On the Security of Randomized CBC-MAC Beyond the Birthday
Paradox Limit
A New Construction

Eliane J aulmes, Antoine Joux and Frédéric Valette

DCSSI Crypto Lab
18, rue du Dr. Zamenhof
F-92131 Issy-Les-Moulineaux.
email: eliane. jaulmes@wanadoo.fr
Antoine.Joux@ens.fr
fred.valette@wanadoo.fr

Abstract. In this paper, we study the security of randomized CBC-MACs and propose a new construction
that resists birthday paradox attacks and provably reaches full security. The proof is done in a new security
model that may be of independent interest to study the security of randomized functions. The size of the
MAC tags in this construction is optimal, i.e., exactly twice the size of the block cipher. Up to a constant,
the security of the proposed randomized CBC-MAC using an n-bit block cipher is the same as the security
of the usual encrypted CBC-MAC using a 2n-bit block cipher. Moreover, this construction adds a negligible
computational overhead compared to the cost of a plain, non-randomized CBC-MAC.

1 Introduction

Message authentication code (MAC) is a well-known and widely used cryptographic primitive whose goal is to
authenticate messages and to check their integrity in a secret key setting. For historical and efficiency reasons,
MACs are often based on block ciphers. Of course, other constructions are possible. A well-known method to
build MACs is for example to start from a hash function and transform it into a secure MAC. The idea first
appeared in the work of Wegman and Carter [13]. Other existing constructions are for example XOR-MACs [3],
HMAC [1] and UMAC [5]. However, in low end cryptographic devices, the ability to reuse an existing primitive
is an extremely nice property. In practice, a simple construction called CBC-MAC is frequently encountered.
Several variants of the CBC-MAC are described in normative documents [8,12]. The simplest of those works
as follows: let E be a block cipher using a key K to encrypt n—bit blocks. To compute the CBC-MAC of the
message M with the key K, we split M into a sequence of n—bit blocks My, ..., M,, and compute

Co =07,
Ci=Ex(M;®C;_y) foriinl---m.

After this computation, the value of the CBC-MAC is CBCg, (M) = Cp,. Note that the length of the message
M has to be a multiple of the block size n, however several padding techniques have been proposed to remove
this constraint [8].

This simple CBC-MAC has been proved secure in [4] for messages of fixed (non zero) length. However, when
the length is no longer fixed, forgery attacks exist. The simplest of those uses two messages of one block each
M and M', and queries their MACs C and C". Then it can forge the MAC of M||(M' @ C), namely C".

In order to remove this limitation, it is shown in [9] and [6] that it suffices to encrypt the plain CBC-MAC
of a message with another key. However, the security level offered by these CBC-MACs is not optimal, since
they all suffer from a common weakness: birthday paradox based attacks. In fact, all iterated MACs suffer from
this kind of attacks as has been shown in [10]. The basic idea beyond the birthday paradox attacks is to find
two different messages with the same MAC value. Due to the birthday paradox, this search can be done in 27/2
MAC computations, where n is the size of the MAC tag. Then one just need to append any fixed string to these

messages and the MAC values of the extended messages are again the same. Thus forgery is easy since it suffices
to query the MAC of one of the extended messages and use it as a forged MAC of the other extended message.

In order to protect MACs from birthday paradox attacks, it is suggested in [8] to add to each message a
unique identifier, leading to a stateful MAC, or some kind of randomization, leading to a randomized MAC.
These ideas have been studied in deeper details by some recent papers. In [3], a stateful construction based
on XOR-MAC is given. It turns out that this leads to a reasonably simple and efficient construction. However,
this approach has a major drawback, since it forces the MAC generation device to maintain an internal state
from one generation to the next, which is extremely inconvenient when several MAC generation devices share
the same key. On the other hand, randomization is much easier to deal with in practice. However, building a
randomized MAC provably secure against birthday paradox is not a simple matter. Indeed, the best currently
known solution, called MACRX [2], is not CBC-MAC based and it expands the size of the MAC values by a
factor of 3 instead of the expected 2. Moreover, it was shown in [11] that the simple and arguably reasonable
approach of adding a random value at the beginning of a message before computing its CBC-MAC does not
give full security. Indeed, this construction suffers from the so-called L-collision attack and forgery is possible
after 2¢™ queries, where a = 2/3.

Our paper is organized as follows. In section 2 we recall the standard deterministic CBC-MAC algorithm,
DMAC, and explain how we construct our randomized CBC-MAC RMAC from DMAC. We also present
our security model and recall a few notations. The section 3 contains the theorems stating the security of our
construction as well as some sketches of proof. In section 4 we slightly modify the general case previous model
in order to allow instantiation with a block-cipher algorithm. Then section 5 proposes a detailed instantiation
using the AES block-cipher and we conclude in section 6.

2 Preliminaries

2.1 Standard Deterministic CBC-MAC

According to [9] and [6], we know that encrypted CBC-MAC has a security level of O(2/2). In particular, in
[9] the security of a CBC-MAC named DMAC is analyzed. We briefly recall the definition of DMAC. Given
two random permutations f; and f» on n bits, DMACy, ;, is defined on messages whose length is a multiple
of n. Given M = (My, Ms,---,M,,), we compute:

Co = 0",
Ci = fl(Mz (&) Ci_1) foriin1---m,
CBCy, (M) = Cp,
DMAC;, 1,(M) = fo(CBCy, (M)).

The first block appearing in the computation Cj is called the initial value, it can safely be chosen as the all-zero
block 0™. The resulting algorithm may be seen on figure 2.1.

In order to deal with messages of arbitrary size, it suffices to define a padding process Pad such that for any
pair of distinct messages M and M’, we have Pad (M) # Pad(M'). Such a padding can be obtained by simply
adding a 1’ bit at the end of the message followed by enough ’0’ bits to turn the length of the padded message
into a multiple of n. Note that in order to ensure that Pad(M) # Pad(Pad(M)), we need to pad messages
whose length is already a multiple of n. In that case one full block is added.

Another approach for dealing with messages of arbitrary length was proposed in [6]. This approach nicely
avoids the padding of messages which already contain an integral number of blocks. This is achieved by taking
one permutation f» for messages that need to be padded and a different permutation fj for others. In fact, this
is a first step towards randomizing the function f, and it neatly fits into the construction we propose in this
paper. However, to avoid cumbersome details, we ignore this variation in the proofs.

An advantage of [6] is that the security proof it gives for DMAC is much simpler than the proof from [9].
However, the result stated in [6] is slightly weaker. Indeed, in [9] the probability for an adversary to attack

Fj ,,,,,,,,,,,,,,,,,,,
fq fy fa
] !

