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Abstract. We show how to prove in statistical zero-knowledge that a commit-
ted integer is nonnegative. Our novel proof system bases on the well-known re-
sult of Lagrange that every nonnegative integer is a sum of four squares and on
algorithm of Rabin of Shallit that finds such squares efficiently. From this, we
derive efficient zero-knowledge proofs for (not) belonging to a finite interval.
Our approach can be generalized: Instead of the Lagrangian equation, different
Diophantine equations and their Boolean compositions can be used to construct
zero-knowledge proofs for belonging to different subsets of integers. Finally, we
show how to prove in statistical zero-knowledge that (1) The encrypted value be-
longs to arange, and (2) The discrete logarithm of the encrypted value belongs to
arange.

1 Introduction

We call a zero-knowledge proof system that a committed integer belongs to some set
S C Z arange proof (forS). Range proofs are important in many applications. For
example, in electronic voting protocols a voter often needs to prove in zero-knowledge
that she voted for one of thecandidates. For this, one needs a range proof for the set
S =1[0,b— 1]. It might also be necessary for the voter to prove in zero-knowledge that
her vote was given to a candidate from a certain subsé, &f— 1]. Now, the most
efficient statistical zero-knowledge (SZK) proof system fé&t = [a,b] was recently
proposed by Boudot [Bou00]. Boudot’s proof system is communication efficient but
has positive (though negligible) completeness error.

In the current paper, we propose a very different range prodbfex). Our proof
system bases on the well known result of Lagrange that every nonnegative integer is
a sum of four squares and on the algorithm of Rabin and Shallit that computes these
squares efficiently [RS86]. On the other hand, a negative integer cannot be represented
as such a sum. With realistic parameters, our proof system requires #l¥ouhore
communication than Boudot's proof system but is perfectly complete.

Furthermore, one can use the same methodology as a novel framework to prove that
a committed tuple of integens = (u1, - .., un) belongs to any (not necessary finite)
setS C Z™:
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1. Find a small set of setS; and polynomialsf;(z1,. .., Zm,¥1,---,Yn), Such that
(a) Diophantine equatiof; (x, y) = 0 has an integral solutiop = (y1, ..., y») iff
z=(1,...,2m) € S;; (b) Foreveryy = (p1,. .., um) € S;, there is an efficient
algorithm to find at least one integral solutign= (y1,...,y») Of f;(1,y) = 0;
and (3)S can be efficiently represented by using the sgtsand common set-
theoretic operations;

2. Prove in statistical zero-knowledge, using an integer commitment scheme, that you
know such a solution by using the methodology of [CDS94].

This framework allows to usenycommon set-theoretic operations, including set com-
plementing. For example, we will obtain short SZK proofs that Z \ [a, b] for any
finite interval[a, b]. We will give more details and examples in Section 3.

After that, we turn to the applications. In practice, it is often necessary to show that
an encrypted(as opposed to a committed) value belongs to an interval. While we are
not aware of arefficientrange proof fora, b] that would use only the corresponding
public-key cryptosystem and no other primitives, we can build up a range proof for
encrypted numbers by using a SZK proof that a committed and an encrypted value are
equal (modulo the message space size), and then applying our SZK range proof for
[a, b] to the committed value. Sequential composition of these two proofs is naturally
a SZK proof-of-knowledge. Finally, we construct an efficient SZK proof that discrete
logarithm of encrypted value belongs to an interval, and show how to use it in the
Damgard-Jurik voting scheme [DJ01] to achieve shorter proofs of vote correctness.

Road-map. Necessary preliminaries are given in Section 2. We will describe our range
proof and its extensions in Section 3. Section 4 presents protocols that allow to apply
our proofs together with homomorphic cryptosystems.

2 Preliminaries

Homomorphic encryption. Let us recall shortly that a public-key cryptosystéhis a
triple of efficient algorithmsJI = (G, E, D), whereG is the key generation algorithm,
E'is the encryption algorithm anB is the decryption algorithm. Throughout this paper,
lett be the security parameter. L&t (resp.C andR) denote the message space (resp.,
the ciphertext space and the randomness space), corresponding/éoassume that
all three set§ M, R,C) are Abelian groups, witld written multiplicatively. We say
that public-key cryptosysteY = (G, E, D) is homomorphidf Ex (m; + mao;r1 +

r9) = Ex(mi;7m1)EK(ma;rey). Some example homomorphic cryptosystems are the
Paillier cryptosystem [Pai99] and the Daangd-Jurik cryptosystem [DJO1]. Lt/ :=
[logy EM], C := [log, #C] and R := [log, tR]. We will assume in our calculations
thatM = R = 1024 andC = 2048.

