
Efficient algorithms for
pairing-based cryptosystems

Paulo S.L.M. Barreto1, Hae Y. Kim1, and Michael Scott2

1 Universidade de São Paulo, Escola Politécnica.
Av. Prof. Luciano Gualberto, tr. 3, 158
BR 05508-900, São Paulo(SP), Brazil.

pbarreto@larc.usp.br, hae@lps.usp.br
2 School of Computer Applications

Dublin City University
Ballymun, Dublin 9, Ireland.

mscott@indigo.ie

Abstract. We describe fast new algorithms to implement recent crypto-
systems based on the Tate pairing. In particular, our techniques improve
pairing evaluation speed by a factor of 20 compared to previously known
methods. We also propose much faster algorithms for scalar multiplica-
tion and square root extraction, the latter technique being also useful in
contexts other than that of pairing-based cryptography.

Keywords: elliptic curve cryptosystem, pairing-based cryptosystem.

1 Introduction

The recent discovery [8] of groups where the Decision Diffie-Hellman (DDH)
problem is easy while the Computational Diffie-Hellman (CDH) problem is hard,
and the subsequent definition of a new class of problems variously called the Gap
Diffie-Hellman [8], Bilinear Diffie-Hellman [2], or Tate-Diffie-Hellman [6] class,
has given rise to the development of several new cryptosystems based on pairings:

– Boneh-Lynn-Shacham [3] (BLS) short signatures.
– Boneh-Franklin identity-based encryption [2].
– Smart’s identity-based authenticated key agreement protocol [21].
– Identity-based signatures schemes [17, 19].

The growing interest in this area, which relies on the use of supersingular
elliptic curves, has led to new analyses of the associated security properties [6,
18], as well as to extensions to more general (e.g. hyperelliptic and superelliptic)
algebraic curves [6].

However, a central operation in these systems is computing a bilinear pair-
ing (e.g. the Weil or the Tate pairing), which are computationally expensive.
Moreover, it is often the case that curves over fields of characteristic 3 must be
used to achieve the maximum possible security level for supersingular curves.



Our goal is to make such systems entirely practical, and to this end we propose
several efficient algorithms for the underlying arithmetic operations.

The contributions of this paper are:

– The definition of point tripling for supersingular elliptic curves over fields
of characteristic 3, an operation that can be done in O(m) steps in poly-
nomial basis and O(1) in normal basis, as opposed to conventional point
doubling that takes O(m2) steps. Furthermore, a faster point addition algo-
rithm is proposed for normal basis representation. These operations lead to
a noticeably faster scalar multiplication algorithm in characteristic 3.

– An algorithm to compute square roots over Fpm in O(m2 log m) steps, where
m is odd and p ≡ 3 (mod 4) or p ≡ 5 (mod 8). The best previously known al-
gorithm for square root extraction under these conditions takes O(m3) steps.
This operation is important for the point compression technique, whereby a
curve point P = (x, y) is represented by its x coordinate and one bit of its y
coordinate, and its usefulness transcends pairing-based cryptography.

– A deterministic variant of Miller’s algorithm to compute the Tate pairing
that avoids many irrelevant operations present in the conventional algorithm,
and reduces the contribution of the underlying scalar multiplication to the
computational complexity from O(m3) to O(m2). The computations involved
can be done in parallel with triple-and-add scalar multiplication. Besides,
evaluation of the final powering in the Tate pairing benefits from the same
technique we use to speedup the extraction of square roots.

All of these improvements are very practical and result in noticeably faster
implementations.

This paper is organized as follows. Section 2 summarizes the mathematical
concepts we will use in the remainder of the paper. Section 3 describes point
tripling and derives a fast scalar multiplication algorithm for characteristic 3.
Section 4 introduces a fast method to compute square roots that works for half
of all finite fields, and an extension to half of the remaining cases. Section 5
presents our improvements for Tate pairing computation. Section 6 discusses
experimental results. We conclude in section 7.

