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Abstract. We show how to prove in statistical zero-knowledge that a commit-
ted integer is nonnegative. Our novel proof system bases on the well-known re-
sult of Lagrange that every nonnegative integer is a sum of four squares and on
algorithm of Rabin of Shallit that finds such squares efficiently. From this, we
derive efficient zero-knowledge proofs for (not) belonging to a finite interval.
Our approach can be generalized: Instead of the Lagrangian equation, different
Diophantine equations and their Boolean compositions can be used to construct
zero-knowledge proofs for belonging to different subsets of integers. Finally, we
show how to prove in statistical zero-knowledge that (1) The encrypted value be-
longs to a range, and (2) The discrete logarithm of the encrypted value belongs to
a range.

1 Introduction

We call a zero-knowledge proof system that a committed integer belongs to some set
S ⊆ Z a range proof (forS). Range proofs are important in many applications. For
example, in electronic voting protocols a voter often needs to prove in zero-knowledge
that she voted for one of theb candidates. For this, one needs a range proof for the set
S = [0, b− 1]. It might also be necessary for the voter to prove in zero-knowledge that
her vote was given to a candidate from a certain subset of[0, b − 1]. Now, the most
efficient statistical zero-knowledge (SZK) proof system forS = [a, b] was recently
proposed by Boudot [Bou00]. Boudot’s proof system is communication efficient but
has positive (though negligible) completeness error.

In the current paper, we propose a very different range proof for[0,∞). Our proof
system bases on the well known result of Lagrange that every nonnegative integer is
a sum of four squares and on the algorithm of Rabin and Shallit that computes these
squares efficiently [RS86]. On the other hand, a negative integer cannot be represented
as such a sum. With realistic parameters, our proof system requires about20% more
communication than Boudot’s proof system but is perfectly complete.

Furthermore, one can use the same methodology as a novel framework to prove that
a committed tuple of integersµ = (µ1, . . . , µm) belongs to any (not necessary finite)
setS ⊂ Zm:
? Preliminary version, October 25, 2001.
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1. Find a small set of setsSj and polynomialsfj(x1, . . . , xm, y1, . . . , yn), such that
(a) Diophantine equationfj(x, y) = 0 has an integral solutiony = (y1, . . . , yn) iff
x = (x1, . . . , xm) ∈ Sj ; (b) For everyµ = (µ1, . . . , µm) ∈ Sj , there is an efficient
algorithm to find at least one integral solutiony = (y1, . . . , yn) of fj(µ, y) = 0;
and (3)S can be efficiently represented by using the setsSj and common set-
theoretic operations;

2. Prove in statistical zero-knowledge, using an integer commitment scheme, that you
know such a solution by using the methodology of [CDS94].

This framework allows to useanycommon set-theoretic operations, including set com-
plementing. For example, we will obtain short SZK proofs thatµ ∈ Z \ [a, b] for any
finite interval[a, b]. We will give more details and examples in Section 3.

After that, we turn to the applications. In practice, it is often necessary to show that
an encrypted(as opposed to a committed) value belongs to an interval. While we are
not aware of anefficientrange proof for[a, b] that would use only the corresponding
public-key cryptosystem and no other primitives, we can build up a range proof for
encrypted numbers by using a SZK proof that a committed and an encrypted value are
equal (modulo the message space size), and then applying our SZK range proof for
[a, b] to the committed value. Sequential composition of these two proofs is naturally
a SZK proof-of-knowledge. Finally, we construct an efficient SZK proof that discrete
logarithm of encrypted value belongs to an interval, and show how to use it in the
Damg̊ard-Jurik voting scheme [DJ01] to achieve shorter proofs of vote correctness.

Road-map. Necessary preliminaries are given in Section 2. We will describe our range
proof and its extensions in Section 3. Section 4 presents protocols that allow to apply
our proofs together with homomorphic cryptosystems.

