faster in hardware. (Moreover, the linear-time
algorithms are usually easier to understand and hence serve an educational purpose.)
Nevertheless, the RAM model was chosen to be “minimal”, such that the described
algorithms would be directly usable on as many platforms as possible. On the other
hand, we immediately demonstrate the power of this model by describing some useful
log-time algorithms (namely, for the Hamming weight, all-one parity and common al-
ternation parity). They become very useful later when we investigate other differential
properties. One of them (for the common alternation parity) might be interesting by
itself; we have not met this algorithm in the literature.

After describing the model and the necessary tools, we show that
��� �

can be com-
puted in time

� ������� � � in the worst-case. The corresponding algorithm has two princi-
pal steps. The first step checks in constant-time whether the differential � � �	��
������ �
is impossible (i.e., whether

��� � � � � �3W
). The second step, executed only if � is possi-

ble, computes the Hamming weight of an � -bit string in time
� ������� � � .

The structure of this algorithm raises an immediate question of what is the density
of the possible differentials. We show that the event

��� � � � �	��3W
occurs with the negli-

gible probability
� ��
 � �����
 L � �� � (This proves an open conjecture stated in [AKM98]).

That is, the density of possible differentials is negligible, so
��� �

can be computed in
time

� � � � in the average-case. These results can be further used for impossible differen-
tial cryptanalysis, since the best previously known general algorithm to find non-trivial
impossible differentials was by exhaustive search. Moreover, the high density of im-
possible differentials makes differential cryptanalysis more efficient, by enabling most
of the wrong pairs to be filtered out [BS91a,O’C95].

Furthermore, we compute the explicit probabilities
��� � ��� � � � � ��� 4

for any
��
 W��

��� � . This helps us to compute the distribution of the random variable � � � ��
�6� � � � � , and to create formulas for the expected value and variance of the random
variable � . Based on this knowledge, one can easily compute the probabilities that�H� ��� � 4 for any

�
.

For the practical success of differential attacks it is not always sufficient to pick a
random differential hoping it will be “good” with reasonable probability. It would be
nice to find good differentials efficiently in a deterministic way. Both cipher designers
and cryptanalysts are especially interested in finding the “optimal” differentials that re-
sult in the maximum differential probabilities and therefore in the best possible attacks.
For this purpose we describe a log-time algorithm for computing

�6� � 798	: �D�E
1�-�
and a

�
that achieves this probability. Both the structure of the algorithm (which makes use of
the all-one parity) and its proof of correctness are nontrivial. We also describe a log-
time algorithm that finds a pair

�D�
 ���
that maximizes the double-maximum differential

probability
��� �F 798	: �D�.�

. We show that for many nonzero
�

-s,
�6� �F 798	: �	�-�

is very close
to one. Summary of some of our results is presented in Table 1.
Road map. We give some preliminaries in Sect. 2. Section 3 describes a unit-cost
RAM model, and introduces the reader to several efficient algorithms that are crucial

����� ��������
	 ��� �� ���
	
Previous result � � � ��� � ��� ��� � � � ���
Our result �	��
���� ��� (worst-case), �	��� � (average) �	��
���� ��� �	��
���� ���

Table 1. Summary of the efficiency of our main algorithms.

for the later sections. In Sect. 4 we describe a log-time algorithm for
�6� �

. Section 5
gives formulas for the density of impossible differentials and other statistical properties
of the

��� �
. Algorithms for maximum differential probability and related problems are

described in Sect. 6, while Sect. 7 proves another open conjecture from [AKM98].

2 Preliminaries

Let � ��� W(
 ��� be the binary alphabet. For any � -bit string
"�� � � , let

"���� �
be the

�
-th coordinate of

"
(i.e.,

"T�! �� ��#" R " � � �). We always assume that
" � � W

if� �� � WU
 �%$ � 4 . (That is,
" � '&

� &
" � � � .)

Let
)

, (,) and * denote � -bit bitwise “XOR”, “OR”, “AND” and “negation”,
respectively. Let

",+ �
(resp.

",- �
) denote the right (resp. the left) shift by

�
positions

(i.e.,
".+ �����%/ "
 � �10 and

".- � �<� �
� "�= �32 � �). Addition is always performed modulo

� � , if not stated otherwise. For any
"

,
&

and 4 we define 576 �#"*
1&
 4 �;�<� � * "*)/& �) � * "*) 4 �
(i.e., 586 �D"S
&9
 4 �9�.� �;:=< ">� �3&��-� 4 �) and ?�@�A �#"S
&
 4 �;�<��"@)0&/) 4 . For any � , letBDCFEHG � � �;�<� � �I$ � .
Addition modulo � � . The carry, J C AKA
L �#"*
1&(�;�<�NMN� � � , "S
&O� � � , of addition

"2$V&
is

defined recursively as follows. First,
M R �<��W

. Second,
M�� � � �<� �#">�) &�� �) �D">�) MH� �) �D&��) MH� � ,

for every
� � W

. Equivalently,
M�� � � � �;:P< ">� $0&��5$QMH� � � . (That is, the carry bitMH� � � is a function of the sum

"�� $ &���$RMH�
.) The following is a basic property of addition

modulo � � .
Property 1. If

�D"S
& ��� � �OST� � , then
" $ &H�T")0&/) J C AUA#L �D"S
1&(� .

Differential Probability of Addition. We define the differential of addition modulo
� � as a triplet of two input and one output differences, denoted as

�	��
�'�� ���
, where��
�
 �R� � � . The differential probability of addition is defined as follows:

�6� � � � ��� �6� � �D�E
1��������;�<��� ��� � �!�#"H$ &(��)3�1�D"@) �-�S$3�#&�) �-�1���T�54WV
We say that � is impossible if

�6� � � � �,��W
. Otherwise we say that � is possible. It

follows directly from Property 1 that one can rewrite the definition of
�6� �

as follows:

Lemma 1.
�6� � �D�E
1���� � � � ���B� � � J C AKA
L �#"*
1&(��) J C AUA#L �#"2),�E
1&),�*��� ?F@�A �D�E
1��
 ��� 4 .