2 Mathematical preliminaries

2.1 Elliptic curve arithmetic

Let p be a prime number, m a positive integer and Fpm the finite field with pm

elements; p is said to be the characteristic of Fpm , and m is its extension degree.
We simply write Fq with q = pm when the characteristic or the extension degree
are known from context or irrelevant for the discussion.

An elliptic curve E(Fq) is the set of solutions (x, y) over Fq to an equation of
form E : y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6, where ai ∈ Fq, together with an
additional point at infinity, denoted O. The same equation defines curves over
Fqk for k > 0.

2



It is possible to impose an abelian group law on E. Explicit formulas for
computing the coordinates of a point P3 = P1 + P2 = (x3, y3) from the coordi-
nates of P1 = (x1, y1) and P2 = (x2, y2) are given in [20, algorithm 2.3]; we shall
present below a subset of those formulas. The number of points of an elliptic
curve E(Fq), denoted #E(Fq), is called the order of the curve over the field Fq.
The Hasse bound states that #E(Fq) = q +1− t, where |t| 6 2

√
q. The quantity

t is called the trace of E. Of particular interest to us are supersingular curves,
which are curves whose trace t is a multiple of the characteristic p.

The order of a point P ∈ E(Fq) is the least nonzero integer r such that
rP = O. The order of a point always divides the curve order.

2.2 Bilinear maps and pairings

We follow the presentation of [2, section 3]. Let G1 be a cyclic additive group of
order n and G2 a cyclic multiplicative group of the same order n, such that the
Computational Diffie-Hellman problem is hard in both groups. A bilinear map
is a function e : G1×G1 → G2 satisfying the properties:

1. (Bilinearity) e(aP, Q) = e(P, aQ) = e(P,Q)a for all P,Q ∈ G1 and all a ∈ Z.
2. (Non-degeneracy) If e(P,Q) = 1 for all Q ∈ G1, then P = O (the identity

element in G1). This means that e does not map all pairs in G1×G1 to 1
(the identity element in G2).

3. (Computability) There is an efficient algorithm to compute e(P,Q) for all
P,Q,∈ G1.

Let E be an elliptic curve over Fq of order n, and let P be a point on
E of prime order r where r2 6 | n. The subgroup 〈P 〉 is said to have security
multiplier k for some k > 0 if r | qk − 1 and r 6 | qs − 1 for any s < k. If
E is supersingular, the value of k is bounded by k 6 6 [12]. This bound is
met by curves of characteristic 3 and no other characteristic; for instance, in
characteristic 2 the maximum achievable value is k = 4 [11, section 5.2.2].

The group E(Fq) is a subgroup of E(Fqk). Let P ∈ E(Fq) be a point of order
r such that 〈P 〉 has security multiplier k. Then E(Fqk) contains a point Q of
the same order r but linearly independent of P . Notice that, since r | n, both
nP = nQ = O.

The set of all points of order r in E(Fqk), denoted E[r], is a subgroup of
E(Fqk) called the group of r-torsion points of E. Notice that 〈P 〉 is a subgroup
of E[r], which in turn is a subgroup of E[n] where n is the order of E(Fq).

A divisor is a formal sum of points on the curve E(Fqk). The degree of
a divisor A =

∑
P aP (P ) is the sum

∑
P aP . An abelian group structure is

imposed on the set of divisors by the addition of corresponding coefficients in
their formal sums; in particular, nA =

∑
P (naP )(P ).

Let f : E(Fqk) → Fqk be a function on the curve and A =
∑

P aP (P ) be a
divisor of degree 0. We define f(A) ≡

∏
P f(P )aP . Note that, since

∑
P aP = 0,

f(A) = (cf)(A) for any factor c ∈ F∗
qk . The divisor of a function f is (f) ≡∑

P ordP (f)(P ) where ordP (f) is the order of the zero or pole of f at P (if f

3



has no zero or pole at P , then ordP (f) = 0). A divisor A is called principal if
A = (f) for some function (f). It is known [11, theorem 2.25] that a divisor A =∑

P aP (P ) is principal if and only if the degree of A is zero and
∑

P aP P = O.
Two divisors A and B are equivalent, and we write A ∼ B, if their difference
A − B is a principal divisor. Let P ∈ E[n] where n is coprime to q and AP be
a divisor equivalent to (P ) − (O); under these circumstances the divisor nAP

is principal, and hence there is a function fP such that nAP = (fP ). The Tate
pairing [5] is the bilinear map defined as en(P,Q) = fP (AQ)(q

k−1)/n.