2 Preliminaries

Homomorphic encryption. Let us recall shortly that a public-key cryptosystemΠ is a
triple of efficient algorithms,Π = (G,E,D), whereG is the key generation algorithm,
E is the encryption algorithm andD is the decryption algorithm. Throughout this paper,
let t be the security parameter. LetM (resp.,C andR) denote the message space (resp.,
the ciphertext space and the randomness space), corresponding tot. We assume that
all three sets(M,R, C) are Abelian groups, withC written multiplicatively. We say
that public-key cryptosystemΠ = (G,E,D) is homomorphicif EK(m1 + m2; r1 +
r2) = EK(m1; r1)EK(m2; r2). Some example homomorphic cryptosystems are the
Paillier cryptosystem [Pai99] and the Damgård-Jurik cryptosystem [DJ01]. LetM :=
dlog2 ]Me, C := dlog2 ]Ce andR := dlog2 ]Re. We will assume in our calculations
thatM = R = 1024 andC = 2048.

Proofs-of-knowledge.For some bit-stringα and predicateP (·), PKy(α : y = P (α))
is a (usually, honest-verifier zero-knowledge) proof-of-knowledge between two parties,
that given a publicly known valuey, the first party knows a value ofα, such that the
predicateP (α) is true. To simplify the notation, we will always denote the values,
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knowledge of which has to be proven, by Greek letters. Additionally, we assume that
the variables denoted by Greek letters are scoped within one proof-of-knowledge. For
example,PK(c = EK(m; ρ)) is a proof that given a ciphertextc, plaintextm and a
public keyK, the prover knows a nonceρ such thatc = EK(m; ρ).

Three-round protocols. Most of the protocols in this paper are three-round interactive
honest-verifier (statistical) zero-knowledge (abbreviated as HVZK or HVSZK, resp.)
proof systems for proofs-of-knowledge of typePK(y = P (α)). One usually proves
that such protocols are (1) Complete: That is, a honest verifier accepts a honest prover
with probability 1 − neg(t), whereneg(t) is a negligible function int; (2) Honest-
verifier (statistical) zero-knowledge: Even without knowingα, one can generate a view
of the protocol that has distribution, indistinguishable from (or statistically close to) the
distribution of real views in the case when the verifier is honest; (3) Specially sound:
Given two views of the protocol that begin with the same move, but have different
second moves, one can compute the secretα. A proof system is calledperfectly com-
plete if a honest verifier always accepts a honest prover. An honest-verifier (statisti-
cal) zero-knowledge proof system can be made noninteractive by using the Fiat-Shamir
heuristic [FS86] in the random-oracle model. For this, we introduce a random oracle
H : {0, 1}∗ → {0, 1}2t.

Damgård-Fujisaki integer commitment scheme.A (statistically hiding) integer com-
mitment schemeCom allows a a participantP (a polynomial-time algorithm) to com-
mit to any integerm ∈ Z, so that (1) For anym1,m2 ∈ Z, the distributionsComK(m1)
andComK(m2) are statistically close; and (2) It is intractable forP to find another
valuem2, such thatComK(m1) = ComK(m2). On top of that, it is usually required
that the integer commitment scheme enables a few proofs-of-knowledge.

The first integer commitment scheme with an efficient zero-knowledge proof-of-
knowledge for multiplicative relationship between the committed numbers was pro-
posed by Fujisaki and Okamoto [FO97], but its soundness proof was later found to be
flawed. This flaw was corrected by Damgård and Fujisaki, who proposed a new integer
commitment scheme in [DF01]. Damgård-Fujisaki integer commitment schemeCom
works over a suitable groupG. It is assumed, that while the prover knows a reasonably
close upper bound2B > ordG to the order ofG, he doesnot know the order itself.
Together with groupG, a large numberF is chosen, such that it is still feasible to factor
numbers that are smaller thanF . (Say,F = O(tlog t). In this paper, we takeF = 280.)
We refer to [DF01] for the exact definition of “suitable” but remark thatG can be cho-
sen asZn for RSA modulusn = pq, wherep ≡ q ≡ 3 (mod 4), gcd(p−1, q−1) = 2,
and the parts ofp − 1, q − 1 with prime factors less thanF areO(t). In this case,
B ← dlog2 ne.

