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Abstract

We analyze the security of different versions of the adapted RSA-PSS
signature scheme, including schemes with variable salt lengths and mes-
sage recovery. We also examine a variant with Rabin-Williams (RW) as
the underlying verification primitive. Our conclusion is that the secu-
rity of RSA-PSS and RW-PSS in the random oracle model can be tightly
related to the hardness of inverting the underlying RSA and RW prim-
itives, at least if the PSS salt length is reasonably large. Our security
proofs are based on already existing work by Bellare and Rogaway [3] and
by Coron [10], who examined signature schemes based on the original PSS
encoding method.
Keywords: digital signatures, factoring, public-key cryptography, RSA.

1 Introduction

A widely employed procedure for digitally signing a message is to encode the
message into an element in the image of a one-way trapdoor function (e.g., the
RSA encryption function [32]; see Section 4.1) before applying the inverse of the
trapdoor function (e.g., the RSA decryption function) to the element. During
the years, quite a few such encoding methods have been proposed, including the
popular method used in the RSA-based signature scheme defined in PKCS #1
v1.5 [33]. While this scheme has remained unbroken, its security is based on ad
hoc assumptions and cannot be expressed in terms of the hardness of inverting
the RSA encryption function. This has the effect that we cannot exclude the
possibility that an attacker knows how to efficiently forge signatures without
being able to invert the RSA encryption function.

To address this concern, Bellare and Rogaway [3] introduced the PSS encoding
method in 1996. Combined with the RSA or the Rabin [31] one-way trapdoor
functions, PSS provides provable security. Specifically, Bellare and Rogaway
were able to demonstrate that the exact security of the combinations RSA-
PSS and Rabin-PSS can be expressed in terms of the hardness of inverting the
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underlying RSA and Rabin trapdoor functions. The security proofs take place
in the random oracle model (hash functions are treated as “ideal”). Coron
[9, 10] analyzed RSA-PSS further and improved the security proof for small salt
lengths; PSS uses a salt (a random bit string) when encoding messages to be
signed. The 1996 version of PSS is specified in Section 5.1.

A slightly modified version of PSS is suitable also in combination with the
Rabin-Williams (RW) algorithm [19, 20], which is an adapted version of the
Rabin algorithm [31] and based on work by Williams [39]; see Section 4.2. A
rigorous security proof however has not been published for this combination.

During the process of adopting PSS into the IEEE P1363a [18] standards effort,
certain adaptations to the original version of PSS were made by Bellare and
Rogaway [4] and also by Burt Kaliski (the editor of IEEE P1363a) to facilitate
implementation and integration into existing protocols. The adapted version
is intended to be used in combination with RSA or RW. See Section 5.2 for a
description of the new PSS encoding method and rationale for the modifications.

Our purpose is to examine the security of signature schemes based on the
adapted PSS encoding method. Our contributions can be summarized as fol-
lows.

• We verify that the adaptations are sound. However minor a modification
may appear to be, without a careful analysis of the effects of the modi-
fication, one cannot be completely sure that there are no undesired side
effects. We provide that analysis here. Our security proof for RSA-PSS is
based on Coron’s proof in [10].

• We analyze different variants of RSA-PSS and RW-PSS, including schemes
with variable PSS salt length and schemes with message recovery.

• We give a security proof for RW-PSS based on the security proof for RSA-
PSS. While the Rabin-PSS security proof in [3] was completely straight-
forward in terms of the RSA-PSS security proof, the somewhat complex
theory behind the RW primitive requires a more thorough additional anal-
ysis. On the other hand, the careful design of RW-PSS allows for tighter
security bounds than those for Rabin-PSS in [3].

• We introduce an improved signature sampling method compared to the
method used in [3, 10]. The method applies to both the new and the orig-
inal version of PSS. While the improvement makes no difference asymp-
totically, it still adds a few bits of provable security, which might be of
importance in particular cases. See Section 8 for details.

As in [3, 9, 10], our security proofs take place in the random oracle model, i.e.,
hash functions are assumed to produce random and unpredictable outputs for
any given input. See the concluding discussion in Section 13 for some comments.

1.1 Related work

Over the years, plenty of signature schemes have been proposed. It is beyond
the scope of this paper to give a complete historical overview; we will restrict
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our attention to some of the more important schemes of today together with a
few interesting recent inventions.

Traditionally, asymmetric signature and encryption schemes have been based on
a presumably hard number-theoretic problem. Probably the two most exploited
problems are the factoring problem and the discrete logarithm problem.

RSA and RW are examples of primitives based on the factoring problem (though
inverting RSA is not known to be equivalent to factoring the underlying mod-
ulus). There are several signature schemes based on the RSA algorithm; see
[21] for further discussion. The ACE signature scheme [37] is a scheme with
a primitive based on a hard problem similar to the RSA problem. While less
efficient than RSA-PSS, ACE has the advantage of being provably secure in a
standard model (i.e., without the random oracle assumption on the underlying
hash functions). Yet, the security reduction for ACE, with or without the ran-
dom oracle assumption, is not as tight as the reduction provided for RSA-PSS
in this paper. Gennaro, Halevi, and Rabin [12] has introduced a very simple
signature scheme with a security proof in the standard model of approximately
the same strength as the one for ACE. ESIGN [11] is another signature scheme
with a similar underlying hard problem. ESIGN is provably secure in the ran-
dom oracle model and is significantly faster than RSA-PSS and RW-PSS. Yet,
the reduction in the security proof is not tight and the underlying hard problem
might be easier to solve than inverting RSA. ESIGN is specified in Draft 9 of
IEEE P1363a [18]. Finally, we mention the GQ1 and GQ2 schemes [14], which
are based on zero-knowledge identification schemes.

The discrete logarithm problem is to solve equations of the form ax = b in x,
where a and b are elements in a finite group. IEEE Std 1363-2000 [17] includes
several schemes with cryptographic primitives based on this problem. In DSA
[1] the underlying group is a subgroup of the multiplicative group of integers
modulo a prime p, whereas in ECDSA [2] the group is a subgroup of an elliptic
curve group over a finite field. The exact security of ECDSA is analyzed in [7].
Based on work by Nyberg and Rueppel [26], variants of DSA and ECDSA have
been introduced and standardized within the P1363 effort. Further variants,
including the Pintsov-Vanstone scheme based on work in [30], are included in
Draft 9 of IEEE P1363a [17]. The security of the Pintsov-Vanstone scheme
is analyzed in [8]. Another scheme worth mentioning is the Korean KCDSA
scheme [22], which is equipped with a security proof.

Among other hard problems that have been exploited for cryptographic pur-
poses, we mention solving multivariate quadratic (MQ) equations over a field
and finding small vectors in lattices of large dimensions. Examples of schemes
based on the first problem are FLASH, QUARTZ, and SFLASH [27, 28, 29],
while NSS [15, 16] is a new scheme based on the second problem. Given that
these schemes were introduced most recently, some teething troubles might be
expected. Indeed, two early versions of the NSS scheme have been broken
[23, 13]. In addition, it seems unlikely that exact security proofs can be pro-
vided for any of these schemes or close variants thereof. Namely, they are not
designed with such an exact security goal in mind.
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2 Notation

Components of the signature schemes
E Appended string (e.g. bc or cc), third part of y.
f Verification primitive (e.g. RSA).
f−1 Signature primitive.
g Function (for mask generation).
H Hash h(M) of message M .
h Function (for message hashing).
M Message to be signed.
N Modulus, an integer.
r Random salt.
r∗ First part of y.
w Output from h, second part of y.
x Output from signature primitive.
y Input to signature primitive.
ϕ,ψ Simple padding functions.

Scheme parameters
k Bit length of modulus.
kE Bit length of appended string E.
kh Bit length of h function output.
kg Bit length of g function output.
kr Bit length of salt.
Ksig Set of salt lengths accepted by the signer.
Kver Set of salt lengths accepted by the verifier.
u Length of padding string in input to h in RSA-PSS2000.

Security model parameters
c(q, l) Collision probability among q uniformly random and

independent bit strings of length l.
qhash Number of h- and g-oracle queries.
qsig Number of signing queries.
α “Dependence number” between h and g (see Section 7).
λ0, . . . λα−1 Used in the construction of g when g is defined in terms of h.