""""""" fy
m

Fig.1. The DMAC algorithm.

DMAC is bounded by a function of the form O(L?/2"), where L is the sum of the length (in blocks) of the
messages whose MAC are computed during the attack. In [6], the result is expressed in terms of the number
of messages ¢ and of the length m of the longer message as a function of the form O(m?¢?/2"). When all the
messages are roughly of the same length, the two are equivalent. However, if the adversary queries 27/4 — 1
messages of one block and a single message of 2*/* blocks, then I = 2%/4+1 — 1 ¢ = 27/* and m = 2"/, we see
that the result from [9] bounds the advantage of the adversary as O(2~"/?) while the bound from [6] is O(1).
In truth, it seems that the authors of [6] chose to present a weaker result for the sake of clarity. In the security
proof we present in this paper, we closely mimic the proof from [6], however we bound the advantage of the
adversary as a function of L instead of using ¢ and m.

2.2 Randomizing CBC-MACs

The above definition can easily be turned into a randomized CBC-MAC. Let f; be a random permutation on
n bits and F» be a set of random permutations or functions fz(R) on n bits, indexed by R a r—bit number. A

randomized CBC-MAC is built on the following function:

RMAC;, r,(M, R) = (DMAC,, (M), R).

To compute the MAC of a message, we proceed as follows: we choose a random r—bit value R and returns
RMACy, g, (M, R). To verify a given MAC (m, R) of a message M, we check whether RMACy, g, (M,R) =
(m, R). The algorithm may be seen on figure 2.2.

M 1 M, Mn
| [] (] (e
I ! !

R |
f5 R

Fig. 2. The RMAC algorithm.

When dealing with messages of arbitrary length, we can pad all messages as in [9]. Alternatively, we can
also follow the approach from [6] (see section 2.1) to avoid padding messages whose length is already a multiple
of n. This is simply done by adding one bit to R, thus turning it into a (r + 1)-bit number. The added bit is
set to ’0’ when computing or verifying the MAC tag of a padded message and it is set to '1’ for an unpadded
message. This ensures that a padded and a non-padded message never share the same R. In the boundary
(non-randomized) case r = 0, we are clearly back to the proposal from [6], i.e. using f in one case and f} in
the other.

2.3 Security Model

The main goal of the paper is to prove that RMAC achieves full security. In order to make this statement
precise, we need to define a new security model.

Perfect MACs. A perfect (ordinary) MAC is usually seen as a random function f from the set of messages
{0,1}" to the set of possible MAC tags {0,1}". Thus to each message the function associates a random MAC
tag. Similarly, a perfect randomized MAC, is a family of independent random functions f(*) indexed by R
a r-bit number. Each function in the family goes from {0,1}" to {0,1}" and is randomly and independently
chosen for each R € {0,1}" among all possible such functions. This family of functions can be accessed through
two oracles, a MAC generation oracle Gy and a MAC verification oracle Vy. The generation oracle takes a
message M, chooses a random r—bit value R and returns (ff)(M), R). The verification oracle takes a message
M and a MAC tag (m, R), checks whether f)(M) = m and accordingly returns valid MAC or invalid MAC.

When there is no randomness, i.e. when r = 0, we get a perfect MAC as special case. In that case, the
verification oracle becomes redundant since verification can be achieved by generating a MAC for M and
testing equality with m.

Information theoretic model. The classical approach in proving the security of DMAC is to show the security of
an information theoretic version of the construction and then come to the computational result (see [9] or [6]).
Recall that DMAC uses two functions f; and f,. For a padded message M = (M1, M>,---, M,,), we compute:

DMACy, 1, (M) = f2(CBCy, (M)).

In the information theoretic version of the construction, it is first assumed that the functions f; and f, are
randomly chosen among all possible functions and the security of the resulting construction is shown. Then f;
and fy are replaced by block ciphers and it is proved that such an instantiation still offers a good security.

Now if we look at RMAC, we see that

RMAC/, r,(M, R) = (DMAC M), R).

el
Here we assume that f; is a random permutation and that F3 is a family of independent random permutations
indexed by R and we are going to prove the security of RMAC under these assumptions. But before proceeding
further, we need to define a few notations.

Notations. Let Rand(A, B) be the set of all functions from A to B. When A or B is replaced by a positive
number n, then the corresponding set is {0,1}". Let Perm(n) be the set of all permutations on {0,1}". By

z & A we denote the choice of an element z uniformly at random in A.

A function family F is a set of functions from A to B where A and B are subsets of {0,1}". Each element
in F is indexed by a key K. A block cipher is a function family from A to A that contains permutations only.

Adversaries against ordinary MACs. When dealing with ordinary MACs, an adversary is an algorithm given
access to an oracle that computes some function. Adversaries are assumed to never ask queries outside the
domain of the oracle and to never repeat the same query.

Let F be a function family from A to B, f be a function randomly chosen in F' and A be an adversary. We
say that AS forges, if A outputs (z, f(x)) and A never queried its oracle f at z. We note:

Advi®©(A) = Pr[f & F|.Af forges],
Advlz.rf(A) = ‘Pr[f (R; F|Af =]-] - Pl‘[f & Rand(A:B)lAf = 1]

?

and when 4 = B = {0,1}":

AdvR™P(A) = \Pr[f & plAf = 1] - Pr[f & Perm(n)| A’ = 1]‘ .

Advi2C€(A) represents the probability for the adversary A of forging a valid MAC knowing that the MAC

function f is not a true random function but is randomly chosen among the family F'. Advlp,rf(.A) represents
the advantage for adversary A of distinguishing a function f randomly chosen from one chosen in the family F'.
AdvE'P(A) is the same as above but with permutations instead of functions.

We also write Adv™&€(¢, u) for the maximal value of Adv™2¢(A) among adversaries that are bounded as
follows: the running time should be less than ¢, and the sum of the bit length of all the oracle queries should
be less than p. We likewise define AdvP™ (¢, 1) and AdvP™ (¢,). In the case of Adv™2(t, u), p also counts
the length of an additional query to verify if the adversary’s output is a valid forgery.

Adversaries against randomized MACs. When dealing with randomized MACs, an adversary is an algorithm
given access to the generation and to the verification oracles for some randomized MAC. Adversaries are assumed
to never ask queries outside the domain of the oracle, however, they may repeat the same query. Indeed, it
might be useful to obtain several different MAC tags for the same message. Without loss of generality, since
the adversary can always get rid of duplicates, we may assume that when MAC generation is queried several
times with the same message, the generation oracle always chooses a different random value (among a total
of 2" possibilities). In that case, the adversary should not be allowed to query a given message more than 2"
times from the generation oracle. Moreover, we may assume that the adversary never repeats verifications, and
never verifies previously generated MAC tags or obviously false tags. This means that when a tag (m, R) was
generated for a message M, the adversary never verifies (M, (m', R)). Indeed, the answer is obviously valid
when m = m' and invalid otherwise.

