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Abstract. A group signature scheme allows any group member to sign on behalf of the group in an anonymous
and unlinkable fashion. In the event of a dispute, a designated trusted entity can reveal the identity of the signer.
Group signatures are claimed to have many useful applications such as voting and electronic cash.
A number of group signature schemes have been proposed to-date. However, in order for the whole group signa-
ture concept to become practical and credible, the problem of secure and efficient group member revocation must
be addressed. In this paper, we construct a new revocation method for group signatures based on the signature
scheme by Ateniese et al. [ACJT]. This new method represents an advance in the state-of-the-art since the only
revocation schemes proposed thus far are: 1) based on implicit revocation and the use of fixed time periods, or
2) require the signature size to be linear in terms of the number of revoked members. Our method, in contrast,
requires no time periods and offers constant-length signatures.
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1 Introduction

Group signatures are a relatively new concept introduced by Chaum and van Heijst [CvH91] in 1991. A group
signature, akin to its traditional counterpart, allows the signer to demonstrate knowledge of a secret with respect
to a specific document. A group signature is publicly verifiable: it can be validated by anyone in possession of
a group public key. However, group signatures are anonymous in that no one, with the exception of a designated
group manager, can determine the identity of the signer. Furthermore, group signatures are unlinkable which makes
it computationally hard to establish whether or not multiple signatures are produced by the same group member.
In exceptional cases (such as a legal dispute) any group signature can be “opened” by a group manager to reveal
unambiguously the identity of the actual signer. At the same time, no one — including the group manager — can
misattribute a valid group signature.

These features of group signatures make them attractive for many specialized applications, such as voting and
bidding. They can, for example, be used in invitations to submit tenders [CP95]. All companies submitting a tender
form a group and each company signs its tender anonymously using the group signature. Once the preferred tender
is selected, the winner can be traced while the other bidders remain anonymous.

More generally, group signatures can be used to conceal organizational structures, e.g,, when a company or a
government agency issues a signed statement. Group signatures can also be integrated with an electronic cash system
whereby several banks can securely distribute anonymous and untraceable e-cash. The group property can offer a
further advantage of concealing the identity of the cash-issuing bank [LR98].

Several interesting group signature schemes have been recently proposed [CP95,CvH91,CS97,AT99a,CM98a,Cam97].
Some have been subsequently broken, others are impractical due to long public keys and/or long signatures while
most remaining schemes offer uncertain (i.e., unproven) security. One exception is a recent group signature scheme
by Ateniese et al. [ACJT] which is referred to as ACJT from here on. This scheme is particularly attractive since it
is both efficient and provably secure.

Motivation As observed in [AT99], to be truly useful, a group signature scheme must support dynamic group mem-
bership. Current state-of-the-art group signature schemes (such as Camenisch/Stadler [CS97], Camenisch/Michels



[CM98a], ACJT [ACJT]) support growing membership: new members can join without precipitating changes in
the group public key or re-issuing group membership certificates for existing members. However,shrinkinggroup
membership has not been given the same attention. We believe this is because either it was not deemed important
enough, or (more likely) no viable solutions were known.

In many realistic group settings, group members are equally likely to join, leave voluntarily or be excluded, from
the group. Therefore, we consider supporting growing and shrinking membership of equal importance. Starting from
this premise, we claim that group signature schemes, no matter how elegant or how secure, will remain a neat and
curious tool in a theoretical cryptographer’s “bag-of-tricks” until a secure and efficient method to support both
growing and shrinking membership is found.

Contribution In this paper, we construct and demonstrate an effective and secure revocation method for group
signatures based on the signature scheme by Ateniese et al. [ACJT]. This new method represents an advance in the
state-of-the-art since the only revocation schemes proposed thus far are either:1

1. Based on implicit revocation, (loosely) synchronized clocks and the use of fixed time periods, or
2. Require group signature size to beO(n) wheren is the number of revoked members and ask the signer to

performO(n) work to compute each signature.

Our method, in contrast, offer explicit (CRL-based) revocation, requires no time periods and offers constant-length
signatures and constant work for signers.

Broadly speaking, this paper has but one contribution: it demonstrates the first viable group revocation scheme
based on the only provably secure and efficient group signature scheme proposed to-date. At the same time, it should
be noted from the outset that the revocation method described in this paper is – albeit viable – is not quite practical
for reasons to be discussed below. However, we believe that this result moves the field one (perhaps, small) step
closer to reality.