Probability Theory. Let � be a discrete random variable. Except for a few explic-
itly mentioned cases, we always deal with uniformly distributed variables. We note
that in the binomial distribution,

�H� � �YXK4 �[Z]\ � �W$ Z9� �� _^ � \7` � �ba.�KXdc �
eZ9� , for
some fixed

W �fZ � � and any
Xg�!hih

� � � . From the basic axioms of probabil-
ity,

 � \ " R a.�UXdc �
KZ9�,� � . Moreover, the expectation j � � 4/� � \ " R X �K�H� � �kX 4
of a binomially distributed random variable � is equal to � Z , while the variancelnmpo(� � 49� j � � � 4 $qj � � 4 �

is equal to � Z*� ��$ Z � .

3 RAM Model and Some Useful Algorithms

In the � -bit unit-cost RAM model, some subset of fixed � -bit operations can be exe-
cuted in constant time. In the current paper, we specify this subset to be a small set of
� -bit instructions, all of which are readily available in the vast majority of contemporary
microprocessors: Boolean operations, addition, and the constant shifts. We additionally
allow unit-cost equality tests and (conditional) jumps. On the other hand, our model
does not include table look-ups or (say) multiplications. Such a restriction guarantees
that algorithms efficient in this model are also efficient on a very broad class of plat-
forms, including FPGA and other hardware. This is further emphasized by the fact that
our algorithms need only a few bytes of extra memory and thus a very small circuit size
in hardware implementations.

Many algorithms that we derive in the current paper make heavy use of the three
non-trivial functions described below. The power of our minimal computational model
is stressed by the fact that all three functions can be computed in time

� � � � � � � .
Hamming Weight. The first function is the Hamming weight function (also known as
the population count or, sometimes, as sideways addition) ��� : For

" � �� ��
" R ">� � � ,
� � �D"9�V� �� ��#" R " �

, i.e., � � counts the “one” bits in an � -bit string. In the unit-cost
RAM model, � � �#"9� can be computed in

� ������� � � steps. Many textbooks contain the
next algorithm.

INPUT:
"

OUTPUT: ��� �#"9�
1.

"�� " $ �1�D" + � �)��	��
�
�
�

�
�
�
� � ;
2.

"�� �#")��������������������� �S$3�1�D" + � �)�������������������� � ;
3.

"�� �#"@$ �D" +��K�1�)������������������	��� ;
4.

"�� " $3�#" + L �
;

5.
"�� �#"@$ �D" + �NM �1�)��������������������� ;

6. Return
"

;

Additional time-space trade-offs are possible in calculating the Hamming weight. If
� � M��

, then one can precompute �� values of � � � � � , W � ��� �	� , and then find � � �#"9�
by doing

� � �
 M table look-ups. This method is faster than the method described in
the previous paragraph if

� � ����� � � , which is the case if � � O � and
� � �NLU
 � Mp� .

However, it also requires more memory. While we do not discuss this method hereafter,
please note that our implementations do use this method.

Interestingly, many ancient and modern power architectures have a special machine-
level “cryptanalyst’s” instruction for ��� (mostly known as the population count instruc-
tion): SADD on the Mark I (sic), CX

�
X� on the CDC Cyber series, A

�
PS� on the

Cray X-MP, VPCNT on the NEC SX-4, CTPOP on the Alpha 21264, POPC on the Ul-
tra SPARC, POPCNT on the Intel IA64, etc. In principle, we could incorporate in our
model a unit-time population count instruction; Then several later presented algorithms
would run in constant time. However, since there is no population count instruction on
most of the other architectures (especially on the widespread Intel IA32 platform), we
have decided not include it in the set of primitive operations. Moreover, the complexity
of population count does not significantly influence the (average-case) complexity of
the derived algorithms.

�������������	�������������	�������	�����������	�
�	���	�������	����
�������	���������������������������	�����	�����	���������������	����

���
� � � � �����������	�����������	�������	�������������	�
�	���	�������	����
���
��� � � � �����������	�������������	�������	�����������	�
�	���	�������	����
� � ���� � �����������������������������������	�����������������	���
�	������

� � � ���� � ���������������������������������	�����������	�����	���������	�����

Fig. 1. Let � ��� � . A pair � ���� � with corresponding values ����� � � � , ����� � � � � , � � ���� � and� � � ���� � . Here, for example, ����� � � � � � � � since � �!� � �#"�!� ��$ and
�&%(' ��) � � is odd. On

the other hand,
� � � ��*� � � � � since � � �!� � "�!� � �!� � "�!� � �!� �#"�+� � �+� � �!�-,(�!��, ,

and . '0/
is even.

All-one and Common Alternation Parity. The second and third functions, important
for several derived algorithms (more precisely, they are used in Algorithm 3 and Al-
gorithm 4), are the all-one and common alternation parity of � -bit strings, defined as
follows. (Note that while the Hamming weight has very many useful applications in
cryptography, the functions defined in this section have never been, as far as we know,
used before for any cryptographic or other purpose.)