Let P be the family of all perfect randomized MAC from a set A to a set B, F be a given family of randomized
MAC from A to B and f be a randomized MAC randomly chosen in F. We say that A%7>Vs forges, if A outputs
a valid tag (z, (f(® (z), R)) where A never got this MAC tag from its generation oracle G ;. We let:

AdvBmac gy — pr(f & 7|49 Viforges,

AdvBPT () = |Pr[f & FlACY = 1] - Pr[f & PIACHYr = 1]|.

AdvE™aC() represents the probability for an adversary A of forging a valid MAC knowing that the family
F' is not a perfect randomized MAC but is randomly chosen among the set F. Advjil_sprf (A) represents the
advantage for an adversary A of distinguishing a family F' randomly chosen from one chosen in the set F.

Rmac (Rmac (.A)

As before, we write Adv t,) for the maximal value of Adv among adversaries that are
bounded as follows: the running time should be less than ¢, and the sum of the bit length of all the oracle queries
should be less than y. We likewise define AdvEP™ (¢,). In the case of AdvE™2°(¢, 1), no additional queries
are necessary, since the adversary has access to a verification oracle and can test its forgery by itself. This differs
from Adv™?2¢(t, 1) in the case of non randomized MAC.

3 Security of RMAC

We are now going to state the security reached by RMAC in the information-theoretic model. We evaluate

this security in terms of Advg”mac(A) when G is the family described in 2.3, i.e. G is the family of all couples

(f1,F») where f; is a random permutation and F5 is a family of independent random permutations indexed
by R.

Theorem 1 states that the advantage of a forging adversary against RMIACy, g, with fi; and F5> as above
increases as a linear function of L, the total length of messages.

Theorem 1. [Forging RMAC is hard] Fizn > 2,7 = n and let N = 2". Let G denotes the family of randomized
MAC RMACY, r, built from the couple (f1,F>) where fi is a random permutation and F> a family of random
permutations fz(R). Let A be an adversary which asks queries of total length at most L n—bit blocks. Assume
L < N/4, then:
AnL + 4L + 2
Advgmac(A) < anb+al+2
N

Proof of theorem 1. If an adversary A is able to forge, then he is able to distinguish between RMAC and a
Rprf. Indeed, he just needs to build its forgery and see whether it is accepted or not. So we have:

Advg P () = [Prlf £ GlASYr = 1] = Prlf & PArYr = 1]

> AdvEmac(4) — %

And then:

R Rprf 1
Advg™aC(A4) < Advy PT(4) + ¥
We just need to prove an indistinguishability theorem in the information-theoretic model. Theorem 2 states
that the advantage for distinguishing RMACy, g, from a perfect randomized MAC when f; is a random
permutation and F5 a family of random functions increases as a linear function of L.

Theorem 2. [RMAC ~ Rand] Fixn > 1,r = n and let N = 2". Let G denotes the family of randomized
MAC RMACY, g, built from the couple (f1,F>) where fi is a random permutation and F> a family of random
permutations. Let A be an adversary which asks queries of total length at most L n—bit blocks. Assume L < N/4,

then: anl AL + 1
AdofPT () < %

In order to prove this theorem, we are first going to prove a lemma where the family F, of random permu-
tations has been replaced by a family of random functions.

Lemma 1. Fizn > 1,r =n and let N = 2". Let F denotes the family of randomized MAC RMACY}, g, built
from the couple (f1,F2) where fi is a random permutation and F> a family of random functions. Let A be an
adversary which asks queries of total length at most L n-bit blocks. Assume L < N/4, then:

< 3nL+3L+1.

AdvPP () ~

The complete proof is given in appendix B. Here we only give the guidelines of the proof.

Sketch of proof of Lemma 1. Here f; is a random permutation and F5 a family of random functions. The proof
of the theorem is close to the proof given in [6] but there are some fundamental differences. The adversary A has
access to the two oracles described in section 2.3, the generation and the verification oracle. The total length of
the queries it may ask is bounded by L. We are going to separately bound the advantage Advg(A) gained by
A by means of the generation queries and the advantage Advy (A) gained by means of the verification queries.

In order to bound Advg(A), we observe that only a small number of messages (typically less than n messages)

will be processed with the same R. Moreover since all the functions fZ(R) for different Rs are independent,
the adversary only learns information from MACs generated with the same R (else he only sees outputs of
independent functions). Within such a group, the adversary only learns information when the CBC output of
two messages is the same (else he only sees the outputs of a random function on different inputs). So we need
to evaluate the probability of collision within a group of messages at the end of the CBC computation. The
collision probability is defined as follows:

Vi (M, M') = Pr[r & Perm(n)|CBC, (M) = CBC,(M")].
It is given by a lemma from [6]:

Lemma 2 (CBC collision bound). Fiz n > 1 and let N = 2". Then for m,m' < N/4, for any pair of
messages M and M' of respective length m blocks and m' blocks:

(m—}—m’)Q_

Va(M, M') < 5

This lemma is in fact not strong enough for our purpose, we improve it in our proof (see in the appendix A the
lemma 5) and obtain that the probability of collision among ¢ messages M; of size m; blocks is

3q Zgzl m;

Pr[r & Perm(n)|3i # j such that CBC,(M;) = CBC,(M;)] < L

with 37 m; < N/4.
So the advantage Advg(A) is bounded by the sum of the probability of collision within the different groups
plus the probability of existence of a group larger than n:

3nL 1
AdVG(A) < on + on

In order to bound Advy (A), we observe that the adversary learns information only when he checks a
previously received MAC with a new message (else he just guesses at random). The adversary succeeds if the
new message collides with the reference message at the end of the CBC computation. We thus need to evaluate
the probability of collision of messages with a reference message (see in the appendix A the lemma 6). We find
that

3 m;
Pr[r & Perm(n)|3i € [1, q] such that CBC,(M;) = CBC,(My)] < %

when 7 m; < N/4.

Summing over all reference messages we get:

Finally, adding Advg(A) and Advy (A), we conclude the proof of lemma 1.

Sketch of proof of Theorem 2. In theorem 2 we replace the family of random functions by a family of ran-
dom permutations. We evaluate the advantages Advg) (A) and Advg)(A) obtained by A respectively with
generation and verification queries when we do this modification.