Miscellaneous
gcd(a,b) Greatest common divisor of the two integers a and b.
lcm(a,b) Least common multiple of the two integers a and b.
bxc The real number x rounded down to the closest integer.
dxe The real number x rounded up to the closest integer.
X‖Y Concatenation of bit strings X and Y .
X ⊕ Y Bitwise exclusive-or of bit strings X and Y .
|X| Bit length of the string X.
s

R← S s is chosen uniformly at random from the finite set S.
0l String of 0 bits of length l.
{0, 1}l The set of bit strings of length l.
{0, 1}L The union

⋃
l∈L{0, 1}l (L is a set).
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3 Overview of the basic construction

In this section we give an overview of the basic construction on which the dif-
ferent proposed variants of RSA-PSS and RW-PSS are based. RSA and RW are
described in Section 4; the different PSS variants are specified in Section 5.

We indicated in previous section that the signature schemes to be analyzed in
this paper consist of an encoding method and a cryptographic primitive. For-
mally, a (randomized) encoding method will in this paper consist of an encoding
operation and a verification operation. The encoding operation takes a message
M , generates a random salt r, and outputs a string y = µ(M, r), where µ is
a deterministic function producing “random-looking” outputs from its two in-
puts. The string y has a verifiable structure in that it is easy to verify whether
y = µ(M, r) for some r once M and y are known. The verification operation
hence takes a message M and a string y and checks whether y = µ(M, r) for
some r; put µ−1(M,y) = 1 if this is the case and µ−1(M,y) = 0 otherwise.

In a signature scheme with message recovery, the function µ has the property
that part ofM can be easily recovered from µ(M, r). In this case, the verification
operation is replaced with a recovery operation, which outputs the recovered
message part in case µ−1(M,y) = 1 and “error” otherwise.

The encoding method is combined with a cryptographic primitive to form a
signature scheme. Each of the cryptographic primitives employed in this article
can be described as a pair (f, f−1) of primitives – a verification primitive f and
a signature primitive f−1 satisfying f ◦f−1(y) = y for all valid y. Schematically,
the verification primitive f takes as input an element (e.g., an integer) x and
outputs another element y = f(x), while the signature primitive recovers x from
f(x). Anyone who knows the public key can compute f(x), but it is assumed
to be hard to compute f−1(y) for a random y unless the private key is known.

The overall signature and verification procedures are schematically defined as
follows. To sign a message M , generate a salt r and compute x = f−1(µ(M, r)).
To verify that x is a valid signature of M , check that µ−1(M,f(x)) = 1.

4 Cryptographic primitives

4.1 The RSA algorithm

The RSA algorithm is defined in terms of an RSA key pair, which consists of an
RSA public key and an RSA private key. Each of these keys contains a modulus
N , which is an integer of bit length k, where k is the security parameter. N is
the product of two1 randomly generated primes p and q. We do not give any
details about how to generate N as the conclusions of this paper do not depend
on the key generation method. See [35] for a method recommended by RSA
Laboratories.

The public key is the pair (N, e), where e ≥ 3 is an odd integer such that

1More generally, N can be defined to be the product of three or more distinct primes.
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gcd(e, (p− 1)(q − 1)) = 1. The private key is (N, d), where d satisfies

de ≡ 1 (mod lcm(p− 1, q − 1)).

The RSA verification primitive f is defined as

f(x) = xe mod N,

while the RSA signature primitive f−1 is defined as

f−1(y) = yd mod N ;

x and y are integers between 0 and N − 1. It is easily seen that f ◦ f−1(y) = y
for all y ∈ ZN .

4.2 The RW algorithm

The RW algorithm is defined in terms of an RW key pair. The RW public key
consists of a modulus N of bit length k and an even integer e ≥ 2. Here, N = pq,
where p and q are primes satisfying p ≡ 3 (mod 8) and q ≡ 7 (mod 8), while e
is an even integer satisfying gcd(e, ν) = 1, where ν = lcm(p− 1, q − 1)/2 (note
that ν is odd). The RW private key consists of N and an integer d satisfying

ed ≡ 1 (mod ν).

Again, we do not give any details about how to generate the key pair. One
suggestion is to use the method described in [35] with a few minor modifications
to meet the requirements above on p and q.

Let
(

a
N

)
denote the Jacobi symbol of a with respect to N . If N is a product

of two distinct primes p and q and a ∈ Z∗
N = {0 < x < N : gcd(x,N) = 1},

then
(

a
N

)
= +1 if either a is a quadratic residue modulo both primes or a is a

quadratic nonresidue modulo both primes; a being a quadratic residue modulo
an integer j means that the equation x2 ≡ a (mod j) has an integer solution x.
The conditions on p and q make 2 a quadratic residue modulo q but not modulo
p, while −1 is a quadratic nonresidue modulo both primes. In particular, if
a ∈ Z∗

N we obtain ( a

N

)
=

(
−a
N

)
= −

(
2a
N

)
= −

(
−2a
N

)
.

Moreover, exactly one of the four numbers a,−a, 2a,−2a is a quadratic residue
modulo N .

Any quadratic residue xmoduloN satisfies xν ≡ x (mod N). Note that xed ≡ x
(mod N) if and only if x is a quadratic residue (otherwise xed ≡ −x (mod N)).

The signature primitive f−1 is defined as follows. The element to be decrypted
must be an integer y such that y ≡ 12 (mod 16). Let z be the unique quadratic
residue modulo N among the four integers y,N − y, y/2 mod N, (N − y/2) mod
N . We define

f−1(y) = min{zd mod N,N −
(
zd mod N

)
}.
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Note that the Jacobi symbol
(

f−1(y)
N

)
is always +1 (but f−1(y) is not necessarily

a quadratic residue modulo N).

The verification primitive f is defined as follows. Let x be the integer to be
verified. Put

w = xe mod N.

f(x) is defined to be the unique element y in the set

{w,N − w, 2w mod N, (N − 2w) mod N}

satisfying y ≡ 12 (mod 16). If the set contains no such y, then f(x) is not de-
fined. Note that if x = f−1(y) and z is defined as above, then w =

(
±zd

)e mod
N = z (e is even), which implies that f(f−1(y)) = y whenever y ∈ Z∗

N and
y ≡ 12 (mod 16).

The choice of 12 as the value of the last nibble l of f(x) is quite arbitrary. In fact,
any integer in the set {1, 2, 3, 4, 6, 8, 9, 10, 11, 12} would be a fine choice for l, though
even numbers are preferable for practical reasons. A proof of this fact is as follows.
Suppose that the set

S = {w, N − w, 2w mod N, (N − 2w) mod N}

contains two elements that are congruent to l modulo 16. Put v = w mod 16 and let
k ∈ {0, 1} satisfy N ≡ 5 + 8k (mod 16). Reducing the integers in S modulo 16, we
obtain the four integers

x1 ≡ v ; x2 ≡ 5 + 8k − v;

x3 ≡ 2v or 2v − 5 + 8k ; x4 ≡ 5− 2v + 8k or 10− 2v;

x3 ≡ 2v if and only if x4 ≡ 5− 2v + 8k. x1 and x2 are never congruent to each other
modulo 16 (one is odd and one is even), neither are x3 and x4. x1 and x3 are congruent
only if either v ≡ 2v or v ≡ 2v − 5 + 8k, which is true only if x1 ∈ {0, 5, 13}. x1 and
x4 are congruent only if either v ≡ 5 − 2v + 8k or v ≡ 10 − 2v, which is true only if
x1 ∈ {7, 15, 14}. By symmetry, the discussion for x2 is analogous. The conclusion is
that if two numbers are congruent modulo 16, then they are congruent to an element
in the set {0, 5, 7, 13, 14, 15}.

In case one required that y ≡ l modulo 8 rather than 16, only l = 1, 2, 3, 4 would be
fine, which indicates that maybe 2, 4, 10, and 12 are better choices for l modulo 16
than 6 and 8.

5 Original PSS proposal and revisions

As mentioned in the Introduction, several variants of the PSS encoding method
have been proposed. The purpose of this section is to present the two most im-
portant variants, the original version in [3] and the adapted version as specified
in Draft 9 of IEEE P1363a [18]. To distinguish between the two versions, we
will refer to the original version in [3] as PSS96 and to the adapted version in
[18] as PSS2000.

PSS96 and PSS2000 are both encoding methods as defined in Section 3, trans-
forming a message to be signed into an encoded message via two functions h and
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g. If g and h are viewed as random oracles, then the encoded message, viewed
as a random variable, is uniformly distributed among the set of valid encoded
messages and is independent of the original message.