3 Scalar multiplication in characteristic 3

The equation of a supersingular elliptic curve in characteristic 3 can always be
written in the form E : y2 = x3 + a4x + a6, a4 6= 0 [20, prop. 1.1]. Arithmetic
on such a curve is governed by the following rules, where P1 = (x1, y1), P2 =
(x2, y2), P3 = P1 + P2 = (x3, y3). By definition, −O = O, −P1 = (x1,−y1),
P1 + O = O + P1 = P1; furthermore:

P1 = −P2 ⇒ P3 = O.

P1 = P2 ⇒ λ ≡ −a4/y1, x3 = x1 + λ2, y3 = −(y1 + λ3).

P1 6= −P2, P2 ⇒ λ ≡ y2 − y1

x2 − x1
, x3 = λ2 − (x1 + x2), y3 = y1 + y2 − λ3.

These rules in turn give rise to the double-and-add method to compute scalar
multiples V = kP , k ∈ Z. Let the binary representation of k > 0 be k =
(kt . . . k1k0)2 where ki ∈ {0, 1} and kt 6= 0. Computation of V = kP proceeds as
follows.

Double-and-add scalar multiplication:

set V ← P ;
for i← t− 1, t− 2, . . . , 1, 0 do {

set V ← 2V ;
if ki = 1 then set V ← V + P ;

}

By extension, one defines 0P = O and (−k)P = k(−P ) = −(kP ).
Several improvements to this basic algorithm are well known [13]. However,

one can do much better than this if a4, a6 ∈ F3, as we will now see.

3.1 Point tripling

In characteristic 3, point tripling for the supersingular curve E : y2 = x3 +a4x+
a6 where a4, a6 ∈ F3, a4 6= 0, can be done in time O(m) in polynomial basis,

4



or simply O(1) in normal basis. Indeed, since the cubing operation is linear in
characteristic 3, given P = (x, y) one computes 3P = (x3, y3) with the formulas:

x3 = (x3)3 + a6(1− a4)
y3 = −(y3)3

These formulas are derived from the basic arithmetic formulas above in a
straightforward way.

The linearity of point tripling is similar to point doubling for supersingular
curves in characteristic 2, as discovered by Menezes and Vanstone [14], and it
leads to a triple-and-add scalar multiplication algorithm much faster than the
double-and-add method to compute V = kP . Let the ternary representation of
k be k = (kt . . . k1k0)2 where ki ∈ {0, 1, 2} and kt 6= 0. Computation of V = kP
proceeds as follows.

Triple-and-add scalar multiplication:

set V ← P if kt = 1, or V ← −P if kt = 2;
for i← t− 1, t− 2, . . . , 1, 0 do {

set V ← 3V ;
if ki = 1 then set V ← V + P ;
if ki = 2 then set V ← V − P ;

}

Obviously, the same advanced techniques used for the double-and-add
method can be easily applied to triple-and-add.

3.2 Projective coordinates

Koblitz [9] describes a method to add curve points over characteristic 3 in pro-
jective coordinates with 10 multiplications. Actually, point addition can be done
with only 9 multiplications. Let P1 = (x1, y1, z1), P2 = (x2, y2, 1); one computes
P3 = P1 + P2 = (x3, y3, z3) as:

A = x2z1 − x1,

B = y2z1 − y1,

C = A3,

D = C − z1B
2,

x3 = x1C −AD,

y3 = BD − y1C,

z3 = z1C.

To recover P3 in affine coordinates one just sets P3 = (x3/z3, y3/z3). This in-
volves one single inversion, which is usually only performed at the end of a scalar
multiplication.