Switching from random functions to random permutations is a well-known lemma from [4]. This lemma
states that the advantage gained in distinguishing a random permutation of {0,1}" from a random function

from {0,1}" to {0,1}" with p queries is at most 271,

We use this lemma separating the calls made to the different permutations fz(R). Indeed the adversary tries
to separately distinguish the different permutations from functions. If ¢g denotes the number of calls made to

2(R), we recall from the proof of theorem 2 that with probability 1/2™ we have gr < n. So we obtain
2
(2) dr nL
Adv;’ (A) < gntT < ol

During the verification phase, the adversary wins when he distinguishes the random permutations fz(R) from

random functions. We find that: I
2
Advi?(4) < ST

Finally, adding Advg)(A) and Advg) (A) with Advgprf(.A), we conclude the proof of theorem 2.

4 Instantiation of the RMAC Construction with a Block Cipher

4.1 Modification of the Information Theoretic Model

When going from the information theoretic model to the computational complexity model, we replace fi; by a
block cipher. However, replacing F5 is an harder task. Since F; is a family of random permutations, it seems a
good choice to replace F» by a family of block ciphers. For example we could state that the functions féR) are
the block cipher E used with the keys K @ R. This induces an important difference with the model described in
section 2.3. Indeed when we say our family F5 is the block cipher E, we drastically reduce the possible choices
of the family F5. Instead of randomly picking the permutations of F» among all possible permutations, we pick
them in a smaller family F3 that contains only the permutations that can be constructed from the block-cipher.
Recall that in theorem 1 we need 2" independent permutations associated to our 2™ different Rs. The family
F3 of all permutations built from the block cipher must thus have cardinality at least 2". In the following we
assume that this family has in fact 22" elements. That is we have a pool of 22" permutations and we need to
choose 2" of them. We also want to avoid using the same permutation for two different Rs. The adversary knows
that we have chosen 2" different permutations in our family F3 but he does not know which nor does he knows
how they are associated to the Rs. The selection of the functions of the family may be done the following way:
we have a key K of 2n bits and we select the function K @ R for a given R, where R has been padded up to 2n
bits with zeros.

In order to represent this new situation, we modify our model of RMAC but also the model of the adversary.
The new model may be described as follows: F3 is a publicly known random family of permutations with
cardinality 227, f, is a random permutation, F} is a subset of the family F3 of size 2”. In other words, there
exists a key K such that féR) = ?EK@R) (where R is padded with zeros up to 2n bits). The adversary trying
to forge the MAC in this model has still access to the two oracles Gy and V¢, but he is also given access to F3
through two other oracles C'y and C;l. These computation oracles work as follows. In Cy, the adversary queries
a chosen function of the family fs, indexed by some 2n-bit integer S, with some input X and the oracle returns

?ES) (X). In Cf_ ! the adversary also queries a chosen function of the family fs, indexed by S and asks for the

-1
value of X corresponding to the output U; the oracle returns f?fs) (U). This value is defined and unique since
the applications fés) are permutations.

Let ‘H be the family of all triplets (f1, Fa, F3) as described above. We want to bound the probability of
forging for the adversary A:

Adv%mac(A) = Pr[f Fil H|AGf’Vf’Cf’Cf_lforges].

Theorem 3. [Forging RMAC with idealized block-cipher] Fiz n > 2,7 = n and let N = 2". Let H denotes
the family of randomized MAC RMACY, r, built from the triplet (fi, F>, F3) where F3 is a random family of
permutations with cardinality 22, f, is a random permutation and Fy is a subset of the family Fs determined
by a key K. Let A be an adversary which asks queries of total length at most L n—bit blocks. Assume L < N/4,

then: AnL+ 5L+ 9
AdvBmac g < %

Theorem 4. [RMAC with idealized block-cipher ~x RMAC] Fixn > 2,7 =n and let N = 2". Let H denotes
the family of randomized MAC RMACY, r, built from the triplet (fi, F>, F3) where F3 is a random family of
permutations with cardinality 22, fi is a random permutation and Fy is a subset of the family Fs determined
by a key K. Let A be an adversary which asks queries of total length at most L n—bit blocks. Assume L < N/4,

then: 4nL + 5L +1
Rprf < 2
Advy " (A) < — N

Proof of theorem 4. Now, let Adv,g{(.A) represents the advantage for the adversary A of distinguishing an
element of H from an element of G. Recall (section 3) that G is the family of all couples (f1, F5) where f; is a
random permutation and Fj is a family of independent random permutations. We write

AdvRmac(f) < AdvE™AC(4) 4 Adv(A).

The inequality thus directly follows from lemma 3 that gives an upper bound of Adv% (A).

Lemma 3. [H ~ G] Fizn > 2,r = n and let N = 2". Let H denotes the family of randomized MAC
RMACY, g, built from the triplet (f1,F>, F5) where Fs is a random family of permutations with cardinality
227 {1 is a random permutation and Fs is a subset of the family Fy determined by a key K. Let G denotes the
family of randomized MAC RMACy, p; built from the couple (fi,F3) where fi is a random permutation and

Fy a family of random permutations fZ(R). Let A be an adversary which asks queries of total length at most L
n-bit blocks. Assume L < N/4, then:

Advi,(A) < &

Lemma 3 is a direct consequence of the following lemma:

Lemma 4. [(Fy,F5) ~ (F3,F3)] Fixn > 2,r = n and let N = 2". Let F», Fj and F3 be three families of
permutations such that F3 is a random family of permutations with cardinality 227, F, is a subset of the family
F; determined by a key K and F3 is a random family of permutations with cardinality 2" independent from F3.
Let A be an adversary which asks queries of total length at most L n—bit blocks. Assume L < N/4, then:

(F2,F3) L
Proof of lemma 3. Indeed, an adversary able to distinguish G and H can be turned in an adversary able to
distinguish (Fy, F3) from (F4, F3) simply by choosing a random f;.

Proof of lemma 4. We try to distinguish the case where the family F5 is some subset of a family F3 given by a
key K from the case where the family Fj is a family of random permutations independent from the family F3.

Independently from the type of queries done with the oracles Gy and V, we say that in order to distinguish
‘H from G, the adversary must as least have queried through Cy or C;l one of the permutations of F3 that

were chosen in F5. In practice, access to the oracles Cy and C’f_1 are cheaper than access to V; and G} since
they represent offline computations. So we authorize the adversary to do 2™ queries to those oracles. This is a
natural limit since with 2" computations, an adversary can already achieve exhaustive search on the MAC tag
and can thus win.

