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1 Introduction

Popular ways to authenticate a message, like the CBC MAC [18] and HMAC [1], are inherently
sequential: one cannot process the i-th message block until all previous message blocks have been
processed. The sequential nature of these algorithms can limit performance. While this has not
been too big an obstacle in the past, the issue can be expected to increase in importance, both
for hardware and for software. Special-purpose hardware will get limited by the latency of the
underlying cryptographic primitive, while performance on commodity processors will be limited by
an inability to fully exploit the multiple instruction pipes provided. Thus it seems a ripe time to
develop a fully parallelizable message authentication code (MAC).

This submission describes such a message authentication code, PMAC (which stands for Paral-
lelizable MAC). Using an n-bit block cipher, PMAC authenticates an arbitrary string M ∈ {0, 1}∗
using d|M |/ne block-cipher calls. (The empty string is an exception; it requires one block-cipher
call.) Overhead beyond the block-cipher calls is low—about 8% more than with the basic CBC MAC
when one is in a non-parallelizable environment. PMAC works correctly across messages of arbi-
trary and varying bit lengths. It uses a single key for the underlying block cipher. The length of the
computed MAC is an arbitrary number of bits τ ∈ [1..n], with the corresponding forging probability
being about 2−τ . PMAC is stateless and deterministic: MAC generation does not require a nonce
or random value.

We prove PMAC secure, in the sense of reduction-based cryptography. Specifically, we prove
that PMAC is a good variable-input-length pseudorandom function (PRF), and is therefore a good
MAC, as long as the underlying block cipher is good as a pseudorandom permutation (PRP) [5, 21].
The actual results are quantitative; the security analysis is in the concrete-security paradigm.

Parallelizable MACs related to PMAC are the XOR MAC of Bellare, Guérin and Rogaway [4],
the variant of this construction due to Bernstein [9], and the XECB-MAC of Gligor and Donescu [13].
For details on these and other works, see Section 4.4.

2 Mathematical Preliminaries

Notation. If a and b are integers, a ≤ b, then [a..b] is the set {a, a + 1, . . . , b}. If i ≥ 1 is an
integer then ntz(i) is the number of trailing 0-bits in the binary representation of i (equivalently,
ntz(i) is the largest integer z such that 2z divides i). So, for example, ntz(7) = 0 and ntz(8) = 3.

A string is a finite sequence of symbols, each symbol being 0 or 1. The string of length 0 is
called the empty string and is denoted ε. Let {0, 1}∗ denote the set of all strings. Let i, n be
nonnegative integers. Then 0i and 1i denote the strings of i 0’s and 1’s, respectively. Let {0, 1}n
denote the set of all strings of length n. If A ∈ {0, 1}∗ then |A| denotes the length of A, in bits,
while ‖A‖n = max{1, d|A|/ne} denotes the length of A in n-bit blocks, where the empty string
counts as one block. If A,B ∈ {0, 1}∗ then A B, or A ‖ B, is their concatenation. If A ∈ {0, 1}∗
and A 6= ε then firstbit(A) is the first bit of A and lastbit(A) is the last bit of A. If A ∈ {0, 1}∗
and i ∈ [0..|A|] then A [first i bits] and A[last i bits] denote the strings containing the first i
bits of A and the last i bits of A, respectively. Both of these values are the empty string if
τ = 0. If A = an−1 · · · a1a0 ∈ {0, 1}n is a string (each ai ∈ {0, 1}) then str2num(A) is the number∑n−1

i=0 2iai. If a ∈ [0..2n − 1] then num2strn(a) is the n-bit string A such that str2num(A) = a.
Let lenn(A) = num2strn(|A|). We omit the subscript when n is understood. If A,B ∈ {0, 1}∗
then A⊕ B is the bitwise xor of A [first ` bits] and B [first ` bits], where ` = min{|A|, |B|} (where
ε⊕ ε = ε). So, for example, 1001⊕ 11 = 01. If A ∈ {0, 1}∗ and |A| < n then padn(A) is the string
A 10n−|A|−1. If A ∈ {0, 1}n then padn(A) = A. With n understood we write pad(A) for padn(A).
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If A = an−1an−2 · · · a1a0 ∈ {0, 1}n then A<<1 = an−2an−3 · · · a1a00 is the n-bit string which is
a left shift of A by 1 bit (the first bit of A disappearing and a zero coming into the last bit), while
A>>1 = 0an−1an−2 . . . a2a1 is the n-bit string which is a right shift of A by one bit (the last bit
disappearing and a zero coming into the first bit).

In pseudocode we write “Partition M into M [1] · · ·M [m]” as shorthand for “Let m = ‖M‖n
and let M [1], . . . ,M [m] be strings such that M [1] · · ·M [m] = M and |M [i]| = n for 1 ≤ i < m.”

The field with 2n points. Recall that a finite field is a finite set together with an addition
operation and a multiplication operation, each defined to take a pair of points in the field to
another point in the field. The operations must obey certain basic axioms. (For example, there
must be a point 0 in the field such that a + 0 = 0 + a = a for every a; there must be a point 1 in
the field such that a · 1 = 1 ·a = a for every a; and for every a 6= 0 there must be a point a−1 in the
field such that a · a−1 = a−1 · a = 1.) If one fixes a positive integer n, then there turns out to be
a unique finite field (up to the naming of the points) that has 2n elements. It is called the Galois
field of size 2n, and it is denoted GF(2n).

Example 1 The field GF(2) has two points, 0 and 1, and operations ⊕ (addition) and · (multipli-
cation) are defined by 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0, 0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, and
1 · 1 = 1.

We interchangeably think of a point a in GF(2n) in any of the following ways: (1) as an
abstract point in a field; (2) as an n-bit string an−1 . . . a1a0 ∈ {0, 1}n; (3) as a formal polynomial
a(x) = an−1xn−1 + · · · + a1x + a0 with binary coefficients; (4) as a nonnegative integer between 0
and 2n − 1, where the string a ∈ {0, 1}n corresponds to the number str2num(a). For example, one
can regard the string a = 0125101 as a 128-bit string, as the number 5, as the polynomial x2 +1, or
as a particular point in the finite field GF(2128). We write a(x) instead of a if we wish to emphasize
that we are thinking of a as a polynomial.

To add two points in GF(2n), take their bitwise xor. We denote this operation by a⊕ b.
Before we can say how to multiply two points we must fix some irreducible polynomial pn(x)

having binary coefficients and degree n. (Saying that pn(x) is irreducible means that if q(x) and
q′(x) are polynomials over GF(2) which multiply to give pn(x), then one of these polynomials is
1 and the other is pn(x).) For PMAC, choose the lexicographically first polynomial among the
irreducible degree n polynomials having a minimum number of coefficients. For n = 128, the
indicated polynomial is

p128(x) = x128 + x7 + x2 + x + 1

A few other pn(x)-values are x64+x4+x3+x+1 and x96+x10+x9+x6+1 and x160+x5+x3+x2+1
and x192 + x7 + x2 + x + 1 and x224 + x9 + x8 + x3 + 1 and x256 + x10 + x5 + x2 + 1.

To multiply points a, b ∈ GF(2n), which we denote a · b, regard a and b as polynomials a(x) =
an−1xn−1 + · · ·+ a1x+ a0 and b(x) = bn−1xn−1 + · · ·+ b1x+ b0, form their product c(x) where one
adds and multiplies coefficients in GF(2) (the coefficient of degree j in c(x), where j ∈ [0..2n−2], is
cj = ⊕j

i=0 (bi · aj−i)) and take the remainder one gets when dividing c(x) by the polynomial pn(x).
By convention, the multiplication operator has higher precedence than addition operator so, for

example, γ1 · L⊕R means (γ1 · L)⊕R.

Example 2 Assume n = 128. Suppose one multiplies a(x) = x127 + x + 1 by b(x) = x + 1. The
result is c(x) = x128 + x2 + x + x127 + x + 1 = x128 + x127 + x2 + 1. If one divides c(x) by p(x) one
gets a quotient of q(x) = 1 and a remainder (which is the answer) of r(x) = x127 + x7 + x. In string
notation, 1012511 · 012611 = 1011910000010.
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It is particularly easy to multiply a point a ∈ {0, 1}n by x. We illustrate the method for
n = 128, where p(x) = x128 + x7 + x2 + x + 1. Then multiplying a = an−1 · · · a1a0 by x yields a
product an−1xn + an−2xn−1 + a1x2 + a0x. Thus, if the first bit of a is 0, then a · x = a<<1. If the
first bit of a is 1 then we must add x128 to a<<1. Since x128 + x7 + x2 + x + 1 = 0 we know that
x128 = x7 + x2 + x + 1, so adding x128 means to xor by 012010000111. In summary, when n = 128,

a · x =
{

a<<1 if firstbit(a) = 0
(a<<1)⊕ 012010000111 if firstbit(a) = 1

Example 3 Let us again compute 1012511 · 012611. Since the latter string is x + 1, we should
multiply the first string by x and then add it to (xor it with) the first string. As the first bit of
1012511 is 1, multiplying this point by x yields 0125110⊕ 012010000111 = 012010000001, and xoring
this with 1012511 gives a final answer of 1011910000010, as before.