5



4 Square root extraction

One can use the elliptic curve equation E : y2 = f(x) over Fq, where f(x) is a
cubic polynomial, to obtain a compact representation of curve points. The idea
is to use a single bit from the ordinate y as a selector1 between the two solutions
of the equation y2 = f(x) for a given x.

In a finite field Fpm where p ≡ 3 (mod 4) and odd m, the best algorithm
known [4, 13] to compute a square root executes O(m3) Fp operations. By that
method, a solution of x2 = a is given by x = a(pm+1)/4, assuming a is a quadratic
residue.

We first notice that, if m = 2k + 1 for some k:

pm + 1
4

=
p + 1

4

[
p(p− 1)

k−1∑
i=0

(p2)i + 1

]
,

so that
a(pm+1)/4 = [(a

∑k−1
i=0 (p2)i

)p(p−1) · a](p+1)/4.

These relations can be verified by straightforward induction. The quantity
a

∑k−1
i=0 ui

where u = p2 can be efficiently computed in an analogous fashion to
Itoh-Teechai-Tsujii inversion [7], based on the Frobenius map in characteristic p:

a1+u+···+uk−1
=

{
(a1+u+···+ubk/2c−1

) · (a1+u+···+ubk/2c−1
)ubk/2c

, k even,

((a1+u+···+ubk/2c−1
) · (a1+u+···+ubk/2c−1

)ubk/2c
)u · a, k odd.

Notice that raising to a power of p is a linear operation in characteristic p
(and almost for free in normal basis representation). It can be easily verified
by induction that this method requires blg kc + ω(k) − 1 field multiplications,
where ω(k) is the Hamming weight of the binary representation of k. Additional
O(log p) multiplications are needed to complete the square root evaluation due
to the extra multiplication by a and to the raisings to p − 1 and (p + 1)/4,
which can be done with the conventional exponentiation algorithm2. The overall
cost is O(m2(log m + log p)) Fp operations to compute a square root. If the
characteristic p is fixed and small compared to m, the complexity is simply
O(m2 log m) Fp operations.

Similar recurrence relations hold for a variant of Atkin’s algorithm [16, sec-
tion A.2.5] for computing square roots in Fpm when p ≡ 5 (mod 8) and odd
m, with the same O(m2(log m + log p)) complexity. The details are left to the
reader.
1 In certain cryptographic applications one can simply discard y. This is the case,

for instance, of the BLS signature scheme, where one only keeps the abscissa x as
signature representative. Notice that one could discard the ordinates of public keys
as well, without affecting the security level.

2 If p is large, it may be advantageous to compute zp−1 as zp/z, trading O(log p)
multiplication by one inversion.

6



The general case is unfortunately not so easy. Neither the Tonelli-Shanks
algorithm [4] nor Lehmer’s algorithm [16, section A.2.5] can benefit entirely
from the above technique, although partial improvements that don’t change the
overall complexity are possible.

The above improvements are useful not only for pairing-based cryptosystems,
but for more conventional schemes as well (see e.g. [9, section 6]).

4.1 Abscissas vs. ordinates

As we saw above, solving a quadratic equation over F3m takes O(m2 log m) time.
In characteristic 3, one can alternatively solve for x the cubic equation y2 = f(x)
in only O(m2) time, and represent a point V = (x, y) by its ordinate y and one
F3 component of x chosen to select among the three equation solutions. If x0 is
a solution, the other two are x1 = x0 + 1 and x2 = x0 + 2.

Suppose that a pairing e(P, V ) must be computed in a certain cryptosystem.
In schemes where one only knows the abscissa x (i.e. where either V or −V are
equally acceptable for pairing evaluation), one avoids the burden of calculating
two pairings by using the property that e(P,−V ) = e(P, V )−1, as noticed in [3,
section 5.1]. On the other hand, it would seem that one must compute three
pairings e(P, Vi), i ∈ {0, 1, 2}, in settings where one only knows the ordinate
y. However, one easily verifies that V0 + V1 + V2 = O, and hence e(P, V2) =
[e(P, V0) · e(P, V1)]−1, and because P is the same and both V0 and V1 share a
common ordinate y, these two pairings can be computed together, with only a
modest performance penalty as compared to computing only one pairing.

