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Abstract

We consider distributed (threshold) cryptosystems over a composite modulus N in
which the factors of N are shared among the participants as the secret key. This is a
new idea for threshold cryptosystems based on a composite (i.e., different from the typ-
ical treatment of the much-studied RSA-based threshold systems where a “decryption
exponent” is shared among the participants). The paradigm enables solutions to open
problems in threshold cryptography and it also yields substantial efficiency improve-
ments when generation of N is done in a distributed manner (i.e., without a trusted
dealer). In particular, our approach yields two new threshold schemes:

1. Threshold homomorphic encryption. We present a scheme for threshold decryp-
tion of the homomorphic Goldwasser-Micali (GM) encryption scheme [31] which
has numerous applications and is based on the hardness of deciding quadratic
residuosity. This answers in the positive an open question in [18].

2. Threshold cryptosystems based on factoring. We describe a threshold version of a
standardized (ISO/IEC 9796) variant of Rabin signatures [36, Section 11.3.4], the
first threshold signature scheme whose security (in the random oracle model) can
be reduced [2] to the assumption that factoring is hard. The extension to Rabin
decryption (whose semantic security may be reduced to factoring) is clear.

Efficient extensions to achieve robustness and proactive security are all possible with
our schemes.

1 Introduction

Threshold cryptosystems provide for increased security and availability of a particular cryp-
tographic protocol by distributing the protocol among a number of participants. In a k-
out-of-` threshold scheme, the protocol is distributed in such a way that an adversary who
corrupts at most k − 1 participants (and learns all their local information) gains no advan-
tage in determining the secret key of the system or in breaking the underlying cryptographic
protocol. On the other hand, increased availability is achieved by ensuring that only k par-
ticipants are required in order to carry out the computation and deliver the result. Going
further, systems can be designed in a robust manner, such that even a malicious adversary
who causes up to k−1 (k ≤ `/2) players to deviate arbitrarily from the protocol cannot pre-
vent the correct output from being computed. Threshold schemes can also be proactivized
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to withstand the compromise of even all participants over the lifetime of the protocol, as
long as only k − 1 participants are corrupted during each time period; they may also be
extended to handle adaptive adversaries who decide which participants to corrupt at any
point during execution of the protocol.

A long line of research has focused on threshold cryptography, with particular emphasis
on threshold signature schemes (in many cases, deriving a threshold decryption scheme from
a related signature scheme is easy). The approach was initiated by [14, 15, 16], and the
first provably secure schemes for RSA and DSS and other discrete-log-based signatures were
given in [13, 27, 32]. Subsequent work focused on adding robustness to existing schemes
[21, 28, 29] and on threshold decryption schemes with security against chosen-ciphertext
attacks [44, 7, 17].

The above protocols are all proven secure with respect to a non-adaptive adversary who
must choose which participants to corrupt before protocol execution begins (this is the
type of adversary we consider here). Many recent works have dealt with stronger classes of
adversaries, including adaptive adversaries [1, 5] who may corrupt participants at any time
during the protocol based on its entire history. Proactive systems [38] consider adversaries
who may corrupt up to k−1 participants during any single time period. We refer the reader
elsewhere for exhaustive references (e.g., [25, 33]).

The previously-mentioned protocols assume a trusted dealer who distributes keys to the
participants before the protocol begins. The dealer must be trusted to operate correctly (in
some cases participants can verify, to some extent, correct dealing); in any case, the dealer
must be minimally trusted not to reveal the secret key, and therefore represents a single point
of failure for the entire system. Thus, it is often desirable to distribute the key-generation
phase of the protocol among the participants. This was first accomplished for discrete-log-
based cryptosystems in [29, 6] (building on [40]), and for RSA-based cryptosystems in [3]
(for passive adversaries) and [24] (for the case of active adversaries).

There is still a need to design threshold systems for many important specific cryptosys-
tems and applications (note that most previous research on threshold cryptosystems was
restricted to RSA- and discrete-log-based schemes and efficiency improvements thereof). In
particular, as pointed out elsewhere [26, 18, 11, 34, 10], homomorphic, semantically-secure,
threshold cryptosystems are useful for achieving such goals as (robust) voting and efficient
multi-party computation. We note that a threshold scheme for the (homomorphic) Paillier
cryptosystem [39] has been given previously [18, 11]. Yet, for some applications, homomor-
phism over Z2 is required or sufficient [26, 34, 10, 35] and using the Paillier cryptosystem
may not work or may be “overkill”. Clearly, additional approaches yielding threshold ho-
momorphic encryption are needed (and this was left as an explicit open question in [18] and
as a derived challenge in [10]).