5.1 Original proposal

PSS96 consists of an encoding operation PSS96-Encode and a verification
operation PSS96-Verify and is parameterized by two positive integers kr and
kh satisfying kr + kh ≤ k − 1, where k is the length of the modulus. kr is the
bit length of the salt, a random element generated during encoding. PSS96 is
based on interactions between two functions, a function

h : {0, 1}∗ → {0, 1}kh

and a function

g : {0, 1}kh → {0, 1}kg ,

where kg = k − 1 − kh. The output from the function g “masks” the salt in
the encoded message; for this reason g is often (e.g., in [18]) referred to as a
mask generation function. We will not adopt this terminology in this paper.
Instead, we will refer to both g and h as hash functions. However, whenever we
are talking about the hash of a specific string m, we will always mean h(m).

For a finite set S, let s R← S mean that the element s is chosen uniformly
at random from S. The PSS96 encoding and verification operations run as
follows.2

PSS96-Encode(M)
– r

R← {0, 1}kr ;
– w ← h(M‖r);
– r∗ ← g(w)⊕ (0kg−kr‖r);
– Return y = 0‖r∗‖w.

PSS96-Verify(M,y)
– Write y = b‖r∗‖w (|b| = 1, |r∗| = kg and |w| = kh);
– If b = 1, then return 0 and exit.
– Write g(w)⊕ r∗ = γ‖r (|γ| = kg − kr and |r| = kr);
– If h(M‖r) = w and γ = 0kg−kr

then return 1
else return 0.

The full signature operation RSA-PSS96-Sign takes a message M , computes
y = PSS96-Encode(M), and returns x = f−1(y), where f denotes the RSA
verification (encryption) primitive. The verification operation RSA-PSS96-
Sign takes a message M and a signature x, computes y = f(x), and verifies the
result by applying PSS96-Verify to (M,y).

2A few editorial modifications have been made to facilitate comparisons with the PSS2000
operations introduced in Section 5.2.
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5.2 New proposal

The encoding operation PSS2000 is based on PSS96. It is included in the drafts
of IEEE P1363a [18] and PKCS #1 v2.1 [34] and was submitted to the NESSIE
[35] and the Japan CRYPTREC [36] projects. The new features of PSS2000
compared to PSS96 are as follows:

• Instead of computing the hash of M‖r, one computes the hash of M alone
and, in the subsequent step, computes the hash of 0u‖h(M)‖r, where u is
an integer (u = 64 in current specifications). This modification is math-
ematically equivalent to replacing M with 0u‖h(M) as input to PSS96-
Encode. The string 0u may seem to make little sense; its rationale is for
compatibility with the corresponding encoding operation giving message
recovery; see Section 11.

• The encoded message in PSS2000 has either nine or seventeen fixed bits,
whereas only the first bit is fixed in the original scheme. In PSS2000,
the first bit is 0 and the last eight bits have hexadecimal value bc or cc;
in case the value is cc, the next to last eight bits form a hash identifier.
The rationale for the extra fixed bits is for compatibility with the Rabin-
Williams IFSP-RW signature primitive in IEEE Std 1363-2000 [17] and the
corresponding primitive in the draft ISO/IEC 9796-2 [20]; see Section 4.2.
This modification is equivalent to replacing the output y with y‖bc and
redefining kg as k − 1 − kh − 8 (which means that g is modified as well,
returning strings of length k − 1− kh − 8 rather than k − 1− kh).

• There is a minor revision of the padding in r∗ preceding the seed r; r∗ is
defined as g(w)⊕ (0kg−kr−1‖1‖r). The 1 delimiter is of importance in the
more general RSA-PSS-R scheme giving message recovery; see Section 11.
Note that the sender and the receiver do not need to agree on the length
of the salt in advance; the length is easily derived from r∗ ⊕ g(w). This is
no loss of security; our security proof will show that it is hard to forge a
signature with a salt length that is not supported by the signer. However,
in practice it is typically assumed that the receiver does know the length
of the salt (if only for compliance with RSA-PSS-R).

We mention that this paper does not consider the role of the hash identifier,
neither does it deal with the issue of hash substitution attacks in cases where
there is no hash identifier included in the signature.

Let PSS2000 denote the modified version of PSS96 according to the above adap-
tations; PSS2000 consists of an encoding operation PSS2000-Encode and a
verification operation PSS2000-Verify. We will find it convenient to con-
sider the hash H = h(M) of M rather than M itself as input to the operations.
Namely, we will make this decomposition in the security model. Let E be a fixed
bit string of length kE , where kE is an integer such that kr + kh + kE ≤ k − 1.
In practice, E is either the string bc = 10111100 or the string HID‖cc, where
HID is a hash identifier octet; thus kE = 8 or 16. Let notation be the same as
for the RSA-PSS96 scheme, except that kg is defined to be k − 1− kh − kE .
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PSS2000-Encode(H)
– r

R← {0, 1}kr ;
– w ← h(0u‖H‖r);
– r∗ ← g(w)⊕ (0kg−kr−1‖1‖r);
– Return y = 0‖r∗‖w‖E.

PSS2000-Verify(H, y)
– Write y = b‖r∗‖w‖E′ (|b| = 1, |r∗| = kg, |w| = kh, and |E′| = kE);
– If b = 1 or E 6= E′, then return 0 and exit.
– Write g(w)⊕ r∗ = γ‖r (|γ| = kg − kr and |r| = kr);
– If h(0u‖H‖r) = w and γ = 0kg−kr−1‖1

then return 1
else return 0.

The full signature operation RSA-PSS2000-Sign takes a messageM , computes
H = h(M) and y = PSS2000-Encode(H), and returns x = f−1(y).

6 A generalized scheme

Our goal is to analyze the security of RSA-PSS2000 from different aspects. To
make the discussion as general as possible, we introduce an encoding operation
GenPSS-Encode including PSS2000-Encode as a special case. Instead of
having a fixed salt length, we allow salt lengths to be picked from a nonempty
set Ksig of positive integers. Similarly, the verification operation GenPSS-
Verify accepts salt lengths from a nonempty set Kver (which might be equal
to Ksig). In this manner we may study the following two cases:

• The forger tries to construct a signature with a salt length not supported
by the signer. This corresponds to the case where Kver \Ksig is nonempty.

• The forger tries to construct a signature with a specific salt length among
several salt lengths supported by the signer. This corresponds to the case
where Ksig \Kver is nonempty.

Put K = Ksig ∪Kver.

PSS2000-Encode contains two simple padding operations, the operation trans-
forming (H, r) into 0u‖H‖r and the operation transforming r into 0kg−kr−1‖1‖r.
To allow for minor adjustments of these operations and to simplify notation, we
introduce two injective functions

ϕ : {0, 1}kh × {0, 1}K → {0, 1}∗

and
ψ : {0, 1}K → {0, 1}kg .

ϕ takes inputs of the form (H, r) (a hash value and a salt), and ψ takes inputs
of the form r (a salt). We assume that ψ,ϕ are straightforward to invert, that
is, r is easy to extract unambiguously from ψ(r), and similarly for ϕ.
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6.1 Definition of RSA-GENPSS

Let notation be the same as for PSS2000-Encode. The input parameters to
GenPSS-Encode are a string H of length kh and the desired salt length k0

chosen from the set Ksig.

GenPSS-Encode(H, k0)
– r

R← {0, 1}k0 ;
– w ← h(ϕ(H, r));
– r∗ ← g(w)⊕ ψ(r);
– Return y = 0‖r∗‖w‖E.

The input parameters to GenPSS-Verify are a string H of length kh, a string
y of length k − 1, and a salt length k0 chosen from the set Kver.

GenPSS-Verify(H, y, k0)
– Write y = b‖r∗‖w‖E′ (|b| = 1, |r∗| = kg, |w| = kh, and |E′| = kE);
– If b = 1 or E 6= E′, then return 0 and exit;
– If possible, write g(w)⊕ r∗ = ψ(r) with |r| = k0

else return 0 and exit;
– If h(ϕ(H, r)) = w

then return 1
else return 0.

Our object is to define two signature schemes based on the GenPSS encoding
method, one ordinary scheme RSA-GenPSS and one “reduced” scheme RSA-
GenPSS-Reduced. The ordinary scheme is a straightforward generalization
of RSA-PSS2000, whereas the reduced scheme takes the hash value of the
message to be signed as input rather than the message itself. The reason for
introducing the reduced scheme is that it enables us to give a security proof
for RSA-GenPSS in two steps. In the first step we express the security of
RSA-GenPSS in terms of RSA-GenPSS-Reduced. In the second step, we
translate the security proofs in [3, 10] for RSA-PSS96 into a proof for RSA-
GenPSS-Reduced. Combining the two steps, we obtain a proof for the full
scheme RSA-GenPSS.

Formally, we define RSA-GenPSS-Reduced(Ksig,Kver) as follows. The in-
put parameters to the signature operation RSA-GenPSS-Reduced-Sign are
a string H of length kh and a salt length k0.