Proofs-of-knowledge. For some bit-stringr and predicaté®(-), PK, (o : y = P(«))

is a (usually, honest-verifier zero-knowledge) proof-of-knowledge between two parties,
that given a publicly known valug, the first party knows a value ef, such that the
predicateP(«) is true. To simplify the notation, we will always denote the values,
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knowledge of which has to be proven, by Greek letters. Additionally, we assume that
the variables denoted by Greek letters are scoped within one proof-of-knowledge. For
example PK(c = Ek(m;p)) is a proof that given a ciphertext plaintextm and a
public key K, the prover knows a nongesuch that = E'x (m; p).

Three-round protocols. Most of the protocols in this paper are three-round interactive
honest-verifier (statistical) zero-knowledge (abbreviated as HVZK or HVSZK, resp.)
proof systems for proofs-of-knowledge of typ&(y = P(«)). One usually proves

that such protocols are (1) Complete: That is, a honest verifier accepts a honest prover
with probability 1 — neg(t), whereneg(t) is a negligible function in;; (2) Honest-
verifier (statistical) zero-knowledge: Even without knowingone can generate a view

of the protocol that has distribution, indistinguishable from (or statistically close to) the
distribution of real views in the case when the verifier is honest; (3) Specially sound:
Given two views of the protocol that begin with the same move, but have different
second moves, one can compute the seeré{ proof system is callegerfectly com-
pleteif a honest verifier always accepts a honest prover. An honest-verifier (statisti-
cal) zero-knowledge proof system can be made noninteractive by using the Fiat-Shamir
heuristic [FS86] in the random-oracle model. For this, we introduce a random oracle
H:{0,1}* — {0,1}*.

Damgard-Fujisaki integer commitment scheme. A (statistically hiding) integer com-
mitment scheme&om allows a a participanP (a polynomial-time algorithm) to com-
mit to any integern € Z, so that (1) For anyh;, ma € Z, the distributionsCom g (m1)
and Com i (ms) are statistically close; and (2) It is intractable fBrto find another
valuems, such thatCom g (m1) = Com g (ms). On top of that, it is usually required
that the integer commitment scheme enables a few proofs-of-knowledge.

The first integer commitment scheme with an efficient zero-knowledge proof-of-
knowledge for multiplicative relationship between the committed numbers was pro-
posed by Fujisaki and Okamoto [FO97], but its soundness proof was later found to be
flawed. This flaw was corrected by Da#rd and Fujisaki, who proposed a new integer
commitment scheme in [DF01]. Daragl-Fujisaki integer commitment scherlem
works over a suitable grou@. It is assumed, that while the prover knows a reasonably
close upper bound? > ord G to the order ofG, he doesot know the order itself.
Together with groug=, a large numbeF’ is chosen, such that it is still feasible to factor
numbers that are smaller thah (Say,F' = O(t'°¢*). In this paper, we také = 280.)

We refer to [DF01] for the exact definition of “suitable” but remark tbatan be cho-
sen a¥.,, for RSA modulus: = pg, wherep = ¢ = 3 (mod 4),ged(p—1,9—1) =2,
and the parts op — 1, ¢ — 1 with prime factors less thaf’ are O(¢). In this case,
B — [log, n].

During the setup phasé? andV agree on a groug: and integerF'. Verifier V'
chooses a random elemente G, such thatord 4 is F-rough, and a random €
[0,2B+1). Letg = h®. V sends the public ke = (g, k) to P and proves in statistical
zero-knowledge thay € (h). During commitment tan € Z, P chooses a random
r « [0,25+%) and sendg « ¢g™h" (that we will denote alom i (m;7)) to V. To
open a commitment? sendg(m, r,b), S.t.c = g™h"b andb? = 1.



Let Ccom denote the commitment space of the used integer commitment scheme
and letCoop, := [log, 8Ccoom |, With security parameter understood from the context.
We will assume in our calculations th@t,,,, = 1024.