Finally, even if one is satisfied with the existing threshold systems (e.g., RSA), much
research remains to be done to increase the efficiency of existing solutions.1 An example is
[42], which shows how to achieve k-out-of-` threshold computation of RSA signatures using
the simple protocol of [20] (which allowed only `-out-of-` threshold computation). Note
that a k-out-of-` solution had already been achieved by [13], yet the later scheme of [42] is
conceptually simpler. Another example is the recent proposal of [43], which gives a different

1In fact, this is the entire motivation for the area of threshold cryptography since, in a theoretical sense,
“solutions” already exist based on general multi-party computation [30].
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method for k-out-of-` sharing of RSA signatures and also describes non-interactive proofs
of correctness which make the protocol robust. Again, even though a previous solution
existed [21], the protocol of [43] is substantially more practical (for N a product of strong
primes). A final example is [8], which suggests a way to improve the efficiency (and round-
complexity) of an important step in the distributed key-generation protocols of [3, 24]. For
threshold cryptography to become truly practical, further efforts to improve the efficiency
of existing solutions are needed.

1.1 Our Contributions

Threshold homomorphic encryption. We present a threshold decryption scheme for
Goldwasser-Micali (GM) encryption based on the quadratic residuosity assumption [31]. It
is well-known that this encryption scheme is homomorphic over Z2. Semantically-secure
threshold homomorphic encryption schemes have many important applications. As an ex-
ample, efficient multi-party computation can be based on any efficient threshold homomor-
phic encryption scheme [26, 10]. The scheme can be used for distributed crypto-counting
and tallying in the electronic voting scheme of [34].

A variant threshold decryption for a GM-like cryptosystem has been constructed re-
cently (concurrent with the present work) using an alternate approach [10]. However, the
scheme of [10] (which builds on [26]) requires the DDH assumption in Z

∗
N , whereas the se-

curity of our construction relies only on the quadratic residuosity assumption (eliminating
this assumption is left open in [10]). In addition, our solution offers a more efficient and
conceptually simpler method. Finally, our scheme has the added advantage of allowing for
efficient distributed key generation2 (without a trusted dealer).

Threshold cryptosystems based on factoring. We are not aware of any previous
constructions of threshold cryptosystems whose security can be reduced to the assumption
that factoring is hard. Here, we propose a novel and efficient distributed version of a Rabin
signature scheme variant [36, Section 11.3.4] (see also [41]) as secure as factoring in the
random oracle model [2]. Extending the scheme to yield threshold decryption of the Rabin
encryption scheme (whose semantic security can be based on factoring) is immediate.

Efficiency improvements. The protocols we present are additional examples of efficient
and practical threshold schemes. When a trusted dealer cannot be assumed (and key gener-
ation must be done in a distributed fashion), our threshold schemes are more efficient than
previous solutions which do not require a trusted dealer [12, 19]. The threshold schemes
presented here may be easily executed in a modular manner following a “streamlined” ver-
sion of the distributed key-generation protocols of [3, 24] (all parameters required for the
present schemes are in place upon completion of these key-generation protocols, and we do
not require that N be a product of safe primes); we may use a “streamlined” version of
these protocols because we do not require computation of an inverse over a shared (secret)
modulus. We therefore avoid altogether the very step which a recent paper [8] improves!

Finally, we believe the methods outlined in this paper are interesting in their own right;
in some sense, the distribution of the primes themselves is a new paradigm for threshold
cryptography over composite moduli, and may prove useful in the design of future schemes.