The all-one parity of an � -bit number
"

is another � -bit number
& � C @21 �#" � s.t.&��6� � if and only if the longest sequence of consecutive one-bits

"]�D"�� � � V�V7V ">� ��3 �
� � V7V�V � has odd length. The common alternation parity of two � -bit numbers

"
and

&
is

a function 4 �#"*
1&(�
with the next properties: (1) 4 �D"S
& � �-� � , if 5 � is even and non-zero,

(2) 4 �#"S
&(� � � W
, if 5 � is odd, (3) unspecified (either

W
or �) if 5 ��� W

, where 5 � is the
length of the longest common alternating bit chain

"]��� &����� ">� � � � &�� � � �� V�V�V ��
">� �76�8 � &�� �76�8 , where

� $ 5 � � ��$ � . W.l.o.g., we will define

4 �D"S
& �G��� C @21 � * �#")0&(�) �#")3�#" + � ��) � * �D"@)0& ��+ � �� V
For both the all-one and common alternation parity we will also need their duals (de-
noted as C @91�: and 4;:), obtained by taking bit-inverses of their arguments. (See Fig. 1.)
Note that for every

�D"S
1&(�
and

�
, 4 �#"S
&(� � � �D<<4 �D"S
1&(� � � � � 4 �D"S
1&(� �

� �
�TW

.
Clearly, the next algorithm finds the all-one parity of

"
in time

� ������� � � . (It is
sufficient to note that

"-� � 4 3 � � if and only if the number � 3 of ones in the sequence�#" 3 � �
1" 3 � �
� �
�V7V�VG
" 3 ���>= � � � �
1" 3 ����= � � � W �

is at least �
�

and
& � � 4 3 � � if

and only if � 3 is an odd number not bigger than � 3 .) Therefore also 4 �D"S
1&(�
can be

computed in time
� ������� � � .

INPUT:
"T� � � , � is a power of �

OUTPUT: C @91 �#"9�
1.

"*� � 4 � ") �#" - � � ;
2. For

� � � to
� � � � � $ � do

"-� � 4 � "*� � $ � 4) �#"-� � $ � 4 - � � � � � ;
3.

& � � 4 � ")%* "*� � 4 ;
4. For

� � � to
� � � � � do

& � � 4 � & � � $ � 4 (�1�D& � � $ � 4 - � � � � �) "-� � $ � 4 � ;
5. Return

& � � � � � � 4 ;

4 Log-time Algorithm for Differential Probability of Addition

In this section we say that differential � ���D�E
1�P�� � �
is “good” if 576 �D�T- �
1�%-

�
 �Q- � �) � ?F@�A �D�E
1��
 ����) �	� - � �� � W
. That is, � is not “good” iff for some�,� � WU
 ��$ � 4 , � � � � � � �

� �
�+� �

� �
�� � �) � �) � �

. (Remember that
�
� �

�+�
� �

�
�
� �

� W
.)

Theorem 1. Let � � �D�E
1� �� ���
be an arbitrary differential. Algorithm 1 returns�6� � � � � in time

� ������� � � .

Algorithm 1 Log-time algorithm for
�6� �

INPUT:
� � ��� �����	� �

OUTPUT:
��� � � � �

1. If
������� � �� � �� ;� ��� ��� ��� ��� �� �� ��� � � ;� � � "� /
then return

/
;

2. Return
���������! #"�$��&%(')�' *,+.- ���./10 ���2� � +.+

;

Rest of this subsection consists of the step-by-step proof of this result, where we
use the result of Lemma 1, i.e., that

��� � �T� ��� � � J C AUA
L �#"S
&(��) J C AUA#L �D") �E
1&) �*� �
?F@�A �D�E
1��
 ��� . We first state and prove two auxiliary lemmas. After that we show how
Theorem 1 follows from them.

Lemma 2. Let 3 �#" � be a mapping, such that 3 �	W � �TW
, 3 � � � � 3 � � � � �� and 3 � O � �

� . Let
��
� � � � . Then

����� � � J C AKA
L �#"*
1&(� � � �) J C AUA#L �#"H)0�E
1&/)0�*� � � � � �54 � � $ � � $
6 M��*� � 4 � 3 � � � .
Proof. We denote

MH� J C AUA
L �#"S
&(� and
M�7H� J C AKA
L �#"V) ��
&)'�*�

, where
"

and
&

are
understood from the context. Let also

6 M � M) M 7
. By the definition of carry,

6 M � � � ��#" �) & � �B)>�#" �) M � �B)>�#& �) M � �B) ��#"E),�-� �) �D&.)%�*� � �B)>�1�#"E),�.� �) M 7� �B) ��#&)H�*� �) M 7� � .
This formula for

6 M � � � is symmetric in the three pairs
�#" �
� � �

,
�D& �
� � �

and
�eM �
 6 M � �

.
Hence, the function 8 �	� �
1� �
 6 M � ��� ��� 8 � � 8 � � 8

� 6 M � � � � � 4 is symmetric, and therefore
8 is a function of

� � $ � � $ 6 M �
, 8 � � � � ��� 8 � � 8 � � 8

� 6 M � � � � �54 � � $ � � $ 6 M � � � 4 . One
can now prove that

� � 8 � � 8 � 6 M�� � � � �54 ��� $ ���9$ 6 MH� � � 4S� 3 � � � for any
W � � � O ,

and for any value of
M�� �;� W(
 ��� . For example,

� � 8 � � 8 � 6 MH� � � � �(4 ���*$T�>�*$ 6 M����
� 46� � � 8 � � 8 � 6 MH� � � � �54 �D���
�>�
 6 MH�	�H� �	W(
WU
 � � 4 � � � 8 � � 8 �!�#"��) MH� �) �#&��) MH� ��)�#">�)Q* MH� ��) �D">�) * MH� ��� � 4,� � � 8 � � 8 � "�� � &�� 4V� �� . The claim follows since� �B� � � 6 MH� � � 4 � � � 8 � � 8 � 6 MH� � � 4 . 9:
Lemma 3. 1) Every possible differential is “good”.
2) Let � � �D�E
1��������

be “good”. If
� � � W(
 �W$ � 4 , then

�/�B� �K� J C AKA
L �#"*
1&(� �) J C AUA#L �D")��
&) �*� � � �(4 ��� � � $ �>�
� �

$ �3�
� �

� � 4 � 3 � � � . In particular,
� �B� � � J C AKA
L �#"*
1&(� R)J C AKA
L �#") �E
1&)0�*� R � WB4 � � .

