
Better than BiBa: Short One-time Signatures with Fast Signing

and Verifying

Leonid Reyzin Natan Reyzin

January 30, 2002

Abstract

One-time signature schemes have found numerous applications: in ordinary, on-line/off-line,
and forward-secure signatures. More recently, they have been used in multicast and broadcast
authentication. We propose a one-time signature scheme with very efficient signing and verifying,
and short signatures. Our scheme is well-suited for broadcast authentication, and, in fact, can
be viewed as an improvement of the BiBa one-time signature (proposed by Perrig in CCS 2001
for broadcast authentication).

1 Introduction

In [Per01], Perrig proposes a one-time signature scheme called “BiBa” (for “Bins and Balls”). BiBa’s
main advantages are fast verification and short signatures. In fact, to the best of our knowledge,
BiBa has the fastest verification of all currently-known one-time signature schemes. These desir-
able properties allow Perrig to design a stream authentication scheme with small communication
overhead and fast authentication of each packet (also called BiBa in [Per01]).

BiBa’s main disadvantage is the time required to sign a message, which is longer than in most
previously proposed one-time signature schemes. We present a simpler one-time signature scheme
that maintains BiBa’s advantages and removes its main disadvantage. Specifically, in our scheme
verifying is as fast as in BiBa, and signing is even faster than verifying. The key and signature
sizes are slightly improved, as well (for the same security level).

Like BiBa, our signature scheme can be used r times, instead of just once, for small values of r
(in both scheme, security decreases as r increases).

The security of our scheme relies only on complexity-theoretic assumptions, and does not re-
quire the use of random oracles. This is in contrast to BiBa, in which the use of random oracles
seems essential. One variant of our scheme, mainly of theoretical interest due to performance
considerations, can be based solely on the assumption that one-way functions exist.

1.1 Prior Work

One-time signatures based on the idea of committing to secret keys via one-way functions were pro-
posed independently by Lamport [Lam79] and (in an interactive setting) by Rabin [Rab78]. Various
improvements were proposed by Meyer and Matyas [MM82, pages 406–409], Merkle [Mer82], Win-
ternitz (as cited in [Mer87]), Vaudenay [Vau92] (in an interactive setting), and Even, Goldreich
and Micali [EGM96]. Bleichenbacher and Maurer considered generalization of the above work
in [BM94, BM96a, BM96b].

1



Perrig’s BiBa [Per01], however, appears to be the first scheme whose primary design goal was
fast signature verification (while Bleichenbacher and Maurer concern themselves with “optimal”
one-time signature schemes, their notion of optimality translates into fast key generation, rather
than efficient signing or verifying). Our scheme preserves BiBa’s verifying efficiency, dramatically
increases its signing efficiency, and slightly decreases the sizes of BiBa’s keys and signatures.

1.2 Applications of One-Time Signatures

One-time signatures have found applications in constructions of ordinary signature schemes [Mer87,
Mer89], on-line/off-line signature schemes [EGM96], forward-secure signature schemes [AR00], mul-
ticast packet authentication [Roh99], among others. We note that our scheme fits well into all of
these applications, including, in particular, the BiBa broadcast authentication scheme of [Per01].
In fact, the BiBa broadcast authentication scheme itself would need no modifications at all if our
signature scheme was substituted for the BiBa signature scheme.

2 The Construction Based on One-Way Functions

The construction presented in this section relies solely on one-way functions for its security. As
stated above, this construction is mainly of theoretical interest due to performance considerations.
However, it is a stepping stone to our ultimate signature scheme, and thus we present it first.

Preliminaries. To build a scheme to sign b-bit messages1, pick t and k such that
(
t
k

)
≥ 2b.

(Naturally, there are multiple possible choices for t and k, and, in fact, a tradeoff between them.
We note that the public key size will be linear in t, and the signature size and verification time will
be linear in k).

Let T denote the set {0, 1, 2, . . . , t− 1}.
Let S be a bijective function that, on input m, 0 ≤ m <

(
t
k

)
, outputs the m-th k-element subset

of the T (of course, there are many possibilities for S; we do not care how S is chosen as long
as it is efficiently implementable and bijective). Our proposal for implementing S is contained in
Section 2.1.

Let f be a one-way function.