Organization The rest of the paper is organized as follows. We first provide, in the next section, an overview of
related work. In Section 3 we discuss some preliminaries. Next, Section 4 discusses revocation issues in the context
of group signatures. Section 5, summarizes the Ateniese et al. group signature scheme. Sections 6 overviews a very
simple revocation scheme followed by the new quasi-efficient revocation scheme and its informal analysis presented
in Sections 7 and 8, respectively. We conclude the paper with the summary and future work.

2 Related Work

Last year, Bresson and Stern [BS2000] proposed the first viable and elegant solution for revocation of group sig-
natures. Unfortunately, their solution requires the signature size to be linear with respect to the number of revoked
members. Moreover, it is based on the group signature scheme proposed by Camenisch and Stadler which has been
found later to have certain security problems. (It should be noted that, even in its corrected/modified version, this
scheme has not been proven secure, as it relies on two non-standard assumptions.)

In a very recent paper, Song [Song] proposed two interesting revocation methods based, like the present work, on
the ACJT scheme. (Recall that ACJT is provably secure.) Both methods are notable since – in addition to standard
revocation – they also provide retroactive revocation as well as forward security. (In fact, the emphasis is on forward
security.) Moreover, they offer constant-length signatures which is an improvement over the Bresson and Stern’s
result. However, one important feature of Song’s methods is the the use of fixed (in both length and number) time
periods to support revocation. In particular, each member’s certificate must evolve in every time period and any and
all verifiers must be aware of this evolution. Also, the maximum number of time periods is fixed and embedded in
each member’s group certificate. While appropriate for some settings, this solution is not very general since it is
hard (in fact, impossible) to revoke a member within a time period. Furthermore, the security of one of the methods
is based on a new and perhaps uncertain cryptographic assumption which is appreciably stronger than the Decision
Diffie-Hellman (DDH) assumption. The second scheme relies on the existence of an efficient method (one-way
function) of deterministically computing a fixed-length sequence of prime numbers starting with an initial prime. It
remains to be seen whether practical examples of this method are possible.

1 See Section 2 for details.



3 Preliminaries

Group-signature schemes are typically defined as follows:2

Definition 1. A group signature schemeis a digital signature scheme comprised of the following five procedures:

SETUP: A probabilistic algorithm which – on input of a security parameter` – outputs the initial group public key
Y (including all system parameters) and the secret keyS for the group manager.

JOIN: A protocol between the group manager and a user that results in the user becoming a new group member.
The user’s output is a membership certificate and a membership secret.

SIGN: A probabilistic algorithm that on input a group public key, a membership certificate, a membership secret,
and a messagem outputs group signature ofm.

VERIFY: An algorithm for establishing the validity of an alleged group signature of a message with respect to a
group public key.

OPEN:An algorithm that, given a message, a valid group signature on it, a group public key and a group manager’s
secret key, determines the identity of the signer.

A secure group signature scheme must satisfy the following properties:

Correctness: Signatures produced by a group member usingSIGN must be accepted byVERIFY.
Unforgeability: Only group members are able to sign messages on behalf of the group.
Anonymity: Given a valid signature of some message, identifying the actual signer is computationally hard for

everyone but the group manager.
Unlinkability: Deciding whether two different valid signatures were computed by the same group member is com-

putationally hard.
Exculpability: Neither a group member nor the group manager can sign on behalf of other group members.3

Traceability: The group manager is always able to open a valid signature and identify the actual signer. Therefore,
any colluding subset of group members cannot generate a valid signature that the group manager cannot link to
one of the colluding group members.

In order to provide revocation of membership, an additional property is necessary:

Revocability: A signature produced usingSIGN by a revoked member must be rejected using a (potentially modi-
fied)VERIFY. Equivalently, a signature produced usingSIGN by a valid member must be accepted byVERIFY.

The efficiency of of a group signature scheme depends on a number of factors. Usually, the costs of SIGN and
VERIFY as well as the sizes of the group signature and the group public key are the most important efficiency
measures.

4 Revocation Preliminaries

In general, as soon as a member (Alice, as usual) is revoked, there must be a way to unambiguously determine
her revocation status. At the same time, all signatures generated by Alice before revocation must remain valid and
secure, i.e., anonymous and unlinkable. This property was first defined in [AT99] and later referred (and refined) by
Song [Song] asbackward unlinkability. There are, of course, exceptions to the above. For example, if revocation
takes place for reasons of fraud, it might be necessary to link and identifyall signatures generated by Alice.