If L ∈ {0, 1}n and i ≥ 0, we write L(i) as shorthand for L · xi. We have an easy way to
compute L(1), L(2), . . . , L(µ)-values, where µ is a small number. Namely, set L(0) = L and compute
L(i) = L(i− 1) · x for all i ∈ [1..µ].

If a 6= 0 is a point in {0, 1}n, we can divide a by x, meaning that one multiplies a by the
multiplicative inverse of x in the field: a · x−1. It is easy to compute a · x−1. To illustrate, again
assume that n = 128. Then if the last bit of a is 0, then a ·x−1 is a>>1. If the last bit of a is 1, then
we must add (xor) to a>>1 the value x−1. Since x128 = x7+x2+x+1 we have x127 = x6+x+1+x−1

and so x−1 = x127 + x6 + x + 1 = 101201000011. In summary, for n = 128,

a · x−1 =
{

a>>1 if lastbit(a) = 0
(a>>1)⊕ 101201000011 if lastbit(a) = 1

We point out that, for any n = 128, the value huge = x−1 will be an enormous number (when
viewed as a number); in particular, huge starts with a 1 bit, so 2n−1 ≤ huge. For the remainder of
this submission, we will use huge as a synonym for x−1 whenever this seems to add to clarity. We
will later assume that any messages M = M [1] · · ·M [m] to be MACed has block length m < huge,
for otherwise our theorem statements assert a non-result. Thus for any message M = M [1] · · ·M [m]
to be MACed, each of γ1, γ2, . . . , . . . , γm is different from huge.

Gray codes. For ` ≥ 1, a Gray code is an ordering γ` = γ`
0 γ`

1 . . . γ`
2`−1

of {0, 1}` such
that successive points differ (in the Hamming sense) by just one bit. For n a fixed number, PMAC
makes use of the “canonical” Gray code γ = γn constructed by

γ1 = 0 1

while, for ` > 0,

γ`+1 = 0γ`
0 0γ`

1 · · · 0γ`
2`−2 0γ`

2`−1 1γ`
2`−1 1γ`

2`−2 · · · 1γ`
1 1γ`

0

It is easy to see that γ is a Gray code. What is more, for 1 ≤ i ≤ 2n−1, γi = γi−1⊕(0n−11<<ntz(i)).
This makes it easy to compute successive points.

Example 4 The canonical Gray code with 2 points is γ1 = γ1
0 γ1

1 = 0 1. The canonical Gray
code with 4 points is obtained by writing this once forward, then once backwards, prefixing each
string in the first half by 0 and prefixing each string in the second half by 1: that is, γ2 =
γ2

0 γ2
1 γ2

2 γ2
3 = 00 01 11 10 = 0 1 3 2. Repeating the process, the canonical Gray code with 8 points
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is γ3 = γ3
0 γ3

1 γ3
2 γ3

3 γ3
4 γ3

5 γ3
6 γ3

7 = 000 001 011 010 110 111 101 100 = 0 1 3 2 6 7 5 4. In PMAC we
use the Gray code γ = γn having 2n points: γ = γ0 γ1 γ2 γ3 · · · γ2n−1 = 0 1 3 2 6 7 5 4 12 · · · 2n−1.
To calculate γi from γi−1, xor γi−1 by 0n−11<<ntz(i). For example, γ8 = 12 can be computed from
γ7 = 4 by xoring 4 with 0n−11<<3.

We emphasize the following characteristics of the Gray-code values γ1, γ2, . . . , γ2n−1. First, they
are distinct and different from 0. Second, that γ1 = 1. Third, that γi ≤ 2i.

Let L ∈ {0, 1}n and consider the problem of successively forming the strings γ1 · L, γ2 · L,
γ3 · L, . . ., γm · L. Of course γ1 · L = 1 · L = L. Now, for i ≥ 2, assume one has already produced
γi−1 · L. Since γi = γi−1 ⊕ (0n−11<<ntz(i)) we know that

γi · L = (γi−1 ⊕ (0n−11<<ntz(i))) · L

= (γi−1 · L)⊕ (0n−11<<ntz(i)) · L

= (γi−1 · L)⊕ (L · xntz(i))

= (γi−1 · L)⊕ L(ntz(i))

That is, the ith word in the sequence γ1 ·L, γ2 ·L, γ3 ·L, . . . is obtained by xoring the previous word
with L(ntz(i)).

3 Specification

3.1 Definition of the Mode

Parameters. To use PMAC one must specify two parameters: a block cipher and a tag length.

• The block cipher E is a function E : K×{0, 1}n → {0, 1}n, for some number n, where each
E(K, ·) = EK(·) is a permutation on {0, 1}n. Here K is the set of possible keys and n is the
block length. Both are arbitrary, though we insist that n ≥ 64, and we discourage n < 128.

• The tag length τ is an integer between 1 and n. By trivial means, the adversary will be
able to forge a valid ciphertext with probability 2−τ .

The popular block cipher to use with PMAC is likely to be AES, but any other block cipher is fine.
As for the tag length, a suggested default of τ = 64 is reasonable, though both shorter and longer
tags are likely to be common. Note that tags of τ = 32 bits have been standard for retail banking
for many years, while tags of τ = 80 bits are used in IPSec. Using a tag of more than 80 bits adds
questionable security benefit, though it does entail extra bits being transmitted or stored.

With E : K × {0, 1}n → {0, 1}n and τ ∈ [1..n], we let PMAC[E, τ ] denote the PMAC mode
of operation using block cipher E and tag length τ . This is a function from a key K ∈ K and a
message M ∈ {0, 1}∗ to a string in {0, 1}τ .

Definition. Letting E : K × {0, 1}n → {0, 1}n and τ ∈ [1..n], the definition of the function
PMAC[E, τ ] is given in Figure 1 and illustrated in Figure 2.

3.2 Conformance Criteria

An implementation of PMAC is said to conform to the specification if some specified subset
MsgSpace ⊆ {0, 1}∗ of messages can be presented to be MACed, and any message M carrying
a tag Tag is deemed invalid if PMACK(M) 6= Tag . For example,
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Algorithm PMACK (M)

L← EK(0n)
Partition M into M [1] · · ·M [m]
for i← 1 to m− 1 do

Y [i]← EK(M [i]⊕ γi · L)
Σ ← Y [1]⊕ Y [2]⊕ · · · ⊕ Y [m− 1]⊕ pad(M [m])
if |M [m]| = n then X[m] = Σ ⊕ L · x−1

else X[m]← Σ
Tag = EK(X[m]) [first τ bits]
return Tag

Figure 1: Definition of PMAC. Constants γ1, γ2, . . . and the meaning of the multiplication operator are
defined in the text, but γi · L is simply γi−1 · L ⊕ L(ntz(i)) (where L(j) is defined in the text and easily
computed from L). We let pad(A) = A 10n−|A|−1 if |A| < n and pad(A) = A if |A| = n.

τ

r rr

r rr

r rr

h hh

hhh
h

�? �? ?

-
?

?

?

?

?

?

�?

?

-

?

-?-- ?

-

M [m]

EK

γ2 · L

M [2]

EK

γm−1 · L pad

EK

EK

γ1 · L

M [1]

first τ bits

Y [1]

X[1]

Y [2]

X[2]

M [m− 1]

X[m− 1]

Y [m− 1]

Tag

Σ

0n if |M [m]| < n
L · x−1 if |M [m]| = n

}

Figure 2: Illustration of PMAC. The message to MAC is M and the key is K. Message M is written
as M = M [1] · · ·M [m], where m = max{1, d|M |/ne} and |M [1]| = |M [2]| = · · · = |M [m − 1]| = n. Value
L = EK(0n) is derived from K.
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A conforming implementation might only be able to MAC byte strings, these strings limited
to 236 bytes.
A message M might be deemed invalid for reasons which go beyond its presenting an incorrect
tag. Replay detection would be the most typical reason.

3.3 An Equivalent Description

The following description of PMAC may help to clarify what a typical implementation might choose
to do. In what follows, fix a block length n, block cipher E : K × {0, 1}n → {0, 1}n, and a tag
length τ . A PMAC implementation may work as follows.

Key generation. Choose a random key K
R← K for the block cipher. The key K is provided to

both the party that generates MACs and the party that verifies them.

Key setup. Once the key K is known, the following may be precomputed.
1. Set up the block-cipher key. Both the party that generates the MACs and the party that ver-

ifies the MACs do any key setup useful for applying the block-cipher in its forward direction.

2. Precompute L. Compute L← EK(0n).
3. Precompute L(i)-values. Let m∗ bound the maximum number of n-bit blocks for any message

which will be MACed. Let µ ← dlog2 m∗e. Let L(0) ← L and, for i ∈ [1..µ], compute
L(i) ← L(i − 1) · x using a shift and a conditional xor, as described in Section 2. Compute
L(−1) ← L · x−1 using a shift and a conditional xor, as described in Section 2. Save the
values L(−1), L(0), L(1), L(2), . . . , L(µ) in a table. (Note: alternatively, if one wishes to
save space, compute only the first few L(i)-values now, and compute any further ones only
when needed, “on the fly.”)

