Better than BiBa: Short One-time Signatures with Fast Signing and Verifying

Leonid Reyzin Natan Reyzin

January 30, 2002

Abstract

One-time signature schemes have found numerous applications: in ordinary, on-line/off-line, and forward-secure signatures. More recently, they have been used in multicast and broadcast authentication. We propose a one-time signature scheme with very efficient signing and verifying, and short signatures. Our scheme is well-suited for broadcast authentication, and, in fact, can be viewed as an improvement of the BiBa one-time signature (proposed by Perrig in CCS 2001 for broadcast authentication).

1 Introduction

In [Per01], Perrig proposes a one-time signature scheme called "BiBa" (for "Bins and Balls"). BiBa's main advantages are fast verification and short signatures. In fact, to the best of our knowledge, BiBa has the fastest verification of all currently-known one-time signature schemes. These desirable properties allow Perrig to design a stream authentication scheme with small communication overhead and fast authentication of each packet (also called BiBa in [Per01]).

BiBa's main disadvantage is the time required to sign a message, which is longer than in most previously proposed one-time signature schemes. We present a simpler one-time signature scheme that maintains BiBa's advantages and removes its main disadvantage. Specifically, in our scheme verifying is as fast as in BiBa, and signing is even faster than verifying. The key and signature sizes are slightly improved, as well (for the same security level).

Like BiBa, our signature scheme can be used r times, instead of just once, for small values of r (in both scheme, security decreases as r increases).

The security of our scheme relies only on complexity-theoretic assumptions, and does not require the use of random oracles. This is in contrast to BiBa , in which the use of random oracles seems essential. One variant of our scheme, mainly of theoretical interest due to performance considerations, can be based solely on the assumption that one-way functions exist.

1.1 Prior Work

One-time signatures based on the idea of committing to secret keys via one-way functions were proposed independently by Lamport [Lam79] and (in an interactive setting) by Rabin [Rab78]. Various improvements were proposed by Meyer and Matyas [MM82, pages 406-409], Merkle [Mer82], Winternitz (as cited in [Mer87]), Vaudenay [Vau92] (in an interactive setting), and Even, Goldreich and Micali [EGM96]. Bleichenbacher and Maurer considered generalization of the above work in [BM94, BM96a, BM96b].

Perrig's BiBa [Per01], however, appears to be the first scheme whose primary design goal was fast signature verification (while Bleichenbacher and Maurer concern themselves with "optimal" one-time signature schemes, their notion of optimality translates into fast key generation, rather than efficient signing or verifying). Our scheme preserves BiBa's verifying efficiency, dramatically increases its signing efficiency, and slightly decreases the sizes of BiBa's keys and signatures.

1.2 Applications of One-Time Signatures

One-time signatures have found applications in constructions of ordinary signature schemes [Mer87, Mer89], on-line/off-line signature schemes [EGM96], forward-secure signature schemes [AR00], multicast packet authentication [Roh99], among others. We note that our scheme fits well into all of these applications, including, in particular, the BiBa broadcast authentication scheme of [Per01]. In fact, the BiBa broadcast authentication scheme itself would need no modifications at all if our signature scheme was substituted for the BiBa signature scheme.

2 The Construction Based on One-Way Functions

The construction presented in this section relies solely on one-way functions for its security. As stated above, this construction is mainly of theoretical interest due to performance considerations. However, it is a stepping stone to our ultimate signature scheme, and thus we present it first.

Preliminaries. To build a scheme to sign b-bit messages ${ }^{1}$, pick t and k such that $\binom{t}{k} \geq 2^{b}$. (Naturally, there are multiple possible choices for t and k, and, in fact, a tradeoff between them. We note that the public key size will be linear in t, and the signature size and verification time will be linear in k).

Let T denote the set $\{0,1,2, \ldots, t-1\}$.
Let S be a bijective function that, on input $m, 0 \leq m<\binom{t}{k}$, outputs the m-th k-element subset of the T (of course, there are many possibilities for S; we do not care how S is chosen as long as it is efficiently implementable and bijective). Our proposal for implementing S is contained in Section 2.1.

Let f be a one-way function.
The Scheme. To generate a key pair given the security parameter 1^{l}, generate t random l-bit quantities for the secret key: $S K=\left(s_{1}, \ldots, s_{t}\right)$, and compute the public key as follows: $P K=$ $\left(v_{1}, \ldots, v_{t}\right)$, where $v_{1}=f\left(s_{1}\right), \ldots, v_{t}=f\left(s_{t}\right)$.