RSA-GenPSS-Reduced-Sign(H,k0)
– y ← GenPSS-Encode(H, k0);
– x← f−1(y);
– Return x.

The input parameters to the verification operation RSA-GenPSS-Reduced-
Verify are a string H of length kh, a signature x, and a salt length k0.

RSA-GenPSS-Reduced-Verify(H,x,k0)
– y ← f(x);
– b← GenPSS-Verify(H, y, k0);
– Return b.



12 Jakob Jonsson

The main signature and verification operations RSA-GenPSS-Sign and RSA-
GenPSS-Verify take a string M of arbitrary length as input rather than a
string H of length kh.
RSA-GenPSS-Sign(M ,k0)

– H ← h(M);
– x← RSA-GenPSS-Reduced-Sign(H, k0);
– Return x.

RSA-GenPSS-Verify(M ,x,k0)
– H ← h(M);
– b← RSA-GenPSS-Reduced-Verify(H,x, k0);
– Return b.

6.2 Security models

We want to define security models for RSA-GenPSS and RSA-GenPSS-
Reduced. In each of these security models, a forger knows the public key
and is given access to a signing oracle and two hash oracles simulating g and
h. The model has input parameters qsig, qhash, and t. The parameter qsig is the
upper bound on the number of queries to the signing oracle, while qhash is the
upper bound on the total number of queries to the hash oracles. Finally, t is an
upper bound on the complexity (the sum of the time and the description size)
of the forger. Note that the model does not consider storage. Yet, we will give
storage estimates whenever appropriate.

The goal for the forger is to construct a pair (M,x) such that x is a valid
signature of M . Of course, x must not be the response to a signing query
with input M ; however, it may well be the response to a signing query with a
different input, and there might be other signing queries with input M (at least
if nonzero salt lengths are allowed). The signature scheme is (t, qsig, qhash, ε)-
secure if there is no forger with complexity t and success probability ε making
at most qsig signing queries and qhash hash queries.

First, we define a security model for RSA-GenPSS-Reduced. The forger
knows the public key and is given access to a signing oracle and two independent
random oracles simulating g and h respectively. A random oracle responds to
queries Q1, Q2, . . . with responses R1, R2, . . . such that each Ri is uniformly
chosen at random from a fixed set and independent from other responses, except
that identical queries result in identical responses. To compute h(x), the forger
sends x to the h-oracle; the oracle requires that x = ϕ(H, r), where |H| = kh

and |r| ∈ Ksig ∪Kver. To compute g(w), the forger sends w to the g-oracle; in
this case the oracle requires that |w| = kh).

Second, we define a security model for RSA-GenPSS. This model is similar to
the model for RSA-GenPSS-Reduced; again we have a signing oracle and two
random oracles for g and h. The domain for the g-oracle is the same as before,
while the h-oracle accepts inputs of any length. Yet, this time there might be
dependencies between the oracles. Namely, in current draft specifications of



Security Proofs for RSA-PSS and Its Variants – Draft 1.1 13

RSA-PSS2000, g(w) is defined to be the kg = k− 1− kh − kE leading bits3 of
the string

h(λ0(w))‖h(λ1(w))‖h(λ2(w))‖ . . . . (1)

Here, λi(w) = w‖(i)32, where (i)32 is the 32-bit low-endian representation of
the integer i. In particular, there are interactions between h and g. Such
interactions do not occur in the reduced scheme. Namely, in RSA-PSS2000
the length of ϕ(H, r) is equal to u+ kh + kr. Since u = 64, it is never the case
that |ϕ(H, r)| is equal to |λ1(w)| = kh + 32.

We will assume that if a forger in the RSA-GenPSS scheme outputs a signature
(M,x), then the forger has sent all h- and g-oracle queries necessary to verify
x. Readers who want to include the case where this is not necessarily true may
replace qhash with qhash + 3 in all security bounds.4

6.3 Storage considerations

One important component of our security reductions is a random oracle simu-
lator, i.e., an algorithm simulating the random oracles. There is nothing that
prevents the forger from sending the same oracle query more than once. In par-
ticular, since responses to queries that are identical must be identical as well,
the simulator must store the entire history of queries and responses. This might
be a problem, because inputs to h in RSA-GenPSS can be arbitrarily long. In
particular, the storage requirements for the simulator might be unattainable,
whereas the forger might have certain means for reconstructing earlier queries
without having to store them.

There are means to address this concern. For example, one may use a determin-
istic function chosen at random from a large set H as an instantiation of h for
long queries and use a random oracle instantiation of h only for short queries.
Given an appropriate assumption on the hardness of finding collisions in a func-
tion randomly chosen from H, we obtain a security reduction with reasonable
bounds on the storage requirements for the simulator. However, the approach
would require a few quite technical definitions. Also, the probability that the
forger finds a collision would now depend not only on the number of queries but
also on the running time and the storage capabilities of the forger. This would
overshadow the clearness of an already quite complex security reduction.

What we may assume instead is that the running time for the forger to have all
her queries processed is linear in the total size in bits of the queries rather than
in the total number of queries. In this manner, the storage requirements of the
simulator are bounded from above by the running time of the forger. (Authors
tend to adopt the convention that the running time to process queries is actually
0, but this convention is inappropriate for our purposes and also unrealistic.)

3More precisely, to facilitate byte-oriented implementation, g(w) is defined as the leading
kg bits of the string obtained by first truncating the leading 8 · d(kg + 1)/8e − kg bits.

4Typically, one assumes that qhash is a very large integer, say between 230 and 260, so
these extra queries will have no practical effect on the security bounds.



14 Jakob Jonsson

7 Analysis of the hash construction

In RSA-PSS2000, the message M is hashed in two steps to give an output
w; in the first step M alone is hashed and in the second step h(M) is hashed
together with the salt and some padding. In RSA-PSS96 there was only one
step. There are reasons to analyze the effect this difference may have on the
security, which is roughly equivalent to studying the corresponding difference
between RSA-GenPSS and RSA-GenPSS-Reduced.

Let notations be as introduced in the previous section. Let α denote the number
of strings y such that h(y) is not independent from g(w) for a given w (in
the random oracle model); we assume that α is the same for all w. To avoid
unnecessary complications, we assume that if h(y) is not independent from g(w),
then the entirety of h(y) is straightforward to extract from g(w) (e.g., h(y) is a
substring of g(w)). If g is defined as in (1), then α = d(k−1−kh−ke)/khe (if g
and h were independent, then α would be 0). As before, let λ0(w), . . . , λα−1(w)
denote the strings such that h(λi(w)) is extractable from g(w). We assume
that w is straightforward to extract from λi(w). This is true in RSA-PSS2000;
λi(w) = w‖(i)32.

Lemma 7.1 Given a forger F in the security model for RSA-GenPSS with
at most qsig signing queries and qhash h- and g-oracle queries, we can define a
forger Fred in the security model for RSA-GenPSS-Reduced with at most qsig
signing queries and qhash + qsig h- and g-oracle queries. Fred is successful if F
is successful, unless there are h-collisions among the values obtained via queries
to F ’s h-oracle (including those made by F ’s signing oracle). The number of
such values is at most

qtot = max{α, 1} · qhash + (α+ 2) · qsig. (2)

Remarks

1. In case qhash is much longer than qsig (which is a natural assumption), the
number of h-values is approximately max{α, 1} · qhash.

2. The running time for Fred is (negligibly larger than) the running time for
F plus the time needed to process qsig hash queries.

Proof Let F be a forger trying to construct a signature in the security model
for RSA-GenPSS. We want to define a forger Fred in the security model for
RSA-GenPSS-Reduced in terms of the forger F . For this purpose, Fred will
have to simulate F ’s oracles.

The g-oracle is easy to simulate, because the g-oracles in RSA-GenPSS and
RSA-GenPSS-Reduced are identical. The signing oracle is also easy to simu-
late. When F sends a query Q to her signing oracle, Fred simulates F ’s h-oracle
in the manner described below on the input Q, sends the resulting string H to
her own signing oracle, and obtains a signature x.

The h-oracle simulation is a little bit more intricate to describe. Suppose F
sends an h-oracle query Q. There are three possible cases:
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1. Q = λi(w), where |w| = kh and i ∈ {0, . . . , α − 1}. This means that w is
a typical g-oracle query in the reduced model. Hence Fred sends w to her
g-oracle and extracts H = h(Q) from the response.

2. Q = ϕ(H ′, r), where |H ′| = kh and |r| ∈ Ksig ∪Kver. This means that Q
is a typical h-oracle query in the reduced model. In this case Fred sends
Q to her h-oracle and receives H = h(Q).