The Scheme. To generate a key pair given the security parameter 1l, generate t random l-bit
quantities for the secret key: SK = (s1, . . . , st), and compute the public key as follows: PK =
(v1, . . . , vt), where v1 = f(s1), . . . , vt = f(st).

To sign an b-bit message m, interpret m as an integer value between 0 and 2b − 1, and let
{i1, . . . , ik} be the m-th k-element subset of T (found using the function S). Reveal the values
si1 , . . . , sik as the signature.

To verify a signature (s′1, s
′
2, . . . , s

′
k) on a message, again interpret m as an integer value be-

tween 0 and 2b − 1, and let {i1, . . . , ik} be the m-th k-element subset of T . Verify that f(s′1) =
vi1 , . . . , f(s′t) = vit .

Efficiency. Key generation requires t evaluations of the one-way function. The secret key size is
lt bits, and the public key size is flt bits, where fl is the length of the one-way function output on
input of length l. The signature is kt bits long.

The signing algorithm takes as long as running time of the algorithm for S: the time required to
find the m-th k-element subset of a t-element set. Our implementations of S, in Section 2.1, have

1In order to sign arbitrary-length messages, one can use the standard technique of applying a collision-resistant
hash function to the message and then signing the resulting hash value.

2



running time O(tk log2 t), or O(k2 log t log k) with some precomputation. The verifying algorithm
takes the same amount of time, plus k evaluations of the one-way function.

Security. Because each message corresponds to a different k-element subset of the set T , it is
trivial to prove that, in order to existentially forge a signature on a new message after a one-time
adaptive chosen message attack, the forger would have to invert the one-way function f on at least
one of the t − k values in the public key for which the corresponding value in the secret key has
not been revealed. If longer messages are being hashed down to b bits before being signed, then
the security relies not only on the one-wayness of f , but also on the collision-resistance of the hash
function.

2.1 The Selection Algorithms

Here we present two algorithms that, on input m, 0 ≤ m ≤
(
t
k

)
, output the m-th k-element subset

of T , where T = {0, 1, . . . , t− 1}.

Algorithm 1

The first algorithm is based on the following equation:(
t

k

)
=
(
t− 1
k − 1

)
+
(
t− 1
k

)
.

In other words, if the last element of T belongs to the subset, then there are t−1 elements remaining
from which k− 1 need be chosen. Otherwise, there are t− 1 elements remaining from which k need
to be chosen.

Thus, on input (m, k, t), the algorithm checks if m <
(
t−1
k−1

)
. If so, it adds t − 1 to the output

subset, and recurses on (m, k−1, t−1). Else, it adds nothing to the output subset, and recurses on
m−

(
t−1
k−1

)
, k, t− 1. Note that

(
t
k

)
can be precomputed once and for all, and then at each recursive

level, the algorithm simply needs to do one division and one multiplication to compute
(
t−1
k−1

)
and(

t−1
k

)
.

Thus, the cost per recursive level is one division and one multiplication of O(k log t)-bit number
by O(log t)-bit number, or k log2 t. There are t levels, for the total cost of tk log2 t.

Algorithm 2

The second algorithm is slightly more complicated, and is based on the following equation:(
t

k

)
=
(
dt/2e

0

)(
bt/2c
k

)
+
(
dt/2e

1

)(
bt/2c
k − 1

)
+ . . .+

(
dt/2e
k

)(
bt/2c

0

)
=

k∑
i=0

(
dt/2e
i

)(
bt/2c
k − i

)
.

In other words, if k elements are selected from T , then, for some i, i elements come from the first
half of T , and k − i elements come from the second half of T .

Thus, on input (m, k, t), the algorithm finds j (0 ≤ j ≤ k) such that

j−1∑
i=0

(
dt/2e
i

)(
bt/2c
k − i

)
≤ m, but

j∑
i=0

(
dt/2e
i

)(
bt/2c
k − i

)
> m .

3



Then let m′ = m −
∑j−1

i=0

(dt/2e
i

)(bt/2c
k−i
)
; let m1 = m′ div

(dt/2e
j

)
and m2 = m′ mod

(dt/2e
j

)
(where

div stands for integer division, and mod stands for the remainder). The algorithm recurses on
(m1, j, dt/2e) and (m2, j, bt/2c). It then combines the subsets that the two recursive calls return.