2The scheme of [10] requires N to be a product of strong primes, a restriction we do not impose here.
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2 Model and Definitions

2.1 The Model

Participants. The participants are ` servers {P1, . . . , P`} and a trusted dealer D. We note
that, for some of our schemes, the trusted dealer is merely a notational convenience since
a distributed algorithm can be run in place of the dealer. When this is the case, we will
explicitly mention it. The dealer D generates a public key N for the underlying cryptosystem
and distributes shares to each of the participants. After the dealing phase, the dealer does
not take part in execution of the protocol. Following [27], we assume the participants are
connected by a complete network of private channels. In addition, all players have access
to an authenticated broadcast channel (i.e., the true sender of a message can always be
correctly determined). These assumptions allow us to focus on high-level descriptions of
the protocol; however, they may be instantiated using standard cryptographic techniques
(in the proactive setting, care needs to be taken; see [38, 32]).

Time. When we discuss proactivation of our schemes, we view time as divided into disjoint
periods which are determined by a common global clock. Each period consists of an initial
refresh period during which shares of players are refreshed and/or reconstructed (in the case
of participants controlled by the adversary in the previous time period). After the refresh
period, participants may generate signatures on messages they are given as input.

The Adversary. Our k-out-of-` schemes assume a non-adaptive adversary who may cor-
rupt up to k − 1 participants in each time period (in the proactive setting, a player is
considered corrupted during a time period if he was corrupted during that time period or
the preceeding refresh period). The adversary has access to all information available to the
corrupted players, including their secret keys, messages they receive, and messages broad-
cast to all players. Additionally (in the case of threshold signatures), the adversary may
submit signing requests to the system at any time. One may consider two types of adver-
saries: passive adversaries who follow the protocol faithfully yet monitor all information
available to corrupted participants, and active adversaries who may cause participants to
deviate arbitrarily from the protocol. We note that it is possible to modify our protocols to
accommodate an adaptive adversary, but we defer a detailed discussion of this point from
the present abstract.

2.2 Security

Formal definitions of security for threshold cryptosystems have appeared elsewhere [28].
We describe, informally, our requirements. First, we want the security of the threshold
scheme to be equivalent to the security of the original scheme, even when an adversary
has corrupted k − 1 servers and obtained all their local information. To prove that this
requirement is met, we reduce the security of the threshold scheme to that of the original
scheme by showing how an adversary attacking the original scheme can simulate the view
of (up to) k − 1 servers in the threshold scheme. Following [28], we call such threshold
protocols simulatable. An additional requirement we will consider is robustness: for any
active adversary who causes at most k−1 (k ≤ `/2) participants to deviate arbitrarily from
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the protocol, the correct result can always be computed by the remaining (uncorrupted)
participants.

3 Threshold Homomorphic Encryption

We begin by describing our construction of a threshold decryption scheme for the well-
known homomorphic encryption scheme [31] based on quadratic residues (henceforth, GM).
The GM encryption scheme is as follows: the public key is a composite N = pq, where p
and q are primes and p = q = 3 mod 4. The private key consists of the factorization of N .
To encrypt bit b ∈ {0, 1}, choose a random element r ∈ ZN and send C = (−1)br2 mod N .
Decryption of ciphertext C proceeds by determining whether C is a quadratic residue or
not. First, calculate the Jacobi symbol J = ( C

N ). If J 6= 1, then the ciphertext is ill-formed
(i.e., the encryption algorithm was not run honestly, or else the message was corrupted in
transmission); therefore, simply output ⊥. If J = 1, we may decide whether C is a quadratic
residue by computing b′ = C(N−p−q+1)/4 mod N ; note that C is a quadratic residue iff b′ = 1.
At this point, the original plaintext can be recovered by computing b = (1 − b ′)/2. This
scheme is semantically secure under the quadratic residuosity assumption [31].

3.1 The Basic `-out-of-` Solution

For simplicity, in this section we concentrate on describing a protocol (which we further
build on) for basic threshold GM decryption (cf. Figure 1). The basic protocol assumes a
trusted dealer and is an `-out-of-` solution. Thus, all ` participants are needed in order
to decrypt a ciphertext; on the other hand, it remains infeasible for any adversary who
corrupts ` − 1 or fewer participants to decrypt a given ciphertext. We present this simple
solution first for clarity of exposition. In the following section, we discuss extensions and
modifications which allow for the more general k-out-of-` threshold, provide robustness,
and enable proactivation of the protocol. Additionally, we show how to remove the trusted
dealer and perform the initial key generation and share distribution in a distributed manner.