5 Computing the Tate pairing

In this section we propose several improvements to Miller’s algorithm for com-
puting the Tate pairing, as well as to some features of the Tate pairing itself.

Let P,Q,∈ E[n] be linearly independent points. As we saw in section 2.2, the
Tate pairing is defined as en(P,Q) = fP (AQ)(q

k−1)/n, where AQ ∼ (Q) − (O).
Evaluation of fP (AQ) proceeds iteratively. Let R1, R2 ∈ E[n] be two random
curve points, and define Ab ≡ b(P + R1) − b(R1) − (bP ) + (O). Since Ab is a
principal divisor, there exists a function fb such that (fb) = Ab; furthermore,
(fn) = (fP ), so that fP (AQ) = fn(AQ).

Consider functions g1(x, y) = a1x + b1y + c1 and g2(x, y) = x + c2 defined so
that the secant line through points bP and cP (or the tangent at bP if bP = cP )
satisfies g1(x, y) = 0, and the vertical line through (b+ c)P satisfies g2(x, y) = 0.
It can be shown [2, appendix C] that the following relation (Miller’s formula)
holds:

fb+c(AQ) = fb(AQ) · fc(AQ) · g1(AQ)
g2(AQ)

.

Actual calculations use the divisor (Q + R2)− (R2) ∼ AQ:

fb+c(AQ) = fb(AQ) · fc(AQ) · g1(Q + R2)g2(R2)
g2(Q + R2)g1(R2)

,

7



assuming none of the gi values above is zero (otherwise Miller’s algorithm is said
to fail for this choice of R1 and R2, and one should pick a new random pair).

It remains to compute f1(AQ), which is easy since (f1) ∼ (P + R1)− (R1)−
(P ) + (O). Define functions γ1(x, y) = a1x + b1y + c1 and γ2(x, y) = x + c2 so
that the secant through points P and R1 satisfies γ1(x, y) = 0 and the vertical
through P + R1 satisfies γ2(x, y) = 0. In this case Miller’s formula reads:

f1(AQ) =
γ2(AQ)
γ1(AQ)

=
γ2(Q + R2)γ1(R2)
γ1(Q + R2)γ2(R2)

.

These formulas are used in Miller’s algorithm, defined below.

Miller’s algorithm:

compute f1(AQ);
set V ← P ;
for i← t− 1, t− 2, . . . , 1, 0 do {

// N.B. V ≡ bP for some b;
compute f2b(AQ) from fb(AQ), V and 2V ;
set V ← 2V ;
if ki = 1 then {

compute fb+c(AQ) from fb(AQ), fc(AQ), V and V + P ;
set V ← V + P ;

}
}

5.1 Irrelevant factors

Let the curve order be n = hr where r is prime, h 6= 1, and gcd(h, r) = 1. For P ,
Q of order r, the Tate pairing en(P,Q) can be made deterministic by choosing
distinct finite points R1 and R2 from the subgroup of points of order h.

We first observe that, in general, the Tate pairing is computed on a pair of
points (P,Q) where P ∈ E(Fq) and Q ∈ E(Fqk); hence, the coordinates of P are
in Fq, and so are the coordinates of R1 and P + R1 with the proposed choice of
R1. Hence, the coefficients of g1, g2, γ1 and γ2 are all in Fq as well.

We will need the following lemmas:

Lemma 1. All factors contributed by R2 to Miller’s formula are in Fq.

Proof. The factors contributed by R2 are g1(R2), g2(R2), γ1(R2), and γ2(R2).
The choice of R2 implies that its coordinates are in Fq. Since the coefficients of
g1, g2, γ1 and γ2 are also in Fq, the factors contributed by R2 are in Fq. ut

Lemma 2. The factors contributed by R2 and Q + R2 to Miller’s formula are
always nonzero (in other words, Miller’s algorithm will never fail with this choice
of R1 and R2).