MAC generation. To generate the MAC Tag for a message M ∈ {0, 1}∗, do the following steps.
1. Partition the message. Let m← d|M |/ne. If m = 0 then let m← 1. Let M [1], . . . ,M [m] be

strings such that M [1] · · ·M [m] = M and |M [i]| = n for i ∈ [1..m− 1].
2. Initialize variables. Let Offset← 0n. Let Σ ← 0n.
3. Encipher all blocks but the last one. For i← 1 to m− 1, do the following:

Let Offset← Offset ⊕ L(ntz(i)).
Let Y [i]← EK(M [i]⊕Offset).
Let Σ ← Σ ⊕ Y [i].

4. Compute the MAC.
Let Σ ← Σ ⊕ pad(M [m]).
If |M [m]| = n then let Y [m]← EK(Σ ⊕ L(−1)) else let Y [m]← EK(Σ).
Let Tag be the first τ bits of Y [m].
Return Tag as the computed MAC.

MAC verification. To test if (M,Tag ′) is authentic, do the following.

1. Re-MAC the message. Generate the MAC Tag for the message M using the MAC generation
procedure just described.

2. Compare the presented and the re-computed MACs. If Tag = Tag ′ then regard the message
M as authentic. If Tag 6= Tag ′ then regard the message M as inauthentic.
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Security
Function

Message Authentication Code. The computed MAC would normally
be used to provide message authenticity. But, more generally, PMAC is a
pseudorandom function (PRF) having variable input-length ({0, 1}∗)
and fixed output-length ({0, 1}τ ). Besides their use as MACs, PRFs can
be used, for example, for key separation and within entity-authentication
and key-distribution protocols.

Error
Propagation

Not applicable. (However, any accidental modification to (M,Tag) will
be detected during MAC verification with probability about 1/2τ .)

Synchronization Not applicable.
Parallelizability Fully parallelizable. All block-cipher invocations (except the last one)

may be computed at the same time.
Keying Material One block-cipher key. One needs a single key, K, which keys all

invocations of the underlying block cipher.
Ctr/IV/Nonce
Requirements

None. No counter/IV/nonce is used.

Memory
Requirements

Very modest. About 6n bits beyond the key are sufficient for internal
calculations. Implementations may choose whether or not to save L(i)-
values, offering some tradeoff between memory and simplicity/speed.

Pre-processing
Capability

Limited. During key-setup the string L would typically be pre-computed
(one block cipher call), as would a few L(i)-values. Additional pre-
computation is not possible.

Message-Length
Requirements

Any bit string allowed. Any string M ∈ {0, 1}∗ may be MACed,
including the empty string and strings which are not an integral number
of bytes. The length of the string need not be known in advance.

Ciphertext
Expansion

Not applicable. (But the MAC itself is of minimal length: τ bits are
used to obtain a forging probability of approximately 1/2τ .)

Other
Characteristics

Efficiency: PMAC uses d|M |/ne block-cipher calls when M 6= ε (uses
one block-cipher call for M = ε). Overhead beyond block-cipher calls is
low. Endian neutral: Can be implemented equally efficiently on big-
endian and little-endian machines (assuming the underlying block cipher
has this property). No decryption. PMAC uses only the forward di-
rection of the block cipher. Incrementality. PMAC is incremental, in
the sense of [3], with respect to replacement, truncation, and concate-
nation. Parsimonious PRF. This property lets one easily construct
from PMAC a parallelizable block cipher which acts on any message
M ∈ {0, 1}∗ of at least n bits. Provable security: PMAC provably
meets its goals, assuming the underlying block cipher meets a standard
cryptographic assumption (security in the sense of a pseudorandom per-
mutation).

Figure 3: Summary of properties of PMAC. Further discussion of these and other properties is given
in Section 4.1.
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4 Discussion

4.1 Properties

PMAC has been designed to have a variety of desirable properties. These properties are summarized
in Figure 3. We now expand on some of the points referenced in that table.

Security Function. PMAC is a (variable-length input, fixed-length output) pseudorandom
function (PRF): as long as the underlying block cipher E is secure, an adversary will be unable to
distinguish PMACK(·), for a random but hidden key K, from a random function ρ from {0, 1}∗ to
{0, 1}τ . It is a well-known observation, dating to the introduction of PRFs [14], that a pseudoran-
dom function is necessarily a good MAC. Of course the converse is not true, and PMAC, being a
good PRF, has uses which go beyond its being a good MAC.

Parallelizability. In settings where there is adequate opportunity for parallelism, PMAC will
be faster than the CBC MAC or HMAC, which are inherently non-parallelizable. Parallelizability
is becoming important for obtaining good performance from both high-speed hardware and com-
modity processors. In the former case, one may want to authenticate messages at speeds in excess
of 10 Gbits/second—an impossible task for the CBC MAC or HMAC (with today’s technology).
In the latter case, there is an architectural trend towards highly-pipelined machines with multiple
instruction pipes and lots of registers. Optimally exploiting such features necessitates algorithms
with plenty to do in parallel.

Keying Material. Conceptually the key is (K, L), but L is defined from the underlying key K,
and then key K is still used. Normally such “lazy key-derivation” would get one in trouble. For
PMAC we prove that it does not. Avoiding multiple block-cipher keys is desirable for saving on
memory and key-setup time.

Ctr/IV/Nonce Requirements. Conventional MACs have always been deterministic. Main-
taining this characteristic results in shorter MACs and a scheme more robust against usage errors.

Message-Length Requirements. Any string M ∈ {0, 1}∗ can be MACed, and messages which
are not a multiple of the block length are handled without the need for obligatory padding, which
would increase the number of block-cipher calls. MAC generation is “on line,” meaning that one
does not need to know the length of the message M in advance. Instead, the message can be
MACed as one goes along, continuing until there is an indication that the message is now complete.
An incremental interface (as is popular for cryptographic hash functions) would be used to support
this functionality.

Efficiency. Shaving off a few block-cipher calls may not seem important. But often one is
dealing with short messages; for example, roughly a third of the messages on the Internet backbone
are 43 bytes. If one is MACing messages of such short lengths, one should be careful about extra
computational work since, by percentage, the inefficiencies can be large.

Endian Neutrality. In contrast to a scheme based on mod p arithmetic or based on mod 2n

arithmetic, there is almost no endian-favoritism implicit in the definition of PMAC. (The exception
is that the one left shift used for forming L(i + 1) from L(i) is more convenient under a big-endian
convention, as is the one right shift used for forming L(−1) = L · x−1 from L.)
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Incrementality. The concept of incrementality for a cryptographic primitive was introduced
by [14]. For a MAC, the idea is that, having already computed the MAC Tag of some (possibly
long) message M , if M is modified into some similar message M ′, the time to compute the MAC
Tag ′ for the new message M ′ should be proportional to the amount of change that M underwent
when being modified to M ′ (as opposed to just computing the MAC of M ′ from scratch, which
would typically take Θ(|M ′|) time.) Assuming that τ = n (or that one retains a constant amount
of extra information), PMAC is incremental with respect to three common operations for changing
M to M ′, namely, append, truncate, and replace. These operations are defined as follows:
append(M,x) = M ‖ x; truncate(M,ndrop) = M [first |M | − ndrop bits], where |M | ≥ ndrop;
and replace(M, posn, x) = M [first posn− 1 bits] ‖ x ‖ M [last |M | − posn− |x|+ 1 bits], where
|M | ≥ posn + |x| − 1). For these three operations it is easy to see how to update the MAC of M
in time proportional to |x|, ndrop, or |x|, respectively.

Incrementality is useful when, for example, one wishes to continually maintain the MAC of a
large file which is being edited, or the MAC of a file system. Various tree-based schemes offer
solutions with logarithmic space overhead. For PMAC, there is zero or constant overhead.

Parsimonious PRF. Partition M into M = M [1] · · ·M [m−1]M [m] and assume |M | ≥ n. Assume
a tag length of the full τ = n bits. We make the following observation: for any i ∈ [1..m] such
that M [i] is a full block (that is, |M [i]| = n), there is a simple algorithm to recover M [i] given
the key K, the message M ′ = M [1] . . .M [i − 1] M [i + 1] · · ·M [m] which omits block M [i], and
the MAC Tag = PMACK(M). This property of a PRF was identified in [7], where a PRF having
this property was said to be parsimonious. As shown in [7], a parsimonious PRF can be combined
with a block cipher E to yield a length-preserving pseudorandom permutation (that is, a “variable-
input-length block cipher”) that acts on messages of any number of bits ` greater than or equal
to n. In particular, given K1,K2 ∈ K, one can encipher M under key K = K1 ‖ K2 by first setting
IV = PMACK1(M) and then encrypting M using CTR-mode using key K2 and an initial counter
value of IV. This yields a ciphertext C = IV ‖ C[1] · · ·C[m− 1]C[m]. One can use C directly, as a
deterministic (but not length-preserving) encryption of M , or one can drop n of the bits from C,
the enciphered string being C = IV ‖ C[1] . . . C[m− 2] C[m], say. In this way one has constructed
a length-preserving pseudorandom permutation (PRP) that is fully parallelizable and that uses a
number of block-cipher calls which is roughly twice that of CBC encryption.