3. Q cannot be transformed into a g- or h-oracle query in the reduced model
(i.e., cases 1 and 2 do not apply). In this case Fred generates a random
string H, unless Q is an old query, in which which case H = h(Q) is
already defined.

Fred returns the string H to F . Recall that cases 1 and 2 are assumed to have
different length queries; hence the three cases are exclusive.

The simulation of the signing oracle may require an extra qsig number of h-oracle
queries in RSA-GenPSS, which corresponds to at most qsig additional h- or
g-oracle queries in the reduced scheme. In the big scheme, the number of queries
from F to the h-oracle (directly or via the g-oracle) is at most max{α, 1} · qhash.
In addition, there are at most (α + 2) · qsig queries from the signing oracle to
the h-oracle. This gives the formula (2).

In the end, F terminates and outputs (M,x). Fred outputs (H,x), where H =
h(M); by assumption, she knows h(M) (see the discussion at the end of previous
section). (H,x) will be a valid signature in the reduced scheme if and only if
(M,x) is a valid signature in the full scheme. Fred will fail if and only if she has
asked for the signature of H or if F fails. The former is possible if and only if
F has asked for the signature of a message M ′ such that h(M ′) = h(M). This
is possible only if there is an h-collision. �

8 Analysis of the fixed string E (bc)

Recall that the output from PSS2000 always ends with a fixed string. Having
parts of the encoded message fixed is problematic from a theoretical point of
view. Namely, certain components of the security proofs involve generation of
random integers x such that the first bit of f(x) is 0 and f(x) ends with the
bit string E; f is the RSA verification primitive. The longer E is, the more
applications of f are needed to find an acceptable x by trial and error. The
purpose of this section is to address this concern and to estimate the number
of applications of f needed to produce a certain number of strings with the
appropriate format.

Let Y be a subset of ZN = {0, 1, . . . , N − 1}. For example, Y might be the set
of all integers with a k-bit representation starting with a zero bit and ending
with a certain string E; k is the bit length of the modulus N . Let q be a
positive integer. We want to establish a bound on the time needed to generate
q uniformly random and independent elements from Y via f such that the
probability of failure is negligible.

The method used in [3] and [9] is to abort the simulator whenever there are K
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consecutive failures (that is, elements x such that f(x) /∈ Y ) for some fixed K.
However, this turns out to be far from the best possible approach. Instead of
aborting as soon as we have K consecutive failed attempts, we could continue
and instead abort when the total number of attempts during the complete algo-
rithm exceeds a certain much larger number T . An estimate of the probability
of at most q−1 successes among T attempts can be obtained via normal approx-
imation. However, we will make a simple discrete approach giving, basically, an
equivalent bound.

Lemma 8.1 Put

T =
⌊
N

|Y |
·
(√

k0 · ln 2 +
√
q
)2

⌋
. (3)

Generate random independent integers z1, . . . , zT ∈ ZN . The probability that
fewer than q of the integers f(z1), . . . , f(zT ) belong to Y is less than 2−k0 .

Remark For typical choices of k0 and q (e.g., k0 = 160 and q = 260), the√
k0 · ln 2 term is small compared to

√
q, which means that |Y |

N · T is approxi-
mately q. In the previous approach described above, we would need, at the very
least, (

1− |Y |
N

)T/q

≤ 2−k0 =⇒ |Y |
N
· T ≈ q · k0 · ln 2;

this is approximately k0 · ln 2 times as much as the new bound. In practice,
k0 is the output length kh of the hash function h, which means that when T
is the dominant term in an estimate of the complexity of a reduction, the new
approach is more than 100 times faster than the previous method.

Proof Let p be an integer strictly between 0 and 1; p will be determined
later. Put θ = |Y |/N . The probability that at most q − 1 among T elements
f(z1), . . . , f(zT ) belong to Y is

q−1∑
i=0

(
T

i

)
θi(1− θ)T−i <

T∑
i=0

(
T

i

)
θi(1− θ)T−ipi−(q−1)

= (1− θ + θp)T · p−(q−1)

= exp (T ln(1− θ(1− p))− (q − 1) ln p)
< exp (−Tθ(1− p) + (q − 1)(1/p− 1)) .

The last expression is at most 2−k0 if and only if

−Tθ(1− p) + (q − 1)(1/p− 1) ≤ −k0 · ln 2⇐⇒ T ≥ 1
θ

(
k0 · ln 2
1− p

+
q − 1
p

)
.

This expression is minimized for p =
√

q−1√
k0·ln 2+

√
q−1

, for which the right-hand
side becomes

1
θ

(√
k0 · ln 2 · (

√
k0 · ln 2 +

√
q − 1) +

√
q − 1 · (

√
k0 · ln 2 +

√
q − 1)

)
.

It is easily seen that T as defined in (3) is at least equal to this quantity (namely,
the expression within the floor brackets in (3) exceeds this quantity with at least
1). �
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9 Main result

We are now in a position to give a security proof for RSA-GenPSS. The proof
is basically the same as Coron’s security proof [10] for RSA-PSS96 with some
minor adjustments. The goal is to define an inverter of the RSA primitive f in
terms of a forger of RSA-GenPSS. Specifically, a (t(k), ε(k))-inverter of f is an
algorithm with complexity t(k) that is able to compute f−1(x) with probability
ε(k), where x is randomly chosen from ZN and N is a k-bit modulus generated
according to the key generation procedure. We say that f is (t(k), ε(k))-hard if
there is no (t(k), ε(k))-inverter.

Recall that RSA-GenPSS(Ksig, Kver) denotes the scheme where Ksig is the
set of salt lengths that the signing oracle accepts, while Kver is the set of salt
lengths that an intended verifier will accept. Thus the forger will have to find
a signature with a salt length from the set Kver. Furthermore, recall that kE

denotes the length of the appended bit string E. Put

kr = min{k0 : k0 ∈ Ksig ∩Kver}.

Note that kr is not defined when the sets Ksig and Kver are disjoint; this case
will be treated separately.

Let c(q, l) be the probability of a collision among q independent, uniformly
chosen bit strings of length l. It is easily seen that

c(q, l) ≤
(
q

2

)
2−l.

Let qtot be defined as in (2) in Lemma 7.1. Finally, let Tf = Tf (k) be the time
needed to evaluate f with a modulus of length k.

Theorem 9.1 Suppose that inverting RSA is (t′, ε′)-hard. Then for any qsig
and qhash the signature scheme RSA-GenPSS(Ksig, Kver) is (t, qsig, qhash, ε)-
secure, where

t(k) = t′(k)− 2kE+1

1− qtot2−kh
·
(√

kh ln 2 +
√
qhash(k) + 2qsig(k)

)2

·O(Tf (k))

and
ε(k) =

1
π(p, γ, qsig)

· ε′(k) + c(qtot, kh) + 2−kh . (4)

Here, p is any number between 0 and 1,

γ(qhash + qsig, kr) = min{(qhash + qsig)2−kr , 1},

and

π(p, γ, qsig) = (1− p)
(

p

γ · (1− p) + p

)qsig

.

The optimal value for p is

pmax =
2qsig

qsig + 1 +
√

(qsig − 1)2 + 4qsig/γ
. (5)

If Ksig ∩Kver = φ, then

ε(k) = ε′(k) + c(qtot, kh) + 2−kh .
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The proof is given in Appendix A. As mentioned in Section 6.1, the proof is
divided into two steps with a reduction to RSA-GenPSS-Reduced in the first
step. For large salt values (sufficiently large to make qsigγ significantly smaller
than 1), the intuition of the proof is basically the same as in [3] (the factor π in
(4) will be very close to 1 in this case). See Section 10 for some estimates of π
and pmax.

For small salt values, the intuition coincides with that in [9]: Whenever the
inverter is to compute w = h(Q) for some Q = ϕ(H, r), he has to choose
between being able to invert a value of the form y = 0‖r∗‖w‖E and being able
to invert y multiplied with η (the challenge integer for the inverter). In the first
case, he will be able to answer a signing query H with salt r. In the second
case, he will be able to determine the inverse of η from a forgery of a signature
of the message H with the salt r. With a certain probability depending on how
he chooses between the two possibilities above, the inverter will fail with either
of these tasks. In particular, for small salt values, the factor π in (4) will be
significantly smaller than 1. See Section 10 for further discussion.

A few additional remarks:

• For typical values on the parameters, the complicated expression in the
boundary of t can be approximated: With 2kh much larger than qtot and
qhash much larger than kh, we obtain

2kE+1

1− qtot2−kh
·
(√

kh ln 2 +
√
qhash + 2qsig

)2

≈ 2kE+1 · (qhash + 2qsig) .