One simple way to obtain revocation is to issue a new group public key and new group certificates to all valid
members whenever a group member (or a number thereof) leaves or is ejected. However, this would entail a heavy
cost and a significant inconvenience. First, all potential verifiers must be notified of the change. This appears to
be unavoidable. Second, all remaining members must participate in a JOIN protocol with the group manager. This
represents an extra burden for the members since the JOIN protocol is always on-line and involves a lot computation
(as compared to SIGN or VERIFY).

2 An in-depth discussion on this subject can be found in [Cam98].
3 However, nothing precludes the group manager from creating phantom signers and then producing group signatures. The same

risk occurs with respect to CA-s in traditional (non-group) PKI-s.



However, it is possible to avoid running interactive JOIN protocols with all members. This can be achieved by
generating a new group public key and issuing new group certificates for all memberswithout any interaction. As
an illustration, we sketch out (in Section 6) a simple method based on the ACJT scheme. (A very similar approach
can be constructed with the Camenisch/Stadler group signature scheme [CS97].) However, this approach is not very
practical as it involves the issuance of many new membership certificates and requires each group member to fetch
its new certificate following every member leave event.

To achieve more effective and efficient revocation, we need to avoid issuing new group certificates to non-
revoked members. An ideal revocation method would employ the revocation paradigm commonly used in traditional
signature schemes: a verifier simply checks the signer’s certificate against the current Certificate Revocation List
(CRL). This paradigm is attractive since the signer is unaware of the ever-changing CRL and the revocation checking
burden is placed on the verifier. In our setting, however, a group signature always contains in some form an encrypted
version of the signer’s group certificate. As pointed out in [ACJT], encryption of the certificate must be semantically
secure in order to prevent linking of group signatures.

The very same semantic security makes it impossible for the verifier to link a group signature to a (potentially)
revoked group certificate (or some function thereof) that has to appear as part of a CRL. To see why this is the case,
consider the opposite: if a verifier is able to link a single group signature to a certain CRL entry, then the same
verifier can link multiple group signatures (all by one signer) to the very same CRL entry. This is not a problem if
the signer is revoked before all of these group signatures are generated. However, if a verifier can link (based on a
current CRL) a revoked signer’s signatures computed before revocation, the property ofbackward unlinkabilityis
not preserved. Therefore, we claim that the signer must somehow factor in the current CRL when generating a group
signature. In fact, the signer must prove, as part of the signing, that its group certificate (or a function thereof) is not
part of the current CRL.

The above is the general approach we take in this paper. The method outlined in detail below (in Section 7)
requires a signer to prove non-membership of the current CRL as part of signature generation. The verifier, in
turn, checks revocation as part of signature verification. The end-result is that the notion of the group public key is
extended to include the latest group CRL.

Revocation Efficiency We identify the following measures of efficiency or practicality for any revocation method
(of course, only in the context of group signatures):

– Increased Signature Size: is the most important measure of a revocation method’s efficiency. Clearly, signature
size should be minimized. More generally, if the underlying group signature scheme hasO(x)-size signatures
(wherex is a constant, or some function of group size), revocation checking should ideally not change the
signature size in theO() notation.

– Signer Cost:is the additional cost of generating a group signature that also proves non-revocation of the signer.
Ideally, this added cost is constant.

– Verifier Cost: is the additional cost of verifying a group signature that also proves non-revocation of the signer.
As above, this added cost is, at best, constant.

– CRL Size: is an essential measure since it, in fact, determines the effective overall size of the group public key.
– CRL Issuance Cost:is the cost of composing and issuing a new CRL (by the group manager) each time a group

member must be revoked. While not completely negligible, this efficiency measure is the least significant of the
above.

5 The ACJT Group Signature Scheme

In this section we provide an overview of the ACJT scheme [ACJT]. (Readers familiar with ACJT may skip this
section with no loss of continuity.) In its interactive, identity escrow form, the ACJT scheme is proven secure and
coalition-resistant under the Strong RSA and DDH assumptions. The security of the non-interactive group signature
scheme relies additionally on the Fiat-Shamir heuristic (also known as the random oracle model.