If t is a power of two, and k is not too large, then it is possible to precompute
(t/2a

b

)
, for all

a < log t and b < k (this would be O(k log t) values, for O(k2 log2 t) bits). The recursive calls form
a binary tree with of depth log t. It is not hard to see that, at each level of the tree, at most O(k)
multiplications/divisions of precomputed values need to be performed, giving a total of O(k log t)
multiplications/divisions of O(k log t)-bit values. Thus, the cost is O(k2 log2 t).

Moreover, for a random m, the expected depth of the tree is actually O(log k) (because, intu-
itively, the subset is likely to be divided fairly evenly between the two halves of T ). Therefore, the
expected running time for a random m is actually O(k2 log t log k).

Finally, we note that, in practice, it is better to change the order in which the sum is computed:
instead of going from i = 0 to k, it is better to start with i = k/2 and go in both directions (to 0 and
to k). This is so because we are likely to stop sooner, because k is more likely to be split evenly.
Moreover, it is more efficient to have the base case of k = 1 than k = 0. Our implementation
of this algorithm (based on Wei Dai’s Crypto++ library for multiprecision arithmetic) takes .09
milliseconds on a 1700 MHz Pentium 4 for t = 1024, k = 16, and a random m.

3 Construction Based On “Subset-Intractable” Functions

This section presents our most efficient construction.
In the above scheme, the function S makes it impossible to find two distinct messages that will

result in the same k-element subset of T (because S is bijective, it guarantees that such two messages
do not exist). To improve efficiency, we propose to replace S with a function H that provides no
such iron-clad guarantee, but merely makes it infeasible to find two such messages. Moreover, we
will relax the requirement that the subset of T corresponding to each message contain exactly k
elements, and rather require it to contain at most k elements. The requirement on H now will be
that it is infeasible to find two messages, m1 and m2, such that H(m2) ⊆ H(m1).

This relaxation of the requirements allows us to consider using a single public key to provide
not one, but several signatures. If the signer provides up to r signatures, then, for the scheme to
be secure, it should be infeasible to find r + 1 messages m1,m2, . . . ,mr+1 such that H(mr+1) ⊆
H(m1) ∪H(m2) ∪ . . . ∪H(mr).

Using H instead of S also allows us to remove the restrictions on message length, and with it
the need for collision-resistant hashing in order to sign longer messages.

It should be clear how to formalize the precise requirements on H (naturally, in order for the
requirements to be meaningful, H has to be selected at random from a family of functions). We
will do so in the full version of this paper. We note that the formalizations are different depending
on whether the adversary for the signature scheme is allowed a chosen message attack or a random
message attack.

Efficiency. We propose using a cryptographic hash function, such as SHA-1 [NIS95], to construct
H as follows:

1. split the output of the hash function into k substrings of length log t each;

2. interpret each (log t)-bit substring as integer written in binary;

3. combine these integers to form the subset of T of size at most k.

4



We believe that such H satisfies our assumptions (it certainly does if the cryptographic hash
function is modeled as a random oracle—the simple proof of this fact will appear in the full version
of the paper).

This results in extremely efficient signing, requiring just one evaluation of the cryptographic
hash function, and efficient verifying, requiring one evaluation of the hash function in addition to
k evaluations of the one-way function f . (We note that in every signature scheme used in practice,
both signing and verifying always require at least one evaluation of a cryptographic hash function
if the messages are long.)

The use of cryptographic hash function with 160-bit outputs results in practically convenient
parameters. One can take k = 16 and t = 210 = 1024, or k = 20 and t = 28 = 256. We analyze the
security of these parameters in the next section.

4 Comparison with BiBa

BiBa requires about 2t calls to the random oracle for signing messages, while, in contrast, our
scheme requires only one call to H. Verification in BiBa requires k calls to the one-way function
f , just like in our scheme. However, BiBa verification also requires k calls to the random oracle,
while our scheme requires only one call to H. Thus, our scheme is significantly more efficient in
signing and slightly more efficient in verifying.

Another advantage of our scheme comes from the fact that slightly smaller values of t and k
can be used to achieve the same security levels (or, alternatively, more security can be obtained
from the same values of t and k), as shown below.