The right-hand side is roughly the average number of attempts needed to
generate qhash+2qsig elements starting with 0 and ending with E according
to the method in Lemma 8.1.

• As will be clear from the proof, for each signing or hash oracle query
(which takes place in the reduced model), the inverter I will have to store
up to 4k bits (k is the size of the modulus). In addition, the inverter will
have to store all queries – together with corresponding responses – that do
not fit into the reduced model. If no such query has a bit length exceeding
4k − kh, then

space(I) ≤ space(F) + (qhash + 2qsig) · 4k bits,

where F is the forger (we ignore minor storage requirements for local
variables and for table setup). If however there are longer such queries
(or, rather, if the average length of these queries exceeds 4k − kh), then
this inequality no longer applies; we refer to Section 6.3 for discussion.

10 Discussion

This section contains a very heuristic interpretation of the results in the pre-
ceding section. The object is to give a rough estimate of the “gap” between the
forger and the inverter in Theorem 9.1.
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A reasonable definition of the “bit complexity” of an algorithm A with running
time t and success probability ε is

C(A) = log2 t− log2 ε;

we assume that one application of the trapdoor function f consumes one time
unit. Let us assume that the running time for one h-oracle query is (at least)
2−l and that log qhash − l is considerably larger than log qsig. Also, assume that
the forger in Theorem 9.1 actually sends as many as qhash queries to her hash
oracles and that the additional running time for the forger is negligible in terms
of the total running time. This means that the running time for the forger is
approximately the time qhash ·2−l needed to make qhash hash queries. Hence the
bit complexity of the forger satisfies

C(F) ≈ log qhash − l − log ε.

The second term in the time bound in Theorem 9.1 is approximately 2kE+1 ·
qhash, which is significantly larger than the running time for the forger. The
success probability of the inverter is approximately π(p, γ, qsig) · ε. Hence the
bit complexity of the inverter I satisfies

C(I) ≈ kE + 1 + log qhash − log π − log ε

Hence the difference in bit complexity between the inverter and the forger sat-
isfies

C(I)− C(F) ≈ kE + 1 + l − log π.

(Note that we have ignored storage in this model, which might be inappropriate
in many cases.) In practice, kE + 1 + l is somewhere between 15 and 20 when
the hash function is SHA-1 [24] or SHA-256 [25], the modulus length is 1024,
and kE = 8; see [38] for performance figures.

It remains to analyze log π; a similar discussion can be found in [9]. Put

µ := qsigγ

It turns out that the size of µ is crucial for the behavior of p and π; the expression
under the square root in (5) can be rewritten as

1
γ2

(
(µ− γ)2 + 4µ

)
=

1
γ2

(
(µ+ 2− γ)2 − 4(1− γ)

)
. (6)

For example, when µ is “large” (much larger than 1), the term 4(1− γ) in the
right-hand side of (6) is “negligible” compared to (µ + 2 − γ)2. This gives the
approximations

p ≈ µ/(µ+ 1)

and

π ≈
(

1
µ+ 1

) (
qsig

qsig + 1

)qsig

≈ e−1

µ
.

The security reduction is roughly equivalent to the reduction in Coron’s Full
Domain Hash Theorem. We obtain that the gap between the forger and the
inverter is approximately

kE + 1 + l + log e+ logµ
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bits. Clearly, if qsig doubles, then logµ increases by one. Since the running
time for the forger does not necessarily increase more than negligibly when qsig
increases, this means that we may lose one bit of tightness in the security proof
each time qsig doubles. In particular, if the salt length is short, there might be
reasons to put a limit on the maximal number of applications of the signature
procedure.

When µ is “small”, 4µ is at least 4/µ times larger than (µ−γ)2 in the left-hand
side of (6), which gives the approximations

p ≈ √µ

and

π ≈ (1−√µ)
(

qsig
qsig − µ+

√
µ

)qsig

≈ (1−√µ) · e−
√

µ.

In this case the reduction is roughly equivalent to the reduction in the Bellare-
Rogaway PSS theorem. When µ is small, note on the one hand that adding
an extra bit to the salt does not add more than a negligible amount of security
(with respect to this reduction) and on the other hand that extra signing queries
will not be particularly gainful for the forger. With a small µ, log π ≈ 0, so the
gap between the forger and the inverter is approximately kE + 1 + l bits.

As noted, for small salt values the security reduction is not very efficient (though
far from disastrously weak). There exist heuristic arguments giving evidence
that the crucial parameter π in (4) cannot be significantly improved. However,
one must not exclude the possibility that certain properties of the RSA function
may allow for improvements in the proof.

11 RSA-PSS with message recovery

We may extend the RSA-PSS scheme to include message recovery. We define the
signature scheme RSA-GenPSS-R with input a recoverable message part MR

and a nonrecoverable message part MNR as follows. The encoding operation
GenPSS-R-Encode takes as input a string H of length kh, the recoverable
message part MR, and the desired salt length k0 chosen from a set Ksig. We
require that |MR| ≤ kmr − k0, where kmr is a fixed integer smaller than kg.

GenPSS-R-Encode(MR,H, k0)
– r

R← {0, 1}k0 ;
– w ← h(ϕ(MR,H, r));
– r∗ ← g(w)⊕ ψ(MR‖r);
– Return y = 0‖r∗‖w‖E.

Here,
ϕ : {0, 1}≤kmr−k0 × {0, 1}kh × {0, 1}Ksig∪Kver → {0, 1}∗

is a function such that any triple (MR,H, r) is straightforward to extract from
ϕ(MR,H, r). In practice,

ϕ(MR,H, r) = (|MR|)64‖MR‖H‖r,
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where (i)64 is the 64-bit low-endian representation of the integer i. ψ is defined
as before, except that we allow any input bit length up to kmr. As before, x
should be straightforward to extract from ψ(x). In practice,

ψ(x) = 0kg−|x|−1‖1‖x

(which implies that kmr = kg − 1 in this case).

Note that while each of the strings MR and r is extractable from ϕ(MR,H, r),
only the concatenation of the strings can be determined from ψ(MR‖r). Yet,
the salt length is an input to the verification operation, which means that the
separate strings can be deduced from the concatenation.

The verification procedure recovers MR from the encoded message as follows;
k0 is an integer from the set Kver.

GenPSS-R-Recover(H, y, k0)
– Write y = b‖r∗‖w‖E ( |b| = 1, |r∗| = kg and |w| = kh);
– If b = 1 or E 6= E′, then return “ERROR” and exit;
– If possible, write g(w)⊕ r∗ = ψ(MR, r) with |MR| ≤ kmr − k0

and |r| = k0

else return “ERROR” and exit;
– If h(ϕ(MR,H, r)) = w

then return the string MR

else return “ERROR”.

Define the reduced scheme RSA-GenPSS-R-Reduced(Ksig,Kver) as follows.
The signature operation takes as input H ∈ {0, 1}kh , MR ∈ {0, 1}≤n, and a salt
length k0 ∈ Ksig.

RSA-GenPSS-R-Reduced-Sign(MR,H, k0)
– y ← GenPSS-R-Encode(MR,H, k0);
– x← f−1(y);
– Return x.

The recovery operation takes H ∈ {0, 1}kh , a signature x, and a salt length
k0 ∈ Kver and proceeds as follows.

RSA-GenPSS-R-Reduced-Recover(H,x,k0)
– y ← f(x);
– MR ← GenPSS-R-Recover(H, y, k0);
– If no error occurred

then return MR

else return “ERROR”.

The main signature and recovery operations RSA-GenPSS-R-Sign and RSA-
GenPSS-R-Recover take a string MNR of arbitrary length as input rather
than a string H of length kh.
RSA-GenPSS-R-Sign(MR,MNR, k0)

– H ← h(MNR);
– x← RSA-GenPSS-R-Reduced-Sign(MR,H, k0);
– Return x.
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RSA-GenPSS-R-Recover(MNR,x,k0)
– H ← h(MNR);
– MR ← RSA-GenPSS-R-Reduced-Recover(H,x, k0);
– If no error occurred

then return MR

else return “ERROR”.

11.1 Security models for RSA-PSS with message recovery

The security models for RSA-GenPSS-R and RSA-GenPSS-R-Reduced are
similar to those for RSA-GenPSS and RSA-GenPSS-Reduced with only a
few minor adjustments:

• The goal for the forger in the model for RSA-GenPSS-R is to find a pair
(MNR, x) such that x is a valid signature of (MR,MNR) for some MR.

• The goal for the forger in the model for RSA-GenPSS-R-Reduced is
to find a pair (MR,H, x) such that x is a valid signature of (MR,H) for
some MR.