Proof. 1) Let � be possible but not “good”. By Lemma 1, there exists smallest
�
,

for which there is a pair
�#"*
1&(�

, s.t. J C AUA#L �D"S
& � � � �) J C AKA
L �#") ��
&) �-� � � � �
?F@�A �D�E
1��
 ��� � � � �� ��� � �>� � �3�

. Moreover, the same pair
�D"S
& �

has to sat-
isfy J C AUA#L �#"*
1&(�9�E) J C AUA#L �D"�) �E
1&) �*� � � ?�@�A �D�E
1�
1� �9� � ���

. But by Lemma 2,��� 8 � � 8 � J C AKA
L �#"*
1&(� � � �) J C AUA#L �D",)'��
&)'�*� � � � �� � � 4 � � � � � � � � 4�� W
, which is a

contradiction.
2) Let � be good. We prove the theorem by induction on

�
, by simultaneously prov-

ing the induction invariant
�/�B� � � J C AUA#L �#"*
1&(�) J C AKA
L �#") �E
1&) �*� � ?�@�A �D�E
1�
1� �=��32 � � 4 � W

. BASE (
� � W

). Straightforward from Property 1 and the definition
of the “good” differential. STEP (

�E$ ��� W
). We assume that the invariant is true

for
�
. In particular, there exists a pair

�D"S
1&(�
, s.t.

6 M �
� �

� ?�@�A �D�E
1�
1� � � � � , where6 M � J C AUA#L �D"S
& ��) J C AUA
L �#") �E
1&%)T�*�
. Then, by Lemma 2, 3 � � �H� �/��� � � 6 M � �

�54 ��� � � $ �>�
� �

$ 6 MH�
� �

� � 4���� �B� � � 6 MH� � �(4 ��� � � $3���
� �

$?�@�A �	��
�
 ��� � � � �� 4>� � ��� � � 6 MH� � �54 ��� � � $ �>�
� �

$ �3�
� �

� � 4 , where the last equation follows
from the easily verifiable equality 3 � � � $ � � $ � � ��� 3 � � � $ � � $?F@�A � � �
 � �
 � � �1� ,
for every � �
 � �
 � � � � . This proves the theorem claim for

�
. The invariant for

�
,6 M��*� ?�@�A �D�E
1�
1� �9� , follows from that and the “goodness” of � . 9:

Proof (Theorem 1). First, � is “good” if and only if it is possible. (The “if” part fol-
lows from the first claim of Lemma 3. The “only if” part follows from the second claim
of Lemma 3 and the definition of a “good” differential.) Let � be possible. Then, by
Lemma 1,

�6� � � � � ��� �� ��
" R � ��� � � J C AUA#L �D"S
1&(�9��) J C AUA#L �#") �E
1&2) �*�9�S� ?�@�A �D�E
1�
1� �9�#4 .
By Lemma 2,

� ��� � � J C AUA#L �D"S
1&(�9�) J C AUA#L �D"H)'�E
1&) �*�9��� ?�@�A �	��
�
 ��� �D4 is either � or
��
 � , depending on whether

� �
� �

�Q�>�
� �

�Q���
� � or not. (The probability cannot beW

, since � is possible and hence “good”.) Therefore,
�6� � � � ��� � �������
	8��
���������� � J � C�� 8 �

���� � �����������
� J � C���� 798���� � � � �

���
, as required. Finally, the only non-constant time computa-

tion is that of Hamming weight, which can be done in log-time. 9:
Note that technically, for Algorithm 1 to be log-time it would have to return (say) $ �
if the differential is impossible, or

� � � � ��� � � � � , if it is not. (The other valid possibility
would be to include data-dependent shifts in the set of unit-cost operations.) Finally, it
follows straightforwardly from Algorithm 1 that

Lemma 4.
�6� �

is symmetric in its arguments. That is, for an arbitrary triple
�D�E
1��
 ���

,�6� � �D�E
1�������� � ��� � �#��
� �� � �'� ��� � �	��
1� �� �*�
. Therefore, in particular,=@?BA � �6� � �D�E
1�������� � =H?BA J ��� � �	��
������ � �T=H?IA C���� � �D�E
1���� � �

.

5 Statistical Properties of Differential Probability

Note that Algorithm 1 has two principal steps. The first step is a constant-time check
of whether the differential � � �	��
� �� � �

is impossible (i.e., whether
�6� � � � � � W

).
The second step, executed only if � is possible, computes in log-time the Hamming
weight of an � -bit string. The structure of this algorithm raises an immediate question
of what is the density

� ��� �6� � � � ���� WB4
of the possible differentials, since its average-

case complexity (average taken over uniformly and random chosen differentials �) is� �D� � � ��� � � � � � WB4I$>� ��� �6� � � � � �� WI4�� ����� � � . This is one (but certainly not the only
or the most important) motivation for the current section.

Let � � � �� �6� � � � � be a uniformly random variable. We next calculate the
exact probabilities

�H� � � � 4
for any

�
. From the results we can directly derive the

distribution of � . Knowing the distribution, one can, by using standard probabilistic
tools, calculate the values of many other interesting probabilistic properties like the
probabilities

�H� ��� � 4 for any
�
.

Theorem 2. 1) [Conjecture 2, [AKM98]]
�H� � � WB4 � � ��
 � � �����
 L � �� � .

2) Let
W � X � � . Then

�H� � � � � \ 4 � � � � \ � � � � O \ � ^ �� �\ ` � �� � ^ �� ` �� � �a ^UXdc � $ �
��� ` .
Proof. Let � � �	��
� �� ���

be an arbitrary differential and let � � 576 �D�E
1��
 ��� , � � �576 �D�O- �
�P- �
1� - � � and
"0� ?F@�A �	��
�
 ���)+�D�O- � �) be convenient shorthands.

Since
�

,
�

and
�

are mutually independent, � and
"

(and also � � and
"

) are pairwise
independent.