We claim that until the adversary has queried one permutation f?fs) from both C or Cf_ Land G ¢ or Vg, he
is unable to distinguish H from G. Indeed he only sees evaluations of different independent permutations.

The functions in F5 are chosen through a XOR with a fixed K (S = K @ R). So each R, when compared to
the 2™ values of S queried at the oracles Cy and C;l, can correspond to 2" values of K. Since there are 227
possible values, the probability that one of the L queries to V; or G collides with one of the 2™ queries of Cf
or Cf_1 is equal to

L2 L

22n ~ 9n’

So the advantage gained verifies:

Fy,F. L
Adv (i (4) < oo

4.2 The Computational Model

As previously said, when proving the security of a MAC construction, it is customary to first show that their
information-theoretic versions approximate random functions. Then, we need to transport the result from the
information-theoretic model to the computational complexity model. This improves the advantage of the adver-
sary since he can now try to distinguish the pseudo-random functions or permutations from truly random ones.
It is a general principle that the advantage in the computational-complexity model is the sum of the advantage
in the information-theoretic model and of the advantages to distinguish each component of the construction from
its idealized version with the number of calls made in the construction. An example of this principle appears in
section 4 of [4].

To go from the information theoretic model to the computational model, we replace the random permutation
f1 with a block-cipher and the random family of permutations F3 by a family of block-cipher E indexed by a
2n-bit key. To choose a random family F5 indexed by R from F3, we simply select a key K of 2n bits. The
permutation in Fj corresponding to R will thus be the permutation in F3 corresponding to S = K @& R. Remark
that we assumed in the proof that the chosen permutations are independent, thus if the block cipher does not
resist to related keys attacks, this approach utterly fails. To make the notion more precise, we say that a block
cipher is resilient against XOR related keys attacks when the best strategy for distinguishing the above family
from a family of random permutation is to focus on a single permutation and try to distinguish it from a random
one. Clearly, the DES algorithm is not resilient against such attacks because of its complementation property.
To the best of our knowledge there are no related key attacks against the AES. On this subject, see the analysis
of the AES in [7]. Moreover, the only known attack against the AES is exhaustive search. This means that the
advantage of an adversary with running time ¢ steps can be bounded by /2128,

5 Detailed Instantiations with the AES

We propose two different instantiations of RMAC with the AES. The first one assumes that all messages are
padded. The second instantiation takes advantage of the technique from [6] that allows not to pad messages
which are formed from an integral number of blocks (see section 2.2).

First instantiation. Let K, be a 128-bit key and Ky a 256-bit key. Let fi = AESk, and £ = AESk,r.
Here R is a 128-bit integer padded with zeros for the XOR. The proposed instantiation is simply RMACy¢, ,.
See the algorithm of figure 5.

Second instantiation. Let K; be a 128-bit key and K» be a 256-bit key. Let f; = AESk, and ZSR) = AESk,or.
Here R is a 129-bit number padded with zeros for the XOR. The 128 low order bits of R are randomly chosen
by the generation oracle. The 129-th bit is a ’0” when the message needs to be padded and a ’1’ otherwise. This
additional bit is never included as part of the MAC tags, it should be set by the verification oracle according to
the properties of the message being verified.

10

random
AES Ky AES Ky [generator }

I ! !

AESKZGBR ~— R

| |

m R

Fig. 3. The RMAC algorithm instantiated with the AES.

Security of the instantiations. Glueing together theorem 3 with the known attacks against the AES, we claim
that the advantage of an adversary making queries of total length at most L and with runtime ¢ — including the
run time of the generation and verification queries themselves — is at most;:

Ad 4-128L+ 5L +2 t 518L +t
VRMACAES = 9128 9128 = ~ 9128 -

This should be compared with the security of the traditional DMAC:

207+t
AdYDMAC, g < 515
In other words, RMAC p gg is secure as long as the total length of the queries is smaller than 2''8, while
DMAC gg is secure as long as the total length of the queries is smaller than 253, In fact, the security of
RMAC j gg is almost as good as the security of DMAC with a good 256-bit block cipher.

Reducing the size of Ko. We suggest it is possible to take Ky as a 128-bit key only in the first instantiation
and as a 192-bit key in the second instantiation, even if the proof do no longer longer apply in that case.
The argument is that an adversary trying to distinguish # from G should not only need to access the same
permutation through the two oracles but also access them on correlated points, which seems unlikely.

The question remains whether it is possible to prove this formally when dealing with adaptative adversaries.

6 Conclusion

The RMAC construction proposed in this paper gives an efficient solution to the problem of constructing a
randomized CBC-MAC provably secure against birthday paradox attacks. The only previously known example
of a birthday paradox resistant MAC was given in [2] and called MACRX. Compared to MACRX, RMAC has
two main advantages. Firstly, its output has twice the length of the underlying block-cipher instead of three
times for MACRX. Secondly, being a CBC-MAC variant, RMAC does not require any special functions other
than the block cipher.

Moreover, RMAC unleashes the full power of the AES in MAC computation, thus making the need for
256-bit block ciphers a very remote perspective.

We have also developed a new model for the study of randomized CBC-MACs that may be of independent
interest for further work in this domain.

References

1. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In N. Koblitz, editor,
Advances in cryptology — CRYPTQO’96, volume 1109 of Lecture Notes in Computer Science. Springer, 1996.

11

2. M. Bellare, O. Goldreich, and H. Krawczyk. Stateless evaluation of pseudorandom functions: Security beyond the
birthday barrier. In M. Wiener, editor, Advances in Cryptology — CRYPTO0’99, volume 1666 of Lecture Notes in
Computer Science, pages 270-287. Springer, 1999.

3. M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New methods for message authentication using finite pseudo-
random functions. In D. Coppersmith, editor, Advances in Cryptology — CRYPT(0’95, volume 963 of Lecture Notes
in Computer Science, pages 15-28. Springer-Verlag, 1995.

4. M. Bellare, J. Killian, and P. Rogaway. The security of the cipher block chaining message authentication code. In
Advances in Cryptology — CRYPTQO’94, volume 839 of Lecture Notes in Computer Science, pages 341-358. Springer,
1994. See new version at http://www.cs.ucdavis.edu/"rogaway/.

5. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. Umac: Fast and secure message authentication. In
M. Wiener, editor, Advances in Cryptology — CRYPTQ’99, volume 1666 of Lecture Notes in Computer Science,
pages 216-233. Springer-Verlag, 1999.

6. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key constructions. In Mihir Bellare,
editor, Advances in Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 197-215.
Springer, 2000.

7. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting. Improved cryptanalysis of
rijndael. In Bruce Schneier, editor, Fast Software Encryption, volume 1978 of Lecture Notes in Computer Science,
pages 213-230. Springer, 2000.

8. International Organization for Standards, Geneva, Switzerland. ISO/IEC 9797-1. Information Technology - Security
Techniques - Data integrity mechanism using a cryptographic check function employing a block cipher algorithm,
second edition edition, 1999.

9. E. Petrank and C. Rackoff. CBC-MAC for real-time data sources. Technical Report 97-10, Dimacs, 1997.

10. B. Preneel and P. van Oorschot. MDx-MAC and building fast MACs from hash functions. In Don Coppersmith,
editor, Advances in cryptology — CRYPTO’95, volume 963 of Lecture Notes in Computer Science, pages 1-14.
Springer, 1995.

11. M. Semanko. L-collision attacks against randomized MACs. In Mihir Bellare, editor, Advances in Cryptology —
CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 216-228. Springer, 2000.

12. U.S. Department of Commerce/National Bureau of Standards, National Technical Information Service, Springfield,
Virginia. FIPS 118. Computer Data Authentication. Federal Information Processing Standards Publication 113, 1994.

13. M. Wegman and J. Carter. New hash functions and their use in authentication and set equality. Journal of Computer
and System Sciences, 22(3):265-279, 1981.

A Collisions During CBC Computations

As seen in section 3, in order to prove the security of CBC-MACs, it is very important to bound the probability
of collision between CBCy (M) and CBC¢(M'). Since the classical lemma 2 is not sufficient for our purpose,
we now improve it. We first state the two following lemmas.

Lemma 5 (CBC collision in a group). Fizn > 1 and let N =2". Fiz ¢ > 1 and let My, ... M, be q distinct
messages having my, ..., my blocks. Assume that E;I:l m; < N/4. Then:

R . 3¢ 0 my
Prir & Perm(n)|3i # j such that CBC(M;) = CBC(M;)] < 2’7n

Lemma 6 (CBC collision with a reference message). Fiz n > 1 and let N = 2". Fiz ¢ > 1 and let My,
My, ... M, be g+ 1 distinct messages having mo, ma, ..., mq blocks. Assume that >°!_ m; < N/4. Then:

331 i
Pr{r pia Perm(n)|3i € [1,q] such that CBCr(M;) = CBCr(My)] < %.

In order to prove these two lemmas, let us start with the simpler case of two different messages M and M'.
Splitting each message in blocks, we write M = (M, Mo, ---, My,) and M' = (M{, M3, ---, M/ ,), we can assume
that m > m'. Looking at the two messages, we have either M,, = M/, or M, # M/ ,. In the former case,
we may drop the last block of each message without affecting the probability of collision. Iterating this last
block removal, we end up with two truncated messages M(T) and M’) that satisfy one of the two following
conditions:

12

— Either M"‘") is the empty message. This happens when M’ is a suffix of M.
— Or the last blocks of M(T) and M") differs.

Now we can forget about the truncation of messages and address the following issues:

— Given a message M of length m < N/4, bound the probability 7,,(M) that M collides with any of its suffixes.
This happens if and only if some intermediate value C; for i # 0 during the CBC-MAC computation of M
collides with the initial value Cy = Q™.

— Given two messages M and M’ of length m < N/4 and m' < N/4 satistying M,,, # M',,+, bound V,,(M, M")
the probability that CBC, (M) = CBC,(M').

Bounding T,,. Let us start by computing a bound on T},. In order to do that, we compute for a given message
M of length m a bound on the number of “bad” permutations 7 that lead to a collision between M and one
of its suffixes. This can be done by writing an algorithm (see table 1) that can construct all permutations and
that outputs a permutation and a status good or bad.

Looking at the algorithm, we see that it iteratively constructs a random permutation. Among all the different
possible runs, it can build each of the N! possible permutations exactly once. At each iteration, the algorithm
defines 7 on exactly one new point. This point is either I; = C;_; & M; or the smallest value where 7 is still
undefined. Thus, in the first iteration there are IV possible choices, in the second N — 1 and so on.

Now, during each iteration, there is at most one choice that can turn the status to bad. Thus the probability
T, (M) that M collides with any of its suffixes can be bounded by:

N! m 2m

1 !
(M) < =Y —
n()_N!;N+1—i<%N<2"

The second inequality comes from the fact that since m < N/4 we have N +1—i > 3N/4.

Bounding V,,. Given two messages M and M’ of length m < N/4 and m' < N/4 satisfying M,,, # M'p,/, we
want to bound V,,(M, M'). As above, we are going to write an algorithm that constructs all permutations and
outputs the permutation together with a status. Before writing the algorithm, let us notice that

CBCﬂ—(M) = CBCW(MI) iff C,:nl_l = Cm_l D Mm D]\4’,,’7,1‘/7

where C] denotes the intermediate CBC-MAC values while processing M'.

We also remark that the choice of 7 uniquely determines C),,—1. Moreover, for any n-bit number X, we can
define IT¥ | the set of all permutations 7 such that Cy,,_1 = X. Clearly, the family of sets IT¥ is a disjoint cover
of the set of all permutations on n—bit numbers. We use this fact in the algorithm of table 2.

This algorithm iteratively constructs a random permutation. Among the different possible runs, each per-
mutation is constructed once in its set IT% but it may additionally be constructed in other, wrong sets. In the
latter case, the output status is irrelevant. When choosing X, the algorithm has N possible choices. Then it
starts its determination of 7 on m + m' — 2 points, with NV choices for the first determination, N — 1 for the
next one, and so on up to determination number m +m' — 3 with N — (m + m' — 4) possible choices. During
the last determination, the algorithm tries to force C,,_1 to be X; if this is not possible, it sets the status to
irrelevant. Anyway, the last determination is deterministic and the algorithm has a single possible choice at
that point. Then the rest of 7 is randomly chosen. We conclude that the total number of different runs of the
algorithm is:

N - N!
N—(m+m'-3)

Among this runs N! are relevant, the others are marked as irrelevant. Now, there are m'—1 iterations where
the status can become bad. In each of them, there is at most one choice (among N +1—i with 1 <i <m'—1)

13

Set Status=good, Let Co = 0", Let i = 1
Set 7 as undefined at all points
Declare all n—bit numbers as currently unused
‘While 7 < m do:
Let I; = Ci—1 ® M;
If 7 is still undefined at I; let * = I;, else let x denote the smallest n-bit
number where 7 is not yet defined.
Randomly choose a value y for w(z) among the unused n-bit numbers.
Fix w(z) = y and mark y as used
If y = 0", let Status=bad
Let C; = w(I;)
Increment ¢
Randomly determines the rest of the permutation 7.
Output 7 and Status.