Key Distribution. The dealer generates primes p, q = 3 mod 4 (where |p| = |q| = n) and
sets N = pq. The public key is N , and the private key is computed as d = (N −p−q+1)/4.
For all i, the dealer chooses pi, qi ∈R (0, 22n) such that pi = qi = 0 mod 4. Finally, the
dealer sets p0 = p−

∑`
i=1 pi and q0 = q −

∑`
i=1 qi. The dealer sends (pi, qi) to player i, and

broadcasts (N, p0, q0).

Decryption. Decryption of a ciphertext C proceeds as follows: first, the Jacobi symbol
J = ( C

N ) is computed (note that this can be computed in polynomial time even without
knowledge of the factorization of N). If J 6= 1, all players simply output ⊥. Otherwise,
player i outputs bi = C(−pi−qi)/4 mod N (note that, by design, the exponents can all be
computed over the integers). Players publicly compute b0 = C(N−p0−q0+1)/4 mod N (again,
by design, this exponent may be computed over the integers). Deciding whether C is a
quadratic residue may be done by computing b′ = Π`

i=0bi mod N . The decrypted bit is
simply b = 1−b′

2 . Security of the scheme is captured by the following theorem:
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Dealing Phase

Input: Composite N and primes p, q (|p| = |q| = n) such that N = pq
with p, q = 3 mod 4

1. Choose p1, q1, . . . , p`, q` ∈R (0, 22n) such that pi = qi = 0 mod 4, for all i

2. Set p0 = p −
∑`

i=1 pi and q0 = q −
∑`

i=1

3. Send (pi, qi) to player i

4. Broadcast (N, p0, q0)
Decryption Phase

Input: Ciphertext C

1. All players compute J = ( C
N ) (this computation may be done publicly, so all players

agree on the value)

2. If J 6= 1, all players output ⊥ and stop

3. Otherwise (J = 1), player i broadcasts bi = C(−pi−qi)/4 mod N

4. All players publicly compute b0 = C(N−p0−q0+1)/4 mod N

5. The decrypted bit b is computed as b =
(

1 − Π`
i=0bi mod N

)

/2

Figure 1: The `-out-of-` protocol for decryption

Theorem 1 The protocol of Figure 1 is simulatable for any adversary who passively eaves-
drops on at most `− 1 parties. This implies the semantic security of the encryption scheme
for such an adversary, assuming the hardness of deciding quadratic residuosity.

The proof is similar to the (more involved) proof of security for the Rabin signature scheme
given below (cf. Theorem 4), and is therefore omitted.

3.2 Extended Protocols and Applications

Reducing the Threshold. It is a severe limitation to require ` active servers in order
to decrypt. More preferable is a k-out-of-` solution in which only k servers are required for
decryption. A number of techniques exist for accomplishing this using the above protocol
as a starting point; we sketch two such solutions here.

The first approach follows the suggestions of Rabin [42] for the case of threshold RSA.
First, the dealer fixes a prime P > 22n which is broadcast to all participants. Then, for
each pi (and also qi), the dealer chooses a random (k − 1)-degree polynomial fi(·) over field
ZP such that fi(0) = pi. To player j, the dealer sends fi(j) for 1 ≤ i ≤ `. This achieves
a k-out-of-` secret sharing of the {pi} (and also the {qi}). Decryption proceeds as before,
with each player i broadcasting its share bi of the decryption. In addition, players prove
correctness of their shares using one of the robustness techniques described below. If player
i cannot prove correctness of his share (or, more generally, if player i fails to participate),
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the remaining players can publicly reconstruct (pi, qi) using the shares they have been given.
The correct share bi may then be computed publicly and included in the calculation of b.
We note that, in case a trusted dealer is not available, each player may itself deal shares of
(pi, qi) to the other players. If robustness is desired for this step, verifiable secret sharing
(VSS) may be used. Details appear in [42].

A problem with this approach is that it may unfairly penalize servers which are tem-
porarily off-line. In other words, if player i is momentarily disconnected and cannot partic-
ipate in an execution of the signing protocol, his share is publicly reconstructed (and hence
available to an adversary eavesdropping on the protocol). Note that it may be much easier
in practice for an adversary to disconnect or prevent communication from players than for
an adversary to corrupt players (even passively).