8



Proof. These factors consist of the gi and γi functions evaluated at R2 and
Q + R2, i = 1, 2. Consider that:

– the line g1(x, y) = 0 intercepts the curve only at bP , cP , and −(b + c)P ;
– the line g2(x, y) = 0 intercepts the curve only at ±(b + c)P and O;
– the line γ1(x, y) = 0 intercepts the curve only at P , R1, and −(P + R1);
– the line γ2(x, y) = 0 intercepts the curve only at ±(P + R1) and O.

It follows that R2 cannot be any of these points, since by choice R2 and P are
in different subgroups, R2 6= R1, and R2 6= O (notice that, if P + R1 = ±R2,
then P = R1±R2, so all these points would be in the same subgroup). Similarly,
Q+R2 cannot be any of these points, as otherwise R2 would be in the subgroup
of order r rather than h, or Q would be in the subgroup of order h rather than r.
Therefore, the equations of these lines are not satisfied by either R2 or Q + R2,
and all factors contributed by these points are nonzero. ut

Lemma 3. The value q−1 is a factor of (qk−1)/r for any factor r of the order
n for a supersingular elliptic curve over Fq with security multiplier k > 1.

Proof. Since F∗
q is a multiplicative subgroup of F∗

qk , it follows that # F∗
q |# F∗

qk ,
i.e. q−1 | qk−1. On the other hand, it is known [11, section 5.2.2] that the order
n of a supersingular curve with security multiplier k > 1 does not divide q − 1,
and hence no factor r of n does. Therefore (qk−1)/r contains a factor q−1. ut

These lemmas immediately lead to the following result:

Theorem 1. As long as k > 1, the factors contributed by R2 to Miller’s formula
are irrelevant to the computation of the Tate pairing er(P,Q) where r | n.

Proof. Since these factors are nonzero, evaluation of Miller’s formula cannot
fail due to them; moreover, by Fermat’s Little Theorem for finite fields [10,
lemma 2.3] these Fq factors disappear under the final raising to the power of
q − 1, which originates as a factor of (qk − 1)/r. Therefore they are irrelevant
and can be omitted from the Tate pairing computation. ut

5.2 Coupling pairing evaluation with point tripling

Miller’s composition formula can be extended to work with point tripling, so
as to obtain f3b(AQ) from fb(AQ) and points bP and (3b)P . Discarding the
irrelevant factors, one obtains:

f3b(AQ) = f3
b (AQ) · g1(Q + R2)

g2(Q + R2)
· g3(Q + R2)
g4(Q + R2)

,

where g1(x, y) = a1x + b1y + c1, g2(x, y) = x + c2, g3(x, y) = a3x + b3y + c3, and
g4(x, y) = x + c4 are defined so that the tangent at bP satisfies g1(x, y) = 0, the
vertical through (2b)P satisfies g2(x, y) = 0, the secant through points (2b)P and
bP satisfies g3(x, y) = 0, and the vertical through (3b)P satisfies g4(x, y) = 0.

9



Notice that it is not necessary to actually compute (2b)P : the coefficients
of g3(x, y) can be obtained from bP and −(3b)P , and the inversion needed to
compute the abscissa of (2b)P needed for g2(x, y) is avoided with a scale factor.

The tripling formula is by itself more efficient than the doubling formula,
since the squaring operation, which takes O(m2) time, is replaced by cubing,
which has only linear complexity at most. Besides, it is invoked only a fraction
log3 2 compared to the doubling case.

Furthermore, it is known [11, section 5.2.2] that the curve order over F3m

has the form n = 3m ± 3(m+1)/2 + 1. Hence, computing fP (AQ) as fn(AQ) (as
opposed to, say, fr(AQ), where r |n) is very efficient with point tripling, since
only two additions or one addition and one subtraction are needed to compute
nAQ as ((3(m−1)/2 ± 1)3(m+1)/2 + 1)AQ.

An interesting observation is that, even if Miller’s algorithm computes fr(AQ)
for r |n, it is often the case that a technique similar to that used for square root
extraction can be applied, reducing the number of point additions or subtractions
from O(m) down to O(log m). However, we won’t elaborate on this possibility,
as the above choice is clearly faster.