During the setup phase,P andV agree on a groupG and integerF . Verifier V
chooses a random elementh ∈ G, such thatordh is F -rough, and a randomα ∈
[0, 2B+t). Let g = hα. V sends the public keyK = (g, h) toP and proves in statistical
zero-knowledge thatg ∈ 〈h〉. During commitment tom ∈ Z, P chooses a random
r ← [0, 2B+t) and sendsc ← gmhr (that we will denote asComK(m; r)) to V . To
open a commitment,P sends(m, r, b), s.t.c = gmhrb andb2 = 1.
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Let CCom denote the commitment space of the used integer commitment scheme
and letCCom := dlog2 ]CCome, with security parameter understood from the context.
We will assume in our calculations thatCCom = 1024.

Proof system for multiplicative relation. For their own integer commitment scheme,
Damg̊ard and Fujisaki [DF01] constructed an efficient proof system forPK(c1 =
ComK(µ1; ρ1) ∧ c2 = ComK(µ2; ρ2) ∧ c3 = ComK(µ3; ρ3) ∧ µ3 = µ1µ2) (i.e.,
for the proof-of-knowledge that the committed valueµ3 is the product of another two
committed values). We will next give a brief description of this proof system, assuming
thatµi ∈ [0, T ) andρi ∈ [0, 2B+t). LetK = (g, h) be the public key.

1. ProverP chooses a randomm1 ←R [0, 2tFT ), r1 ←R [0, 2B+2tF ), r2 ←R

[0, 2B+2tFT ) and sendsc5 ← gm1hr1 , c6 ← cm1
1 hr2 to V .

2. VerifierV generates a randome←R [0, F ) and sends it toP .
3. Prover sendsm2 = m1 + eµ2, r3 ← r1 + eρ2 andr4 ← r2 + e(ρ3 − µ2ρ1) to V .
4. Verifier checks thatgm2hr3c−e2 = c5 andcm2

1 hr4c−e3 = c6.

Noninteractive version of this proof is(e,m2, r3, r4), with e = H(c5, c6), whereV ver-
ifies thate = H(gm2hr3c−e2 , cm2

1 hr4c−e3 ) mod 2t. With parametersCCom = 1024,
F = 280, T = 21024, t = 160 andB = 1024, the noninteractive proof has length
4 log2 F + 2 log2 T + 6t+ 2B = 320 + 2048 + 480 + 2048 = 4896 bits or612 bytes.
Whenµ1 = µ2 (i.e., this protocol is used to prove thatµ3 is a square), one can assume
thatµ1 = µ2 ≤ 2512 and the proof system will be484 bytes long.

Boudot’s range proof for [0,∞). Boudot’s proof system [Bou00] forPK(c =
ComK(µ; ρ) ∧ (µ ≥ 0)) consists of several steps: First, representµ asµ2

1 + µ2, where
µ1, µ2 = Θ(

√
µ). Sinceµ2

1 ≥ 0, it is now only necessary to prove thatµ2 ≥ 0. Re-
call thatµ ≤ T . Second, one can prove thatµ2 ≥ −θ for θ := 2tFT 1/2 by using
the range proof with tolerance by Chan, Frankel and Tsiounis [CFT98]. Now, one has
proved thatµ ≥ −θ. Fourth, one can achieve zero tolerance by a priori multiplyingµ
with a suitably chosen constant2α such thatθ < 2α/2. In this case,2α/2µ > −2α/2 or
µ2 > −1. When suitably modified for Damgård-Fujisaki integer commitment system,
this proof system has completeness errorΘ(1/F ), and its noninteractive version has
length1166 + 1

8dlog2 T
1/2e bytes.

3 Range Proofs from Diophantine Equations

3.1 Proof that a Committed Number is Nonnegative

In this subsection, we will give an efficient range proof for[0,∞), i.e., for PK(c =
ComK(µ; ρ) ∧ (µ ≥ 0)). In the next subsections we will show how to generalize the
given proof system. The next theorem is crucial for our range proof:

Theorem 1. An integerµ can be represented asµ = µ2
1 +µ2

2 +µ2
3 +µ2

4 with integerµi
iff µ ≥ 0. Moreover, ifµ ≥ 0 then the representation(µ1, µ2, µ3, µ4) can be computed
efficiently.
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Proof. If µ ≥ 0, suchµi exist by a well-known result of Lagrange from 1770. Rabin
and Shallit [RS86] proposed a probabilistic polynomial time algorithm for computing
the representation. On the other hand, no negative number is a sum of four squares.ut