In order to precisely compare the security of our scheme with the security of BiBa as discussed
in [Per01], we will make the same assumptions as [Per01] makes: that H is a random oracle and that
the adversary obtains signatures on r messages of its choice. We are interested in the probability
that, after querying H on a single message m, the adversary is able to forge a signature on m
without inverting the one-way function f . It is quite easy to see that this probability is at most
(rk/t)k, i.e., the probability that after rk elements of T are fixed, k elements chosen at random are
a subset of them.

In other words, we get k(log t − log k − log r) bits of security. Thus, we use k = 16, t = 1024
and r = 1, then the security level is 2−96. After four signatures are given, the probability of forgery
is 2−64. This is in contrast to 2−58 for Perrig’s scheme with the same parameters (see Section 5
of [Per01]). Alternatively, we could reduce the size of the public key t = 790 to match the 2−58

security level.
For the example of k = 20 and t = 256, our security level is 2−73 if r = 1 and 2−53 if r = 2.

Acknowledgments

The first author is thankful to Kevin Fu and Michael Freedman for helpful discussions. The second
author is thankful to Wei Dai for his Crypto++ library.

References

[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme. In
Tatsuaki Okamoto, editor, Advances in Cryptology—ASIACRYPT 2000, volume 1976
of Lecture Notes in Computer Science, pages 116–129, Kyoto, Japan, 3–7 December

5



2000. Springer-Verlag. Full version available from the Cryptology ePrint Archive, record
2000/002, http://eprint.iacr.org/.

[BM94] Daniel Bleichenbacher and Ueli M. Maurer. Directed acyclic graphs, one-way func-
tions and digital signatures. In Yvo G. Desmedt, editor, Advances in Cryptology—
CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages 75–82. Springer-
Verlag, 21–25 August 1994.

[BM96a] Daniel Bleichenbacher and Ueli M. Maurer. On the efficiency of one-time digital sig-
natures. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology—
ASIACRYPT ’96, volume 1163 of Lecture Notes in Computer Science, pages 145–158,
Kyongju, Korea, 3–7 November 1996. Springer-Verlag.

[BM96b] Daniel Bleichenbacher and Ueli M. Maurer. Optimal tree-based one-time digital signature
schemes. In Claude Puech and Rüdiger Reischuk, editors, Symposium on Theoretical
Aspects of Computer Science, volume 1046 of Lecture Notes in Computer Science, pages
363–374. Springer-Verlag, 1996.

[EGM96] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures.
Journal of Cryptology, 9(1):35–67, Winter 1996.

[Lam79] Leslie Lamport. Constructing digital signatures from a one way function. Technical
Report CSL-98, SRI International, October 1979.

[Mer82] Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. UMI Research Press,
1982.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, Advances in Cryptology—CRYPTO ’87, volume 293 of Lecture
Notes in Computer Science, pages 369–378. Springer-Verlag, 1988, 16–20 August 1987.

[Mer89] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in
Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages
218–238. Springer-Verlag, 1990, 20–24 August 1989.

[MM82] Carl H. Meyer and Stephen M. Matyas. Cryptography: A New Dimension in Computer
Data Security. John Wiley & Sons, 1982.

[NIS95] FIPS Publication 180-1: Secure Hash Standard. National Institute of Standards and
Technology (NIST), April 1995. Available from http://csrc.nist.gov/fips/.

[Per01] Adrian Perrig. The BiBa one-time signature and broadcast authentication protocol. In
Eighth ACM Conference on Computer and Communication Security, pages 28–37. ACM,
November 5–8 2001.

[Rab78] Michael O. Rabin. Digitalized signatures. In Richard A. Demillo, David P. Dobkin,
Anita K. Jones, and Richard J. Lipton, editors, Foundations of Secure Computation,
pages 155–168. Academic Press, 1978.

[Roh99] Pankaj Rohatgi. A compact and fast hybrid signature scheme for multicast packet au-
thentication. In Sixth ACM Conference on Computer and Communication Security, pages
93–100. ACM, November 1999.

6



[Vau92] Serge Vaudenay. One-time identification with low memory. In P. Camion, P. Charpin,
S. Harari, and G. Cohen, editors, Proceedings of EUROCODE ’92, Lecture Notes in
Computer Science, pages 217–228. Springer-Verlag, 1992.

7