1) From Theorem 1,
�H� � �� WB4.� � � � � �) " � WI4-� � � � ��
" R � �,$ � � � � �� � �
" � �

� 4#� � � � � ��
" R � �I$ � ��� � �� � � 4 �(� �B� " � � � 4 � � ^ ��$ � � �� ` ��� �� ��#" � ^ ��$ �� � �� ` �
�� � ^ �� ` �� � .

2) Let
� � BDCFE�G � � $ � � . First, clearly, for any

W � X � � , � � � ��� � � � � X 4 �
� � � J � C���	 �

� � � � � � � X 4 � ^ �� ` \ � ^ �� ` �� \ � ^ � \ ` � a ^ Xdc �
 �� ` and therefore
� � � � � � *
�)� � � X 4 � a ^ �%$ ��$ Xdc � $ �
 �� ` � ^ �� ` �� � � \ � ^ �� ` \ � ^ �� �\ ` � � � � � � � O \	� ^ �� �\ ` .

Let
�

denote the event � � � �>) � � � �N$ �]$ X and let � denote the event � �) " �3W
.

Let � � be the event � ��) "��*�3W
. According to Algorithm 1,

�H� � � � � \ 4 � � � � �
 � 4 �� ��� � 4 �;� ��� � 4 � 4 �3� ��� � 4 � � �� ��#" R � ��� � � 4 � 4 � �� �G� � � � 4 � � �� ��
" � � ��� � � 4 � 4 , where we
used the fact that � �R � � .

Now, if
� � W

then
� � � � � 4 � �� � � 4 � � � � ">�/� WI4 � �� , while

� � � � �/� W 4 � �� �WI4 � � . Moreover, � �� � � � � � . Therefore,
� �� ��
" R � �B� � � 4 � 4�� ^ �� ` �� � � \ , and hence�H� � � � � \N4 � �� �#� � � � 4 � � �� ��
" R � � � � � 4 � 4 � �� �ea ^ �%$ ��$ Xdc �%$ �
 �� ` �H^ �� ` �� � � \ �

�� � � � � � � � � O \ � ^ �� �\ ` � � � � \ ��� � � � � \ � � � � O \ � ^ �� �\ ` � �� � ^ �� ` �� � �9a ^ Xdc � $ �
 � � ` .
9:

Corollary 1. Algorithm 1 has average-case complexity
� � � � .

As another corollary, � � � R $ � � , where � �
 � � � � �� ����� � � � are two random
variables. � R has domain � � RI� �;� � � � � � ����� � � � ���TW � , while � � has the com-
plementary domain � � � �6� � � � � � � �U��� � � � ���� W � . Moreover, � R has constant
distribution (since

�H� � R��TWB4 � �), while the random variable $ ����� � � � has binomial
distribution with

Z>� � � . Knowledge of the distribution helps to find further properties
of

��� �
(e.g., the probabilities that

�6� � � � � � � � \) by using standard methods from
probability theory.

Remark 1. One can double-check the correctness of Theorem 2 by verifying that
�� �� �� � �� � � � � �\ " R a ^ Xdc ��$ �
 �� ` � � � �\ " R �H� � � � � \N4�� �H� � ��QWB42� �� � ^ �� ` �� � .

Moreover, clearly
�H� � � � � \N4 � 4 � � R � 4 �D�H� � R � � � \ 4�$ 4 � � � � 4 �D�H� � � � �� \ 4 ��� � ^ �� ` �� � �7a ^ Xdc �%$ �
��� ` , which agrees with Theorem 2.

We next compute the variance of � . Clearly, j � � 4 � �� �\ " R � � \ �H� � � � � \ 4��
���� , and therefore j � � 4 � � �� � � . Next, by using Theorem 2 and the basic properties
of the binomial distribution, j � � � 4 � W ��H� � � � WB4I$ � � �\ " R � � � \ ��H� � � � � � � \ 4 ��� � ^ �� ` �� � � �� �\ " R �� � \��3a ^ Xdc � $ �
 �� ` � �� � ^ �� � ` �� � � �� ��
" R a ^ Xdc �%$ �
 �� ` �
�� ��^ �� � ` �� � . Therefore,

lnmpo(� � 4 � �� �3^ �� � ` �� � $ �� � � � �� ���>^ �� � ` �� � $ ^ �� � ` �� ��� .

Note that the density of possible differentials
�H� � �� WI4

is exponentially small
in � . This can be contrasted with a result of O’Connor [O’C95] that a randomly se-
lected

�
-bit permutation has a fraction of � $ � � ��� ��� WpV �

impossible differentials,
independently of the choice of � . Moreover, a randomly selected � -bit composite per-
mutation [O’C93], controlled by an � -bit string, has a negligible fraction

� � � �
 � � � � �
of impossible differentials.

6 Maximum Differential Probability of Addition Modulo 	�

The last section described methods for computing the probability that a randomly
picked differential � has high differential probability. While this alone might give rise
to successful differential attacks, it would be nice to have an efficient deterministic al-
gorithm for finding differentials with high differential probability. The current section
will give some relevant algorithms for this.

6.1 Linear-time Algorithm for � �������
In this subsection, we will describe an algorithm that, given an input difference�D�E
1�*�

, finds all output differences
�

, for which
��� � �D�E
1���� � �

is equal to the maxi-
mum differential probability of addition,

�6� � 798	: �D�E
1�*�G���>=H?IA C ��� � �	��
���� ���
. (By

Lemma 4, we would get exactly the same result when maximizing the differential
probability under

�
or

�
.) We say that such

�
is (

��
�*�
-optimal. Note that when an�D�E
1�*�

-optimal
�

is known, the maximum differential probability can be found by ap-
plying Algorithm 1 to � � �	��
� �� � �

. Moreover, similar algorithms can be used
to find “near-optimal”

�
-s, where

����� � ��� � �D�E
1���� � �
is only slightly smaller than����� � ��� � 798	: �D�E
1�*� .

Theorem 3. Algorithm 2 returns all
�	��
�*�

-optimal output differences
�

.