An alternative is to use ideas motivated by the sum-to-poly and poly-to-sum protocols
introduced in [23]. Here, we begin with an `-out-of-` additive sharing as in Figure 1. Let
L = `!. Player i chooses a random (k − 1)-degree polynomial fi over the integers, with
coefficients chosen uniformly from {0, L, . . . , L323nk}, such that fi(0) = L2pi (the process
is repeated for qi as well). Player i sends fi(j) to player j, for 1 ≤ j ≤ `. Player i then
sets his share to p∗i =

∑`
j=1 fj(i) (the original shares {(pi, qi)} may be erased). The p∗i

are now a k-out-of-` polynomial sharing of p. To decrypt, a random set Λ of k players is
chosen. Each player in this set computes the appropriate Lagrange interpolation coefficient
zi,Λ and sets his (temporary) share to p̂i = zi,Λ · p∗i . The p̂i may be computed over the
integers, due to the special form of the polynomials {fi} used to generate shares. Note that
the p̂i constitute a k-out-of-k additive sharing of p. The participants in Λ may now perform
k-out-of-k decryption, using these additive shares, following the paradigm of Figure 1. We
note that [23] additionally gives techniques to achieve robustness for the above approach.

The preceeding two approaches may be viewed as “generic” approaches which convert
any `-out-of-` scheme to a k-out-of-` scheme. Of course, the details must be verified (as we
have done here), and each approach needs to be appropriately modified for the particular
setting. The preceeding discussion, along with Theorem 1 and the results cited above, gives
the following theorem:

Theorem 2 The protocol of Figure 1 augmented with either of the approaches described
above gives a k-out-of-` protocol which is simulatable for any adversary who passively eaves-
drops on at most k − 1 parties.

Robustness. We may distinguish two methods for adding robustness to the above protocol:
methods which work when N is a product of strong primes3, and methods which work for
general N . Methods specialized for the former case are generally more efficient; on the other
hand, when distributed key generation is required, methods which work in the general case
must be used (since there are currently no known efficient, distributed protocols to generate
N as a product of strong primes).

The work of [28] gives two methods for verifying correctness of the partial outputs bi

when N is a product of strong primes. One method, which is completely non-interactive,
requires the dealer to distribute verification information to all players during the dealing
phase; Vi,j is sent to player i to enable his verification of player j. When executing the

3That is, N = pq with p = 2p′ + 1 and q = 2q′ + 1, where p, q, p′, q′ are all prime.
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protocol, player i outputs si and also bi,j for all j; player j verifies the correctness of bi

using Vj,i and bi,j . This requires O(` · n) memory for each player, and also increases the
communication of the protocol (per player) to O(` · n).

A second approach of [28] requires the dealer to choose a random element (of high order)
g ∈ Z

∗
N and broadcast g along with witnesses wi = g(−pi−qi)/4 mod N , for all i. After player

i broadcasts bi, he engages in an interactive, zero-knowledge proof with all other players in
which he proves that the discrete logarithms of wi with respect to g and bi with respect to
C are equal. Unfortunately, this requires interaction; it does not seem possible to eliminate
the interaction even using a random oracle. More recently, Shoup [43] (based on earlier
work of [9]) describes a non-interactive, zero-knowledge proof (using a random oracle) of
equality of discrete logarithms. Here, one must work over the subgroup of quadratic residues
QN ⊂ Z

∗
N and thus the dealer chooses g ∈ QN ; furthermore, player i proves equality of the

discrete logarithms of wi with respect to g and b2
i with respect to C2 (squaring is necessary

to ensure that we are working in QN [43]).
The above approaches suffice for N a product of strong primes. For general N , however,

we must use other techniques to achieve robustness4. One possibility is to use the crypto-
graphic program-checking method of [21], which requires interaction between each pair of
parties (this interaction can be reduced to only two rounds using a random oracle). Another
approach extends the witness-based approach above. Using a random oracle, players may,
as above, give an efficient, non-interactive, zero-knowledge proof [9] that logg wi = logC bi.
A difficulty here is that soundness is only guaranteed if g is of high order; however, as shown
in [24], a set (of super-logarithmic size) of random elements of Z