5.3 Choice of the subgroup order

Pairing evaluation over fields Fp2 of general characteristic (as used, for instance,
in the Boneh-Franklin identity-based cryptosystem [2]) with Miller’s algorithm
can benefit from the above observations with a careful choice of parameters,
particularly the size q of the subfield Fq of Fp where calculations are performed.
Instead of choosing a random subfield prime, use a Solinas prime [22] of form
q = 2α ± 2β ± 1 (it is always possible to find such primes for practical subgroup
sizes), since qP = (2β(2α−β±1)±1)P involves only two additions or subtractions
plus α doublings.

With this technique, the contribution of the underlying scalar multiplication
to the complexity of Miller’s algorithm is only O(m2) instead of O(m3).

5.4 Speeding up the final powering

Evaluation of the Tate pairing en(P,Q), where n is the curve order over Fpm ,
includes a final raising to the power of (pkm−1)/n. The powering is usually com-
puted in O(m3) steps. However, this exponent shows a rather periodical structure
in base p. One can exploit this property in a fashion similar to the square root
algorithm of section 4, reducing the computational effort to O(m2 log m) steps.

5.5 Fixed-base pairing precomputation

Actual pairing-based cryptosystems often need to compute pairings e(P,Q)
where P is either fixed (e.g. the base point on the curve) or used repeatedly
(e.g. a public key). In these cases, the underlying scalar multiplication in Miller’s
algorithm can be executed only once to precompute the coefficients of the gi and

10



γi functions that appear in Miller’s formula. One can also write factors of form
g(x, y) = ax + by + c where a 6= −1, 0, 1 as a(x + b′y + c′) where b′ = b/a and
c′ = c/a; the factored a is cancelled by the final powering in the Tate pairing
as described in section 5.1, and can therefore be omitted altogether, thus saving
one multiplication per g(x, y) factor.

6 Experimental results

BLS signature generation is faster than RSA or DSA signing at the same security
level. Table 1 compares the signing times for the RSA, DSA, ECSA, and BLS
signature schemes. Implementations were based on the MIRACL library.

Table 1. Comparison of signing times on a PIII 1 GHz.

algorithm signing time

RSA, |n| = 1024 bits, |d| = 1007 bits 7.90 ms
DSA, |p| = 1024 bits, |q| = 160 bits 4.09 ms

Fp ECDSA, |p| = 160 bits 4.00 ms
F2160 ECDSA 5.77 ms

F397 BLS 3.54 ms

BLS signature verification speed shows an improvement by a factor of about
14 without preprocessing and about 20 with preprocessing, as listed in table 2.

Table 2. BLS signature verification times on a PIII 1 GHz.

underlying field published [3] without preprocessing with preprocessing

F397 2900 ms 210 ms 142 ms

The performance of Boneh-Franklin identity-based encryption (IBE) is also
comparable to other cryptosystems, as shown in table 3.

Table 3. IBE decryption times on a PIII 1 GHz.

system parameters without preprocessing with preprocessing

|p| = 512 bits, |q| = 160 bits 35 ms 21 ms

11



6.1 Implementation issues

Originally, the authors of the BLS scheme suggest representing F36m as
F36 [x]/τm(x) for a suitable irreducible polynomial τm(x) [3, section 5.1]. It is
our experience that the alternative representation as F3m [x]/τ6(x) using an irre-
ducible trinomial τ6(x) leads to better performance; moreover, both signing and
verification benefit at once from any improvement made to the implementation
of F3m . Karatsuba multiplication with fairly low overhead is also possible.

7 Conclusion

We have proposed several new algorithms to implement pairing-based cryptosys-
tems. Our algorithms are all practical and lead to significant improvements, not
only for the pairing evaluation process but to other operations as well, such as
elliptic curve scalar multiplication and square root extraction.

An interesting line of further research is the application of these techniques
to more general algebraic curves; for instance, a fast n-th root algorithm in the
lines of the square root algorithm presented here would be useful for superelliptic
curves.