Let ε > 1, k, and`p be security parameters and letλ1, λ2, γ1, andγ2 denote lengths satisfyingλ1 > ε(λ2+k)+2,
λ2 > 4`p, γ1 > ε(γ2 + k) + 2, andγ2 > λ1 + 2. Define the integral rangesΛ = ]2λ1 − 2λ2 , 2λ1 + 2λ2 [ and
Γ = ]2γ1 − 2γ2 , 2γ1 + 2γ2 [. Finally, letH be a collision-resistant hash functionH : {0, 1}∗ → {0, 1}k. (The



parameterε controls the tightness of the statistical zero-knowledge and the parameter`p sets the size of the modulus
to use.)

In the initial phase, the group manager (GM ) sets the group public keyY as well as its own secret keyS.

SETUP:

1. Select random secret`p-bit primesp′, q′ such thatp = 2p′ + 1 andq = 2q′ + 1 are prime. Set the modulus
n = pq.

2. Choose random elementsa, a0, g, h ∈R QR(n) (of orderp′q′).
3. Choose a random secret elementx ∈R ZZ∗

p′q′ and sety = gx mod n.
4. The group public key is:Y = (n, a, a0, y, g, h).
5. The corresponding secret key (known only toGM ) is: S = (p′, q′, x).

Suppose now that a new user wants to join the group. We assume that communication between the user and the
group manager is secure, i.e., private and authentic. The selection of per-user parameters is done as follows:

JOIN:

1. User Pi generates a secret exponent x̃i ∈R ]0, 2λ2 [, a random integer
r̃ ∈R ]0, n2[ and sendsC1 = gx̃ihr̃ mod n to GM and proves him knowledge of the representation
of C1 w.r.t. basesg andh.

2. GM checks thatC1 ∈ QR(n). If this is the case,GM selectsαi andβi ∈R ]0, 2λ2 [ at random and sends
(αi, βi) to Pi.

3. UserPi computesxi = 2λ1 + (αi x̃i + βi mod 2λ2) and sendsGM the valueC2 = axi mod n. The user
also proves toGM :
(a) that the discrete log ofC2 w.r.t. basea lies inΛ, and
(b) knowledge of integersu, v, andw such that

i. u lies in ]− 2λ2 , 2λ2 [,
ii. u equals the discrete log ofC2/a2λ1 w.r.t. basea, and

iii. Cαi
1 gβi equalsgu(g2λ2 )vhw

(The statements (i–iii) prove that the user’s membership secretxi = loga C2 is correctly computed from
C1, αi, andβi.)

4. GM checks that C2 ∈ QR(n). If this is the case and all the above
proofs were correct, GM selects a random prime ei ∈R Γ and computes
Ai := (C2 a0)1/ei mod n. Finally, GM sendsPi the new membership certificate[Ai, ei]. (Note
thatAi = (axi a0)1/ei mod n.)

5. UserPi verifies thataxia0 ≡ Ai
ei (mod n).

Thereafter, the new member can generate group signatures as follows:

SIGN:

1. Generate a random valuew ∈R {0, 1}2`p and compute:

T1 = Ai yw mod n, T2 = gw mod n, T3 = gei hw mod n .

2. Randomly choose r1 ∈R ±{0, 1}ε(γ2+k), r2 ∈R ±{0, 1}ε(λ2+k),
r3 ∈R ±{0, 1}ε(γ1+2`p+k+1), andr4 ∈R ±{0, 1}ε(2`p+k) and compute:
(a) d1 = T1

r1/(ar2 yr3) mod n, d2 = T2
r1/gr3 mod n, d3 = gr4 mod n, andd4 = gr1 hr4 mod n;

(b) c = H(g‖h‖y‖a0‖a‖T1‖T2‖T3‖d1‖d2‖d3‖d4‖m);
(c) s1 = r1 − c(ei − 2γ1), s2 = r2 − c(xi − 2λ1), s3 = r3 − c ei w, ands4 = r4 − cw (all in ZZ).

3. Output(c, s1, s2, s3, s4, T1, T2, T3).

A group signature is basically a signature of knowledge of (1) a valuexi ∈ Λ such thataxia0 is the value that is
ElGamal-encrypted in(T1, T2) undery and of (2) anei-th root of that encrypted value, whereei is the first part of
the representation ofT3 w.r.t. g andh and thatei lies inΓ .