Provable Security. In recent years provable security has become a popular goal for practical
protocols. This is for good reason; demonstrating provable security is the best way to gain assurance
that a cryptographic scheme does what it is supposed to do. For a scheme which enjoys provable
security, one does not need to consider attacks, since successful ones imply successful attacks on
some simpler object (e.g., the algorithm of the AES). Provable security represents a major departure
from iterated, attack-directed design.

Fix a block cipher E and a tag length τ . When we say that PMAC is provably secure we
are asserting the existence of a particular theorem (namely, Theorem 1, or one of its corollaries).
The theorem shows that if an adversary A could do a good job at distinguishing PMACK(·), for
a random but hidden key K, from a random function ρ(·), where ρ : {0, 1}∗ → {0, 1}τ , then there
would be an adversary B, about as efficient as A, that does a good job at distinguishing block
cipher EK(·), for a random key K, from a random permutation π(·), where π : {0, 1}n → {0, 1}n.
A theorem of this sort is called a reduction. In cryptography, provable security means giving
reductions (along with the associated definitions).

Provable security begins with Goldwasser and Micali [15]. The style of provable security which
we use here—where the primitive is a block cipher, the scheme is a usage mode, and the analysis
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is concrete (no asymptotics)—is the approach of Bellare and Rogaway [2, 4, 5].
It is not really enough to know that there is a provable-security result for the scheme in ques-

tion: one should also understand the definitions and the bounds. We have already sketched the
definitions. When we speak of the bounds we are addressing “how effective is the adversary B in
terms of the efficacy of adversary A” (where A and B are the adversaries above). For PMAC, the
bounds can be summarized as follows: the maximal advantage an adversary can get in attacking
the constructed PRF is limited to about σ2/2n more than what a similarly powerful adversary can
get in attacking the underlying block cipher. The advantage is a real number, between 0 and 1,
with 0 meaning that the adversary is doing terribly and 1 meaning that the adversary is doing
great. Here σ is the total number of messages the adversary sees the MACs of. The conclusion is
that one is safe using PMAC as long as E is a good block cipher and σ is small compared to 2n/2.
This is the same security degradation one observes for the CBC MAC [5, 22]. This kind of security
loss was the main motivation for choosing an AES block length of n = 128 bits, and it is the reason
that we discourage the use of PMAC with n < 128.

4.2 Design Rationale

Avoiding state and randomness. A message authentication code is stateful if the authenticating
party maintains state, typically a counter, across MAC-generation invocations. It is probabilistic if
the authenticating party uses random bits to generate a MAC. (In both cases, MAC-verification is
stateless and deterministic.) As in [4], construction of a stateful message authentication code would
have facilitated obtaining a better concrete security bound than PMAC delivers. A randomized
scheme would also have had a better bound. But PMAC anticipates the use of a block cipher
with a block length of n ≥ 128, and so the bound that we get—the customary Θ(σ22−n) bound—
is quite acceptable. By insisting on a stateless and deterministic scheme one saves bits in the
MAC compared to a probabilistic or stateful scheme, one eliminates the sender’s need to maintain
state across MAC-generation invocations, and one largely eliminates concern about usage errors,
since one does not have to worry about what happens if the sender reuses a nonce or provides a
non-random value where a random value is called for.

Not fixing the tag length. The number of bits that are necessary and appropriate for the
tag length vary according to the application. In a context where the adversary obtains something
quite valuable from a single successfully forgery, one may wish to choose a tag length of 80 bits or
more. In contexts such as authenticating a video stream, where an adversary would have to forge
a signficant fraction of the frames even to have a noticeable effect on the image, an 8-bit tag may
be appropriate. With no universally appropriate value to choose, it is best to leave this parameter
unspecified.

We comment that short tags seem to be more appropriate for PMAC than for some other MAC,
particularly Carter-Wegman MACs [12, 26]. Many Carter-Wegman MACs have the property that
if you can forge one message with probability δ, than you can forge an arbitrary set of (all correct)
messages with probability δ. This does not appear to be true for PMAC.

Avoiding mod 2n addition. Our earlier designs included a scheme based on modular 2n addition
(“addition” for the remainder of this paragraph) [24]. This is an interesting approach due to
Gligor and Donescu [13]. Compared to our GF(2n)-based approach (“xor” for the remainder of
this paragraph), an addition-based scheme is quicker to understand a specification for, and may be
easier to implement. But the use of addition (where n ≥ 128) has signficant disadvantages:

The bit-asymmetry of the addition operator implies that the resulting scheme will have a bias
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towards big-endian architectures or little-endian architectures; there will be no way to achieve
an endian-neutral scheme. The AES algorithm was constructed to be endian-neutral. We did
not want to lose this nice attribute with our mode of operation.
Modular addition of n-bit words is particularly unpleasant when programming in a high-level
language, where one does not have access to the underlying add-with-carry instruction.
Modular addition of n-bit words is not parallelizable. As a consequence, dedicated hardware
will perform this operation more slowly than xor, and, correspondingly, modern processors
can xor two n-bit quantities faster than they can add them.
The concrete security bound is worse with an addition-based scheme: the degradation in the
bound appears to be Θ(lg m∗), where m∗ is the maximal message length.
A correct proof for the addition scheme is substantially more complex than a correct proof
for the xor-scheme.

For all of these reasons, we eventually decided to reject the addition-based approach in favor of the
xor-based one.

4.3 Limitations

We note the following limitations. None of these points are specific to PMAC—they apply to any
MAC—but they are still important enough to single out.

As with all modes of operation, the user should be careful not to use the MAC key K for any
other purpose. Standard key-separation techniques should be used to derive a multiplicity of
keys when keys are needed for a multiplicity of purposes. The key K itself must not be used
to derive additional keys.
A MAC does not, by itself, provide for replay detection. When replay detection is desired, it
should be added, using well-known techniques, by a higher-level, protocol.
One should be careful in combining an encryption scheme and a MAC: the keys must be
distinct, and it is generally preferable to MAC the ciphertext than to encrypt the MAC (and
when one wants privacy one should not transmit, in the clear, the MAC of a plaintext). See
[6] for an analysis.
The utility of a MAC is eliminated if one encrypts using an authenticated-encryption scheme,
such as [13, 19, 25].

4.4 Related Work

The PMAC algorithm springs from ideas in [4], [9], and [13]. The lineage of ideas is from [4], to [9]
and [13], and on to PMAC. Let us first sketch representative constructions from [4, 9, 13].

The XOR MAC. Bellare, Guérin and Rogaway defined a fully parallelizable MAC they called
the XOR MAC [4]. In this MAC the message M is divided into pieces M [1] · · ·M [`] of length less
than the block length. For concreteness, think of each M [i] as having 64 bits and the block length
as having n = 128 bits. Each M [i] is preceded by the number i, encoded in the usual way as a
64-bit string i, and EK is applied to i ‖ M [i]. Now xor together all ` results to get an n-bit block
Σ = EK(1 ‖ M [1]) ⊕ · · · ⊕ EK(` ‖ M [`]). Block cipher EK is applied to one more block, 1 ‖ IV,
where IV is a 127-bit counter or random value. This gives the ciphertext block P = EK(1 ‖ IV).
The MAC is (IV, Σ ⊕ P ).

The XOR MAC requires ` + 1 ≈ 2m + 1 block-cipher invocations to authenticate a message
of m n-bit blocks. So one gets parallelizability at the cost of about a factor of two in serial speed.
One also pays in the need for randomness or state, and in the length of the MAC (which is longer
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in order to communicate this randomness or state). These two limitations—the use of randomness
or state and reduced serial efficiency—are overcome individually in [9] and [13], respectively.

Deterministic variants. Bernstein [9] suggested the following variant of the XOR MAC. He
starts not with a block cipher but with a pseudorandom function F where, to illustrate, let us
say that FK maps 384 bits to 256 bits. In such a case, break the message M into 256-bit blocks
M [1], . . . ,M [`] and apply FK to each of 1 ‖ M [1], 2 ‖ M [2], . . ., ` ‖ M [`], where i now means
the 128-bit string corresponding to the number i. Now xor the resulting ciphertext blocks to get
a value Σ = FK(1 ‖ M [1]) ⊕ · · · ⊕ FK(` ‖ M [`]). Then apply FK to 0 ‖ Σ to give the MAC
Tag = FK(0 ‖ Σ).

An alternative to i ‖ · annotation. Gligor and Donescu [13] suggested the following approach,
which they called the XECB-MAC. Let E : K×{0, 1}n → {0, 1}n be a block cipher and let K ∈ K.
Given a counter ctr, let R = EK(ctr). Let M = M [1] · · ·M [m] be the string we want to MAC,
partitioned into n-bit words. Then encipher the following m strings using EK : M [1]+R, M [2]+2R,
. . ., M [m]+mR. The arithmetic is done modulo 2n. Now xor together these m ciphertexts to get a
value Σ = EK(M [1]+R)⊕· · ·⊕EK(M [m]+mR). The MAC is ctr together with Σ⊕EK(ctr). The
advantage of this approach is that one does not “waste bits” for i ‖ -encoding; instead, symmetry
has been broken by different means: by adding to the ith block of the message the ith multiple of
a number unknown to the adversary.