Proof (Sketch.). First, we say that a position
�

is bad if 576 �D�E
1��
 ��� � � W
. Accord-

ing to Theorem 1,
�

is
�	��
�*�

-optimal if it is chosen so that (1) for every
� � W

, if576 �D�E
1�
1� � � � � � � then ?F@�A �	� �
1� �
1� � ��� � �
� � , and (2) the number of bad positions

�
is the least among all such output differences

�
, for which

�D�E
1�0�� � �
is possible. For

achieving (1) we must first fix
�KR � �SR2) �UR

, and after that recursively guarantee that� �
obtains the predicted value whenever

� �
� �

�T� �
� �

�'� �
� � .

This, and minimizing the number of bad
�
-s can be done recursively for every

W �
� � � $ � , starting from

� � W
. If

� � �� � �
then

�
is bad independently of the value of� � �Q�NWU
 ��� . Moreover, either choice of

�
places no restriction on choosing

� � � � . This
means that we can assign either

� � � W
or

� � � � .

Algorithm 2 Algorithm that finds all
�

-s, s.t.
��� � �D�E
1���� � � � �6� � 798	: �D�E
1�-�

.
INPUT: ��� �� �
OUTPUT: All ��� �� � -optimal output differences �

1. � , � � , � � , ;
2. � � � ��� �� � ;
3. For � � � to � ' � do

If ��� � � � � � � � � � � � � then � � � ��� � � � � ��� � �
else if � � � ' � or ��� "� � � or ��� � � then � � ��� / �
	
else � � � � � ;

4. Return � .

The situation is more complicated if
� � � � �

. Intuitively, if 5 � � � X � W
is even,

then the choice
� � � � �

(as compared to the choice
� � � * � �) will result in

X
bad

positions
� ��
 � $ �
�V7V�VG
 � $ � X $ � � instead of

X
bad positions

��� $ �
 � $ O
7V�V7VG
 � $ � X $ � � .
Thus these two choices are equal. On the other hand, if 5 � � � X.$ � � W

, then the choice� � � � �
would result in

X
bad positions compared to

X�$ � when
� � � � �

, and hence is
to be preferred over the second one. We leave the full details of the proof to the reader.

9:
A linear-time algorithm that finds one

�	��
�*�
-optimal

�
can be derived from Algorithm 2

straightforwardly, by assigning
�p� � ���

whenever 586 �	��
�
 ���9� � � � W
.

As an example, let us look at the case � � �NM ,
� � ����
��
� and

� � ���������
 .
Then 4 �D�E
1�*�2� ��������� , and by Algorithm 2 the set of

�D�E
1�*�
-optimal values is equal

to � ��� � $ � � ��� $ � � � � $ � � � $ � , where
� �f�NWU
 O
 � � . Therefore, for example,�6� � 798	: � ����
��
�
 ���������
 ��� �6� � � ����
���
�
 ���������
 �� ����������� �E� �� � .

6.2 Log-time Algorithm for � � ��� �
For a log-time algorithm we need a somewhat different approach, since in Algorithm 2
the value of

�3�
depends on that of

�3�
� � . However, luckily for us,

�p�
only depends on� �

� � if 576 �D�E
1�
1� � � � � � � , and as seen from the proof of Theorem 3, in many cases we
can choose the output difference

� �
� � so that 586 �	��
�
 ��� � � � � W

!
Moreover, the positions where 586 �	��
�
 ��� � � � � � must hold are easily detected.

Namely (see Algorithm 2), if (1)
��� W

and
� � � � � � W

, or (2)
� � W

and
� � � � �

but
Z � � W

. Accordingly, we can replace the condition 576 �D�E
1��
 ��� � � � � � with the
condition * �D� �)'� � �) Z � , with additional care taken if

�
is small. By noting how the

values
Z �

are computed, one can prove that

Theorem 4. Algorithm 3 finds an
�	��
�*�

-optimal
�

.

Proof (Sketch, many details omitted). First, the value of
Z

computed in the step 4 is
“approximately” equal to 4�: �D�E
1�-� , with some additional care taken about the lowest
bits. Let 5&: be the bit-reverse of 5 (i.e., 5�:� is equal to the length of longest common
alternating chain

� � � � � ��P� �
� �

�3� �
� �

�� V�V�V
.). Step 7 computes

� �
(again, approx-

imately) as (1)
� � � � �)qZ �

, if
� � �Q� �

, (2)
� � � � �)T� �) � �

� � if
� � ��Q� �

but

Algorithm 3 A log-time algorithm that finds an
�D�E
1�*�

-optimal
�

.
INPUT: ��� �� �
OUTPUT: A ��� � � -optimal �

1. � � � � � ;
2. � ��� ��� � � ��� � � ;
3. � � � � ��� � � � ��� � ���� � � � ;
4. � � ����� � ����� ;
5. � � ��� � ���	� � � � � � � ;
6.
 � ��� � ����;� ;
7. � � � ��� � � ����� � � � ��� � � � ��� ;� � � � � ����
 � � ��� � � ��� �
 � ;
8. � � � � � � � � � � ��� � � ��� � � ;
9. Return � .

576 �D�E
1�
1� �9� � � � � and (3)
�3� � ���

if
��� �� ���

and 576 �D�E
1��
 ��� � � � �+W
. Since the two

last cases are sound, according to Algorithm 2, we are now left to prove that the third
choice makes

�
optimal.