Proof system for multiplicative relation. For their own integer commitment scheme,
Damgard and Fujisaki [DF01] constructed an efficient proof systemHbi(c; =
Comp (p1;p1) A ez = Comp(pa;p2) A ez = Comp(us;p3) A ps = pipe) (€.,

for the proof-of-knowledge that the committed valugis the product of another two
committed values). We will next give a brief description of this proof system, assuming
thaty; € [0,T) andp; € [0,28+). Let K = (g, h) be the public key.

1. ProverP chooses a randomn; «pg [0,2FT), ry «g [0,2B+2F), ry «—p
[0,2B+2tFT) and sends; « g™ h"™, cg « c]""h™ to V.

2. VerifierV generates a random—p, [0, F') and sends it td°.

3. Prover sendsw, = mq + epa, 15 < r1 + epy andry — ro + e(ps — pap1) o V.

4. Verifier checks thag™2h"sc; ¢ = ¢5 andc]"?h"™c5 ¢ = c.

Noninteractive version of this proof &, ma, r3,74), Withe = H(cs, cg), whereV ver-
ifies thate = H(g™2h"¢5 ¢, c[">h™ ¢35 ) mod 2. With parameter€c,,, = 1024,

F =280, T = 21024 ¢+ — 160 and B = 1024, the noninteractive proof has length
4log, F' + 2log, T+ 6t + 2B = 320 + 2048 + 480 + 2048 = 4896 bits or612 bytes.
Whenpu; = us (i.e., this protocol is used to prove tha is a square), one can assume
thatu, = pe < 2°'2 and the proof system will bé34 bytes long.

Boudot’s range proof for [0,00). Boudot’s proof system [Bou00] foPK(c =

Comy (5 p) A (u > 0)) consists of several steps: First, represeasy? + 12, where

p1, p2 = O(/m). Sincepi > 0, it is now only necessary to prove that > 0. Re-

call thaty, < T. Second, one can prove that > —6 for § := 2! FT'/? by using

the range proof with tolerance by Chan, Frankel and Tsiounis [CFT98]. Now, one has
proved that: > —6. Fourth, one can achieve zero tolerance by a priori multiplying
with a suitably chosen constatit such tha¥ < 2%/2. In this case2®/?y > —2/2 or

s > —1. When suitably modified for Dandgd-Fujisaki integer commitment system,
this proof system has completeness ef@gi /F’), and its noninteractive version has
length1166 + £ [log, 7%/] bytes.

3 Range Proofs from Diophantine Equations

3.1 Proof that a Committed Number is Nonnegative

In this subsection, we will give an efficient range proof foroo), i.e., for PK(c =
Comp (u;p) A (u > 0)). In the next subsections we will show how to generalize the
given proof system. The next theorem is crucial for our range proof:

Theorem 1. An integeru can be represented as= 2 + u3 + p3 + u? with integeru;
iff 1 > 0. Moreover, ify > 0 then the representatiofu, 12, i3, 114) can be computed
efficiently.
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Proof. If ;1 > 0, suchy; exist by a well-known result of Lagrange from 1770. Rabin
and Shallit [RS86] proposed a probabilistic polynomial time algorithm for computing
the representation. On the other hand, no negative number is a sum of four squares.

Briefly, during our proof system fdf, oo), prover first uses the Rabin-Shallit algo-
rithm to represent asu? + u2 + p2 + p3. After that, he proves t& in SZK that she
knows such a representation. Complete proof system is given by the next theorem:

Theorem 2. Let Com be the Dam@rd-Fujisaki integer commitment scheme [DF01],
and letK = (g, h) be the public key. (The@om i (m;r) = g"h".) The following pro-

tocol is a perfectly complete, honest-verifier statistically zero-knowledge and specially
sound proof system f@K(c = ComK(Zf:1 u?; p)), or equivalently in the epistemic
sense, foPK(c = Comg (u) A p > 0):

1. ProverP computes the representationofis u? + p2 + 3 + 12, using the Rabin-
Shallit algorithm. Fori € [1,4], P chooses random; «x [0,25%%) such that
>, pi = p; P chooses randomn; «pg [0,20FTY2), 1oy g [0,2B+2¢F),
rs <R [0, 23+2tFT1/2), and letscy; «— gHtihPi, co; «— g iR c3 — Hi Cﬁ“ .
h"s. Prover send$(cy;, co;)?_;,c3) tO V.