Briefly, during our proof system for[0,∞), prover first uses the Rabin-Shallit algo-
rithm to representµ asµ2

1 + µ2
2 + µ2

3 + µ2
4. After that, he proves toV in SZK that she

knows such a representation. Complete proof system is given by the next theorem:

Theorem 2. Let Com be the Damg̊ard-Fujisaki integer commitment scheme [DF01],
and letK = (g, h) be the public key. (ThenComK(m; r) = gmhr.) The following pro-
tocol is a perfectly complete, honest-verifier statistically zero-knowledge and specially
sound proof system forPK(c = ComK(

∑4
i=1 µ

2
i ; ρ)), or equivalently in the epistemic

sense, forPK(c = ComK(µ) ∧ µ ≥ 0):

1. ProverP computes the representation ofµ asµ2
1 +µ2

2 +µ2
3 +µ2

4, using the Rabin-
Shallit algorithm. Fori ∈ [1, 4], P chooses randomρi ←R [0, 2B+t) such that∑
i ρi = ρ; P chooses randomm1i ←R [0, 2tFT 1/2), r2i ←R [0, 2B+2tF ),

r3 ←R [0, 2B+2tFT 1/2), and letsc1i ← gµihρi , c2i ← gm1ihr2i , c3 ←
∏
i c
m1i
1i ·

hr3 . Prover sends((c1i, c2i)4
i=1, c3) to V .

2. V generates a randome←R [0, F ) and sends it toP .
3. P computesm2i = m1i+eµi, r4i ← r2i+eρi, i ∈ [1, 4], andr5 ← r3 +e

∑
i(1−

µi)ρi. P sends((m2i, r4i)4
i=1, r5) to V .

4. V checks that (a)gm2ihr4ic−e1i = c2i for i ∈ [1, 4], and (b)
∏
i c
m2i
1i · hr5c−e = c3.

Proof. Completeness:gm2ihr4ic−e1i = gm1i+eµihr2i+eρig−eµih−eρi = gm1ihr2i = c2i
and

∏
i c
m2i
1i · hr5c−e =

∏
i c
m1i
1i ·

∏
i(g

µihρi)eµi · hr3+e
∑
i(1−µi)ρig−e

∑
i µ

2
i h−eρ =∏

i c
m1i
1i · hr3 = c3.

Honest-verifier statistical zero-knowledge. The simulator acts as follows. Fori ∈
[1, 4], generatec1i ←R CCom , m2i ←R [0, 2FT ), r4i ←R [0, 2B+2tF ). Generate
e ←R [0, F ), r5 ←R [0, 2B+2tFT ). For i ∈ [1, 4], let c2i ← gm2ihr4ic−e1i . Let c3 ←∏
i c
m2i
1i · hr5c−e. The resulting view((c1i, c2i)i, c3; e; (m2i, r4i)i, r5) is accepting and

has distribution, statistically close to the distribution of views in a real execution.
Special soundness (from two accepting views,((c1i, c2i)i, c3; e; (m2i, r4i)i, r5) and

((c1i, c2i)i, c3; e′; (m′2i, r
′
4i)i, r

′
5) with e 6= e′, one can efficiently find((µi)i, ρ), such

that c = ComK(
∑
µ2
i ; ρ)): Given such views,gm2i−m′2ihr4i−r

′
4i = ce−e

′

1i , for i ∈
[1, 4], and

∏
i c

(m2i−m′2i)
1i · hr5−r′5 = ce−e

′
. We say that we have a bad case, if either

(e− e′) 6| (m2i−m′2i) or (e− e′) 6| (r4i− r′4i) for somei ∈ [1, 4] or (e− e′) 6| (r5− r′5)
As in [DF01], we can argue that the bad case appears with a negligible probability if
the group assumptions hold. Otherwise (when we do not have the bad case), letµi ←
(m2i − m′2i)/(e − e′) and ρi ← (r4i − r′4i)/(e − e′); then c1i can be opened as
c1i = gµihρi , for i ∈ [1, 4], andc can be opened asc =