References

1. I. Blake, G. Seroussi and N. Smart, “Elliptic Curves un Cryptography,” Cambridge
University Press, 1999.

2. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Advances in Cryptology – Crypto’2001, Lecture Notes in Computer Science 2139,
pp. 213–229, Springer-Verlag, 2001.

3. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,”
Proceedings of Asiacrypt’2001, to appear. Preprint available online at http://

crypto.stanford.edu/dabo/abstracts/weilsigs.html.

4. H. Cohen, “A Course in Computational Algebraic Number Theory,” Springer-
Verlag, 1993.

5. G. Frey, M. Müller, and H. Rück, “The Tate Pairing and the Discrete Logarithm
Applied to Elliptic Curve Cryptosystems,” IEEE Transactions on Information The-
ory 45(5), pp. 1717–1719, 1999.

6. S. Galbraith, “Supersingular curves in cryptography,” Proceedings of Asia-
crypt’2001, to appear.

7. T. Itoh, O. Teechai and S. Tsujii, “A fast algorithm for computing multiplica-
tive inverses in GF(2m) using normal bases,” Information and Computation 78,
pp. 171–177, 1988.

8. A. Joux and K. Nguyen, “Separating Decision Diffie-Hellman from Diffie-Hellman
in Cryptographic Groups,” Cryptology ePrint Archive, Report 2001/003, available
at http://eprint.iacr.org/2001/003/.

9. N. Koblitz, “An Elliptic Curve Implementation of the Finite Field Digital Signature
Algorithm,” Advances in Cryptology – Crypto’98, Lecture Notes in Computer
Science 1462, pp. 327–337, Springer-Verlag, 1998.

12



10. R. Lidl and H. Niederreiter, “Finite Fields,” Encyclopedia of Mathematics and its
Applications 20, 2nd Ed. Cambridge University Press, 1997.

11. A.J. Menezes, “Elliptic Curve Public Key Cryptosystems,” Kluwer International
Series in Engineering and Computer Science, 1993.

12. A.J. Menezes, T. Okamoto and S.A. Vanstone, “Reducing elliptic curve logarithms
to logarithms in a finite field,” IEEE Transactions on Information Theory 39,
pp. 1639–1646, 1993.

13. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, “Handbook of Applied
Cryptography,” CRC Press, 1997.

14. A.J. Menezes and S.A. Vanstone, “The implementation of elliptic curve cryptosys-
tems,” Advances in Cryptology – Auscrypt’90, Lecture Notes in Computer Sci-
ence 453, pp. 2–13, Springer-Verlag, 1990.

15. V. Miller, “Short Programs for Functions on Curves,” unpublished manuscript,
1986.

16. IEEE Std 2000–1363, “Standard Specifications for Public Key Cryptography,”
2000.

17. K.G. Paterson, “ID-based signatures from pairings on elliptic curves,” Cryptol-
ogy ePrint Archive, Report 2002/004, available at http://eprint.iacr.org/2002/
004/.

18. K. Rubin and A. Silverberg, “The best and worst of supersingular abelian varieties
in cryptology,” Cryptology ePrint Archive, Report 2002/006, available at http:

//eprint.iacr.org/2002/006/.
19. R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems based on pairing,” 2000

Symposium on Cryptography and Information Security (SCIS2000), Okinawa,
Japan, Jan. 26–28, 2000.

20. J.H. Silverman, “The Arithmetic of Elliptic Curves,” Graduate Texts in Mathe-
matics, vol. 106, Springer-Verlag, 1986.

21. N.P. Smart, “An Identity Based Authenticated Key Agreement Protocol Based
on the Weil Pairing,” Cryptology ePrint Archive, Report 2001/111, available at
http://eprint.iacr.org/2001/111/.

22. J. Solinas, “Generalized Mersenne numbers,” technical report CORR-39, Depart-
ment of C&O, University of Waterloo, 1999, available at http://www.cacr.math.
uwaterloo.ca/.

13