∗
N generates a large-order

subgroup of Z
∗
N with all but negligible probability. Fixing such a set as part of the dealing

phase and having players give a non-interactive proof with respect to each element in this
set is thus sufficient to guarantee soundness. A third method for achieving robustness when
special prime composites (which may be generated is a distributed manner) are used, is
that of [19] as was pointed out to us by P.-A. Fouque. The above approaches to proving
correctness of exponentiation modulo N allow proofs of correctness for the partial shares bi

broadcast by each player in the protocol. Theorems 1 and 2, together with the results cited
above, yield the following theorem:

Theorem 3 The protocol of Figure 1 augmented with any of the robustness techniques
described above (appropriate for the modulus N) and any of the approaches for achieving a
k-out-of-` (k ≤ `/2) scheme (as described in Theorem 2) results in a robust protocol which
is simulatable for any adversary who actively controls at most k − 1 parties.

Removing the Trusted Dealer. The efficiency improvement of the current protocol is
most clear when a trusted dealer is not assumed, and the public modulus must be generated
in a distributed fashion. In this case, our scheme has two advantages: (1) moduli of a special
form (i.e., N a product of strong primes) are not required, in contrast with some recent
solutions (e.g., [43]); note that currently-known, distributed key-generation protocols [3, 24]
cannot be used to generate such N . Furthermore, (2) an expensive step of the distributed

4Note that systems using general moduli N will generally do so because distributed key generation is
required (and there are no currently-known, efficient protocols for distributed generation of N a product
of strong primes). Although we still refer to a dealer, the robustness techniques described here can all be
implemented quite easily following the robust, distributed, key-generation protocol of [24].
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key-generation protocol can be skipped entirely. Specifically, computation of an inverse5

over ϕ(N) (recall that ϕ(N) must remain hidden from the players) is not required for the
current scheme.

The protocol of Figure 1 may be combined modularly with the distributed key-generation
protocols of [3, 24]. Following execution of these key-generation protocols, all the players
already have additive shares (pi, qi) of the factors of N . One point requiring care is that, as
described above, the protocol requires all players to have pi = qi = 0 mod 4. To deal with
this6, simply have player i choose pi = qi = 0 mod 4. Additionally, the “public remainder”
is set to (p0, q0) = (3, 3). Decryption is then done as before.

Proactive Security. Proactive security may be added to our protocol using known
techniques. For example, if the approach of [42] is used to achieve k-out-of-` threshold,
the generic proactivation techniques given there will work here as well. Similarly, if the
approach of [23] is used, the proactivation techniques given there will also work for the
present protocol. Due to space limitations, we refrain from a detailed description of these
techniques.

Applications. Various protocols employ the GM scheme since it possesses a unique xor-
homomorphic property. Let us review a few possible applications. The efficient multi-party
computation scheme of [10] can be based on our threshold scheme, and the efficient voting
scheme of [34] can now enjoy the important property of distributed tallying authorities.
The private information retrieval (PIR) protocol in [35], which employs in a crucial fashion
the GM-cryptosystem, is an example of a protocol into which our scheme may be integrated
seamlessly to enable distribution of the information receiver. This may be useful in certain
applications where the receiver is controlled by a quorum agreement which is managed
internally.

Chosen Ciphertext Security. A generic method for making threshold cryptosystems
secure against chosen-ciphertext attack was recently described [17], adapting the method
of Naor-Yung [37] to efficient schemes using random-oracle-based proofs. What is required
are two schemes (both based on threshold-GM above) and an honest-verifier ZK proof of
knowledge that two encryptions are of the same plaintext. Such a scheme is presented in
Appendix A; while the protocol given there is a bitwise scheme, it can be run in parallel
(and is hence very efficient) in the random-oracle model.

4 Threshold Signatures Based on Factoring

Distributing the prime factors of the modulus among the participants offers (in some sense) a
new paradigm for the construction of threshold systems over composite moduli. An example
of the applicability of this technique is the following method for threshold signatures based
on a variant of the Rabin signature scheme. The scheme is particularly interesting since it
offers the first threshold signature scheme whose security can be based on factoring (in the
random oracle model, when appropriate hashing is employed).

5Note that this is precisely the step that [8] show how to perform more efficiently than the original
solution of [3]. Here, we avoid the step altogether!

