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Abstract. For certain cryptography applications, including identity based
encryption schemes [1] and short signatures [2], it is important to have sim-
ple abelian varieties with security parameters that are neither too small nor
too large. Simple supersingular abelian varieties are natural candidates for
these applications. This paper gives improvements on the upper bounds
of Galbraith [6] for the security parameters of simple supersingular abelian
varieties, and constructs several families of curves whose jacobians achieve
these upper bounds.

1. Introduction

Abelian varieties are higher-dimensional generalizations of elliptic curves (el-
liptic curves are the one-dimensional abelian varieties). Supersingular abelian
varieties are a very special class of abelian varieties. Supersingular abelian va-
rieties are bad for some purposes [9, 5, 4]. However, for some recent interesting
cryptographic applications [11, 7, 1, 2, 14, 6], supersingular abelian varieties
turn out to be very good. This paper gives families of examples of the “best”
supersingular abelian varieties to use in these cryptographic applications, and
gives strong upper bounds on how good supersingular abelian varieties can be
for use in cryptography.

The group of points on an abelian variety over a finite field can be used in
cryptography in the same way one uses the multiplicative group of a finite field.
The security of the system relies on the difficulty of the discrete logarithm
problem (DLP) in the group of points. One of the advantages of using the
group A(Fq) of an abelian variety in place of F×

q is that there is no known
subexponential algorithm for computing discrete logarithms on general abelian
varieties.

One of the attacks on the DLP in A(Fq) is to map A(Fq) (or the relevant
large cyclic subgroup of A(Fq)) into a multiplicative group F×

qk , using the

Date: December 2001.
Key words and phrases. abelian varieties, supersingular, elliptic curves.
Rubin was partially supported by NSF grant DMS-9800881. Silverberg was partially sup-

ported by Xerox PARC and by NSF grant DMS-9988869. Some of this work was conducted
while she was a visiting researcher at Xerox PARC.

1



2 KARL RUBIN AND ALICE SILVERBERG

Weil or Tate pairing [9, 5, 4]. If this can be done for some small k, then the
subexponential algorithm for the DLP in F×

qk can be used to solve the DLP

in A(Fq). Thus, to have high security, #A(Fq) should be divisible by a large
prime which does not divide #(F×

qk) = qk − 1 for any very small values of k.

On the other hand, for certain cryptographic applications which make use of
the Weil or Tate pairing [11, 7, 1, 2, 14, 6], it is important that A(Fq) (or the
relevant large cyclic subgroup of A(Fq)) can be mapped into F×

qk with k not

too large, in order to compute the pairing efficiently. For these applications it
is of interest to produce families of abelian varieties for which this “security
multiplier” k (see §6) is not too large, but not too small. It is known how
to produce families of elliptic curves with security multiplier up to 6, namely
supersingular elliptic curves. However, it seems to be difficult to systematically
produce elliptic curves with security multiplier larger than 6 but not enormous.
To obtain security multipliers that are not too large but not too small, it is
natural to consider supersingular abelian varieties.

In [6], Galbraith defined a certain function k(g) and showed that if A is a
supersingular abelian variety of dimension g over a finite field Fq, then there
exists an integer k ≤ k(g) such that the exponent of A(Fq) divides qk − 1.
For example, k(1) = 6, k(2) = 12, k(3) = 30, k(4) = 60, k(5) = 120, and
k(6) = 210.

Note that, since cryptographic security is based on the cyclic subgroups
of A(Fq), for purposes of cryptology it is only necessary to consider simple
abelian varieties, i.e., abelian varieties which do not decompose as products of
lower-dimensional abelian varieties.

Suppose A is a simple supersingular abelian variety of dimension g over Fq

and q is a square. In Theorem 8 we show that if we are not in the case where
g ≤ 2 and q = 4, then the smallest positive integer k such that the exponent of
A(Fq) divides qk/2 − 1 satisfies ϕ(k) ∈ {g, 2g}, where ϕ is Euler’s ϕ-function.
Theorem 8 is a refinement of Theorem 3 of [6], and uses some of the same
ideas (see also Theorem 4.2 of [10]), along with a new idea (Proposition 2)
that relies on [8]. Theorem 9 gives results in the case where q is not a square,
and uses algebraic number theory and cyclotomic fields.