But this choice means that in every maximum-length common alternating bit chain���@� ����������
� �

� �>�
� �
V�V7V ������

� 6�8 � �
� ���

� 6�8 � � , Algorithm 3 chooses all bits� 3 , � � � � $ 5 :� $ �
 �	4 , to be equal to
���
� 6�8 � �

� �>�
� 6�8 � � . By approximately the same

arguments as in the proof of Theorem 3, this choice gives rise to
/ 5 �
 � 0 bad bit positions

in the fragment
� � $ 5�:� $ �
 � 4 ; every other choice of bits

� 3 would result in at least as
many bad positions. Moreover, since * �D� � � � �3� � � � ��P� � � � � �

, it has to be the case
that either

� � � � ��T� � � � or
� � � � �T� � � � �3� � � � �

. In the first case, both choices of
� �

make
�K$ � bad. In the second case we must later take

� � � � � � � � � , which makes
�K$ �

good, and enables us to start the next fragment from the position
�U$ � . (Intuitively, this

last fact is also the reason why C @91�: is here preferred over C @91) 9:

Remark 2. Biham and Shamir used the fact
��� � �	��
���� �)0�*� �

� ��� � ��� ���
J ��� 798���� � �� �

���
in their differential cryptanalysis of FEAL in [BS91b].

Often this value is significantly smaller than the maximum differential probability�6� � 798	: �D�E
1�*�
. For example, if

� � � � � � $ � , then
��� � 798	: �D�E
1�-� � �� , while�6� � �D�E
1���� �) �*� ���6� � �D�E
1���� W �,� � �� � . However, since FEAL only usesL

-bit addition, it is possible to find
�D�E
1�*�

-optimal output differences
�

by exhaustive
search. This has been done, for example, in [AKM98].

6.3 Algorithm for Double-Maximum Differential Probability

We next show that the double-maximum differential probability�6� �F 798	: �D�.�;�<��=H?IA J � C���� � �	��
������ ��� =H?BA J ��� � 798	: �	��
�*�
of addition can be

computed in time
� � � � � � � . (As seen from Algorithm 2,

�6� � 798	: �D�E
1�-�
is a symmetric

function and hence
��� �F 798	: �D�.�

is equal to
��� � �D�E
1���� � �

maximized under any two
of its three arguments.) In particular, the next theorem shows that

��� �F 798	: �D�.�
is equal

to the (more relevant for the DC) value
=H?BA J��" R��6�E�798	: �D�E
1�-�

whenever
� �� W

. Note

�
� ��
�
��
��� 	
 �
��
�

2402242081921761601441281129680644832160

0
-1
-2
-3
-4

Fig. 2. Tabulation of values
��� � ��� �� ���
	 ��� � , /�� � � ����� , for � � %
. For example,� � �� ���
	 ���&. � � �� and

��� �� ���
	 � � � � � ��� � .
that the naı̈ve algorithm for the same problem works in time � � � � � � , which makes it
practically infeasible even for � � � M .

Theorem 5. For every
� � � � , Algorithm 4 computes

�6� �F 798	: �	�-�
in time

� � � � � � � .

Algorithm 4 A log-time algorithm for
��� �F 798	: �	�-�

.
INPUT: �
OUTPUT:

��� �� ���
	 ��� �
1. Return

� ��� � ��� �&%(' %2+.- ���./10 � �2� � +�+
.

Proof (Sketch.). By the same arguments as in the proof of previous theorem, given
inputs

�D�E
�.�
, the value

� �3�H) � 4 : �D�E
�.�) BDCFEHG � �W$ � �� is
�D�E
�.�

-optimal. We now
prove by contradiction that

��� �F 798	: �D�.�2�P�6� �798	: �D�E
�.�
. Let

� ��P�
and

�
be such that�6� � �D�E
1���� ��� � ��� � 798	: �D�E
�.�

. By Algorithms 1 and 3, there is an
��� � $ � such that576 �D�E
1�
 � � � � � and 4 : �	��
 �-� � � � . But then, on the other hand, since the differential�D�E
1� �� � �

is possible and 4;: �	��
 �-� � � � , it is also the case that 576 �D�E
1��
 ��� � � � � W
.

Since 4 : �	��
 �-� � � � < 4 : �	��
 �-� � � � � W
, we have also that 4;: �	��
 �-� � � � � W

.
Therefore

�6�E� �	��
���� � � � �����798	: �	��
 �-�
. 9:

Straightforwardly, Theorem 5 helps to find many interesting properties of
��� �F 798	:

. For
example,

�6� �F 798	: �D�.�2� � if and only if
�) � � �� � $�� ���+W

, and
=���� � ��� �F 798	: �	�-�2�

���� � � . Another consequence is that
��� �F 798	: �D�.��� �� iff (1)

�) � � �� � $ � � � $ ��� $ �
for some

W�� � � � , or (2)
�) � � �� � $ � � � �!� for some

W �"� � � $ � . As a pictorial
example, all values of

�6� �F 798	: �	�-�
, � �TL

, are depicted in Fig. 2.
Our results may be compared with the results in [O’C93,O’C95] that show that for

an � -bit permutation (resp. composite permutation, controlled by an � -bit string) the
expected probability of the maximum nonzero differential is

� �
 ���� � (resp.
� � ���).

7 And-or Invariance of Differential Probability

We now prove a result that strictly expands Lemma 4. On our way we also prove an
open conjecture from [AKM98].

Lemma 5. Let
"S
&9
" �
& � � � � . Then the following O conditions are equivalent.

(1)
" $ & � " � $ & � �#= �32 � � � and

") &H� " �)0& �
.

(2) For every
W � � � �%$ � , "��9$0&��S� " �� $0& ��

, and
"
� � �

)0&
�� �

� " �
� � �

)0& �
�� � .

(3) For every
W � � � �%$ � , � "��
1&�� � � �N" ��
1& �� � , and

"
�� �

) &
� � �

�T" 7
�� �

) & �
� � � .

Proof. (�O< �) The corresponding carries
M@� J C AUA
L �#"S
&(� and

M � � J C AKA
L �#" �
& � � are
equal, since

M��T") &2) �D"�$>&(�-� " �)>& �) �#" � $>& � ��� M �
. Let us fix some

� � �P$ � .
Then

" �)3& � � " ��)3& ��
and

M � �fM ��
. Thus,

�D" � $ & � $ M � � + � �fM � � � �!M �� � � ��#" �� $ & �� $ M �� �p+ � and therefore
" � $ & � �P" �� $ & ��

. Finally note that
"
�� �

) &
�� �

�
" �
�� �

) & �
�� � since

")0&@� " �) & �
.