∏
i c
µi
1i · h(r5−r′5)/(e−e′) =

((g
∑
i µih

∑
i ρi)µi)h(r5−r′5)/(e−e′) = g

∑
i µ

2
i h
∑
i µiρi+(r5−r′5)/(e−e′). ut

Noninteractive version of this proof system is((c1i)i; e; (m2i, r4i)i, r5), where the ver-
ifier checks thate = H((c11)4

i=1, (g
m2ihr2ic−e1i )4

i=1, c
−e∏

i c
m2i
1i · hr5). The length of

noninteractive proof system is4CCom +2t+4(B+3t+2 log2 F+ 1
2 log2 T )+B+2t+
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log2 F+ 1
2 log2 T = 4096+160+4·(1024+240+160)+1024+160+80+ 5

2 log2 T =
11216 + 5

2 log2 T bits or1402 + 5
16 log2 T bytes.

Our proposed[0,∞)-range proof is≈ 20% longer than Boudot’s proof system
for the same problem. However, our proof system enjoys the property of perfect com-
pleteness, while Boudot’s proof system has completeness errorΘ(1/F ). This result in
interesting per se, in particular since no complexity-preserving strong black-box trans-
formation can eliminate completeness error [Vad00].

Overview of the Rabin-Shallit algorithm. For completeness, we will give a short
overview of the Rabin-Shallit algorithm [RS86]:

1. Writeµ in the formµ = 2s(2k + 1), wheres, k ≥ 0.
2. If s = 1, then

(a) Choose randomµ1, µ2 ≤
√
µ, with exactly one ofµ1, µ2 even. Letp ←

µ− µ2
1 − µ2

2. Note thatp ≡ 1 (mod 4).
(b) Hoping thatp is prime, try to expressp = µ2

3 + µ2
4 as follows: First, find a

solutionu to the equationu2 ≡ −1 (mod p). (This can be done in various
efficient ways; for details see [RS86].) Now computegcd(u+ i, p) = µ3 +µ4i
over the Gaussian integers. Again, this can be done efficiently. Check to see
thatp = µ2

3 + µ2
4. If not, p was not prime, so go back to step 2a.

(c) Returnµ2
1 + µ2

2 + µ2
3 + µ2

4 as a representation.
3. If s is odd but not1, find a representation for2(2k+1) and then multiply each term

by the squaret2, wheret = 2(s−1)/2.
4. If s is even, find a representationµ2

1 + µ2
2 + µ2

3 + µ2
4 for 2(2k+ 1) by step 2. Then

convert this to a representation for(2k + 1) as follows: Groupµ1, µ2, µ3, µ4 so
thatµ1 ≡ µ2 (mod 2) andµ3 ≡ µ4 (mod 2). Then(2k+ 1) = ( 1

2 (µ1 + µ2))2 +
( 1

2 (µ1 − µ2))2 + ( 1
2 (µ3 + µ4))2 + ( 1

2 (µ3 − µ4))2. Now multiply by t2, where
t = 2s/2.

3.2 General Framework

The ideas used to build the given efficient range proof for[0,∞) can be generalized to
the next proof system for proving that the committed tupleµ = (µ1, . . . , µm) belongs
to some (not necessary finite) setS ⊂ Zm:

1. Find polynomialsfS(x, y) with integral coefficients, such that (a) The Diophantine
equationfS(µ, y) = 0 has an integral solutiony = (y1, . . . , yn) iff µ ∈ S; and (b)
There is an efficient algorithm that finds at least one such solution(y1, . . . , yn) for
eachµ ∈ S;

2. Prove in statistical zero-knowledge by using the methods of Fujisaki and
Okamoto [FO97] and integer commitment scheme of Damgård and Fu-
jisaki [DF01], using an integer commitment scheme, that you know such a solution.