2. V generates a random < g [0, F') and sends it tdP.

3. P computesny; = m; +ep;, T4; — roi+epi, i € [1,4], andrs «— r3+ed - (1—
,ul)pL P Sendi(mgi, 7‘4,');1:1, ’I"5) toV.

4. V checks that (ay™2 h™icy,* = cg; fori € [1,4], and (D)[ ], c1;* - h™5¢ ¢ = c3.

Proof. Completenessgmzi h’h“cliie — gm1i+€ltih7‘2i+emg—euz‘ h™ePi = gMiipT2i = ¢y,
andHZ_ c’fl?zz‘ ChTse€ = Hl c;’;li ~Hi(g“ih’”)"‘“i . hr3+82i(1—/u)mg—€2i /t?h—ep —
[L it - h™ =cs.
Honest-verifier statistical zero-knowledge. The simulator acts as followsi Eor
[1,4], generatecy; < Ccom, Mma;i «r [0,2FT), r4; «—r [0,2B+2'F). Generate
e g [0,F), r5s «r [0,2BT2FT). Fori € [1,4], letcy; « g™2ih"™ic . Letes «—
[L; ¢ii?" - h"sc=¢. The resulting view((c14, ¢2; )i, c3; €; (M2, r43)i, 7'5) IS accepting and
has distribution, statistically close to the distribution of views in a real execution.
Special soundness (from two accepting vie{(s;;, ca; ), cs; €; (ma;, r4i):, 5) @and
((c1iycai)iy cas €5 (mb,, 7),)i,r5) With e # €', one can efficiently find(u;):, p), such
thatc = Comy (3 12;p)): Given such viewsg™mz —mzprai—rh = ¢ for i €
[1,4], and ][, ¢\ ™) . prs=ri = ¢e=<'. We say that we have a bad case, if either
(e—¢€') [/(ma; —mb,;)or(e—e') |/(rq; —r);) for somei € [1,4] or (e—¢€') |/(r5 — rE)
As in [DF01], we can argue that the bad case appears with a negligible probability if
the group assumptions hold. Otherwise (when we do not have the bad cagg)-let
(ma; —mb,;)/(e —¢') andp; — (rq; — 14;)/(e — €'); thency; can be opened as
c1i = gihPi, fori € [1,4], ande can be opened as= [], i - h(rs—78)/(e=¢) =
((gZ,i Hi R pi)ﬂi)h(rs—ré)/(e—el) = g2 uE R mipit(rs—rg)/(e—e’) O

Noninteractive version of this proof system({&1;):; €; (ma;, r4:):,75), Where the ver-
ifier checks that = H((c11)}_y, (g™ h™icf)iy, ¢ T, c1i* - h"s). The length of

noninteractive proof systemds” o, +2t +4(B + 3t +2log, F+% log, T)+ B+2t+
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log217%—%log21’::40964—160—%4-(10244—2404—160)4—10244—1604—804—g10g27’::
11216 + 2 log, T bits or1402 + 3 log, T bytes.

Our proposed0, co)-range proof isx 20% longer than Boudot’s proof system
for the same problem. However, our proof system enjoys the property of perfect com-
pleteness, while Boudot's proof system has completeness@(ioiF’). This result in
interesting per se, in particular since no complexity-preserving strong black-box trans-
formation can eliminate completeness error [Vad00].

Overview of the Rabin-Shallit algorithm. For completeness, we will give a short
overview of the Rabin-Shallit algorithm [RS86]:

1. Write s in the formp = 2°(2k + 1), wheres, k > 0.

2. If s =1, then
(@) Choose randomy, iz < /i, with exactly one ofu;, uy even. Letp «—

p— p3 — p3. Note thatp = 1 (mod 4).

(b) Hoping thatp is prime, try to expresp = u3 + u3 as follows: First, find a
solutionu to the equations? = —1 (mod p). (This can be done in various
efficient ways; for details see [RS86].) Now compgtd (v + i, p) = pg + i
over the Gaussian integers. Again, this can be done efficiently. Check to see
thatp = p2 + 1. If not, p was not prime, so go back to step 2a.