For example, we show that if A is a simple supersingular abelian variety
over Fq of dimension g, then the exponent of A(Fq) divides qk − 1 for some
positive integer k less than or equal to the entry in the following table (where
p = char(Fq)). The maximum of each column shows how our bounds compare
with the bounds of Galbraith stated above, and how they improve on his
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bounds when g ≥ 3.

g 1 2 3 4 5 6
q a square 3 6 9 15 11 21
q not a square, p > 11 2 6 ∗ 12 ∗ 18
q not a square, p = 2 4 12 ∗ 20 ∗ 36
q not a square, p = 3 6 6 18 30 ∗ 42
q not a square, p = 5 2 6 ∗ 15 ∗ 18
q not a square, p = 7 2 6 14 12 ∗ 42
q not a square, p = 11 2 6 ∗ 12 22 18

(A ‘∗’ means that there are no simple supersingular abelian varieties of dimen-
sion g over Fq. See Corollary 10 below.)

In Theorem 13 we obtain a method for generating good supersingular curves
for use in cryptography. Example 14 gives families of examples which are
“best possible”, in the sense that their jacobians are simple abelian varieties
which achieve the upper bounds listed in the top row of the table above. Our
main tools come from the theory of complex multiplication of abelian varieties,
especially when applied to Fermat curves.

In §4 we introduce a useful new invariant, the cryptographic exponent of an
abelian variety. Our results are phrased in terms of this invariant. In Theorem
11 we show that the security multiplier (defined in [2]) attached to a point of
large order coincides with either the cryptographic exponent of the variety, or,
in certain cases, half the cryptographic exponent.

2. Cyclotomy

Let N denote the set of natural numbers. If k ∈ N write Φk(x) for the k-
th cyclotomic polynomial

∏
ζ (x− ζ), where the product is over the primitive

k-th roots of unity ζ. Note that deg(Φk) = ϕ(k).

Lemma 1. (i) For all k ∈ N, xk − 1 =
∏

d|k Φd(x).

(ii) Φk(x) = xϕ(k)Φk(1/x) if k > 1, and Φ1(x) = −xΦ1(1/x).
(iii) If k, q ∈ N then Φk(q) divides qk − 1.

Proof. The first two assertions are straightforward, and (iii) follows from (i).
�

Proposition 2. Suppose w, q ∈ N, and Φk(q) divides qw − 1. Then either
w ≥ k, or (k, q) = (6, 4).

Proof. Suppose w < k. Since Φk(q) | qk − 1 and the gcd (qw − 1, qk − 1) =
q(k,w) − 1, we may assume that w | k. Let m = k/w > 1, and consider the
polynomial identity

xk − 1

xw − 1
= x(m−1)w + x(m−2)w + · · ·+ 1 ≡ m (mod xw − 1).
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Since Φk(x) divides the left-hand side, evaluating this identity at q shows that
Φk(q) | m. But when (k, q) 6= (6, 4), it follows from (29) and (35) of [8] that
Φk(q) has a prime divisor which does not divide k. This contradiction shows
that we cannot have w < k. (In the exceptional case (k, q) = (6, 4), we have
Φk(q) = 3 which divides q − 1.) �

3. Simple supersingular abelian varieties

Suppose A is an abelian variety over the finite field Fq, where q is a power
of a prime p. A is supersingular if A is isogenous over Fq to a power of a
supersingular elliptic curve. (An elliptic curve is supersingular if E(Fq) has
no points of order p.) A is simple if it is not isogenous over Fq to a product
of lower-dimensional abelian varieties.

Theorem 3 (Zhu [15]). Suppose A is a simple supersingular abelian variety
over Fq, and P (x) is the characteristic polynomial of the Frobenius endomor-
phism of A. Then:

(i) P (x) = G(x)e, where G(x) ∈ Z[x] is a monic irreducible polynomial
and e = 1 or 2;

(ii) A(Fq) ∼= (Z/G(1)Z)e unless q is not a square and either
(a) p ≡ 3 (mod 4), dim(A) = 1, and G(x) = x2 + q, or
(b) p ≡ 1 (mod 4), dim(A) = 2, and G(x) = x2 − q.