Table 1. Algorithm for bounding T}, (M)

Set Status=good, Let Co = 0", Cj = 0™, Let 1 = 1
Set 7 as undefined at all points
Declare all n—bit numbers as currently unused
Randomly choose a n—bit number X, thus deciding to construct a permutation
from IT¥.
Let X' =X & Mm ® M),
While i < m' — 1 do:
Let I{ = C;_l @ le
If 7 is still undefined at I} let * = I, else let = denote the smallest n-bit
number where 7 is not yet defined.
Randomly choose a value y for w(z) among the unused n-bit numbers.
Fix 7(z) = y and mark y as used
If y = X', let Status=bad
Let C; = w(I;)
Increment ¢
Let 2 = 1. While 1 < m — 2 do:
Let I; = Ci—1 & M;
If 7 is still undefined at I; let * = I;, else let x denote the smallest n-bit
number where 7 is not yet defined.
Randomly choose a value y for w(z) among the unused n-bit numbers.
Fix 7(z) = y and mark y as used
Let C; = w(I;)
Increment ¢
Let Im—l = Cm—2 (&) Mm—l
If 7 is still undefined at I,,—1 let £ = I3
If 7 is already defined at I,,—1 let Potential-Status=irrelevant and let x de-
note the smallest n-bit number where 7 is not yet defined.
If X is still unused let y = X
If X is already used let Potential-Status=irrelevant and let y denote the
smallest n-bit number marked as unused.
Fix m(z) = y and mark y as used
If Potential-Status=irrelevant and m(l,—1) # X let Status=irrelevant
Let Crne1 = 7(Im—1)
Randomly determines the rest of the permutation .
Output 7 and Status.

Table 2. Algorithm for bounding V,, (M, M")

14

(m+m'—3))

+1—4)-(N

1 m' -1
< — N -
e

/ 3m/

that turns the status to bad. Thus the probability V,,(M, M') can be bounded by
N!

Vn(M,
mN_ _& m
3 N 2n

S3IN.N T
T2
The second inequality comes from the fact that since m < N/4 and m' < N/4 we have N +1—1i > 3N/4 and

m, blocks. We assume that Y, m; < NJ/4. We let
i) =

N—(m+m'—-3)> N/2.

Proof of lemma A As in the statement of the lemma, we fix n > 1 and let N = 2". We fix ¢ > 1 and let M,
M, be q distinct messages having m;, .

P = Pr[r & Perm(n)|3i # j such that CBC, (M. CBC, (M;)].

We can bound P as follows
q
P <> VM, My)
i=1 j#i
q
<> > Vo (M;, M;) + > Voo (M;, M)
=t J#1 J#
M; suffix of M; M; non suffix of M;
q
< Z Tn(Mz) + Z Vn(Mi; Mj)
=1 J#
M; non suffix of M;
a a
2m; 3m; 3> my
< Z on +Z on < 2zn :
i=1 J#i
This concludes the proof of lemma A.
Proof of lemma 6 As in the statement of the lemma, we fix n > 1 and let N = 2". We fix ¢ > 1 and let My,
My, ... My be g distinct messages having mqg, m1, ..., mq blocks. We assume that > ! m; < N/4. We let
P = Pr[r & Perm(n)|3i such that CBC,(M;) = CBC,(M,)].
We can bound P as follows:
a a q
P <Y VoMo, M) < > Vi (Mo, M;) + > Vi (Mo, M;)
=1 i=1 i=1
M; suffix of My M; non suffix of My
q
2
< T, (Mo) + > Vi (Mo, M. mo 3"“ M_
=1
M; non suffix of M,

This concludes the proof of lemma 6
15

B Proofs of Theorem 2 and Lemma 1

Preliminaries. In order to prove the security of this construction, we closely mimic the proof from [6]. How-
ever, there are some differences between the two proofs. A crucial difference is that in the new construction,
the adversary may use two different oracles (the generation and the verification oracle) while previously the
generation oracle alone was sufficient. Indeed, to verify an ordinary MAC, it suffices to generate the MAC value
and compare it to the submitted value, thus a verification oracle is not needed. Before giving the security proof
of RMAQC, let us state a few facts about adversaries.

— An adversary A against RMAC is a Turing machine with access to the generation and verification oracles.
As before, we limit the total size of the queries that the adversary can make by L, with L < N/4. Clearly
an adversary successfully forges when one of the two following events occurs:

e The result of a call to the generation oracle collides with the result of a previous call (on a different
message). Indeed, with good probability this comes from a collision of the form

CBC/, (M) = CBCy, (M')

in the core CBC-MAC computation. In that case, any other valid MAC tag for M is also valid for M’,
thus forgery is easy in our security model.

e A call to the verification oracle outputs valid MAC, for a pair (M, m) where the candidate MAC value
m is not a previous output of the generation oracle for the message M. Indeed, this by itself is a forgery.
For the sake of simplicity, we also assume, in the use of a distinguishing adversary, that whenever this
event happens the adversary wins.

— Any adversary A (that forges or distinguishes) can be rewritten as an adversary A’ that first makes all
its generation queries and then its verification queries. This is done as follows: A’ simulates A except for
verification queries. Whenever A makes a verification query, A’ instead stores the query and assumes that
the answer was invalid MAC. When A reaches its limit on the number of queries, it terminates and A’ sends
all the stored queries to the verification oracle. Clearly, A’ uses the same resources as .4, however it is no
longer adaptative on the results of the verification queries. Yet, this is not hurtful. Indeed, remember that if
the verification oracle outputs valid MAC we assume that the adversary wins and stops. Thus delaying the
verification queries just delays the success but never prevents it. This means that the adversary A’ succeeds
if and only if A4 does. In the sequel, we assume that all adversaries first make all the generation queries
followed by the verification queries.

— The calls to the verification oracle are of two types:

e The input of the verification can be a pair (M, m), where m was never outputted by the generation
oracle. We call this kind of query a guess.

e The input of the verification can be a pair (M, m), where m is the output of the generation oracle for a
message Mo with M # My. We call this kind of query a collision check.

— From the above point, we already know that the adversary A can be non-adaptative with respect to the
verification queries. Now, we use the same argument as in [6] to show that in the proof of theorem 2,
the adversary can be replaced by a non-adaptive adversary (with respect to all queries, generation and
verification). Indeed, as long as A has not encountered a collision, he has only seen the images of random
functions on distinct points. Consequently, any adaptative strategy can be replaced by a non-adaptive
strategy where A precomputes its queries under the assumption that the previous queries produce random
values. In other words, there exists a non-adaptative adversary A’ that performs as well as A. Since the
adversary A’ is non-adaptative, we can compute its probability of success by applying lemmas 5 and 6.