(c) Returnu? + u + p3 + p2 as a representation.

3. If sis odd but notl, find a representation f@&(2k + 1) and then multiply each term
by the square?, wheret = 2(s—1)/2,

4. If s is even, find a representatipf + p3 + p3 + p3 for 2(2k + 1) by step 2. Then
convert this to a representation ft&k + 1) as follows: Groupuy, p2, i3, ft4 SO
thaty = po (mod 2) andpus = ps (mod 2). Then(2k + 1) = (1 (1 + p2))? +
(3 (m s p2))? + (3(ns + pa))? + (3(us — pa))?. Now multiply by 2, where
t=2%/2,

3.2 General Framework

The ideas used to build the given efficient range proofdosc) can be generalized to
the next proof system for proving that the committed typle (1, ..., u») belongs
to some (not necessary finite) set- 7Z:

1. Find polynomialsfs(z, y) with integral coefficients, such that (a) The Diophantine
equationfs(u,y) = 0 has an integral solutiop = (y1,...,y,) iff © € S; and (b)
There is an efficient algorithm that finds at least one such solgion. ., y,,) for
eachy € S;

2. Prove in statistical zero-knowledge by using the methods of Fujisaki and
Okamoto [FO97] and integer commitment scheme of Damigand Fu-
jisaki [DFO01], using an integer commitment scheme, that you know such a solution.

A few examples:

1. flaco) (@, y1,92,y3,94) = ¥ +y3 +¥3 + yi — = + a and its complement
Ji—oo.0) (@, Y1, Y2, Y3, y4) = yi +y3 +¥3 +yi + 2 —b. (Conjectured by Fermat and
others, established by Lagrange, 1770. Algorithm by Rabin and Shallit [RS86].)
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2. 0,00\ {45 (8k+7):s,kez} (T, Y1, Y2, y3) = ¥ +y3+y35 —=. (Established by Legendre,
1798. Algorithm by Rabin and Shallit [RS86].)

3. fonq23.230) (@, 01, Ys) = Zle y? — x. (Established by Dickson, 1939. No fast
algorithms known.)

4. Linear Diophantine equatiof y, v.):ged(y:,y2)lys} (T15 T2, Y1, Y2,Y3) = Y1271 +
yax2 — y3 has an integral solution exactlygtd(y1, y2) | ys.

5. If f(x1,22,73,91,%2) = Y7 — 1195 — T2y5 — w3, We Can prove in statistical zero-
knowledge that we know an integral point on committed elliptic curve.

Due to the lack of general theory of Diophantine equations, there are not many sets
S for with readily available functiongs. However, already existing functiorfs, can
be further composed by using Boolean operations (akin to the well-known methodology
of Cramer, Dam@rd and Schoenmakers [CDS94]) to devise proofs-of-knowledge for
sets, related t@; with set-theoretic operations. A concrete example is a range proof
of i € [a,b], where one proves that— a > 0 andb — p > 0. (Note that this proof,
PK(c = Ex (u; p) A € [a, b]), has length 3804 + 3 log, (b — a) bytes, since one can
setT «— b — a.) This range proof uses a Boolean “and” of two more primitive proofs.
Equivalently, prover shows that he knows a solution to a linear Diophantine equation
system.

The methodology of [CDS94] only works with monotone Boolean operations: In
particular, it is not known, how to derive an efficient proof a committed numbeotis
equal to some constant (Although such proofs exists [MS97].) An important feature
of our proof system is that while still using only monotone Boolean operations, negative
range proofs can be implemented efficiently. For example, it is possible to prove that
w & [a,b] by proving that eithep —b—1>00ra—p—1 > 0. If a = b, this yields a
statistical zero-knowledge proof that a committed number is not equal to

The reason why it is possible to give such efficient proofs lies on the set of “prim-
itive” predicates. Namely, any predicate of fofffi(x) = 0] can be taken as a ba-
sic primitive, where[f(z) = 0] means that the Diophantine equati(x) = 0
must have integral solutions. Efficient negative proofs are possible since since of such
predicates (lik€] fio,00)(x)=0]) Specify infinite sets, and their unions have finite com-
plements. Note that proof system fBK(c = Comg(u) A p € [a,b]) basically
shows that the prover knows g such that[fi, oc)(14,y) = O] A [f(—oc,5)(1t: )]
while proof system forPK(¢c = Comg(p) A p € [a,b]) bases on the formula
[[f[b—‘rl,oo) (/*1/7 y)]] v [[f(—oo,a—l] (l’L7 y)]] .