In these exceptional cases, A(Fq) ∼= (Z/G(1)Z)a× (Z/G(1)
2

Z×Z/2Z)b

with non-negative integers a and b such that a + b = e.

Remark 4. Note that in the two exceptional cases in Theorem 3, the exponent
of A(Fq) is either |G(1)| or |G(1)|/2. Otherwise, the exponent of A(Fq) is
exactly |G(1)|. Always, #A(Fq) = P (1).

4. The cryptographic exponent kA

Suppose A is a simple supersingular abelian variety of dimension g over Fq.
We will associate to A (for fixed q) a positive integer kA, which we will call
the cryptographic exponent of A. We retain the notation G and e from
Theorem 3. Let

G1(x) =
G(
√

qx)

qg/e
∈ Q(

√
q)[x].

Proposition 5. Suppose A is a simple supersingular abelian variety of dimen-
sion g over Fq.

(i) Suppose q is a square. Then there is a unique positive integer kA such
that G1(x) = ΦkA

(x). Further, ϕ(kA) = 2g/e and G(1) = ±ΦkA
(
√

q).
(ii) Suppose q is not a square, and G1(x) ∈ Q[x]. Then there is a unique

positive integer kA such that G1(x) = ΦkA
(x2). Further, ϕ(kA) = g/e

and G(1) = ±ΦkA
(q).
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(iii) Suppose q is not a square, and G1(x) /∈ Q[x]. Then there is a unique
positive integer kA such that G1(x)G1(−x) = ΦkA

(x2). Further, we
have ϕ(kA) = 2g/e and G(1)G(−1) = ±ΦkA

(q).

Proof. Note that G1 is monic. Since A is supersingular, the roots of G1 are
roots of unity by p. 142 of [13].

Suppose first that q is a square. Then G1 ∈ Q[x], and G1 is irreducible in
Q[x] because G is. Hence G1 is a cyclotomic polynomial, so there is a (unique)
kA such that G1 = ΦkA

. We have ϕ(k) = deg(G1) = deg(G) = 2g/e, and by
Lemma 1(ii), G(1) = qg/eG1(1/

√
q) = ±ΦkA

(
√

q). This proves (i).
Now suppose that q is not a square, and that G1(x) ∈ Q[x]. Then G1(x) is a

polynomial in x2, say G1(x) = h(x2) with h(x) ∈ Z[x]. Since G is irreducible,
so is h, and so h is a cyclotomic polynomial ΦkA

. We have ϕ(kA) = deg(ΦkA
) =

deg(G1)/2 = deg(G)/2 = g/e, and (again using Lemma 1(ii))

G(1) = qg/eG1(1/
√

q) = qg/eΦkA
(1/q) = ±ΦkA

(q).

Finally, suppose that G1(x) /∈ Q[x]. Then G1(−x) = G1(x) ∈ Q(
√

q)[x],
where the bar denotes the nontrivial automorphism of Q(

√
q), and we have

G1(x)G1(−x) = G1(x)G1(x) = h(x2) with h ∈ Q[x]. Since G is irreducible
and G1(x) /∈ Q[x], h is irreducible. The roots of h are roots of unity, so h is
a cyclotomic polynomial ΦkA

. We have ϕ(kA) = deg(ΦkA
) = deg(G1G1)/2 =

deg(G) = 2g/e, and

G(1)G(−1) = q2g/eG1(1/
√

q)G1(−1/
√

q) = q2g/eΦkA
(1/q) = ±ΦkA

(q). �

Definition 6. The cryptographic exponent of A is the integer kA given by
Proposition 5.

Theorem 7.

(i) If q is a square then the exponent of A(Fq) divides ΦkA
(
√

q), which

divides
√

qkA − 1.
(ii) If q is not a square then the exponent of A(Fq) divides ΦkA

(q), which
divides qkA − 1.