A verifier checks the validity of a signature(c, s1, s2, s3, s4, T1, T2, T3) on a messagem as follows:

VERIFY:

1. Compute:

c′ = H
(
g‖h‖y‖a0‖a‖T1‖T2‖T3‖a0

c T1
s1−c2γ1

/(as2−c2λ1
ys3) mod n ‖

T2
s1−c2γ1

/gs3 mod n ‖T2
c gs4 mod n ‖T3

c gs1−c2γ1
hs4 mod n ‖m

)
.

2. Accept the signature if and only ifc = c′, ands1 ∈ ±{0, 1}ε(γ2+k)+1, s2 ∈ ±{0, 1}ε(λ2+k)+1, s3 ∈
±{0, 1}ε(λ1+2`p+k+1)+1, s4 ∈ ±{0, 1}ε(2`p+k)+1.

In the event that the signer must be subsequently identified (e.g., in case of a dispute)GM executes the following
procedure:

OPEN:

1. Check the signature’s validity via theVERIFY procedure.
2. RecoverAi (and thus the identity ofPi) asAi = T1/T2

x mod n.
3. Prove thatlogg y = logT2

(T1/Ai mod n)

6 Simple Revocation in ACJT

Recall that the JOIN protocol in the ACJT scheme results in the issuance of a secret membership certificate[Ai, ei]
whereAi = (axi a0)1/ei mod n.

Since the group manager is the one choosing each primeei at JOIN time, it can easily issue a new certificate
to every valid group member without any additional interaction. Specifically,GM can issue a new certificate of the
form:

Ak,i = (axi

k a0,k)1/ei mod n, ei

We use the indexk to denote the sequence number ofUi’s group certificate; equivalently,k is the number of shrinking
membership changes that took place since theUi joined the group.

The valuesak anda0,k are generated byGM for every update (re-issue) of the group public key. One simple
and efficient way of generating these values forGM to select a secret random numberr ∈ ZZp′q′ and compute
ak = ar

k−1 mod n anda0,k = ar
0,k−1 mod n. With overwhelming probabilityak anda0,k will also have orderp′q′.

Notice that a revoked user can not obtain a new-issue group certificate since the valuer is not known. Furthermore,
GM can easily compute the valueaxi

k asaxi

k = (axi

k−1)
r (the initial value ofaxi

k−1 can be stored byGM during
JOIN ).

Next, GM publishes all newly issued certificates in some public forum, e.g., a bulletin board or a web page.
Alternatively, it can broadcast the whole batch to the group. Of course, to keep the number of group members
secret,GM can (and should) also issue and publish a sufficient number of fake certificates. The new certificates are
accompanied by a new group public key:

Yk = (n, ak, a0,k, y, g, h)

Obviously, group certificates can not be published in cleartext. Instead, each certificate must be individually en-
crypted and tagged. One possible format is illustrated in Table 6. The purpose of the search tag is to help each
member find its new certificate in the table. (Otherwise, a member would have to try decryptingn/2 certificates, on
the average, before finding its own.) In this example, every new certificate is encrypted (e.g., using Cramer/Shoup
[CS98] under a public key provided by each user atJOIN time). A search tag can be computed, for example, as
a one-way function (a cryptographically strong hash function such as SHA would suffice) of each user’s previous
membership certificateAk−1,i. Other ways to compute tags are possible. For example, a pair-wise secret can be
established betweenGM and every member during JOIN. Some function of that secret can serve as a search tag.

The present method is both simple and secure. Unfortunately, it is inefficient, since – for every leaving or expelled
member –GM needs to performO(n) cryptographic operations to compose the table. Moreover, each member



Encrypted CertificateSearch Tag
E1(Ak,i, ei) F (Ak−1,1)

... ...

... ...

... ...
En(Ak,n, en) F (Ak−1,i)

Table 1.Re-issued Group Certificate Table

needs to fetch the entire certificate table (containing its new certificate) as well as the new group public key. Note
that just fetching one’s own certificate is insecure as it would reveal to a potential eavesdropper the ownership of a
group certificate.

7 More Effective Revocation

We begin by assuming, as usual, that a CRL is a structure available at all times from a number of well-known public
repositories or servers. A CRL is also assumed to be signed and timestamped by its issuer which can be a universally
trusted CA, a group manager or some other trusted party.

In addition to the usual components of a group signature scheme (SETUP, JOIN , etc.) we introduce an addi-
tional algorithm calledREVOKE. Also, as can be expected, revocation influencesSIGN andVERIFY algorithms.
TheJOIN andOPENcomponents remain unchanged. The only (addition) change inSETUPis as follows:

SETUP (new step):

– SelectḠ =< ḡ > of ordern in which computing discrete logarithms is hard. For example,Ḡ can be a
subgroup ofZ∗

p̄ for a primep̄ such thatn divides(p̄− 1).