To sign an b-bit message m, interpret m as an integer value between 0 and $2^{b}-1$, and let $\left\{i_{1}, \ldots, i_{k}\right\}$ be the m-th k-element subset of T (found using the function S). Reveal the values $s_{i_{1}}, \ldots, s_{i_{k}}$ as the signature.

To verify a signature $\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{k}^{\prime}\right)$ on a message, again interpret m as an integer value between 0 and $2^{b}-1$, and let $\left\{i_{1}, \ldots, i_{k}\right\}$ be the m-th k-element subset of T. Verify that $f\left(s_{1}^{\prime}\right)=$ $v_{i_{1}}, \ldots, f\left(s_{t}^{\prime}\right)=v_{i_{t}}$.
Efficiency. Key generation requires t evaluations of the one-way function. The secret key size is $l t$ bits, and the public key size is $f_{l} t$ bits, where f_{l} is the length of the one-way function output on input of length l. The signature is $k t$ bits long.

The signing algorithm takes as long as running time of the algorithm for S : the time required to find the m-th k-element subset of a t-element set. Our implementations of S, in Section 2.1, have

[^0]running time $O\left(t k \log ^{2} t\right)$, or $O\left(k^{2} \log t \log k\right)$ with some precomputation. The verifying algorithm takes the same amount of time, plus k evaluations of the one-way function.

SECURITY. Because each message corresponds to a different k-element subset of the set T, it is trivial to prove that, in order to existentially forge a signature on a new message after a one-time adaptive chosen message attack, the forger would have to invert the one-way function f on at least one of the $t-k$ values in the public key for which the corresponding value in the secret key has not been revealed. If longer messages are being hashed down to b bits before being signed, then the security relies not only on the one-wayness of f, but also on the collision-resistance of the hash function.

2.1 The Selection Algorithms

Here we present two algorithms that, on input $m, 0 \leq m \leq\binom{ t}{k}$, output the m-th k-element subset of T, where $T=\{0,1, \ldots, t-1\}$.

Algorithm 1

The first algorithm is based on the following equation:

$$
\binom{t}{k}=\binom{t-1}{k-1}+\binom{t-1}{k} .
$$

In other words, if the last element of T belongs to the subset, then there are $t-1$ elements remaining from which $k-1$ need be chosen. Otherwise, there are $t-1$ elements remaining from which k need to be chosen.

Thus, on input (m, k, t), the algorithm checks if $m<\binom{t-1}{k-1}$. If so, it adds $t-1$ to the output subset, and recurses on $(m, k-1, t-1)$. Else, it adds nothing to the output subset, and recurses on $m-\binom{t-1}{k-1}, k, t-1$. Note that $\binom{t}{k}$ can be precomputed once and for all, and then at each recursive level, the algorithm simply needs to do one division and one multiplication to compute $\binom{t-1}{k-1}$ and $\binom{t-1}{k}$.

Thus, the cost per recursive level is one division and one multiplication of $O(k \log t)$-bit number by $O(\log t)$-bit number, or $k \log ^{2} t$. There are t levels, for the total cost of $t k \log ^{2} t$.

Algorithm 2

The second algorithm is slightly more complicated, and is based on the following equation:

$$
\binom{t}{k}=\binom{\lceil t / 2\rceil}{ 0}\binom{\lfloor t / 2\rfloor}{ k}+\binom{\lceil t / 2\rceil}{ 1}\binom{\lfloor t / 2\rfloor}{ k-1}+\ldots+\binom{\lceil t / 2\rceil}{ k}\binom{\lfloor t / 2\rfloor}{ 0}=\sum_{i=0}^{k}\binom{\lceil t / 2\rceil}{ i}\binom{\lfloor t / 2\rfloor}{ k-i} .
$$

In other words, if k elements are selected from T, then, for some i, i elements come from the first half of T, and $k-i$ elements come from the second half of T.

Thus, on input (m, k, t), the algorithm finds $j(0 \leq j \leq k)$ such that

$$
\sum_{i=0}^{j-1}\binom{\lceil t / 2\rceil}{ i}\binom{\lfloor t / 2\rfloor}{ k-i} \leq m, \text { but } \sum_{i=0}^{j}\binom{\lceil t / 2\rceil}{ i}\binom{\lfloor t / 2\rfloor}{ k-i}>m .
$$

Then let $m^{\prime}=m-\sum_{i=0}^{j-1}\binom{\lceil t / 2\rceil}{ i}\binom{\lfloor t / 2\rfloor}{ k-i}$; let $m_{1}=m^{\prime} \operatorname{div}\binom{\lceil t / 2\rceil}{ j}$ and $m_{2}=m^{\prime} \bmod \binom{\lceil t / 2\rceil}{ j}$ (where div stands for integer division, and mod stands for the remainder). The algorithm recurses on $\left(m_{1}, j,\lceil t / 2\rceil\right)$ and $\left(m_{2}, j,\lfloor t / 2\rfloor\right)$. It then combines the subsets that the two recursive calls return.