Proof. Apply Remark 4, Proposition 5, and Lemma 1(iii). �

5. Bounds on the cryptographic exponent

Theorem 8. Suppose A is a simple supersingular abelian variety of dimension
g over Fq and q is a square. Then:

(i) ϕ(kA) ∈ {g, 2g};
(ii) if we are not in the case where g ≤ 2, q = 4, and kA = 6, then kA is

the smallest positive integer k such that the exponent of A(Fq) divides√
qk − 1.
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Proof. The first assertion is part of Proposition 5(i). By Theorem 3, the ex-
ponent of A(Fq) is G(1). By Proposition 5(i), G(1) = ±ΦkA

(
√

q). The result
now follows from Lemma 1(iii) and Proposition 2. �

If g is a positive integer and p is a prime, define finite sets

Wn = {k ∈ N : k ≥ 2, ϕ(k) = n}

and

Kg(p) =


Wg ∪ {k ∈ W2g : k ≡ 4 (mod 8)} if p = 2,

Wg ∪ {k ∈ W2g : p | k and k is odd} if p ≡ 1 (mod 4),

Wg ∪ {k ∈ W2g : p | k and k ≡ 2 (mod 4)} if p ≡ 3 (mod 4).

For example, W1 = {2}, Wn = ∅ if n is odd and n > 1,

W2 = {3, 4, 6}, W4 = {5, 8, 10, 12}, W6 = {7, 9, 14, 18},

Kg(p) = Wg ∪

p : 2 3 5 7 11 13 > 13 if g =

{4}
{12}

{20}

{28, 36}

{6}

{18}
{30}

{42}

{5}

{15}
{14}

{42}
{22}

{13}

1

2

3

4

5

6

Theorem 9. Suppose A is a simple supersingular abelian variety of dimension
g over Fq and q is not a square. Let p = char(Fq). Then either kA ∈ Kg(p),
or else g = 2 and kA = 1.

Proof. Suppose G1(x) ∈ Q[x]. By Proposition 3.3 of [15], if e = 2 then
G1(x) = x2 − 1, so kA = 1 and g = 2. If e = 1, then kA ∈ Wg by Proposition
5(ii).

Suppose G1(x) /∈ Q[x]. By Proposition 5(iii), G1(x)G1(−x) = ΦkA
(x2) and

kA ∈ Wg∪W2g. Thus the roots of G1 (and therefore also the coefficients) lie in
the cyclotomic field Q(ζ2kA

). Thus
√

p ∈ Q(ζ2kA
), and it follows that p divides

kA. If kA is odd, then the primes p such that Q(
√

p) ⊆ Q(ζ2kA
) are exactly the

primes dividing kA that are congruent to 1 (mod 4). In particular, if p = 2 or
p ≡ 3 (mod 4) then kA is even.

Suppose that kA is even. Then ΦkA
(x2) = Φ2kA

(x). Let ∆ denote the Galois
group of Q(ζ2kA

) over Q(
√

p). Identifying ∆ with a subgroup of (Z/2kAZ)×,
then ∆ is the reduction modulo 2kA of the set

D = {d ∈ Z : (d, 2kA) = 1 and
(p

d

)
= 1}
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where (p
d
) is the Jacobi symbol. Since G1 is stable under ∆, we can write

G1(x) =
∏

δ∈∆(x − ζδ) where ζ is a primitive 2kA-th root of unity. Since
Φ2kA

(x) has no multiple roots, G1(x) and G1(−x) are relatively prime, so
ζd 6= −ζ for every d ∈ D. In particular since ζkA+1 = −ζ, it follows that
kA + 1 /∈ D. Combining the definition of D with quadratic reciprocity we
obtain

−1 =
( p

kA + 1

)
=

(−1)
p−1
2

kA
2

(
kA+1

p

)
= (−1)

p−1
2

kA
2 if p is odd,

(−1)
(kA+1)2−1

8 if p = 2.