As a final example, it is known that some number is prime exactly iff a linear Dio-
phantine equation system of equations an@6 variables has positive integral solu-
tions [Rie94]. Thus, one can prove that a committed number is prime by proving that he
knows an integral solution to this equation system, and then proving that all solutions
are positive.

4 Applications for Encrypted Numbers

4.1 Proof that committed number = encrypted number

Let (G, E, D) be a homomorphic public-key cryptosystem with = Z,, and public
key K.. In cryptographic protocols, one often needs a zero-knowledge proof that an
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encryptednumber belongs to some sgt For most of the set§, we are not aware of

any efficient range proofs fdPK(c = Ex_(p;p) A o € S) that base solely on the
security of the used encryption scheme. However, the next methodology enables to give
such proof systems, assuming ti$at_ Z,, and there is an efficient proof system for
PK(c = Comg,(u;p) A u € S), whereCom is an integer commitment scheme with

key K.:

1. ProverP creates a randomand sends; = Com g, (u; r) to verifier.
2. ProverP proves toV thatPK(c = Ex, (p; p1) A c1 = Comg, (5 p2))-
3. ProverP proves toV thatPK(c = Compg,_ (1;p) A p € S).

Note thatEy, (m + kM;r) = Ek_ (m;r) foranyk € Z and hence the proof in
the second step should actually be writtenPd§(c = Fx_ (¢ mod M;p1) A ey =
Compg_(u; p2)). However, we will omit mod M notation for the sake of simplicity.

Assuming that there is an efficient proof systemBdt(c = Com gk, (u; p)Ap € S),
we are only left to show the next result.

Theorem 3. Let Com be an integer commitment scheme andlfet= (G, E, D) be

a homomorphic public-key cryptosystem. pbete [0,25+!). The next proof system
presents a complete, honest-verifier statistical zero-knowledge, specially sound proof
for PK(c1 = Ex_ (p; p1) A ca = Compg_(u; p2)), given thaty < T

1. Prover generatesi; < [0,2'FT), 71 < R, ra «r [0,28+2'F), setscs «
Ex, (mi;m1), ca — Comp, (mq;re) and sendscs, cq) to verifier.

2. Verifier generates — g, [0, F') and sends to Prover.

3. Prover setsny <« my + eu, r3 < 1 + ep; andry «— 79 + eps and sends
(mq,r3,74) to Verifier.

4. Verifier checks that; = Ex_ (ma;r3) - ¢; ©andey = Compg_ (ma;rs) - c5 €.

Proof. Completeness. If prover is honest thBp, (ma;r3)-c; ¢ = Ex, (ma—eu;rs—
ep1) = Ex_(my;r1) = cgandComg_ (ma;rs)-cg ¢ = Comp, (ma—ep;rg—ep2) =
EKQ (ml; 7"2) = C4.

Honest-verifier statistical zero-knowledge. Simulator generates a random quadruple
(6, mo, T3, 7‘4) — [0, F) X [0, 2tFT) X R X [07 23+2t) and setg3 «— EKE (mg; 7‘3) -Cfe,
ey — Compg, (ma;ry) - ¢y ©. Clearly, this view is an accepted view. Moreover, it has
distribution that is statistically close to the distribution of real view.

Special soundness. Let the next two views be acceptingey; e; mo, r3,74) and
(c3,cq;€3mb, 5, 7)) with e # ¢’. We know from [DF01] that then with an overwhelm-
ing probability(e—e’) | (ma—mb). Thereforegs = Comp, (115 p2) With u = ma—my

e—e’
!
ma—my
e—e’

Similarly, ¢c; = Ex, (15 p1), wherey' = mod M. Hencey' = p mod M.

a

As previously, letC' denote the ciphertext space Gf and C ¢,,, the commitment
space ofCom. Noninteractive version of the presented proof system has léitgth
2logy F'+ B +1logy, T+ R=5-80+2-80 + 1024 + 1024 4 1024 = 3632 bits or
454 bytes.