A few examples:

1. f[a,∞)(x, y1, y2, y3, y4) = y2
1 + y2

2 + y2
3 + y2

4 − x + a and its complement
f[−∞,b)(x, y1, y2, y3, y4) = y2

1 +y2
2 +y2

3 +y2
4 +x−b. (Conjectured by Fermat and

others, established by Lagrange, 1770. Algorithm by Rabin and Shallit [RS86].)
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2. f[0,∞)\{4s(8k+7):s,k∈Z}(x, y1, y2, y3) = y2
1 +y2

2 +y2
3−x. (Established by Legendre,

1798. Algorithm by Rabin and Shallit [RS86].)
3. fZ\{23,239}(x, y1, . . . , y8) =

∑8
i=1 y

3
i −x. (Established by Dickson, 1939. No fast

algorithms known.)
4. Linear Diophantine equationf{(y1,y2):gcd(y1,y2)|y3}(x1, x2, y1, y2, y3) = y1x1 +
y2x2 − y3 has an integral solution exactly ifgcd(y1, y2) | y3.

5. If f(x1, x2, x3, y1, y2) = y2
1 − x1y

3
2 − x2y

2
2 − x3, we can prove in statistical zero-

knowledge that we know an integral point on committed elliptic curve.

Due to the lack of general theory of Diophantine equations, there are not many sets
S for with readily available functionsfS . However, already existing functionsfSi can
be further composed by using Boolean operations (akin to the well-known methodology
of Cramer, Damg̊ard and Schoenmakers [CDS94]) to devise proofs-of-knowledge for
sets, related toSi with set-theoretic operations. A concrete example is a range proof
of µ ∈ [a, b], where one proves thatµ − a ≥ 0 andb − µ ≥ 0. (Note that this proof,
PK(c = EK(µ; ρ)∧µ ∈ [a, b]), has length 32804 + 5

8 log2(b− a) bytes, since one can
setT ← b − a.) This range proof uses a Boolean “and” of two more primitive proofs.
Equivalently, prover shows that he knows a solution to a linear Diophantine equation
system.

The methodology of [CDS94] only works with monotone Boolean operations: In
particular, it is not known, how to derive an efficient proof a committed number isnot
equal to some constanta. (Although such proofs exists [MS97].) An important feature
of our proof system is that while still using only monotone Boolean operations, negative
range proofs can be implemented efficiently. For example, it is possible to prove that
µ 6∈ [a, b] by proving that eitherµ− b− 1 ≥ 0 or a− µ− 1 ≥ 0. If a = b, this yields a
statistical zero-knowledge proof that a committed number is not equal toa.

The reason why it is possible to give such efficient proofs lies on the set of “prim-
itive” predicates. Namely, any predicate of form[[f(x) = 0]] can be taken as a ba-
sic primitive, where[[f(x) = 0]] means that the Diophantine equationf(x) = 0
must have integral solutions. Efficient negative proofs are possible since since of such
predicates (like[[f[0,∞)(x)=0]]) specify infinite sets, and their unions have finite com-
plements. Note that proof system forPK(c = ComK(µ) ∧ µ ∈ [a, b]) basically
shows that the prover knows aµ, such that[[f[a,∞)(µ, y) = 0]] ∧ [[f(−∞,b](µ, y)]],
while proof system forPK(c = ComK(µ) ∧ µ 6∈ [a, b]) bases on the formula
[[f[b+1,∞)(µ, y)]] ∨ [[f(−∞,a−1](µ, y)]].

As a final example, it is known that some number is prime exactly iff a linear Dio-
phantine equation system of14 equations and26 variables has positive integral solu-
tions [Rie94]. Thus, one can prove that a committed number is prime by proving that he
knows an integral solution to this equation system, and then proving that all solutions
are positive.

4 Applications for Encrypted Numbers

4.1 Proof that committed number = encrypted number

Let (G,E,D) be a homomorphic public-key cryptosystem withM = ZM and public
key Ke. In cryptographic protocols, one often needs a zero-knowledge proof that an
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encryptednumber belongs to some setS. For most of the setsS, we are not aware of
any efficient range proofs forPK(c = EKe(µ; ρ) ∧ µ ∈ S) that base solely on the
security of the used encryption scheme. However, the next methodology enables to give
such proof systems, assuming thatS ⊆ ZM and there is an efficient proof system for
PK(c = ComKc(µ; ρ) ∧ µ ∈ S), whereCom is an integer commitment scheme with
keyKc:

1. ProverP creates a randomr and sendsc1 = ComKc(µ; r) to verifier.
2. ProverP proves toV thatPK(c = EKe(µ; ρ1) ∧ c1 = ComKc(µ; ρ2)).
3. ProverP proves toV thatPK(c = ComKc(µ; ρ) ∧ µ ∈ S).