If t is a power of two, and k is not too large, then it is possible to precompute $\binom{t / 2^{a}}{b}$, for all $a<\log t$ and $b<k$ (this would be $O(k \log t)$ values, for $O\left(k^{2} \log ^{2} t\right)$ bits). The recursive calls form a binary tree with of depth $\log t$. It is not hard to see that, at each level of the tree, at most $O(k)$ multiplications/divisions of precomputed values need to be performed, giving a total of $O(k \log t)$ multiplications/divisions of $O(k \log t)$-bit values. Thus, the cost is $O\left(k^{2} \log ^{2} t\right)$.

Moreover, for a random m, the expected depth of the tree is actually $O(\log k)$ (because, intuitively, the subset is likely to be divided fairly evenly between the two halves of T). Therefore, the expected running time for a random m is actually $O\left(k^{2} \log t \log k\right)$.

Finally, we note that, in practice, it is better to change the order in which the sum is computed: instead of going from $i=0$ to k, it is better to start with $i=k / 2$ and go in both directions (to 0 and to k). This is so because we are likely to stop sooner, because k is more likely to be split evenly. Moreover, it is more efficient to have the base case of $k=1$ than $k=0$. Our implementation of this algorithm (based on Wei Dai's Crypto++ library for multiprecision arithmetic) takes . 09 milliseconds on a 1700 MHz Pentium 4 for $t=1024, k=16$, and a random m.

3 Construction Based On "Subset-Intractable" Functions

This section presents our most efficient construction.
In the above scheme, the function S makes it impossible to find two distinct messages that will result in the same k-element subset of T (because S is bijective, it guarantees that such two messages do not exist). To improve efficiency, we propose to replace S with a function H that provides no such iron-clad guarantee, but merely makes it infeasible to find two such messages. Moreover, we will relax the requirement that the subset of T corresponding to each message contain exactly k elements, and rather require it to contain at most k elements. The requirement on H now will be that it is infeasible to find two messages, m_{1} and m_{2}, such that $H\left(m_{2}\right) \subseteq H\left(m_{1}\right)$.

This relaxation of the requirements allows us to consider using a single public key to provide not one, but several signatures. If the signer provides up to r signatures, then, for the scheme to be secure, it should be infeasible to find $r+1$ messages $m_{1}, m_{2}, \ldots, m_{r+1}$ such that $H\left(m_{r+1}\right) \subseteq$ $H\left(m_{1}\right) \cup H\left(m_{2}\right) \cup \ldots \cup H\left(m_{r}\right)$.

Using H instead of S also allows us to remove the restrictions on message length, and with it the need for collision-resistant hashing in order to sign longer messages.

It should be clear how to formalize the precise requirements on H (naturally, in order for the requirements to be meaningful, H has to be selected at random from a family of functions). We will do so in the full version of this paper. We note that the formalizations are different depending on whether the adversary for the signature scheme is allowed a chosen message attack or a random message attack.

Efficiency. We propose using a cryptographic hash function, such as SHA-1 [NIS95], to construct H as follows:

1. split the output of the hash function into k substrings of length $\log t$ each;
2. interpret each $(\log t)$-bit substring as integer written in binary;
3. combine these integers to form the subset of T of size at most k.

We believe that such H satisfies our assumptions (it certainly does if the cryptographic hash function is modeled as a random oracle - the simple proof of this fact will appear in the full version of the paper).

This results in extremely efficient signing, requiring just one evaluation of the cryptographic hash function, and efficient verifying, requiring one evaluation of the hash function in addition to k evaluations of the one-way function f. (We note that in every signature scheme used in practice, both signing and verifying always require at least one evaluation of a cryptographic hash function if the messages are long.)

The use of cryptographic hash function with 160-bit outputs results in practically convenient parameters. One can take $k=16$ and $t=2^{10}=1024$, or $k=20$ and $t=2^{8}=256$. We analyze the security of these parameters in the next section.

4 Comparison with BiBa

BiBa requires about $2 t$ calls to the random oracle for signing messages, while, in contrast, our scheme requires only one call to H. Verification in BiBa requires k calls to the one-way function f, just like in our scheme. However, BiBa verification also requires k calls to the random oracle, while our scheme requires only one call to H. Thus, our scheme is significantly more efficient in signing and slightly more efficient in verifying.