Further afield. A completely different way for improving parallelizability is to generically con-
struct a more parallelizable MAC from an arbitrary one. For example, one could break the message
M [1] · · ·M [2m] into pieces M ′ = M [1]M [3]M [5] · · ·M [2m−1] and M ′′ = M [2]M [4]M [6] · · ·M [2m],
and separately compute MACK(M ′) ‖ MACK(M ′′), and then MAC these MACs, under a separate
key. But such an approach requires one to anticipate the maximal amount of parallelism that one
aims to extract (the example here shows how to get a factor of two). We were not interested in
such schemes; we wanted a MAC that was fully parallelizable.

Another approach for making a parallelizable MAC is the Carter-Wegman paradigm [12, 26],
as in [11, 17, 20], making sure to select a universal hash-function family that is parallelizable. In
fact, most universal hash-functions that have been suggested are parallelizable. This is perfectly
workable, but fast constructions for universal hash-functions have proven to be complex to specify
or to implement well [9, 11].

The approach. The provable-security treatment of block-cipher based MACs begins with Bellare,
Kilian, and Rogaway [5]. Petrank and Rackoff [22] were the first to rigorously address issues of
length variability. Black and Rogaway [10] were the first to concern themselves with optimizing
efficiency on arbitrary bit strings, retaining provable security.

4.5 Design History

The initial version of PMAC, described in [24], came in three “forms”—one based on mod 2n

addition, one based on GF(2n) addition, and one based on mod p addition. However, we eventually
settled on the GF(2n) scheme, for the reasons discussed in Section 4.2. What is described in the
current submission differs from the GF(2n)-scheme in [24] only in minor ways.

This project was carried out in parallel with the design of an authenticated-encryption scheme,
OCB [25]. We have attempted to give these two algorithms a similar flavor. However, the
authenticated-encryption goal turns out to be much more complex than the message-authentication
goal, and the design of OCB was much harder than the design of PMAC.
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5 Theorems

This section gives our security results on PMAC. The proofs of the two lemmas used are deferred
to Appendix A. We begin with the requisite definitions, which are standard; see, for example, [5].

5.1 Security Definitions

A block cipher is a function E : K × {0, 1}n → {0, 1}n where K is a finite set of strings and each
EK(·) = E(K, ·) is a permutation on {0, 1}n. Let Perm(n) denote the set of all permutations on
{0, 1}n. This set can be regarded as a block cipher by imagining that each permutation is named
by a unique string. Let A be an adversary (a probabilistic algorithm) with access to an oracle, and
suppose that A always outputs a bit. Define

Advprp
E (A) = Pr[K R← K : AEK(·) = 1]− Pr[π R← Perm(n) : Aπ(·) = 1]

The above is the probability that adversary A outputs 1 when given an oracle for EK(·), minus the
probability that A outputs 1 when given an oracle for π(·), where K is selected at random from K
and π is selected at random from Perm(n).

A function family from n-bits to n-bits is a map F : K×{0, 1}n → {0, 1}n where K is a finite set
of strings. We write FK(·) for F (K, ·). Let Rand(n) denote the set of all functions from {0, 1}n to
{0, 1}n. This set can be regarded as a function family by imagining that each function in Rand(n)
is named by a unique string. Define

Advprf
F (A) = Pr[K R← K : AFK(·) = 1]− Pr[ρ R← Rand(n) : Aρ(·) = 1]

A function family from {0, 1}∗ to {0, 1}τ is a map f : K × {0, 1}∗ → {0, 1}τ where K is a set
with an associated distribution. We write fK(·) for f(K, ·). Let Rand(∗, τ) denote the set of all
functions from {0, 1}∗ to {0, 1}τ . This set is given a probability measure by asserting that a random
element ρ of Rand(∗, τ) associates to each string x ∈ {0, 1}∗ a random string ρ(x) ∈ {0, 1}τ . Define

Advprf
f (A) = Pr[K R← K : AfK(·) = 1]− Pr[g R← Rand(∗, τ) : Ag(·) = 1]

5.2 Theorem Statements

We give the following information-theoretic bound on the security of PMAC.

Theorem 1 [PMAC[Perm(n), τ ] ≈ Rand(∗, τ)] Fix PMAC parameters n and τ . Let A be an
adversary with an oracle. Suppose that A asks its oracle q queries, these queries having aggregate
length of σ blocks. Let σ̄ = σ + 1. Then

Advprf
PMAC[Perm(n),τ ] (A) ≤ σ̄2

2n−1

In the theorem statement, and from now on, the aggregate length of messages M1, . . . ,Mq asked
by A of its oracle is the number σ =

∑q
r=1 ‖Mr‖n.

From the theorem above it is standard to pass to a complexity-theoretic analog. One gets the
following. Fix PMAC parameters n and τ , and a block cipher E : K× {0, 1}n → {0, 1}n. Let A be
an adversary with an oracle, and suppose that A asks queries of aggregate length of σ blocks, and
then outputs a bit. Let σ̄ = σ + 1. Then there is an adversary B for attacking block cipher E that
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achieves advantage Advprp
E (B) ≥ Advprf

PMAC[E,τ ](A)− σ̄2/2n−1. Adversary B asks at most σ̄ oracle
queries and has a running time which is equal to A’s running time plus the time to compute E
on σ̄ points, plus additional time which is cnσ̄, where the constant c depends only on details of the
model of computation.

It is a standard result that being secure in the sense of a PRF implies an inability to forge with
good probability. See [5, 16]. Here is what the theorem would say. First a definition. Given a PRF
F : K × {0, 1}∗ → {0, 1}τ , let Advmac

F (A) denote the probability that A, given an oracle FK(·) for
a random key K ∈ K, outputs a pair (M,Tag) where FK(M) = Tag and A never asked its oracle
the message M . Now fix PMAC parameters n and τ , and a block cipher E : K×{0, 1}n → {0, 1}n.
Let A be an adversary with an oracle. Suppose that the aggregate block length of A’s queries,
plus the block length of A’s forgery attempt M when A outputs (M,Tag), is σ. Let σ̄ = σ + 1.
Then there is an adversary B for attacking block cipher E that achieves advantage Advprp

E (B) ≥
Advmac

PMAC[E,τ ](A)− σ̄2/2n−1− 1/2τ . Adversary B asks at most σ̄ oracle queries and has a running
time which is equal to A’s running time plus the time to compute E on σ̄ points, plus additional
time which is cnσ̄, where the constant c depends only on details of the model of computation.

5.3 Structure of the Proof

The proof of Theorem 1 combines two lemmas. The first lemma, the structure lemma, measures
the pseudorandomness of PMAC in terms of two other functions: the M-collision probability,
denoted Mcolln(·), and the MM-collision probability, denoted MMcolln(·, ·). Informally, Mcolln(m)
measures the probability of a collision in X[i]-values for a single message M having m blocks. By
definition, this will include collisions with 0n. Similarly, MMcolln(m, m̄) measures the probability
of a nontrivial collision (defined below) in X[i] and X̄[j] values across two messages, M and M̄ ,
having m and m̄ blocks. In defining these values, certain simplifications will be made compared
to the “true” processing of messages under PMAC[Perm(n), τ ]. The second lemma, the collision-
bounding lemma, upperbounds Mcolln(m) and MMcolln(m, m̄).

We begin by defining Mcolln(·) and MMcolln(·, ·). Fix n and choose messages M and M̄ ,
and partition them into M [1] . . .M [m] and M̄ [1] . . . M̄ [m̄]. Consider the experiment of Figure 4.
When M is a string, let Mcolln(M) denote the probablity that Mcoll gets set to true in line 15
when the program of Figure 4 is run on M . When m is a number, Mcolln(m) is the maximum value
of Mcolln(M) over all strings M such that ‖M‖n = m. Similarly, when M and M̄ are strings, let
MMcolln(M,M̄) denote the probablity that MMcoll gets set to true when the program of Figure 4
is run on strings M,M̄ . When m and m̄ are numbers, let MMcolln(m, m̄) denote the maximum
value of MMcolln(M,M̄) over all strings M,M̄ such that ‖M‖n = m and ‖M̄‖n = m̄.

We can now state the structure lemma.

Lemma 1 [Structure lemma] Fix n and τ . Let A be an adversary who asks q queries, these having
an aggregate length of σ blocks. Let Mcolln(·) and MMcolln(·, ·) denote the M- and MM-collision
probablities. Then

Advprf
PMAC[Perm(n),τ ](A) ≤ max

m1,...,mq
σ=

∑
mi

mi≥1

 ∑
1≤r≤q

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)

 +
(σ + 1)2

2n+1

The proof of this lemma is in Appendix A.1.