(� < �) At first,
" �) & � � " ��) & ��

and therefore
M � � � $ M �� � � � M � $ M �� . Since

MGR6�'M �R
,M � M �

. Now,
" $0& �'M�)0")0&@� M �) " �)0& � � " � $0& �

.
(� :=< O) Straightforward. 9:
From Lemma 5 we also find that for any

�D"S
1&(�
there are � � � � � ���

�
�
����� 798���� � �� �

���
differ-

ent pairs
�#" 7
1& 7 �

such that
" $ &@� " 7 $ & 7

and
") &H�T" 7) & 7

. (In [DGV93, Sect. 2.3]
it was briefly mentioned that the number of such pairs is not more than �
� � �

�
�
� �

; this
result was used to cryptanalyse IDEA.) In particular there are � � � � � �

� � 798���� � �� �
���

dif-
ferent pairs

�D" 7
& 7 �
such that

" 7)0& 7 �T" 7 $0& 7 �T"
.

Lemma 6 (Conjecture 1, [AKM98]). Let
� $ � � � � $ � �

and
�) � �3� �) � �

. Then
for every

�
,
��� � �D�E
1�������� �3�6� � �D� �
� � ������

.

Proof. Clearly, ?F@�A �	��
�
 ��� � ?�@�A �D� �
� �
 � � � , since
�') ��� � �) � �

. Moreover,
from Lemma 5 we have that

�N� �
�>� � � � � ��
1� �� � , for every
�
, and thus 576 �D�E
1�
1� � �576 �D� �
� �
 � � � . Therefore, Algorithm 1 returns the same result when given as input either�D�E
1�
1� �

or
�D� �
1� �
 ���

. 9:
Finally,

Theorem 6. For every
�

,
�

,
�

,
��� � �D�E
1�������� � ��� � �D�) �
� (���� � �

. More-
over,

��� � �	��
�������� � ��� � �	�) �) �.
 �	� (�*�) � �� � (� (���
.

Note that Theorem 6 can be used to optimize Algorithm 1 by writing a separate subrou-
tine for

�6� �
which assumes that

� �T�) �) � and
� �3� (� (�

.

Further Work and Acknowledgments

While we leave practical applications of our results as an open question, we note that
our results have already been used in [MY00] for truncated differential cryptanalysis of
Twofish. We would like to thank Eli Biham for notifying us about the results presented
in the full version of [BS91b].

References

[AKM98] Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. The Best Differential Charac-
teristic Search of FEAL. IEICE Trans. Fundamentals, E81-A(1):98–104, January 1998.

[Ber92] Thomas A. Berson. Differential Cryptanalysis Mod
� � �

with Applications to MD5. In
Ernest F. Brickell, editor, Advances in Cryptology—CRYPTO ’92, volume 740 of Lecture
Notes in Computer Science, pages 71–80. Springer-Verlag, 1993, 16–20 August 1992.

[BS91a] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

[BS91b] Eli Biham and Adi Shamir. Differential Cryptanalysis of Feal and N-Hash. In Don-
ald W. Davies, editor, Advances on Cryptology — EUROCRYPT ’91, volume 547 of
Lecture Notes in Computer Science, pages 1–16, Brighton, UK, April 1991. Springer-
Verlag. Full version available from
http://www.cs.technion.ac.il/˜biham.

[Dae95] Joan Daemen. Cipher and Hash Function Design. Strategies based on linear and dif-
ferential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, 1995.

[DGV93] Joan Daemen, René Govaerts, and Joos Vandewalle. Cryptanalysis of 2,5 Rounds of
IDEA. Technical Report 1, ESAT-COSIC, 1993.

[DR98] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. In Third Smart Card
Research and Advanced Applications Conference Proceedings, 1998. To appear.

[ETS99] ETSI/SAGE. Kasumi Specification. Specification of the 3GPP Confidentiality and In-
tegrity Algorithms Document 2. Technical report, ETSI/SAGE, 1999.

[Knu99] Lars Knudsen. Some Thoughts on the AES Process. Public Comment to the AES First
Round, 15 April 1999. Available from
http://www.ii.uib.no/˜larsr/serpent/.

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and Differential
Cryptanalysis. In Donald W. Davies, editor, Advances on Cryptology — EUROCRYPT
’91, volume 547 of Lecture Notes in Computer Science, pages 17–38, Brighton, UK,
April 1991. Springer-Verlag.

[Mat97] Mitsuru Matsui. New Block Encryption Algorithm MISTY. In Eli Biham, editor, Fast
Software Encryption ’97, volume 1267 of Lecture Notes in Computer Science, pages
54–68, Haifa, Israel, January 1997. Springer-Verlag.

[Miy98] Hiroshi Miyano. Addend Dependency of Differential/Linear Probability of Addition.
IEICE Trans. Fundamentals, E81-A(1):106–109, January 1998.

[MY00] Shiho Moriai and Yiqun Lisa Yin. Cryptanalysis of Twofish (II). Technical report,
IEICE, ISEC2000-38, July 2000.

[NK95] Kaisa Nyberg and Lars Knudsen. Provable Security Against a Differential Attack. Jour-
nal of Cryptology, 8(1):27–37, 1995.

[O’C93] Luke J. O’Connor. On the Distribution of Characteristics in Composite Permutations.
In Douglas R. Stinson, editor, Advances on Cryptology — CRYPTO ’93, volume 773 of
Lecture Notes in Computer Science, pages 403–412, Santa Barbara, USA, August 1993.
Springer-Verlag.

[O’C95] Luke O’Connor. On the Distribution of Characteristics in Bijective Mappings. Journal
of Cryptology, 8(2):67–86, 1995.