Another advantage of our scheme comes from the fact that slightly smaller values of t and k can be used to achieve the same security levels (or, alternatively, more security can be obtained from the same values of t and k), as shown below.

In order to precisely compare the security of our scheme with the security of BiBa as discussed in [Per01], we will make the same assumptions as [Per01] makes: that H is a random oracle and that the adversary obtains signatures on r messages of its choice. We are interested in the probability that, after querying H on a single message m, the adversary is able to forge a signature on m without inverting the one-way function f. It is quite easy to see that this probability is at most $(r k / t)^{k}$, i.e., the probability that after $r k$ elements of T are fixed, k elements chosen at random are a subset of them.

In other words, we get $k(\log t-\log k-\log r)$ bits of security. Thus, we use $k=16, t=1024$ and $r=1$, then the security level is 2^{-96}. After four signatures are given, the probability of forgery is 2^{-64}. This is in contrast to 2^{-58} for Perrig's scheme with the same parameters (see Section 5 of [Per01]). Alternatively, we could reduce the size of the public key $t=790$ to match the 2^{-58} security level.

For the example of $k=20$ and $t=256$, our security level is 2^{-73} if $r=1$ and 2^{-53} if $r=2$.

Acknowledgments

The first author is thankful to Kevin Fu and Michael Freedman for helpful discussions. The second author is thankful to Wei Dai for his Crypto++ library.

References

[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme. In Tatsuaki Okamoto, editor, Advances in Cryptology-ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 116-129, Kyoto, Japan, 3-7 December
2000. Springer-Verlag. Full version available from the Cryptology ePrint Archive, record 2000/002, http://eprint.iacr.org/.
[BM94] Daniel Bleichenbacher and Ueli M. Maurer. Directed acyclic graphs, one-way functions and digital signatures. In Yvo G. Desmedt, editor, Advances in CryptologyCRYPTO '94, volume 839 of Lecture Notes in Computer Science, pages 75-82. SpringerVerlag, 21-25 August 1994.
[BM96a] Daniel Bleichenbacher and Ueli M. Maurer. On the efficiency of one-time digital signatures. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in CryptologyASIACRYPT '96, volume 1163 of Lecture Notes in Computer Science, pages 145-158, Kyongju, Korea, 3-7 November 1996. Springer-Verlag.
[BM96b] Daniel Bleichenbacher and Ueli M. Maurer. Optimal tree-based one-time digital signature schemes. In Claude Puech and Rüdiger Reischuk, editors, Symposium on Theoretical Aspects of Computer Science, volume 1046 of Lecture Notes in Computer Science, pages 363-374. Springer-Verlag, 1996.
[EGM96] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. Journal of Cryptology, 9(1):35-67, Winter 1996.
[Lam79] Leslie Lamport. Constructing digital signatures from a one way function. Technical Report CSL-98, SRI International, October 1979.
[Mer82] Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. UMI Research Press, 1982.
[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomerance, editor, Advances in Cryptology-CRYPTO '87, volume 293 of Lecture Notes in Computer Science, pages 369-378. Springer-Verlag, 1988, 16-20 August 1987.
[Mer89] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in Cryptology-CRYPTO '89, volume 435 of Lecture Notes in Computer Science, pages 218-238. Springer-Verlag, 1990, 20-24 August 1989.
[MM82] Carl H. Meyer and Stephen M. Matyas. Cryptography: A New Dimension in Computer Data Security. John Wiley \& Sons, 1982.
[NIS95] FIPS Publication 180-1: Secure Hash Standard. National Institute of Standards and Technology (NIST), April 1995. Available from http://csrc.nist.gov/fips/.
[Per01] Adrian Perrig. The BiBa one-time signature and broadcast authentication protocol. In Eighth ACM Conference on Computer and Communication Security, pages 28-37. ACM, November 5-8 2001.
[Rab78] Michael O. Rabin. Digitalized signatures. In Richard A. Demillo, David P. Dobkin, Anita K. Jones, and Richard J. Lipton, editors, Foundations of Secure Computation, pages 155-168. Academic Press, 1978.
[Roh99] Pankaj Rohatgi. A compact and fast hybrid signature scheme for multicast packet authentication. In Sixth ACM Conference on Computer and Communication Security, pages 93-100. ACM, November 1999.
[Vau92] Serge Vaudenay. One-time identification with low memory. In P. Camion, P. Charpin, S. Harari, and G. Cohen, editors, Proceedings of EUROCODE '92, Lecture Notes in Computer Science, pages 217-228. Springer-Verlag, 1992.

[^0]: ${ }^{1}$ In order to sign arbitrary-length messages, one can use the standard technique of applying a collision-resistant hash function to the message and then signing the resulting hash value.