Proof of Lemma 1. Let A be a distinguishing adversary that, without loss of generality (see above), is non-
adaptative and first makes all its generation queries followed by all its verification queries. Let us bound the
probability for A to distinguish a perfect randomized MAC from RMACy, y, when r = n and when the total
length of the queries is bounded by L < N/4. Here f; is a random permutation and f» a family of random

functions fQ(R). We proceed in two steps:

16

— We first bound the probability of success during the generation queries phase Advg(.A). Let us assume that
the adversary queries ¢ messages (non necessarily different) M, ..., M,. Since A is non-adaptative, the
messages do not depend on f;. This allows us to use lemmas 5 and 6 in order to compute Advg(A). The
generation oracle allocates a random number of n bits to each message, Ry, ..., R;. Whenever M; = M;,
the oracle ensures that R; # R; in order to avoid duplicates. Thus all pairs (M;, R;) are different. When
the adversary runs against a perfect randomized MAC, he learns random independent numbers. When the
adversary runs against RMACy, 7,, we need to look at the pairs (CBCy, (M;), R;). If all these pairs are
different, once again the adversary learns random independent numbers and thus gains nothing. Thus, we
need to bound the probability of existence of a pair such that (CBCy, (M;), R;) = (CBCy, (M;), R;).
Clearly, unless R; = R; the two pairs cannot be equal. However, few messages share the same R. Indeed, if
we let No(R) denotes the number of messages such that R; = R we have:

Pr(3R s.t. No(R) > n) < Z < Z Pr(R;, = R)---Pr(R;, = R))
R

11 <z <in

(G = ()
(i (3)) = (o0 (3))

n n 1
<27 (1/4) §2—n

With probability at most 27" some value of R is shared by more than n messages. In that case we suppose
that the adversary wins. If this bad event does not occur, we now look for a collision on CBCy, (M;) in
groups of messages sharing R. According to lemma 5, the probability in a given group is smaller than
3qrLR2™ ", where qg is the number of messages in the group and Lg is the sum of their length. Summing
over all groups, we find an overall probability smaller than 3nL2~". Adding together this probability with
the probability of existence of a group larger than n, we get:

L 1
AdVG(.A) S 32% + 2_n
— Assuming that the adversary did not succeed during the generation query, we now look at the probability of
success during the verification queries Advy (A). During this phase, the adversary can choose the value of
R, the message M and a candidate value m. He learns whether these three values are compatible. However,
he cannot choose a triple (R, M, m) when a MAC of the form (m', R) as been generated for M by the
generation oracle. Indeed, in that case the answer is already known, it is valid if m = m' and invalid
otherwise. When the adversary runs against a perfect randomized MAC, he tests whether the value of a
random function at a new point is m, the answer is thus a random event valid/invalid, with a probability
27" of outputting valid. When the adversary runs against RMIACy, r,, we distinguish between guesses
and checks. The adversary is said to make a guess query when the pair (m, R) was never outputted by the
generation oracle. In that case, the fact that the MAC tags of messages are no longer independent can only
decrease the probability of a correct guess. Since the number of queries is bounded from above by N/4 we
cannot observe this phenomenom. Thus the adversary gains nothing when using guesses.
For checks, the oracle answers valid on query (M, R,m) where (m, R) was generated as a MAC for My, if
and only if CBCy, (M) = CBCy, (Mp). The adversary gains an advantage when such an event occurs. As
in the generation case, we now make groups among the verification queries, one group for each pair (m, R)
associated to a reference message My. Let L(m, R) be the sum of the length of all messages in the group
(including My), then according to lemma 6 the probability of existence of a message M in the group such
that CBCy, (M) = CBCy, (M) is bounded by 3L(m, R)2~™. Summing over all groups we bound Advy (A)
by the following inequality:

Advy(A) < Z—f

— Finally, adding Advg(A) and Advy (A) we conclude the proof of theorem 2.

17

Proof of theorem 2. In order to prove theorem 2, we start from lemma 1, we replace the family of random
functions by a family of random permutations. In order to switch from functions to permutations, we are going
to use the well-known lemma from [4]. We recall it here for the sake of completeness.

Lemma 7 (PRF/PRP Switching). Fiz n > 1. Let A be an adversary that ask at most p queries. Then

Prir il Perm(n)|A™ = 1] — Prip pia Rand(n,n)|A? =1]| < %

Note that this lemma, is affected by birthday paradox, since the bound on the advantage increases with the
square of p. When using it, it is important to check that the switched function is called a small number of times
only.

As in lemma 1, the adversary first makes its generation queries and then its verification queries. However, it
is no longer non-adaptative in the verification phase. Indeed, when guessing the value of a random permutation
on a new point, we clearly gain when excluding previously generated values.

We first prove that the generation queries do not help the adversary much and then that the verification
queries do not either. According to the proof of lemma 1, we know that each permutation/function fQ(R) is used
at most n times during the generation queries. Otherwise, we have already declared that the adversary has
won. If gg denotes the number of calls to fQ(R), the PRF/PRP switching lemma 7 states that the advantage for

distinguishing the random permutation fQ(R) from a random function is bounded by ¢%/2"*1. Summing over all
possible values of R, we find that during the generation phase, the adversary gains an advantage of:

2

) qr n-qRr n nL
Advg'(A) < Z o1 = gt = gng1 X E:qR S onf1e
R R R

During the verification phase, the adversary wins when he distinguishes the random permutations fz(R) from
random functions. This can occurs in two different ways. The first way is when on the random function side
the adversary successfully checks a MAC generated for a reference message My on some other message M while
CBCy, (M) # CBCy, (My). This happens with probability 2~ for each new verification. When f, is a family
of random permutations, the second way is with guesses. In that case, the probability of guessing the value of
a permutation fQ(R) at a new point is bounded by 1/(2" — n). Indeed, at most n values of fQ(R) are known from
the generation phase and they should be excluded from the possible values. Note that the advantage gained for
a guess or for a check are very similar. Summing over all verification (at most L), we see that the adversary
gains an advantage of:

2
Advi?(4) < ST

Adding Advg) (A) and Advg) (A), we find that the total advantage gained when going from theorem 2 to
theorem 1 is:

nL L
Adv?(4) < TESERat T
< nL/2+ 2L < nL—i—L,

when n > 2. This concludes the proof of theorem 1, since

AdvBmac 4y < AdvRPT (1) 4 Adv® (4).

18