Range proof for encrypted number. As a concrete application, let us describe a proof
system forlPK(c = Ex (u; p) A p € [a, b]):
1. ProverP generates; « g [0,2872%), ¢; « Compg.(u;71) and sends; to veri-
fier.
2. PprovestoV thatPK(c = Ex(u; p) A cr = Compg_(u;p1)).
3. P provestoV thatPK(c; = Comk_(u;p) A s € [a, b]).

Noninteractive version of this proof i€'¢,, + |Committed = Encrypted| +
[range proof| = 128 + 454+ 2784 + 5 log, (b — a) = 3366 + 2 log,(b— a) bytes long.

As noted before, it must be case thatb] C M for this proof to work. In particular,
we cannot take& = [0, o). Therefore, to construct a proof that an encrypted number
w does not belong téa,b] C M = Z,,, it does not suffice to prove in step 3 that
w & [a,b]: One must prove that € [0,a — 1]V e b+ 1, M —1].

4.2 Range proof in exponents for encrypted number

In several cryptographic protocols like electronic voting [DJ01], one needs range proofs
in exponents: That is, proofs of tyf (c = Ek_ (n*; p) A u € [a, b]) for somen. We
will give an efficient statistical zero-knowledge proof-of-knowledge of a small discrete
logarithm of committed number in the special case whésprime.

We will first present a proof system fK (c = Com g (m; p)):

1. ProverP generates &, < g [0,28+% F) and sends; < Comg (m;r;)toV.
2. VerifierV sends «—p [0, F) to P.

3. Prover sends, < r; +epto V.

4. Vferifier checks that; = Comg (m;ry) - ¢ €.

Noninteractive version of this proof systen{is s ), where the verifier has to check that
e = H(Comg(m;ra)-¢=¢) mod 2*. Length of this proof system isg, F'+ B+4t =
80 4 1024 + 4 - 80 = 1424 bits or178 bytes.

As before, it is sufficient to give a proof system BK(c = Ex_(n*;p) A p €
[0,8]). Sincen is a prime log,, m € [0,b] iff m | n® andu > 0. Using this observation
and ideas from the previous sections of the current paper, we have established that one
needs to prove th&K(c = Ex_ (u; p) Aca = Comg, (p; p2) Aes = Comg, (ps; p3) A
cy = Comp,(n% ps) A pus = n® A p > 0):

1. Prover generates «pg [0,2572), co «— Compg. (u;71), 12 g [0,28121),
r3 g [0,2B72), c3 « Compg, (n®/u;72), c4 — Comp, (p4;73). She sends
(ca, c3, ¢4) to verifier.

2. PprovestoV thatPK(c = Ex, (u; p1) A ca = Comg, (; p2))-

3. P proves toV thatPK(c, = Comg., (nb; p)).

4. ProverP proves toV thatPK(cy = Ek, (pa;p4) N cs = Ex, (us;ps) Aca =

B, (p2; p2) A (Ha = papi2))-

5. P provestoV thatPK(c; = Ex_(p;0) A p = 0).

Noninteractive version of this proof system has lergfih+ 454 + 178 + 602 4 1402 +
Zlogy(b — a) = 3020 + % log,(b — a) bytes. As an interesting sidenote, one could
further shorten this proof by using the result of Legendre that'it~ 4°(8k + 7) for
somes, k (for example, ifn is a power of two) them* can be represented as a sum of
three squares.
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Application to E-voting. Until now, the best (perfect) zero-knowledge proof system
for the same problem seems to be due Dardgand Jurik [DJO1]. While their range
proof in exponents does not requiteo be a prime, its length is: [log, V'] - (6C +

M + 3t + 4R), whereV is the number of candidates to vote for. In their proof system,
the length of the interaction is greater than in ours as sodn ass.

Acknowledgments and Further Work

We would like to thank Jeffrey Shallit and Petteri Kaski for useful discussions. In par-
ticular, the given description of the Rabin-Shallit algorithm is from [ShaO1].

It seems that efficient range proofs can be given for many interesting set%.
We did certainly not mention all cryptographically relevant setr which efficient
proof systems can be constructed by using the current state of knowledge in Diophan-
tine analysis. For even more sets, such proofs systems will become available with the
advance of methods in Diophantine analysis. Moreover, it is not known how to gener-
alize Rabin-Shallit algorithm efficiently to higher than the second power.
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