Note thatEKe(m + kM ; r) = EKe(m; r) for anyk ∈ Z and hence the proof in
the second step should actually be written asPK(c = EKe(µ mod M ; ρ1) ∧ c1 =
ComKc(µ; ρ2)). However, we will omit mod M notation for the sake of simplicity.

Assuming that there is an efficient proof system forPK(c = ComKc(µ; ρ)∧µ ∈ S),
we are only left to show the next result.

Theorem 3. Let Com be an integer commitment scheme and letΠ = (G,E,D) be
a homomorphic public-key cryptosystem. Letρ2 ∈ [0, 2B+t). The next proof system
presents a complete, honest-verifier statistical zero-knowledge, specially sound proof
for PK(c1 = EKe(µ; ρ1) ∧ c2 = ComKc(µ; ρ2)), given thatµ < T :

1. Prover generatesm1 ←R [0, 2tFT ), r1 ←R R, r2 ←R [0, 2B+2tF ), setsc3 ←
EKe(m1; r1), c4 ← ComKc(m1; r2) and sends(c3, c4) to verifier.

2. Verifier generatese←R [0, F ) and sendse to Prover.
3. Prover setsm2 ← m1 + eµ, r3 ← r1 + eρ1 and r4 ← r2 + eρ2 and sends

(m2, r3, r4) to verifier.
4. Verifier checks thatc3 = EKe(m2; r3) · c−e1 andc4 = ComKc(m2; r4) · c−e2 .

Proof. Completeness. If prover is honest thenEKe(m2; r3) ·c−e1 = EKe(m2−eµ; r3−
eρ1) = EKe(m1; r1) = c3 andComKc(m2; r4) ·c−e2 = ComKc(m2−eµ; r4−eρ2) =
EKe(m1; r2) = c4.

Honest-verifier statistical zero-knowledge. Simulator generates a random quadruple
(e,m2, r3, r4)← [0, F )×[0, 2tFT )×R×[0, 2B+2t) and setsc3 ← EKe(m2; r3)·c−e1 ,
c4 ← ComKc(m2; r4) · c−e2 . Clearly, this view is an accepted view. Moreover, it has
distribution that is statistically close to the distribution of real view.

Special soundness. Let the next two views be accepting:(c3, c4; e;m2, r3, r4) and
(c3, c4; e′;m′2, r

′
3, r
′
4) with e 6= e′. We know from [DF01] that then with an overwhelm-

ing probability(e−e′) | (m2−m′2). Therefore,c2 = ComKc(µ; ρ2) with µ = m2−m′2
e−e′ .

Similarly, c1 = EKe(µ
′; ρ1), whereµ′ = m2−m′2

e−e′ mod M . Hence,µ′ = µ mod M .
ut

As previously, letC denote the ciphertext space ofΠ andCCom the commitment
space ofCom. Noninteractive version of the presented proof system has length5t +
2 log2 F + B + log2 T + R = 5 · 80 + 2 · 80 + 1024 + 1024 + 1024 = 3632 bits or
454 bytes.
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Range proof for encrypted number. As a concrete application, let us describe a proof
system forPK(c = EK(µ; ρ) ∧ µ ∈ [a, b]):

1. ProverP generatesr1 ←R [0, 2B+2t), c1 ← ComKc(µ; r1) and sendsc1 to veri-
fier.

2. P proves toV thatPK(c = EK(µ; ρ) ∧ c1 = ComKc(µ; ρ1)).
3. P proves toV thatPK(c1 = ComKc(µ; ρ) ∧ µ ∈ [a, b]).

Noninteractive version of this proof isCCom + |Committed = Encrypted| +
|range proof| = 128+454+2784+ 5

8 log2(b−a) = 3366+ 5
8 log2(b−a) bytes long.