6A similar approach was noted in [3], where they require p = q = 3 mod 4.
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4.1 The Modified-Rabin Signature Scheme

The Rabin signature scheme works as follows (we use the modified-Rabin scheme where
N is a Williams integer as presented in [36, Section 11.3.4]): a public key is generated by
choosing two primes p, q of length n, such that p = 3 mod 8 and q = 7 mod 8. The public
key is set to N = pq. The private key is d = (N − p − q + 5)/8.

Messages m to be signed are assumed to be appropriately encoded (i.e., a hash of the
original message such that the results of [2] apply) and the resulting underlying message
space is M = {m : m = 6 mod 16} (which the randomized hashing and signing method in
[2] can incorporate). First, the Jacobi symbol J = ( m

N ) is computed. If J = 1, set m̃ = m;
if J = −1, set m̃ = m/2 (note that there is only negligible probability that J 6= 1,−1). The
signature is computed as s = m̃d mod N .

To verify signature s on message m (where m = 6 mod 16), first compute m̃ = s2 mod N .
Then, verify the following:

• If m̃ = 6 mod 8, verify whether m
?
= m̃

• If m̃ = 3 mod 8, verify whether m
?
= 2m̃

• If m̃ = 7 mod 8, verify whether m
?
= N − m̃

• If m̃ = 2 mod 8, verify whether m
?
= 2(N − m̃)

See [36, Section 11.3.4] for proof of correctness and further discussion.

4.2 The Protocol

As above, we present the `-out-of-` solution here for simplicity (cf. Figure 2); extensions as
discussed in Section 3.2 are applicable here as well.

Key Distribution. The dealer generates primes p, q (where |p| = |q| = n, p = 3 mod 8,
and q = 7 mod 8) and sets N = pq. The public key of the protocol is N , and the private
key (see Section 4.1) is d = (N − p − q + 5)/8. For i = 1, . . . , `, the dealer then chooses
p′i, q

′
i ∈R (0, 22n−3) and computes pi = 8p′i and qi = 8q′i (in this way, pi = qi = 0 mod 8).

The dealer sets p0 = p −
∑`

i=1 pi and q0 = q −
∑`

i=1 pi. Finally, the dealer sends (pi, qi) to
player i, and broadcasts (p0, q0).

Signature Generation. We assume the message m ∈ M to be signed is already encoded
in some appropriate agreed-upon manner (i.e., such that the results of [2] apply and the
scheme is unforgeable in the random oracle model). First, the Jacobi symbol J = ( m

N ) is
computed publicly (note that the Jacobi symbol can be computed in polynomial time even
without knowledge of the factorization of N). If J = 1, define m̃ = m; if J = −1, define
m̃ = m/2; this step may be done publicly as well.

The desired signature is s = m̃d = m̃(N−p−q+5)/8 mod N . Player i broadcasts the value
si = m̃(−pi−qi)/8 mod N (note that, by construction of the shares, the exponent can be
computed over the integers). Players publicly compute s0 = m̃(N−p0−q0+5)/8 mod N (again,
by construction of (p0, q0) the exponent can be computed over the integers). Finally, the
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Dealing Phase

Input: Composite N and primes p, q (|p| = |q| = n) such that N = pq
with p = 3 mod 8 and q = 7 mod 8

1. Choose p1, q1, . . . , p`, q` ∈R (0, 22n) such that pi = qi = 0 mod 8, for all i

2. Set p0 = p −
∑`

i=1 pi and q0 = q −
∑`

i=1 qi

3. Send (pi, qi) to player i

4. Broadcast (N, p0, q0)

Signature Generation Phase

Input: Message m = 6 mod 16 (appropriately encoded)

1. Player i computes J = (m
N ) (this computation may be done publicly, so all players

agree on the value)

2. If J = 1, set m̃ = m; else set m̃ = m/2

3. Player i broadcasts si = m̃(−pi−qi)/8 mod N

4. All players publicly compute s0 = m̃(N−p0−q0+5)/8 mod N

5. The signature s is computed as s = Π`
i=0si mod N

Figure 2: The `-out-of-` protocol for Rabin signatures

signature is computed as s = Π`
i=0si mod N . Verification of the signature is exactly the

same as described in Section 4.1.
The security of the protocol is given by the following theorem:

Theorem 4 The protocol of Figure 2 is simulatable for any adversary who passively eaves-
drops on at most `−1 parties. This implies the unforgeability (in the random oracle model)
of the signature scheme for such an adversary, assuming the hardness of factoring.