Explanation. Informally, Mcolln(m) measures the probability of running into trouble when the
adversary asks a single question M having block length m. Trouble means a collision among the
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10 L
R← {0, 1}n

11 for i← 1 to m− 1 do { X[i]←M [i]⊕ γi · L; Y [i] R← {0, 1}n }
12 Σ ← Y [1]⊕ · · · ⊕ Y [m− 1]⊕ pad(M [m])
13 if |M [m]| = n then X[m]← Σ ⊕ huge · L else X[m]← Σ
14 X ← {X[1], . . . , X[m]}
15 if there is a repetition in {0n} ∪ X then Mcoll ← true

16 Equal ← {i ∈ [1..min{m, m̄} − 1] : M [i] = M̄ [i]}
17 Unequal ← [1..m̄] \ Equal
18 for i← 1 to m̄− 1 do
19 if i ∈ Equal then { X̄[i]← X[i]; Ȳ [i]← Y [i] }
20 if i ∈ Unequal then { X̄[i]← M̄ [i]⊕ γi · L; Ȳ [i] R← {0, 1}n }
21 Σ̄ ← Ȳ [1]⊕ · · · ⊕ Ȳ [m̄− 1]⊕ pad(M̄ [m̄])
22 if |M̄ [m̄]| = n then X̄[m̄]← Σ̄ ⊕ huge · L else X̄[m̄]← Σ̄
23 X̄ ← {X̄[i] : i ∈ Unequal}
24 if X ∩ X̄ 6= ∅ then MMcoll ← true

Figure 4: Defining the collision probabilities. Functions Mcolln(·) and MMcolln(·, ·) are defined using
this game. In lines 14 and 23, X and X̄ are understood to be multisets. The union in line 15 is a multiset
union. Recall that huge is a synonym for x−1.

values X[0], X[1], . . . , X[m], where X[0] = 0n and each X[i] is the block-cipher input associated
to message block i. Informally, MMcolln(m, m̄) measures the probability of running into trouble
across two messages, M and M̄ , having lengths m and m̄. This time trouble means a “non-trivial”
collision. That is, consider the m+m̄+1 points at which the block cipher is applied in processing M
and M̄ . There are m points X[1], . . . , X[m], another m̄ points X̄[1], . . . , X̄[m̄], and then there is
the point 0n (the block cipher was applied at this point to define L). Some pairs of these m+m̄+1
points could coincide for a “trivial” reason: namely, we know that X[i] = X̄[i] if i < m and i < m̄
and M [i] = M̄ [i]. We say that there is a nontrivial collision between M and M̄ if some other
X[i] and X̄[j] happened to coincide. Note that M-collisions include collisions with 0n, while MM-
collisions do not. Also, MM-collisions do not include collisions within a single message (or collisions
with 0n) because both of these possibilities are taken care of by way of M-collisions.

The structure lemma provides a simple recipe for measuring the maximal advantage of an
adversary who attacks the pseudorandomness of PMAC: namely, bound the collision probabilities
Mcolln(·) and MMcolln(·, ·) and then use the formula. The lemma simplifies the analysis of PMAC
in two ways. First, it allows one to excise adaptivity as a concern. Dealing with adaptivity is
a major complicating factor in proofs of this type. Second, it allows one to concentrate on what
happens to single messages and to a fixed pair of messages. It is easier to think about what happens
with one or two messages than what is happening with all q of them.

Bounding the collision probabilities. The following lemma indicates that collisions rarely
occur. Its proof is given in Appendix A.2.

Lemma 2 [Collision-bounding lemma] Let Mcolln(·) and MMcolln(·, ·) denote the M-collision
probability and the MM-collision probability. Then

Mcolln(m) ≤
(

m + 1
2

)
· 1
2n

and MMcolln(m, m̄) ≤ mm̄

2n
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Concluding the theorem. The pseudorandomness of PMAC follows by combining Lemmas 1
and 2. Namely,

Advprf
PMAC[Perm(n),τ ]

≤ max
m1,...,mq
σ=

∑
mi

mi≥1

 ∑
1≤r≤q

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)

 +
(σ + 1)2

2n+1

≤ max
m1,...,mq
σ=

∑
mi

mi≥1

 ∑
1≤r≤q

Mcolln(mr)

 + max
m1,...,mq
σ=

∑
mi

mi≥0

 ∑
1≤r<s≤q

MMcolln(mr,ms)

 +
(σ + 1)2

2n+1

≤ max
m1,...,mq
σ=

∑
mi

mi≥0

 ∑
1≤r≤q

(
mr + 1

2

) + max
m1,...,mq
σ=

∑
mi

mi≥0

 ∑
1≤r<s≤q

mrms

2n

 +
(σ + 1)2

2n+1

≤ (σ + 1)2

2n
+

(σ2/2)
2n

+
(σ + 1)2

2n+1
(1)

≤ 2 (σ + 1)2

2n

where (1) follows because the first sum is maximized with a single message of length σ, while the
second sum is maximized by q messages of length σ/q. This completes the proof of Theorem 1.

6 Performance

Abstract accounting. PMAC uses d|M |/ne block-cipher invocations for any nonempty mes-
sage M . (The empty string takes one block-cipher invocation). We compare with the CBC MAC:

The “basic” CBC MAC, which assumes that the message is a nonzero multiple of the block
length and which is only secure when all messages to be MACed are of one fixed length, uses
the same number of block cipher calls: |M |/n.
The version of the CBC MAC described in [10], which removes the two restrictions just
mentioned, uses the same number of calls as PMAC, d|M |/ne.
Obligatory padding (to support short-final-block messages) and standard methods to process
the final block (double or triple encryption, to achieve security across variable-length messages)
can raise the number of block-cipher calls to as much as d|M + 1|/ne+ 2.

Thus PMAC saves between 0 and 3 block-cipher calls compared to the various versions of the
CBC MAC.

As with any mode, there is further overhead beyond the block-cipher calls. Per block, this
overhead is about three n-bit xor operations plus associated logic. The work for this associated
logic will vary according to whether or not one precomputed L(i)-values, whether or not there is a
native ntz() instruction available, and on other factors.

Though some of the needed L(i)-values are likely to be pre-computed, calculating these values
“on the fly” is not too expensive. Starting with 0n we form successive offsets by xoring the previous
offset with L, 2 ·L, L, 4 ·L, L, 2 ·L, L, 8 ·L, and so forth. So half the time we use L itself; a quarter
of the time we use 2 ·L; one eighth of the time we use 4 ·L; and so forth. Thus the expected number
of a · x-operations to compute an offset is at most

∑∞
i=1 i/2i+1 = 1. Each a · x instruction requires
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Algorithm 16 B 128 B 2 KB
PMAC 22.1 18.7 18.4
CBC MAC 18.9 17.4 17.1

Figure 5: Performance results. Numbers are in cycles per byte, on a Pentium 3, for three message
lengths, the code written in assembly. The underlying block cipher is AES-128. CBC MAC refers to the
“basic” CBC MAC—no padding is performed and nothing extra is done to get security across messages of
varying lengths.

an n-bit xor and a conditional 32-bit xor. Said differently, for any m > 0, the total number of a · x
operations needed to compute γ1 · L, γ2 · L, . . . , γm · L is

∑m
i=1 ntz(i), which is less than m. The

above assumed that one does not retain or precompute any L(i) value beyond L = L(0). Suppose
that one retains a few values: L(0), L(1), L(2), L(3). Computing and storing these three additional
values is less overhead than computing L itself, which required an application of EK . But now the
desired multiple of L has already been computed 1/2 + 1/4 + 1/8 + 1/16 ≈ 94% of the time. When
it has not been pre-computed it must be calculated, starting from 8 · L, so the amortized number
of doubling steps has thus been reduced from 1 to

∑∞
i=1 = i/2i+4 = 0.125.

Experimental results. Our colleague Ted Krovetz implemented PMAC using AES-128 as the
underlying block cipher. He compared its performance in an entirely sequential setting to that
of the CBC MAC. By the CBC MAC we mean the “basic” CBC MAC—nothing extra done to
take care of length-variability or the possibility of strings which are not a multiple of the block
length. The code was written in assembly. The OS was Windows 2000 sp1 and the compiler was
Visual C++ 6.0 sp4. All data fit into L1 cache.

Note that the basic CBC MAC needs to be modified to correctly handle length-variability and
the possibility of short final blocks, and doing this is often done in a way that entails additional
block-cipher calls. Ignoring these factors tends to make the performance comparison conservative.

Disregarding the one-block message in Figure 6, we see that PMAC adds about 8% overhead
compared to the basic CBC MAC. We emphasize that this is for an entirely serial execution envi-
ronment with a limited number of registers. In an environment with plenty of registers and multiple
instruction pipes, PMAC, properly implemented, will of course be faster than the CBC MAC.

7 Intellectual Property Statement and Disclosures

Patent applications covering the ideas of this proposal were filed (Rogaway as inventor) on 13 Septem-
ber 2000, 12 October 2000, and 9 February 2001.

The inventor hereby releases IP rights covering PMAC for all non-commercial, non-governmental
applications. For commercial applications, the inventor will license PMAC under a non-exclusive
license, on a non-discriminatory basis, based on reasonable terms and conditions.

IBM has a patent covering the XOR MAC of [4]; this is US Patent #5,673,318 (September 30,
1997). Though the submitter is in no position to render a legal opinion, it appears to him that the
claims of US Patent #5,673,318 do not read upon the use of PMAC. Virgil Gligor indicates that
he has made patent filings on 31 January 2000, 31 March 2000, and 24 August 2000. We know no
more details.

The IP status specified in this submission will be updated when more is known.
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Initialization
10 L

R← {0, 1}n; π(0n)← L

When A makes its r-th query, Mr = Mr[1] · · ·Mr[mr], where r ∈ [1..q]
20 for i← 1 to mr − 1 do
21 Xr[i]←Mr[i]⊕ γi · L
22 if Xr[i] ∈ Domain(π) then Yr[i]← π(Xr[i])
23 else Yr[i]

R← {0, 1}n

24 if Yr[i] ∈ Range(π) then { bad ← true; Yr[i]
R← Range(π) }

25 π(Xr[i])← Yr[i]
26 Σr ← Yr[1]⊕ Yr[2]⊕ · · · ⊕ Yr[mr − 1]⊕ pad(Mr[mr])
27 if |Mr[mr]| = n then Xr[mr]← Σr ⊕ huge · L else Xr[mr]← Σr

28 if Xr[mr] ∈ Domain(π) then { bad ← true; TAGr
R← Range(π) }

29 else TAGr
R← {0, 1}n

30 if TAGr ∈ Range(π) then { bad ← true; TAGr
R← Range(π) }

31 π(Xr[mr])← TAGr

32 Tagr ← TAGr [first τ bits]
33 return Tagr

Figure 6: Game 1. This game accurately simulates PMAC[Perm(n), τ ].
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A Proofs

A.1 Proof of the Structure Lemma (Lemma 1)

Let A be an adversary that attacks PMAC[Perm(n), τ ]. Since A is computationally unbounded,
there is no loss of generality to assume that A is deterministic. One can imagine A interacting with
a PMAC[Perm(n), τ ] oracle as A playing a certain game, Game 1, as defined in Figure 6. This
game perfectly simulates the behavior of PMAC[Perm(n), τ ]. It does so in a somewhat unusual
way, sometimes setting a flag bad to true. We observe that if the flag bad is not set to true in an
execution of the game, then the value Tagr returned by the game at line 33 is a random one—the
first τ bits of the string randomly selected at line 29. It follows that AdvPMAC[Perm(n),τ ](A) is at
most the probability that bad gets set to true in Game 1. The rest of the proof is devoted to
bounding this probability.

We first consider the probability that bad gets set to true in line 24 or 30. In both cases, we
have just chosen a random n-bit string and then we are testing it for membership in a set. The
size of this set starts at 1 (after executing line 10) and grows one element at a time until, by the
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Initialization
10 L

R← {0, 1}n; π(0n)← L

When A makes its r-th query, Mr = Mr[1] · · ·Mr[mr], where r ∈ [1..q]
20 for i← 1 to mr − 1 do
21 Xr[i]←Mr[i]⊕ γi · L
22 if Xr[i] ∈ Domain(π) then Yr[i]← π(Xr[i])
23 else { Yr[i]

R← {0, 1}n; π(Xr[i])← Yr[i] }
24 Σr ← Yr[1]⊕ Yr[2]⊕ · · · ⊕ Yr[mr − 1]⊕ pad(Mr[mr])
25 if |Mr[mr]| = n then Xr[mr]← Σr ⊕ huge · L else Xr[mr]← Σr

26 if Xr[mr] ∈ Domain(π) then bad ← true

27 TAGr[mr]
R← {0, 1}n

28 π(Xr[mr])← TAGr[mr]
29 Tagr ← TAGr [first τ bits]
30 return Tagr

Figure 7: Game 2. A simplification of Game 1. Bounding the probability that bad gets set in this game,
and then adding a correction factor, serves to bound Advprf

PMAC[Perm(n),τ ].

time just before the last addition of a point, it has size σ. Thus we have that

Pr
1

[bad gets set in lines 24 or 30 ] ≤ 1 + 2 + . . . + σ

2n

≤ (σ + 1)2

2n+1
(2)

Here the subscript of 1 in the probability reminds us that we are considering the behavior of Game 1.
We can now modify Game 1 by changing the behavior when and only when bad is set, and

adding as a compensating factor the bound given by Equation (2). In particular, we may simply
omit lines 24 and 30, and the second statement in the compound statement of line 28 along with
the following else. The modified game is rewritten in Figure 7. At this point we know that

Advprf
PMAC[Perm(n),τ ](A) ≤ Pr

2
[bad gets set ] +

(σ + 1)2

2n+1
(3)

Here the subscript of 2 in the probability reminds us that we are considering the behavior of Game 2.
Notice in Game 2 that the value Tagr returned in response to a query M is always a random

τ -bit string. But of course the game does more than just return these strings: it also chooses L
at random, fills in π-values, and sets bad under certain conditions. We can defer doing all those
things, and just return the random strings Tag1, . . . ,Tagq. This does not change the view of the
adversary that interacts with the game, nor will it change the probability that bad is set to true.
The modified game is called Game 3, and it is depicted in Figure 8.

We need to bound the probability that bad gets set to true in Game 3. This probability is
over the random TAGr-values selected at line 10, the random value of L selected at line 20, and
the random Yr[i]-values selected at line 25. We want to show that, over these random values,
bad will rarely be set. In fact, we show something stronger: that even if one arbitrarily fixes the
values of TAG1, . . . ,TAGq ∈ {0, 1}n (and takes the probability over just the remaining values), still
the probability that bad will be set to true is small. Since the oracle responses have now been
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When A makes its r-th query, Mr = Mr[1] · · ·Mr[mr], where r ∈ [1..q]
10 TAGr

R← {0, 1}n
11 return TAGr [first τ bits]

When A is done making its q queries
20 L

R← {0, 1}n; π(0n)← L
21 for r ← 1 to q do
22 for i← 1 to mr − 1 do
23 Xr[i]←Mr[i]⊕ γi · L
24 if Xr[i] ∈ Domain(π) then Yr[i]← π(Xr[i])
25 else { Yr[i]

R← {0, 1}n; π(Xr[i])← Yr[i] }
26 Σr ← Yr[1]⊕ Yr[2]⊕ · · · ⊕ Yr[mr − 1]⊕ pad(Mr[mr])
27 if |Mr[mr]| = n then Xr[mr]← Σr ⊕ huge · L else Xr[mr]← Σr

28 if Xr[mr] ∈ Domain(π) then bad ← true
29 π(Xr[mr])← TAGr

Figure 8: Game 3. Like Game 2, but we defer all but the selection of TAGr-values. This does not change
the view of the adversary or the chance that bad will be set to true.

10 L
R← {0, 1}n; π(0n)← L

11 for r ← 1 to q do
12 for i← 1 to mr − 1 do
13 Xr[i]←Mr[i]⊕ γi · L
14 if Xr[i] ∈ Domain(π) then Yr[i]← π(Xr[i])
15 else { Yr[i]

R← {0, 1}n; π(Xr[i])← Yr[i] }
16 Σr ← Yr[1]⊕ Yr[2]⊕ · · · ⊕ Yr[mr − 1]⊕ pad(Mr[mr])
17 if |Mr[mr]| = n then Xr[mr]← Σr ⊕ huge · L else Xr[mr]← Σr

18 if Xr[mr] ∈ Domain(π) then bad ← true
19 π(Xr[mr])← TAGr

Figure 9: Game 4[C]. This game depends on constants C which specify: q, TAG1, . . . ,TAGq ∈ {0, 1}n,
and M1 = M1[1] · · ·M1[m1], . . . ,Mq = Mq[1] · · ·Mq[mq].

fixed, and since the adversary itself is deterministic, the queries M1, . . . ,Mq that the adversary
will generate have likewise been fixed. Interaction and the adversary itself are essentially gone at
this point, replaced by universal quantification. The new game is show in Figure 9. It depends on
constants C = (q, TAG1, . . . ,TAGq, M1, . . . ,Mq). At this point in the proof we have that

Advprf
PMAC[Perm(n),τ ](A) ≤ max

C
{Pr[ bad gets set to true in game 4[C]}+

(σ + 1)2

2n+1
(4)

where, if A is limited to q queries of aggregate length σ, then C specifies q, strings M1, . . . ,Mq of
aggregate block length σ, and TAG1, . . . ,TAGq ∈ {0, 1}n.

The next step is to modify Game 4 so that the new game, Game 5, sets bad every time that
Game 4 does, plus some additional times. Look at line 14 in Game 4. The value Xr[i] could have
been in the domain of π for the “trivial” reason that Mr[i] = Ms[i] for some s < r and where
i < ms, or for some other, “non-trivial” reason: Xr[i] = 0n, or Xr[i] = Xs[j] for some s < r and
j 6= i, or Xr[i] = Xr[j] for some j < i. If Xr[i] was in the domain of π for a non-trivial reason,
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10 L
R← {0, 1}n; π(0n)← L

11 for r ← 1 to q do
12 for i← 1 to mr − 1 do
13 Xr[i]←Mr[i]⊕ γi · L; Yr[i]

R← {0, 1}n
14 if Mr[i] = Ms[i] for some s < r and i < ms then Yr[i]← π(Xs[i])
15 else if Xr[i] ∈ Domain(π) then bad ← true
16 π(Xr[i])← Yr[i]
17 Σr ← Yr[1]⊕ Yr[2]⊕ · · · ⊕ Yr[mr − 1]⊕ pad(Mr[mr])
18 if |Mr[mr]| = n then Xr[mr]← Σr ⊕ huge · L else Xr[mr]← Σr

19 if Xr[mr] ∈ Domain(π) then bad ← true
20 π(Xr[mr])← 0n

Figure 10: Game 5[C]. This game sets bad at least as often as Game 4[C] does. It is this game that is
related back to the one that defines the collision probabilities Mcolln and MMcolln.

we effectively give up, setting bad to true. Thus in Game 5, line 15, we set bad if Xr[i] is already
in the domain of π and it is not due to the trivial cause (which is tested for in line 14). We also
modify the last line, setting Xr[mr] to some particular value, say 0n, instead of to TAGr. The
only signficance of this assignment was to make π defined at the point Xr[mr]; the particular value
associated to this point is not used unless bad has already been set to true.

The coins used in Game 5 are L and Y1 = Y1[1] · · ·Y1[m1], . . ., Yq = Yq[1] · · ·Yq[mq], where
Ys[i] are either random coins or are a synonym Yu[i] where u is the least number such that u < s
and i < mu and Ms[i] = Mu[i] (whenever such a u exists). Run Game 5 on M1, . . . ,Mq and the
indicated vector of coins. Suppose that bad gets set to true on this execution. Let s ∈ [1..q] be
the particular value of r when bad first got set to true. We differentiate the following possiblities:

Case 1. When bad was first set to true, this happened because Xs[i] = 0n for some s, or this
happened because Xs[i] = Xs[j] for some j ∈ [1..i− 1].
Case 2. When bad got set to true this happened because Xs[i] = Xu[j] for some u ∈ [1..s−1]
(and if i 6= j then Ms[i] 6= Mu[j]).

In the first case, if we had run game 5 using coins L and Ys, dropping line 14 and restricting
the execution of line 12 to r = s, then bad still would have been set to true. This exactly
coincides with the game that defines Mcolln(Ms). Thus the probablity that case 1 occurs for Ms,
is at most Mcolln(Ms), and, by the sum bound, the probability that case 1 occurs is at most∑

1≤r≤q Mcolln(mr).
In the second case, if we had run game 5 using coins L, Ys and Yu, restricting the execu-

tion of line 12 to r ∈ {s, u}, then bad still would have been set to true. This exactly coin-
cides with the game that defines Mcolln(Ms,Mu). Thus the probability that case 2 occurs for
Ms,Mu, is at most MMcolln(Ms,Mu), and the probability that case 2 occurs due to (Ms,Mu) is
at most MMcolln(Ms,Mu) and, by the sum bound, the probability of an MM collision is at most∑

1≤s<u≤q MMcolln(ms,mu).
This completes the proof.

A.2 Proof of the Collision Bound (Lemma 2)

Let Unequal′ = Unequal \ {X̄[m̄]} (multiset difference: remove one copy of X̄[m̄]) and define
D1 = {0n}
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D2 = {X[1], . . . , X[m− 1]}
D3 = {X[m]}
D4 = {X̄[j] : j ∈ Unequal′}
D5 = {X̄[m̄]}

We first show that for any two points X[i] and X[j] in the multiset D1∪D2∪D3 (i < j, X[0] = 0n)
the probability that these two points collide is at most 2−n. The inequality

Mcolln(m) ≤
(

m + 1
2

)
· 1
2n

follows because there are m + 1 points in D1 ∪D2 ∪D3. Afterwards, we show that for any point
X[i] in D2 ∪D3 and any point in X̄[j] in D4 ∪D5, the probability that they collide is at most 2−n.
The inequality

MMcolln(m, m̄) ≤ mm̄

2n

follows because |D2 ∪D3| · |D4 ∪D5| ≤ mm̄.
To show Mcolln(m) ≤

(
m+1

2

)
· 1

2n we consider the following four cases:

Case (D1, D2): Pr[0n = X[i]] = Pr[M [i] ⊕ γi · L = 0n] = Pr[L = γ−1
i ·M [i]] = 2−n. We have

used the fact that γi is nonzero and we are working in a field. (We will continue to use this without
mention.)

Case (D1, D3): If |M [m]| < n and m ≥ 2 then Σ is a random n-bit string and so Pr[0n = X[m]] =
Pr[0n = Σ] = Pr[0n = Y [1]⊕· · ·Y [m−1]⊕pad(M [m])] = 2−n. If |M [m]| = n and m ≥ 2 then Σ is
a random n-bit string that is independent of L and so Pr[0n = X[m]] = Pr[0n = Σ⊕huge ·L] = 2−n.
If |M [m]| < n and m = 1 then Pr[0n = X[1]] = Pr[0n = pad(M [m])] = 0. If |M [m]| = n and m = 1
then Pr[0n = X[1]] = Pr[0n = pad(M [m])⊕ huge · L] = 2−n.

Case (D2, D2): For i, j ∈ [1..m− 1], i < j, Pr[X[i] = X[j]] = Pr[M [i]⊕ γi ·L = M [j]⊕ γj ·L] =
Pr[M [i] ⊕M [j] = (γi ⊕ γj) · L] = 2−n because γi 6= γj for i 6= j. (Here one assumes that j < 2n

because the lemma gives a non-result anyway if j were larger.)

Case (D2, D3): Assume that m ≥ 2, for otherwise there is nothing to show. Suppose first
that |M [m]| < n. Then Pr[X[i] = X[m]] = Pr[M [i] ⊕ γi · L = Σ]. The value Σ is uniformly
random and independent of L, so this probability is 2−n. Suppose next that |M [m]| = n. Then
Pr[X[i] = X[m]] = Pr[M [i]⊕ γi ·L = Σ ⊕ huge ·L] = Pr[M [i]⊕Σ = (γi ⊕ huge) ·L]. This value is
2−n since γi 6= huge. Here we are assuming that i < 2n−1, which is without loss of generality since
a larger value of i, and therefore m, would give a non-result in the theorem statement.

Similarly, to show that MMcolln(m, m̄) ≤ mm̄
2n we verify the following four cases:

Case (D2, D4): Let i ∈ [1..m−1] and j ∈ Unequal′ and consider Pr[X[i] = X̄[j]] = Pr[M [i]⊕γi·L =
M̄ [j]⊕ γj ·L] = Pr[M [i]⊕ M̄ [j] = (γi ⊕ γj) ·L. If i 6= j then γi 6= γj and this probability is 2−n. If
i = j then the probability is 0 since, necessarily, M [i] 6= M̄ [j].

Case (D2, D5): Suppose that |M̄ [m̄]| < n. Then Pr[X[i] = X̄[m̄]] = Pr[M [i]⊕ γi · L = Σ̄] = 2−n

because Σ̄ is independent of L. Suppose that |M̄ [m̄]| = n. Then Pr[X[i] = X̄[m̄]] = Pr[M [i] ⊕
γi · L = Σ̄ ⊕ huge · L] = Pr[M [i]⊕ Σ̄ = (γi ⊕ huge) · L] = 2−n because Σ̄ is independent of L and
γi 6= huge.
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Case (D3, D4): Suppose that |M [m]| < n. Then Pr[X[m] = X̄[j]] = Pr[Σ = M̄ [j]⊕ γj · L] = 2−n

because Σ is independent of L. Suppose that |M [m]| = n. Then Pr[X[m] = X̄[j]] = Pr[Σ ⊕ huge ·
L = M̄ [j]⊕ γj · L] = Pr[Σ ⊕ M̄ [j] = (γj ⊕ huge) · L] = 2−n because γj 6= huge.

Case (D3, D5): Suppose that |M [m]| < n and |M̄ [m̄]| < n. If m > m̄ then Pr[X[m] = X̄[m̄]] =
Pr[Σ = Σ̄] = 2−n because of the contribution of Y [m − 1] in Σ—a random variable that is not
used in the definition of Σ̄. If m < m̄ then Pr[X[m] = X̄[m̄]] = Pr[Σ = Σ̄] = 2−n because of
the contribution of Ȳ [m̄ − 1] in Σ̄—a random variable that is not used in the definition of Σ. If
m = m̄ and there is an i < m such that M [i] 6= M̄ [i] then Pr[X[m] = X̄[m̄]] = Pr[Σ = Σ̄] = 2−n

because of the contribution of Ȳ [i] in Σ̄—a random variable that is not used in the definition of Σ.
If m = m̄ and for every i < m we have that M [i] = M̄ [i], then, necessarily, M [m] 6= M̄ [m]. In this
case Pr[Σ = Σ̄] = 0, as the two checksums differ by the nonzero value pad(M [m])⊕ pad(M̄ [m]).

Suppose that |M [m]| = n and |M̄ [m̄]| = n. Then X[m] and X̄[m] are being offset by the same
amount, huge ·L, so this offset is irrelevant in computing Pr[X[m] = X̄[m̄] and one proceeds exactly
as above.

Suppose that |M [m]| < n and |M̄ [m̄]| = n. Then Pr[X[m] = X̄[m]] = Pr[Σ = Σ̄ ⊕ huge ·
L] = 2−n since Σ and Σ̄ are independent of L. Similarly, if |M [m]| = n and |M̄ [m̄]| < n, then
Pr[X[m] = X̄[m]] = 2−n.

This completes the proof.

B Test Vectors

PMAC-AES test vectors and reference code, prepared by Ted Krovetz (tdk@acm.org), are available
at http://www.cs.ucdavis.edu/∼rogaway/
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