The newREVOKEalgorithm shown below is executed by the group manager whenever a member (or a collection
of members) leaves or is expelled. (Note thatREVOKEmay also be executed as a “decoy”, i.e., without any new
membership revocation activity.) The cost to theGM is linear in the number of revoked group members.

REVOKE:(We uses to denote the index of the current CRL issue.)

1. First, choose a random elementbs ∈R QR(n) (of orderp′q′). bs becomes the current revocation base.
2. WLOG, assume thatm users:U1, ..., Um are to be revoked.
3. For each revokedUj , 0 ≥ j ≤ m compute:

Vs,j = bej
s

4. The actual revocation list is then published:

CRLs = [bs, Vs,j | 0 < j < m + 1]

In the amendedSIGN algorithm, as part of step 1, memberUi generates two additional values:

T4 = f = ḡr wherer ∈R Z∗
n

T5 = f b
ei
s mod n

Ui then proves, in zero knowledge, that the double discrete logarithm ofT4 with basesf and bs, respectively
is the same as the discrete logarithm ofT3’s representation basēg andh respectively. SinceT3 is computed as
gei hw mod n , the resulting proof of knowledge (SKLOGEQLOGLOG) is verifiable if and only if the sameei is
used the construction of bothT4 andT3. The details of this proof are presented in Section 7 below.

Remark: the current CRL,CRLs must be signed as part of the message ”m” which serves as input to the hash
function in the actual signature-of-knowledge. This commits the signer to a specific CRL epoch.

In the amendedVERIFY algorithm we introduce a new steps 3 and 4:



3. For eachVs,j ∈ CRL, check if:

T5 == T
Vs,j

4 mod n

4. Check SKLOGEQLOGLOG, the proof of equality of double discrete logarithm ofT5 and discrete logarithm of
T3’s representation basēg.

The intuition behind this scheme is straight-forward: if a memberUi is revoked,Vs,i is published as part of the
current group CRL. Thereafter, in order to produce a group signature,Ui needs to prove that(bs)ei does not appear
on the CRL which is impossible since(bs)ei = Vs,j for somej if Ui is revoked.

We claim that the new scheme providesbackward unlinkabilitybecause signatures produced by a revoked user
prior to revocation in earlier CRLepochscan not be linked to those produced after revocation. Suppose that an
adversary is able to link a pre-revocation signature to a post-revocation signature. Then, she can only do so with the
help of thenewvalues:T4 andT5. (Otherwise the ACJT scheme is insecure). SinceT4 = f is chosen at random for
each signature, the only way the adversary can link two signatures is usingT5 = f b

ei
s . However, this is impossible

since the respectivebs values are different and unrelated for any pair of signatures computed in different CRL
epochs.

To be more specific, we need to consider two cases: linking two signatures from different CRL epochs and
linking two signatures from the same CRL epoch. It is easy to see that the former is infeasible for someT 1

5 = f ′b
′ei
s

andT 2
5 = f”bs”ei wheref ′ 6= f” andb′s 6= bs”. The latter is also infeasible for someT 1

5 = f ′b
ei
s andT 2

5 = f”b
ei
s

wheref ′ 6= f”, based on a well-known variant of the DDH problem.

Obscuring CRL Size.Over time, the size of the CRL may leak some information about the population of the group:
by observing long-term changes and fluctuations in the size of the CRL, an adversary can guess the number of group
members. For this reason, it may be necessary to obscure the true CRL size. This can be done by introducing a
number of fake (but well-formed) CRL entries.

Proofs Involving Double Discrete Logs Proofs of knowledge of double discrete logarithms have been used in the
past. Examples include Stadler’s technique for publicly verifiable secret sharing [Stad96] and Camenisch/Stadler
group signature scheme and its derivatives [CS97,LR98,KP98]. All of the these involve only proofs of knowledge;
whereas, in the above scheme, we need a new proof (SKLOGEQLOGLOG) of equality of a double discrete log and
a (single) discrete log of a representation. The technique we use is a minor variation of the SKLOGLOG (proof of
knowledge of double discrete logarithm) proposed by Camenisch [Cam98], Stadler [Stad96] and Camenisch/Stadler
[CS97]. The proof is constructed as follows:

Giveny1 = gax

andy2 = gx
1gw

2 , we want to prove that:

Dloga(Dloggy1) = Dlogg1(y2/gw
2 ) (= x)

Let ` ≤ k be two security parameters andH : {0, 1}∗ −→ {0, 1, }k be a cryptographic hash function.
Generate2` random numbersr1, . . . , r` andv1, . . . , v`. Compute, for1 ≤ i ≤ `, ti = gari andt′i = gri

1 gvi
2 .