Proof A description of a simulator for the dealing phase and the signature generation
phase appears in Figure 3. We assume (without loss of generality) that the adversary
eavesdrops on players 1, . . . , ` − 1. Simulatability of the dealing phase is evident from the
following:

• The {pi, qi}1≤i≤`−1 have the same distribution as in a real execution of the protocol.

• The distribution on (p0, q0), conditioned on the values of {pi, qi}1≤i≤`−1 seen by the
adversary, is statistically indistinguishable from the distribution on (p0, q0) in a real
execution of the protocol. This is because, for any p, p∗ < 2n+1, the distributions
{p − p1}p1∈R(0,22n) and {p∗ − p1}p1∈R(0,22n) are statistically indistinguishable.

Simulatability of the signature generation phase derives from the following:

11



Simulation of Dealing Phase

Input: Composite N where |N | = 2n

1. Choose p1, q1, . . . , p`, q` ∈R (0, 22n) such that pi = qi = 0 mod 8

2. Choose random p∗, q∗ such that |p∗| = |q∗| = n, p∗ = 3 mod 8, and q∗ = 7 mod 8

3. Set p0 = p∗ −
∑`

i=1 pi and q0 = q∗ −
∑`

i=1 qi

4. Send (pi, qi) to player i, for 1 ≤ i ≤ ` − 1

5. Broadcast (p0, q0)

Simulation of Player ` in Signature Generation Phase

Input: Message m = 6 mod 16 (appropriately encoded); signature s

1. Compute J = (m
N )

2. If J = 1, set m̃ = m; else set m̃ = m/2

3. Compute si = m̃(−pi−qi)/8 mod N , for 1 ≤ i ≤ ` − 1

4. Compute s0 = m̃(N−p0−q0+5)/8 mod N

5. Broadcast s` = s/
(

Π`−1
i=0si

)

mod N

Figure 3: Simulator for `-out-of-` threshold Rabin signature scheme

• The distribution on s` is indistinguishable from its distribution in a real execu-
tion of the protocol. This is easily argued based on the indistinguishability of the
{pi, qi}0≤i≤`−1.

This concludes the proof of the theorem.

Efficient extensions to achieve optimal threshold, robustness, proactivation, and dis-
tributed key generation are all possible as outlined in Section 3.2. Also, the above method
extends to give threshold decryption of the Rabin scheme, whose semantic security may be
based on factoring.
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A ZK Proof of Equality for GM-Ciphertexts

The following is the protocol:

Input: Two Blum-integer composites N1, N2 and the input pair which is a twin encryption
of the same bit b:
{X1 = −1bx2

1 mod N1, X2 = −1bx2
2 mod N2} where xj ∈ Z∗

Nj
, j = 1, 2.

Repeat k times:

1. Prover chooses a bit c ∈ {0, 1} at random, and “twin encrypts” it at random:
{V1 = −1cv2

1 mod N1, V2 = −1cv2
2 mod N2} for random vj ∈ Z∗

Nj
.

2. Prover sends: V1, V2.

3. Verifier chooses a challenge bit d ∈ {0, 1} at random, and sends d.

4. Prover respond to the challenge by sending:
{m1 = v1 · [x1]

d mod N1,m2 = v2 · [x2]
d mod N2}

5. Verifier checks that: there exists a bit a such that both:
{m2

1 = −1a · V1 · [X1]
d mod N1,m

2
2 = −1a · V2 · [X2]

d mod N2}

Only if the checks done in all iterations are positive the verifier accepts.

Figure 4: Proof of Knowledge of twin GM-encryption

Note that the verifier assures that either the twin encryptions are of the same bit (when
d = 0), or that the plaintext of the twin encryption input, when xored with the plaintext
of the twin encryption V1, V2, yields the same result, namely the bit a.

The above proof system which is complete and sound; furthermore, it is a proof of
knowledge where the extractor attempts to rewind the prover and extract the bit b and
the random bits used in the input twin encryption. Zero-knowledgeness of the protocol
follows via standard simulation techniques; details are omitted here. To turn this to a
non-interactive random-oracle-based proof of knowledge, the Fiat-Shamir technique is em-
ployed.
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