If p is odd we conclude that p ≡ 3 (mod 4) and kA ≡ 2 (mod 4). If p = 2,
then 4|kA (since

√
2 ∈ Q(ζ2kA

)), so kA ≡ 4 (mod 8). �

Corollary 10. Suppose p is prime, s and g are odd positive integers, and
g > 1.

(i) If p 6≡ 3 (mod 4), then there does not exist a simple supersingular
abelian variety A of dimension g over Fps.

(ii) If p ≡ 3 (mod 4), and there exists a simple supersingular abelian va-
riety A of dimension g over Fps, then g = pb−1(p − 1)/2 for some
positive integer b.

Proof. Suppose there is a simple supersingular abelian variety A of dimension
g over Fps . Since g > 1 is odd, we conclude from Theorem 9 that ϕ(kA) = 2g
and p | kA. This is only possible if kA = pb or 2pb, and p ≡ 3 (mod 4). �

The table in the introduction follows from Theorems 8, 9, and 7 and Corol-
lary 10.

6. The security multiplier α

As in [2], define the security multiplier α as follows. If A is an abelian
variety over Fq and P ∈ A(Fq) is a point of prime order `, let α denote the
order of q (mod `). Equivalently, α is the smallest positive integer a such that
Fqa contains non-trivial `-th roots of unity.

For purposes of cryptography we are only interested in the case where `
is large. Since ϕ(kA) ≤ 2g, the cryptographic exponent kA is small, so the
condition that ` - kA in the following result is not a problem.

Theorem 11. Suppose A is a simple supersingular abelian variety of dimen-
sion g over Fq, α is the security multiplier for some point in A(Fq) of prime
order `, and ` - kA. Then α = kA, unless q is a square and kA is even, in
which case α = kA/2. Thus, ϕ(α) ∈ {g

2
, g, 2g} (in particular, if g is odd then

either g = 1 and α = 2, or ϕ(α) = 2g).
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Proof. Note that ` divides the exponent of A(Fq). Since A is supersingular,
` - q. The roots of ΦkA

in F` are exactly the primitive kA-th roots of unity,
since ` - kA.

Suppose first that q is a square. By Theorem 7(i), we have ` | ΦkA
(
√

q), so√
q has order kA in F×

` . Thus α = kA if kA is odd and α = kA/2 if kA is even.
Now suppose that q is not a square. By Theorem 7(ii), we have ` | ΦkA

(q),
so q has order kA in F×

` . Thus α = kA. �

7. The best supersingular abelian varieties

Definition 12. Suppose A is a supersingular abelian variety of dimension g
over Fq. We say that A is optimal if

(i) A is simple, and
(ii) kA ≥ kB for every simple supersingular abelian variety B of dimension

g over Fq.

Note that if A is simple, to prove than A is optimal it suffices to show that kA

is the largest k with ϕ(k) = 2g if q is a square (Theorem 8(i)), or that kA is
the largest element of Kg(p) if q is an odd power of a prime p (Theorem 9).

In this section we give families of examples of optimal supersingular abelian
varieties A and compute their cryptographic exponents kA. These include
examples with g = 3, 4, 5, and 6, for infinitely many prime powers q.

Theorem 13. Suppose that a, b, n ∈ N have no common divisor greater than
1, n is odd, and n + 2− ((n, a) + (n, b) + (n, a + b)) = ϕ(n). Let q be a prime
power congruent to −1 (mod n), and let F = Fq2. For γ ∈ F× let Cγ be the
curve

yn = γxa(1− x)b

over F and write Aγ for its jacobian variety. Then

(i) Cγ has genus ϕ(n)/2,
(ii) Aγ is supersingular.

If in addition γ generates F× modulo n-th powers, then

(iii) Aγ is simple,
(iv) kAγ = 2n,
(v) Aγ(F ) is cyclic,
(vi) if (n, q) 6= (3, 4) then n is the smallest positive integer k such that

#Aγ(F ) divides qk − 1.

Proof. The genus g of Cγ is independent of γ, so assertion (i) follows from the
formula for the genus of C±1 given on p. 55 of [3].