The signature of knowledge on the messagem is (c, s1, s2, . . . , s`, s
′
1, s

′
2, . . . , s

′
`), where:

c = H(m||y1||y2||g||a||||g1||g2||t1|| · · · ||t`||t′1|| · · · ||t′`)

and

if c[i] = 0 then si = ri, s
′
i = vi;

elsesi = ri − x, s′i = vi − w;

To verify the signature it is sufficient to compute:

c′ = H(m||y1||y2||g||a||g1||g2||t̄1|| · · · ||t̄`||t̄′1|| · · · ||t̄′`)

with



if c[i] = 0 then t̄i = gasi
, t̄′i = gsi

1 g
s′

i
2 ;

elset̄i = yasi
, t̄′i = y2g

si
1 g

s′
i

2 ;

and check whetherc = c′.

8 Efficiency Considerations

The new revocation scheme presented in Section 7 is quasi-efficient in that a group signature is offixed sizeand a
signer performs aconstantamount of work in generating a signature. This is, as claimed earlier, an improvement on
prior results. However, proofs involving double discrete logs are notoriously expensive. For example, if we assume
a hash functionH : {0, 1}∗ −→ {0, 1, }k wherek = 160 bits (as in SHA-1), and we assume that the security
parameter̀ = k, then eachSIGN operation will take approximately 500 exponentiations. The cost ofVERIFY is
roughly the same. Moreover, with a 1024-bit modulus, a signature can range into hundreds of Kbits. This is clearly
not efficient.

Remark: one way to reduce the costs ofSIGN andVERIFY and (roughly) halve the number of exponentiations
is to ask the signer to release as part ofSIGN two additional values:T6 = ĝ andT7 = ĝei for a randomly chosen
ĝ ∈ QRn. The signer would then prove the equality of the discrete log baseĝ of T7 and the double discrete log
of T5 (basef andbs, respectively). This proof would be both shorter and less costly then the proof of equality of
double discrete log (ofT5) and discrete log of representation ofT3.

Despite the usage of double discrete logarithm proofs, in contrast with Bresson and Stern’s scheme [BS2000],
the cost ofSIGN in our scheme is constant (independent of group size of number of revoked members) and sig-
natures are of a fixed size. Comparing with Song’s schemes, our scheme is more expensive for bothSIGN and
VERIFY due to the double discrete log proof. One advantage of our scheme is in not using fixed (in length and
number) time periods. Consequently, a new revocation list can be issued at any time. Also, we introduce no new
cryptographic assumptions. Song’s two schemes, however, have the benefit ofretroactive public revocabilitymean-
ing that a member’s signatures can be revoked for one or morepast time periods. This is a feature that our method
does not possess.

The the cost ofREVOKEin our scheme is linear in the number of revoked members:GM performs one expo-
nentiation for CRL entryVs,j . This is comparable with prior results in both [BS2000] and [Song] schemes.

9 Summary and Future Work

In this paper, we presented a new revocation method for group signatures based on the ACJT signature scheme
[ACJT]. The new method is more practical than prior art due to fixed-size signatures and constant work by signers.
On the other hand, it requires the use of proofs-of-knowledge involving double discrete logs which results in hun-
dreds of exponentiations per signature. Consequently, revocation in group signatures remains inefficient while the
following issues remain open:

– Shorter CRL: in our method a CRL is proportional to the number of revoked members. An ideal scheme would
have a fixed-size or, at least, a shorter CRL (e.g., logarithmic in the number of revoked members).

– More efficient VERIFY: the cost of VERIFY is linear in the number of revoked members. It remains to be seen
whether a constant- or sublinear-cost VERIFY can be devised.

– Double discrete log: proofs using double discrete logarithms are inefficient, requiring many exponentiations.
For revocation to become truly practical, we need to devise either more efficient double discrete log proofs or
different revocation structures that avoid double discrete log proofs altogether.
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