As noted before, it must be case that[a, b] ⊂M for this proof to work. In particular,
we cannot takeS = [0,∞). Therefore, to construct a proof that an encrypted number
µ does not belong to[a, b] ⊂ M = ZM , it does not suffice to prove in step 3 that
µ 6∈ [a, b]: One must prove thatµ ∈ [0, a− 1] ∨ µ ∈ [b+ 1,M − 1].

4.2 Range proof in exponents for encrypted number

In several cryptographic protocols like electronic voting [DJ01], one needs range proofs
in exponents: That is, proofs of typePK(c = EKe(n

µ; ρ) ∧ µ ∈ [a, b]) for somen. We
will give an efficient statistical zero-knowledge proof-of-knowledge of a small discrete
logarithm of committed number in the special case whenn is prime.

We will first present a proof system forPK(c = ComK(m; ρ)):

1. ProverP generates ar1 ←R [0, 2B+2tF ) and sendsc1 ← ComK(m; r1) to V .
2. VerifierV sendse←R [0, F ) to P .
3. Prover sendsr2 ← r1 + eρ to V .
4. Verifier checks thatc1 = ComK(m; r2) · c−e.

Noninteractive version of this proof system is(e; r2), where the verifier has to check that
e = H(ComK(m; r2)·c−e) mod 2t. Length of this proof system islog2 F+B+4t =
80 + 1024 + 4 · 80 = 1424 bits or178 bytes.

As before, it is sufficient to give a proof system forPK(c = EKe(n
µ; ρ) ∧ µ ∈

[0, b]). Sincen is a prime,lognm ∈ [0, b] iff m | nb andµ > 0. Using this observation
and ideas from the previous sections of the current paper, we have established that one
needs to prove thatPK(c = EKe(µ; ρ)∧c2 = ComKc(µ; ρ2)∧c3 = ComKc(µ3; ρ3)∧
c4 = ComKc(n

b; ρ4) ∧ µµ3 = nb ∧ µ > 0):

1. Prover generatesr1 ←R [0, 2B+2t), c2 ← ComKc(µ; r1), r2 ←R [0, 2B+2t),
r3 ←R [0, 2B+2t), c3 ← ComKc(n

b/µ; r2), c4 ← ComKc(µ4; r3). She sends
(c2, c3, c4) to verifier.

2. P proves toV thatPK(c = EKe(µ; ρ1) ∧ c2 = ComKc(µ; ρ2)).
3. P proves toV thatPK(c4 = ComKc(n

b; ρ)).
4. ProverP proves toV that PK(c4 = EKe(µ4; ρ4) ∧ c3 = EKe(µ3; ρ3) ∧ c2 =
EKe(µ2; ρ2) ∧ (µ4 = µ3µ2)).

5. P proves toV thatPK(c2 = EKe(µ; ρ) ∧ µ > 0).

Noninteractive version of this proof system has length384+454+178+602+1402+
5
16 log2(b − a) = 3020 + 5

16 log2(b − a) bytes. As an interesting sidenote, one could
further shorten this proof by using the result of Legendre that ifnµ 6= 4s(8k + 7) for
somes, k (for example, ifn is a power of two) thennµ can be represented as a sum of
three squares.
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Application to E-voting. Until now, the best (perfect) zero-knowledge proof system
for the same problem seems to be due Damgård and Jurik [DJ01]. While their range
proof in exponents does not requiren to be a prime, its length is≈ dlog2 V e · (6C +
M + 3t+ 4R), whereV is the number of candidates to vote for. In their proof system,
the length of the interaction is greater than in ours as soon asV ≥ 8.

Acknowledgments and Further Work

We would like to thank Jeffrey Shallit and Petteri Kaski for useful discussions. In par-
ticular, the given description of the Rabin-Shallit algorithm is from [Sha01].

It seems that efficient range proofs can be given for many interesting setsS ⊂ Z.
We did certainly not mention all cryptographically relevant setsS for which efficient
proof systems can be constructed by using the current state of knowledge in Diophan-
tine analysis. For even more sets, such proofs systems will become available with the
advance of methods in Diophantine analysis. Moreover, it is not known how to gener-
alize Rabin-Shallit algorithm efficiently to higher than the second power.
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