• Acceptable h-oracle queries in the reduced scheme are strings x such that
x = ϕ(MR,H, r) for some |H| = kh, |r| ∈ Ksig∪Kver, and |MR|+|r| ≤ kmr.

As before, we assume that the g-oracle and the h-oracle in the reduced model
are independent.

It is straightforward to check that Lemma 7.1 is true with GenPSS replaced
with GenPSS-R. It turns out that the security bounds for RSA-GenPSS-R
become exactly the same as for RSA-GenPSS:

Theorem 11.1 Let notation be as in Theorem 9.1. Suppose that inverting RSA
is (t′, ε′)-hard. Then for any qsig and qhash the signature scheme RSA-GenPSS-
R(Ksig, Kver) is (t, qsig, qhash, ε)-secure, where

t(k) = t′(k)− 2kE+1

1− qtot2−kh
·
(√

kh ln 2 +
√
qhash(k) + 2qsig(k)

)2

·O(Tf (k))

and

ε(k) =
1

π(p, γ, qsig)
· ε′(k) + c(qtot, kh) + 2−kh . (7)

If Ksig ∩Kver = φ, then

ε(k) = ε′(k) + c(qtot, kh) + 2−kh .

Proof. The proof is almost word by word the same as the proof of Theo-
rem 9.1; see the Appendix for notation. The oracle query algorithms are exactly
the same, except that H,Hi, and Hj should be replaced with (M,H), (Mi,Hi),
and (Mj ,Hj) whenever appropriate. For example, we need a set R(M,H, k0)
for each (M,H) and k0 rather than a set R(H, k0) for each H and k0. Also,
ψ(r) must of course be replaced with ψ(M‖r) in steps H7 and S8. �
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Remark It is important that each of the strings MR, H, and r can be
extracted in a unique way from ϕ(MR,H, r). For example, ϕ(MR,H, r) =
H‖MR‖r would be a bad choice, because the signature of (MR,MNR) with salt r
would then be a signature of (M ′

R,MNR) with salt r′ as soon as MR‖r = M ′
R‖r′.

12 A Rabin-Williams-based signature scheme

Let the RW signature and verification primitives be defined as in Section 4.2.
Let GenPSS be defined as before with the additional condition that E must
end with the bit string 1100 (12 written in base 2). Define the schemes RW-
GenPSS-Reduced and RW-GenPSS in the same manner as RSA-GenPSS-
Reduced and RSA-GenPSS but with the RSA primitives replaced with the
RW primitives.

Our goal is to prove a theorem similar to Theorem 9.1. In fact, we want to relate
the hardness of forging RW-GenPSS signatures with the hardness of factoring
the modulus. A k-bit RW modulus factoring algorithm takes as input a k-bit
RW modulus (generated with the selected RW key generation algorithm) and
tries to find the factors of the modulus. RW modulus factoring is (t(k), ε(k))-
hard if there is no k-bit RW factoring algorithm with complexity at most t(k)
and success probability at least ε(k).

Let Tj+f (k) be the time needed to check whether a random integer x satisfies(
x
N

)
= +1 plus the time needed to compute f(x).

Theorem 12.1 Let notation be as in Theorem 9.1. Suppose that RW modulus
factoring is (t′, ε′)-hard. Then for any qsig, qhash the signature scheme RW-
GenPSS(Ksig, Kver) is (t, qsig, qhash, ε)-secure, where

t(k) = t′(k)− 2kE−1

1− qtot2−kh
·
(√

kh ln 2 +
√
qhash(k) + 2qsig(k)

)2

·O(Tj+f (k))

(note the slight improvement over Theorem 9.1 by a factor of 4) and

ε(k) =
1

π(p, γ, qsig)
· ε′(k) + c(qtot, kh) + 2−kh .

If Ksig ∩Kver = φ, then

ε(k) = ε′(k) + c(qtot, kh) + 2−kh .

The proof is given in Appendix B.

Remarks

• Note that the security bounds are the same for all public exponents e,
except that the factor Tj+f (k) increases when e increases. In particular,
from the point of view of this theorem, very little is gained from choosing
a public exponent larger than 2. There is a similar conclusion for RSA-
GenPSS. However, the underlying RSA problem is different for different
public exponents and it is not known whether those problems are com-
putationally equivalent and how they relate to the factoring problem; see
[5, 6] for discussion.
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• The RW-GenPSS-R signature scheme with message recovery is defined
in the obvious way. One easily checks that the security bounds in Theo-
rem 12.1 hold for this scheme as well.

13 Concluding discussion

It is important to note that the security discussions in this paper take place in
the random oracle model. In particular, the security proofs cannot be translated
into a security proof for a particular scheme with a fixed hash function, e.g.
“RSA-PSS with SHA-1.” Namely, the bound on the success probability of the
forger is the average over “all” hash functions; there might be a certain class of
hash functions for which the forger “defeats” the inverter with large probability.
It might even be the case that no function with a reasonable description size
and running time is a secure instantiation of the hash function; the fraction of
such functions is negligible for certain parameter choices.

Thus far, all attempts to find security proofs for RSA-PSS and RW-PSS in a
“standard” model, as opposed to the random oracle model, have been in vain.
This might be due to the current method of translating a chosen message attack
into an RSA inversion algorithm. As noted, this translation requires that the
inverter simulate the signature operation. With a fixed hash function, the only
thing the inverter can do is to generate a random salt, produce an encoded
message via PSS and try to invert the result under RSA. There is no canonical
way for the inverter to do this unless he actually knows how to compute the
inverse of arbitrary integers (which is what we want to prove!). With random
hash outputs, the inverter may produce a valid signature by applying the RSA
verification primitive to a value x and then define the hash function on relevant
strings such that the encoded message conforms with the RSA verification of x.

As mentioned in Section 1.1, there exist a few schemes [37, 12] with provable
security in a standard model as well as in a random oracle model. Yet, those
schemes are less efficient than RSA-PSS. Also, the security reductions for those
schemes are no stronger than our reduction for RSA-PSS with zero salt length.
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A Proof of Theorem 9.1

Let F be a forger of RSA-GenPSS with a success probability ε. By Lemma 7.1,
there is a forger Fred of RSA-GenPSS-Reduced defined in terms of F with
at most qsig signing queries and qsig + qhash h- and g-oracle queries. Fred will be
successful if F is successful, unless there are h-collisions. The probability of an
h-collision is at most c(qtot, kh). The probability of an h-collision in the reduced
scheme is c(qred, kh), where qred ≤ qhash + 2qsig is the actual number of h-oracle
queries in the reduced model made by Fred or her signing oracle. Hence with
probability at least

ε′′ =
ε− c(qtot, kh)
1− c(qred, kh)

(8)

Fred will be successful conditioned that there are no h-collisions in the reduced
scheme.5 Consider a model where the h-oracle is modified such that it never

5Recall that g and h are independent in the reduced scheme; hence we may ignore h-
collisions induced by g-oracle queries.
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responds with the same string to different queries. More precisely, each response
is chosen uniformly at random from the set of strings of length kh that have not
been responses to earlier h-oracle queries.

We want to define an inverter I in terms of the forger Fred. The inverter
maintains a counter i initially set to 0 and a set R(H, k0) initialized to {} for
each H such that |H| = kh and k0 ∈ Ksig (of course, during the algorithm the
inverter will only store nonempty sets R(H, k0)). The goal for the inverter is
to compute the eth root modulo N of an integer η chosen uniformly at random
from Z∗

N .

For each signing query and h-query, we store values Hi (the message hash),
ri (the salt), wi = h(ϕ(Hi, ri)), g(wi), and xi (the RSA signature primitive
output). For h-queries, we also store a bit bi and add ri to the set R(Hi, |ri|).
This requires up to

(|Hi|+ |ri|+ |wi|+ |g(wi)|+ |xi|) + (1 + |Hi|+ |ri|) ≤ k + 3kh + 3kg + 1 < 4k

bits of memory. For each g-query, we store values wi, g(wi), which occupy less
than 4k bits of memory.

Answering h-oracle queries
Input: A string Q

H1 Increment i. If Q is valid, Q is of the form ϕ(Hi, ri), where |Hi| = kh and
|ri| = k0 ∈ Ksig ∪Kver. Otherwise, return “error.”

H2 If (Hi, ri) = (Hj , rj) for some j < i, then put wi = wj and go to step 8.

H3 Set R(Hi, k0)← R(Hi, k0) ∪ {ri}.

H4 Let bi = 0 with probability pk0 and bi = 1 with probability 1− pk0 ; pk0 will
be determined later.