Since q ≡ −1 (mod n), Theorem 20.15 of [12] shows that the Frobenius
endomorphism of A1 is multiplication by −q. In particular, the characteristic
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polynomial of Frobenius is (x + q)2g, and A1 is supersingular. Since every Aγ

is isomorphic to A1 over the algebraic closure F̄ , every Aγ is supersingular.
The endomorphism ring End(Aγ) contains the group of n-th roots of unity

µn, where ξ ∈ µn acts on Cγ by sending (x, y) to (x, ξy).

Fix an n-th root δ of γ. Then δq2
is also an n-th root of γ. Let ζ =

γ(q2−1)/n = δq2−1. Then ζn = 1, so we can view ζ ∈ µn ⊂ End(Aγ). We have
a commutative diagram

C1
φ1−−−→ C1

λ

y yλ′

Cγ
φγ−−−→ Cγ

where φ1, φγ are the q2-power maps (x, y) 7→ (xq2
, yq2

) of C1 and Cγ, respec-
tively, and λ, λ′ : C1 → Cγ are the isomorphisms (x, y) 7→ (x, δy), (x, y) 7→
(x, δq2

y). Writing [φγ], [λ′], etc. for the induced maps on A1 and Aγ, we noted
above that [φ1] = −q, and so the Frobenius endomorphism of Aγ is

[φγ] = [λ′◦φ1◦λ−1] = [λ−1]◦[φ1]◦[λ′] = [λ−1]◦(−q)◦[λ′] = −q◦[λ′◦λ−1] = −ζq.

Suppose now that γ generates F× modulo n-th powers. Then ζ is a primitive
n-th root of unity, and since n is odd, −ζ is a primitive 2n-th root of unity. The
characteristic polynomial P (x) of Frobenius on Aγ has degree 2g = ϕ(n) =
ϕ(2n), and has −ζq as a root, so P (x) =

∏
ξ(x − ξq), product over primitive

2n-th roots of unity ξ. Thus P (x) = qϕ(2n)Φ2n(x/q).
Since Φ2n(x) is irreducible, so is P (x). Assertion (iii) follows from this, (iv)

is immediate from the definition of kA (Theorem 5(i)), and (v) follows from
Theorem 3. The final assertion follows from Theorem 8. �

The following examples are easily deduced from Theorem 13.

Example 14. Suppose (g, n, a, b) is one of the following 4-tuples:

g n a b
3 9 3 1
4 15 5 3
6 21 7 3
9 27 9 1
10 33 11 3
`−1
2

` α β

where in the last row ` is a prime, 1 ≤ α, β ≤ `− 1, and α + β 6= `. Let q be
a prime power congruent to −1 (mod n), F = Fq2 , and γ a generator of F×

modulo n-th powers. Let C be the curve yn = γxa(1− x)b and A its jacobian.
Then by Theorem 13, A is simple and supersingular, genus(C) = dim(A) = g,
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kA = 2n, A(F ) is cyclic, and n is the smallest integer k such that #A(F )
divides qk − 1.

In the table above, if g = 3, 4, 6, 9, 10, or if g > 3 and g is a prime of the
form (` − 1)/2, then 2n is the largest integer k such that ϕ(k) = 2g, so A is
optimal (in the sense of Definition 12).

Remark 15. Example 14 gives optimal examples with g = 1 and 5 by taking
` = 3 and 11 in the last row, and non-optimal examples with g = 2 and 3 by
taking ` = 5 and 7 in the last row. The example y2 + y = x5 + x3 over F2

satisfies kA = 12 and g = 2 (i.e., is optimal), and was given in [6]. Example
14 gives many optimal examples over Fq when q is a square. One would like
additional optimal examples when q is not a square.

8. Conclusion

For certain security applications it is useful to have simple abelian varieties
with security parameters that are neither too small nor too large. Simple
supersingular abelian varieties are natural candidates for these applications.
This paper gives strong upper bounds for the security parameters of simple
supersingular abelian varieties (in terms of the dimension of the abelian variety
and the size of the finite field), and gives constructions of several families of
curves over fields of square order whose jacobians achieve these upper bounds.

Acknowledgments. The authors thank Steven Galbraith for his observa-
tions.
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