H5 Repeat xi
R← ZN ; yi ← ηbi · f(xi) until yi can be written as 0‖r∗i ‖wi‖E

(|r∗i | = kg and |wi| = kh) and there is no j < i such that wj = wi.

H6 Define h(ϕ(Hi, ri)) = wi.

H7 Put g(wi) = r∗i ⊕ ψ(ri).

H8 Return wi.

Answering g-oracle queries
Input: A string Q

G1 Increment i and put wi = Q. If |wi| 6= kh, then return “error.”

G2 If wi = wj for some j < i, then return g(wj), otherwise return g(wi)
R←

{0, 1}kg .
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Answering signing queries
Input: A string Q and an integer k0

S1 Increment i and put Hi = Q. If |Hi| 6= kh, then return “error.” If k0 /∈ Ksig,
then return “error.”

S2 Let ci = 0 with probability κ(|R(Hi, k0)| · 2−l) and ci = 1 otherwise; κ will
be determined later.

S3 If ci = 0, pick ri
R← R(Hi, k0) and proceed to step 4. If ci = 1, pick

ri
R← {0, 1}k0 \R(Hi, k0) and jump to step 5.

S4 There is a j < i such that (Hj , rj) = (Hi, ri) and the jth query was an
h-oracle query. If bj = 0, then put xi = xj and go to step 9, else abort.

S5 If (Hj , rj) = (Hi, ri) for some j < i, then the jth query was an identical
signing query; put xi = xj and go to step 9. Otherwise, proceed to next
step.

S6 Repeat xi
R← ZN ; yi ← f(xi) until yi can be written as 0‖r∗i ‖wi‖E (|r∗i | = kg

and |wi| = kh) and there is no j < i such that wj = wi.

S7 Define h(ϕ(Hi, ri)) = wi.

S8 Put g(wi) = r∗i ⊕ ψ(ri).

S9 Return xi.

Analysis The rationale for the coin flip of bi in step H4 (which is a clever
trick due to Coron [9]) is as follows. With some probability, the inverter will be
forced to sign the message Hi with salt ri, and in this case he must know the
inverse of the string yi generated in step H5, which he will if bi = 0. With some
other probability, the forger will output the inverse zi of yi generated in step H5
as the forged signature, and in this case the inverter will be able to determine
the inverse of η if bi = 1;

zi = f−1(yi) = xif
−1(η) mod N.

Since the probability that the inverter aborts might be significantly larger than
ε′′ as defined in (8) for small salt lengths, we have to express ε′ as a product of
ε′′ and a parameter rather than ε′′ minus a parameter. This has the following
implication: Under the condition that the inverter does not abort in step S4,
all salts generated in the signing query algorithm must be independent and
uniformly distributed. However, this is not achieved if the salt is uniformly
generated in step S2; the probability that we do not abort in case ri ∈ R(Hi, k0)
is pk0 , while we never abort in case ri /∈ R(Hi, k0), because step S4 is not used.

For this reason, the probability in step S2 that a certain element from R(Hi, k0)
is chosen must be 1/pk0 times larger than the probability that a certain element
outside R(Hi, k0) is chosen. This means that κ has the property that

κ(σ)
σ2k0

=
1− κ(σ)

pk0(1− σ)2k0
⇐⇒ κ(σ) =

σ

pk0(1− σ) + σ
.
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With σ = |R(Hi, k0)|2−k0 , the probability that the inverter will not abort in
step S4 is

κ(σ)pk0 + (1− κ(σ)) =
pk0

(1− pk0)σ + pk0

.

When k0 /∈ Kver, we can put pk0 = 1, because the forger is not allowed to output
a signature with salt length k0. If k0 ∈ Kver, then

σ ≤ min{(qhash + qsig)2−k0 , 1} ≤ γ.

For k0 ∈ Kver, define pk0 = pkr = p for some p ∈ (0, 1); the optimal value for p
is given in (5). Note that

pk0

(1− pk0)σ + pk0

≥ p

(1− p)γ + p
.

for all k0 ∈ Ksig ∪Kver.

In the end, Fred returns a forgery (H,x). Fred is defined in terms of F , which
means that F returns a forgery (M,x), where H = h(M). If the forgery is valid,
then we can write y = f(x), y = 0‖r∗‖w‖E, and r = ψ−1(g(w)⊕ r∗); |w| = kh.
By assumption, h(ϕ(H, r)) is known, which means that (H, r) = (Hi, ri) for
some i. If (Hi, ri) was part of a signing query of some message M ′, then (H,x)
is not a valid forgery for Fred. If ϕ(Hi, ri) was an h-oracle query, then bi = 1
with probability 1−p, in which case the inverter will be able to compute f−1(η).
Hence the probability of success for the inverter conditioned that there are no
h-collisions in the reduced model is at least

(1− p)
(

p

(1− p)γ + p

)qsig

· ε′′ = π(p, γ, qsig) · ε′′.

The effect of abortion in S4 has been considered. Yet, there is still a case
where the inverter will have to abort – the loops in steps H5 and S6 cannot go
on forever. Let the set Y in Lemma 8.1 be the set of strings starting with a 0,
ending with the string E, and having a string w preceding E that is not equal to
wj for any j < i (this means that Y becomes smaller during the algorithm, but
this does not have any impact on the conclusions in Lemma 8.1). The probability
that a random integer from ZN belongs to Y is at least 2−kE−1 ·

(
1− qtot2−kh

)
.

Let us allow the inverter to repeat the procedure in steps H5 and S6

2kE+1

1− qtot2−kh
·
(√

kh ln 2 +
√
qhash + 2qsig

)2

times during the entire algorithm. By Lemma 8.1, the probability that the
inverter will have to abort is at most 2−kh (recall that the forger in the reduced
scheme is allowed to make (qhash + qsig) h-queries).

To summarize, the unconditional probability that the inverter will be successful
is at least

(1− c(qred, kh)) · π(p, γ, qsig) ·
(
ε′′ − 2−kh

)
≥ π(p, γ, qsig) ·

(
ε− c(qtot, kh)− 2−kh

)
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(2−kh can be placed within the parentheses, because the probability of a failure
in step H5 or step S6 is at most 2kh regardless of what the bi values are). This
expression attains its maximum for p as defined in (5). See Section 10 some
approximations of p.

Finally, note that if Ksig ∩ Kver = φ, then we can define pkr
= 1 if kr ∈ Ksig

and pkr
= 0 if kr ∈ Kver, which gives π(p, γ, qsig) = 1. �

B Proof of Theorem 12.1

Put η = 2e. Define the algorithms for answering oracle queries in exactly the
same manner as in the proof of Theorem 9.1 in the preceding section, with the
following exceptions:

• In steps H5 and S6, we require that
(

xi

N

)
= +1 and xi < N/2. If we

generate an xi such that
(

xi

N

)
= −1, replace xi with min{2xi mod N,N −

2xi mod N} (the new xi value will be uniformly distributed among all
x < N/2 satisfying

(
x
N

)
= +1). An alternative method is to pick a

random x̂ and define xi = min{x̂2 mod N,N − x̂2 mod N}. This method
is of course not relevant in case the running time for squaring modulo N
exceeds the running time for computing a Jacobi symbol modulo N .

• In case bi = 1 in step H5, define yi = f(2xi mod N). Note that yi = f(ωi)
for some ωi satisfying

ωe
i ≡ (2xi)e (mod N)

and
(

ωi

N

)
=

(
xi

N

)
= +1.

The reason why we want
(

xi

N

)
= +1 is two-fold:

1. We obtain that
f−1(f(xi)) = min{xi, N − xi}

unless bi = 1 in step H5. In particular, we will be able to answer signing
queries in step S4 as soon as bj = 0.

2. Suppose the forger outputs (M,x) with x = f−1(yi) for some i such that
bi = 1. Then we know that

xe ≡ (2xi)e (mod N).

Since
(

x
N

)
= +1 and

(
2xi

N

)
=

(
2
N

)
= −1, it is not the case that x ≡

±2xi (mod N). Hence gcd(x − 2xi, N) is equal to one of the factors of
N .

The proof becomes exactly the same as the proof for Theorem 9.1, except that
we find a factor of N rather than the inverse of an integer η.

There is a slight improvement in the time bound by a factor of 4 compared to
Theorem 9.1. For each generated xi in steps H5 and S6, the probability that xi

is fine is four times higher than in the RSA case. Namely, for each xi, there are
four mutually exclusive possibilities w,N − w, 2w mod N, (N − 2w) mod N for
yi, and each of the possibilities is fine with probability at least 2−kE−1. �


