
Scream: a software-efficient stream cipher

Shai Halevi Don Coppersmith Charanjit Jutla

IBM T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

{shaih,copper,csjutla}@watson.ibm.com

February 25, 2002

Abstract

We report on the design of Scream, a new software-efficient stream cipher, which was designed
to be a “more secure SEAL”. Following SEAL, the design of Scream resembles in many ways a
block-cipher design. The new cipher is roughly as fast as SEAL, but we believe that it offers a
significantly higher security level. In the process of designing this cipher, we re-visit the SEAL
design paradigm, exhibiting some tradeoffs and limitations.

Key words: Stream ciphers, Block ciphers, Round functions, SEAL.

1 Introduction

A stream cipher (or pseudorandom generator) is an algorithm that takes a short random string,
and expands it into a much longer string, that still “looks random” to adversaries with limited
resources. The short input string is called the seed (or key) of the cipher, and the long output
string is called the output stream (or key-stream). Stream ciphers can be used for shared-key
encryption, by using the output stream as a one-time-pad. In this work we aim to design a secure
stream cipher that has very fast implementations in software.

1.1 A more secure SEAL

The starting point of our work was the SEAL cipher. SEAL was designed in 1992 by Rogaway and
Coppersmith [6], specifically for the purpose of obtaining a software efficient stream cipher. Nearly
ten years after it was designed, SEAL is still the fastest steam cipher for software implementations
on contemporary PC’s, with “C” implementations running at 5 cycle/byte on common PC’s (and
3.5 cycle/byte on some RISC workstations).

The design of SEAL shares many similarities with the design of common block ciphers. It is built
around a repeating round function, which provides the “cryptographic strength” of the cipher.
Roughly speaking, the main body of SEAL keeps a state which is made of three parts: an evolving
state, some round keys, and a mask table. The output stream is generated in steps (or rounds).
In each step, the round function is applied to the evolving state, using the round keys. The new

1

evolving state is then masked by some of the entries in the mask table and this value is output as
a part of the stream. The mask table is fixed, and some of the round keys are be changed every so
often (but not every step).

In terms of security, SEAL is somewhat of a mixed story. SEAL is designed to generate up to 248

bytes of output per seed. In 1997, Handschuh and Gilbert showed, however, that the output stream
can be distinguished from random after seeing roughly 234 bytes of output [4]. SEAL was slightly
modified after that attack, and the resulting algorithm is known as SEAL 3.0. Recently, Fluhrer
described an attack on SEAL 3.0, that can distinguish the output stream from random after about
244 output bytes [3]. Hence, it seems prudent to avoid using the same seed for more than about
240 bytes of output.

The goal of the current work was to come up with a “more secure SEAL”. As part of that, we
studied the advantages, drawbacks, and tradeoffs of this style of design. More specifically, we tried
to understand what makes a “good round function” for a stream cipher, and to what extent a
“good round function” for a block cipher is also good as the basis for a stream cipher. We also
studied the interaction between the properties of the round function and other parts of the cipher.
Our design goals for the cipher were as follows:

• Higher security than SEAL: It should be possible to use the same seed for 264 bytes of output.
More precisely, an attacker that sees a total of 264 bytes of output (possibly, using several IV’s
of its choice), would be forced to spend an infeasible amount of time (or space) in order to
distinguish the cipher from a truly random function. A reasonable measure of “infeasibility”
is, say, 280 space and 296 time, so we tried to get the security of the cipher comfortably above
these values.1

• Comparable speed to SEAL, i.e., about 5 cycles per byte on common PC’s.

• We want to allow a full 128-bit input nonces (vs. 32-bit nonce in SEAL).

• Other, secondary, goals were to use smaller tables (SEAL uses 4KB of secret tables), get
faster initialization (SEAL needs about 200 applications of SHA to initialize the tables),
and maybe make the cipher more amenable to implementation in other environments (e.g.,
hardware, smartcard, etc.) We also tried to make the cipher fast on both 32-bit and 64-bit
architectures.

1.2 The end result(s)

In this report we describe three variants of our cipher. The first variant, which we call Scream-
0, should perhaps be viewed as a “toy cipher”. Although it may be secure enough for some
applications, it does not live up to our security goals. In the full version of this report we describe
a “low-diffusion attack” that works in time 279 and space 250, and distinguishes Scream-0 from
random after seeing about 244 bytes of the output stream.

We then describe Scream, which is the same as Scream-0, except that it replaces the fixed S-boxes
of Scream-0 by key-dependent S-boxes. Scream has very fast software implementations, but to get
this speed one has to use secret tables roughly as large as those of SEAL (mainly, in order to store

1This security level is arguably lower than, say, AES. This seems to be the price that one has to pay for the
increased speed. We note that the “obvious solution” of using Rijndael with less rounds, fails to achieve the desired
security/speed tradeoff.

2

the S-boxes). On our Pentium-III machine, an optimized “C” implementation of Scream runs at
4.9 cycle/byte, slightly faster than SEAL. On a 32-bit PowerPC, the same implementation runs
at 3.4 cycle/byte, again slightly faster than SEAL. This optimized implementation of Scream uses
about 2.5 KB of secret tables. Scream also offers some space/time tradeoffs. (In principle, one
could implement Scream with less than 400 bytes of memory, but using so little space would imply
a slowdown of at least two orders of magnitude, compared to the speed-optimized implementation.)
In terms of security, if the attacker is limited to only 264 bytes of text, we do not know of any attack
that is faster than exhaustively searching for the 128-bit key. On the other hand, we believe that
it it possible to devise a linear attack to distinguish Scream from random, with maybe 280 bytes of
text.

At the end of this report we describe another variant, called Scream-F (for Fixed S-box), that does
not use secret S-boxes, but is slower than Scream (and also somewhat “less elegant”). An optimized
“C” implementation of Scream-F runs at 5.6 cycle/byte on our Pentium-III, which is 12% slower
than SEAL. On our PowerPC, this implementation runs at 3.8 cycle/byte, 10% slower than SEAL.
This implementation of Scream-F uses 560 bytes of secret state. We believe that the security of
Scream-F is roughly equivalent to that of Scream.

1.3 Organization

In Section 2 below we first describe Scream-0 and then Scream. In Section 3 we discuss imple-
mentation issues and provide some performance measurements. In Section 4 we briefly discuss the
cryptanalysis of Scream-0. (A more detailed analysis can be found in the full version.) Finally, in
Section 5, we describe the cipher Scream-F. In the appendix we give the constants that are used in
Scream, and also provide some “test vectors”.

2 The design of Scream

We begin with the description of Scream-0. As with SEAL, this cipher too is built around a “round
function” that provides the cryptographic strength. Early in our design, we tried to use an “off
the shelf” round function as the basis for the new cipher. Specifically, we considered using the
Rijndael round function [2], which forms the basis of the new AES. However, as we discuss in the
full paper, the “wide trail strategy” that underlies the design of the Rijndael round function is not
a very good match for this type of design. We therefore designed our own round function.

At the heart of our round function is a scaled-down version of the Rijndael function, that operates
on 64-bit blocks. The input block is viewed as a 2 × 4 matrix of bytes. First, each byte is sent
through an S-box, S[·], then the second row in the matrix is shifted cyclically by one byte to the
right, and finally each column is multiplied by a fixed 2 × 2 invertible matrix M . Below we call
this function the “half round function”, and denote it by GS,M (x). A pictorial description of GS,M
can be found in Figure 1.

Our round function, denoted F (x), uses two different instances of the “half-round” function, GS1,M1

and GS2,M2 , where S1, S2 are two different S-boxes, and M1,M2 are two different matrices. The
S-boxes S1, S2 in Scream-0 are derived from the Rijndael S-box, by setting S1[x] = S[x], and
S2[x] = S[x⊕00010101], where S[·] is the Rijndael S-box. The constant 00010101 (decimal 21) was
chosen so that S2 will not have a fixed-point or an inverse fixed-point.2 The matrices M1,M2 were

2An inverse fixed-point is some x such that S[x] = x̄.

3

S[a] S[c] S[e] S[g]

row shift

S[h] S[b] S[d] S[f]

column mix

a′ c′ e′ g′

b′ d′ f ′ h′

replace each column c

by Mc, for some fixed

2× 2 matrix M

a c e g
b d f h

S[a] S[c] S[e] S[g]
S[b] S[d] S[f] S[h]

replace each byte

x by S[x]

shift 2nd row by

one byte to right

byte substitution

Figure 1: The “half round” function GS,M

chosen so that they are invertible, and so that neither of M1,M2 and M−1
2 M1 contains any zeros.

Specifically, we use

M1 =
(

1 x
x 1

)
M2 =

(
1 x+ 1

x+ 1 1

)
where 1, x, x+1 are elements of the field GF (28), which is represented as Z2[x]/(x8+x7+x6+x+1).

The function F is a mix of a Feistel ladder and an SP-network. A pseudocode of F is provided
below, and a pictorial description can be found in Figure 2.

Function F (x):
1. Partition x into two 2× 4 matrices

A :=
(
x0 x4 x8 x12

x1 x5 x9 x13

)
B :=

(
x2 x6 x10 x14

x3 x7 x11 x15

)
2. B := B ⊕GS2,M2(A) // use A to modify A,B
3. A := GS1,M1(A)

4. B :=
(
B0,2 B0,3 B0,0 B0,1

B1,2 B1,3 B1,0 B1,1

)
// rotate B by two columns

5. Swap A↔ B
6. B := B ⊕GS2,M2(A) // use A to modify A,B
7. A := GS1,M1(A)

8. Collect the 16 bytes in A,B back into x
x′ := (A0,0 A1,0 B0,0 B1,0 A0,1 A1,1 B0,1 B1,1 A0,2 A1,2 B0,2 B1,2 A0,3 A1,3 B0,3 B1,3)

4

�<

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

j

j
�����������

XXXXX
XXXXXX

GS1,M1 GS2,M2

GS1,M1 GS2,M2

x′0 x′4 x′8 x′12

x′1 x′5 x′9 x′13

x′2 x′6 x′10 x′14

x′3 x′7 x′11 x′15

cyclic shift by

two columns

Figure 2: The round function, F

The main loop of Scream-0. As with SEAL, the cipher Scream-0 maintains a state that consists
of the “evolving state” x, some round keys y, z, and a “mask table” W . In Scream-0, x, y and z
are 16-byte blocks, and the table W consists of 16 blocks, each of 16 bytes. In step i of Scream-0,
the evolving state is modified by setting x := F (x⊕ y)⊕ z, and we then output x⊕W [i mod 16].

In Scream-0, both the mask table and the round keys are modified, albeit slowly, throughout the
computation. Specifically, after every pass through the mask table (i.e., every 16 steps), we modify
y, z and one entry in W , by passing them through the F function. The entries of W are modified in
order: after the j’th pass through the table we modify the entry W [j mod 16]. Moreover, instead
of keeping both y, z completely fixed for 16 rounds, we rotate y by a few bytes after each use. The
rotation amounts were chosen so that the rotation would be “almost for free” on 32-bit and 64-bit
machines. This simple measure provides some protection against “low-diffusion attacks” and linear
analysis. A pseudocode of the body of Scream-0 is described in Figure 3.

Key- and nonce-setup. The key- and nonce-setup procedures of Scream-0 are quite straight-
forward: We just use the round function F to derive all the quantities that we need. The key-setup
routine fills the table W with some initial values. These values are later modified during the
nonce-setup routine, and they also double as the equivalent of a “key schedule” for the nonce-setup
routine. A pseudocode for these two routines is provided in Figures 4 and 5.

2.1 The ciphers Scream

The cipher Scream is the same as Scream-0, except that we derive the S-boxes S1[·], S2[·] from the
Rijndael S-box S[·] in a key-dependent fashion. We replace line 0a in Figure 4 by the following

0a. set S1[x] := S[. . . S[S[x+ seed0] + seed1] . . .+ seed15] for all x

(Notice that + denotes integer addition mod 256, rather then exclusive-or.) In terms of speed
(in software), Scream-S is just as fast as Scream-0, except for the key-setup. However, it has a

5

The main loop of Scream:
State: x, y, z – three 16-byte blocks

W – a table of 16 16-byte blocks
iw – an index into W (initially iw = 0)

1. repeat (until you get enough output bytes)
2. for i = 0 to 15 // generate the next 16 output blocks
3. x := F (x⊕ y) // modify the “evolving state” x
4. x := x ⊕ z
5. output x⊕W [i mod 16]
6. if i = 0 or 2 mod 4 // rotate y
7. rotate y by 8 bytes, y := y8..15,0..7

8. else if i = 1 mod 4
9. rotate each half of y by 4 bytes, y := y4..7,0..3,12..15,8..11

10. else if i < 15 // no point in rotating when i = 15
11. rotate each half of y by three bytes to the right, y := y5..7,0..4,13..15,8..12

12. end-if
13. end-for
14. y := F (y ⊕ z) // modify y, z, and W [iw]
15. z := F (z ⊕ y)
16. W [iw] := F (W [iw])
17. iw := iw + 1 mod 16
18. end-repeat

Figure 3: The main body of Scream and Scream-0

Key-setup:
Input: seed – a 16-byte block
State: a, b – temporary variables, each a 16-byte block
Output: W0 – a table of sixteen 16-byte blocks

0a. set S1[x] := S[x] for all x // S[·] is the Rijndael S-box
0b. set S2[x] := S1[x⊕ 00010101] for all x

1. a := seed
2. b := F (a⊕ pi) // pi is a constants: the first 16 bytes in the binary expansion of π
3. for i = 0 to 15
4. a := F 4(a)⊕ b // four applications of the function F
5. W0[i] := a
6. end-for

Figure 4: The key-setup of Scream-0

6

Nonce-setup:
Input: nonce – a 16-byte block
State: W0 – a table of sixteen 16-byte blocks

a, b – temporary variables, each a 16-byte block
Output: x, y, z – three 16-byte blocks

W – a table of sixteen 16-byte blocks

1. z := F 2(nonce⊕W0[1]) // two applications of the function F
2. y := F 2(z ⊕W0[3])
3. a := F 2(y ⊕W0[5])
4. x := F (a⊕W0[7]) // only one application of F
5. b := x
6. for i = 0 to 7 // set W as a modification of W0
7. b := F (b⊕W0[2i])
8. W [2i] := W0[2i]⊕ a
9. W [2i+ 1] := W0[2i+ 1]⊕ b

10. end-for

Figure 5: The nonce-setup of Scream and Scream-0

much larger secret state (a speed-optimized software implementation of Scream-S uses additional
2Kbyte of secret tables). We note that we still have S2[x] = S1[x⊕ 00010101], so a space-efficient
implementation need only store S1.

3 Implementation and performance

Software implementation of the F function. A fast software implementation of the F func-
tion uses tricks similar to Rijndael: Namely, we can implement the two “half round” functions
GS1,M1 , GS2,M2 together, using just eight lookup operations into two tables, each consisting of 256
four-byte words. Let the eight-byte input toGS1,M1 , GS2,M2 be denoted (x0, x1, x4, x5, x8, x9, x12, x13),
the output of GS1,M1 be denoted (u0, u1, u4, u5, u8, u9, u12, u13), and the output of GS2,M2 be de-
noted (u2, u3, u6, u7, u10, u11, u14, u15). Then we can write:

u0 = M1(0, 0) · S1[x0] ⊕ M1(0, 1) · S1[x13]
u1 = M1(1, 0) · S1[x0] ⊕ M1(1, 1) · S1[x13]
u2 = M2(0, 0) · S2[x0] ⊕ M2(0, 1) · S2[x13]
u3 = M2(1, 0) · S2[x0] ⊕ M2(1, 1) · S2[x13]

(where M(i, j) is the entry in row i, column j of matrix M , indexing starts from zero). Similar
expressions can be written for the other bytes of u. Therefore, if we set the tables T0, T1 as

T0(x) =
〈
M1(0, 0) · S1[x] | M1(1, 0) · S1[x] | M2(0, 0) · S2[x] | M2(1, 0) · S2[x]

〉
T1(x) =

〈
M1(0, 1) · S1[x] | M1(1, 1) · S1[x] | M2(0, 1) · S2[x] | M2(1, 1) · S2[x]

〉

7

Then we can compute u0..3 := T0[x0] ⊕ T1[x13], u4..7 := T0[x4] ⊕ T1[x1], u8..11 := T0[x8] ⊕ T1[x5],
and u12..15 := T0[x12]⊕ T1[x9]. A “reasonably optimized” implementation of the round function F
(on a 32-bit machine) may work as follows:

Function F (x0, x1, x2, x3): // each xi is a four-byte word
Temporary storage: u0, u1, u2, u3, each a four-byte word
1. u0 := T0[byte0(x0)]⊕ T1[byte1(x3)] // first “half round”
2. u1 := T0[byte0(x1)]⊕ T1[byte1(x0)]
3. u2 := T0[byte0(x2)]⊕ T1[byte1(x1)]
4. u3 := T0[byte0(x3)]⊕ T1[byte1(x2)]
5. [byte2(u0) | byte3(u0)] := [byte2(u0) | byte3(u0)] ⊕ [byte2(x0) | byte3(x0)]
6. [byte2(u1) | byte3(u1)] := [byte2(u1) | byte3(u1)] ⊕ [byte2(x1) | byte3(x1)]
7. [byte2(u2) | byte3(u2)] := [byte2(u2) | byte3(u2)] ⊕ [byte2(x2) | byte3(x2)]
8. [byte2(u3) | byte3(u3)] := [byte2(u3) | byte3(u3)] ⊕ [byte2(x3) | byte3(x3)]

9. u0 := u0 �< 2 bytes // swap the two halves
10. u1 := u1 �< 2 bytes
11. u2 := u2 �< 2 bytes
12. u3 := u3 �< 2 bytes

13. x0 := T0[byte0(u2)]⊕ T1[byte1(u2)] // second “half round”
14. x1 := T0[byte0(u3)]⊕ T1[byte1(u3)]
15. x2 := T0[byte0(u0)]⊕ T1[byte1(u0)]
16. x3 := T0[byte0(u1)]⊕ T1[byte1(u1)]
17. [byte2(x0) | byte3(x0)] := [byte2(x0) | byte3(x0)] ⊕ [byte2(u0) | byte3(u0)]
18. [byte2(x1) | byte3(x1)] := [byte2(x1) | byte3(x1)] ⊕ [byte2(u1) | byte3(u1)]
19. [byte2(x2) | byte3(x2)] := [byte2(x2) | byte3(x2)] ⊕ [byte2(u2) | byte3(u2)]
20. [byte2(x3) | byte3(x3)] := [byte2(x3) | byte3(x3)] ⊕ [byte2(u3) | byte3(u3)]

21. output (x0, x1, x2, x3)

We note the need for explicit swapping of the two halves above (lines 9-12). The reason for that is
that the tables T0, T1 are arranged so that the part corresponding to GS1,M1 is in the first two bytes
of each entry, and the part of GS2,M2 is in the last two bytes. The code above can be optimized
further, combining the rotation in these lines with the masking, which is implicit in lines 5-8, 17-20.
Hence, the rotation becomes essentially “for free”.

This structure provides a space/time tradeoff similar to Rijndael: Since the matrices M1,M2 are
symmetric, one can obtain T2(x) from T1(x) using a few shift operations. Hence, it is possible to
store only one table, at the expense of some slowdown in performance. This tradeoff is particularly
important for Scream, where the tables T0, T1 are key-dependent.

The nonce-setup routine. The nonce-setup routine was designed so that the first output block
can be computed as soon as possible. Although all the entries of the table W have to be modified
during the nonce-setup, an application that does not use all of them can modify only as many as
it needs. Hence an application that only outputs a few blocks per input nonce, does not have to
complete the entire nonce-setup. Alternatively, an application can execute the nonce-setup together
with the first “chunk” of 16 steps, modifying each mask of W just before this mask is needed.

8

Performance in software. We tested the software performance of Scream and Scream-F on two
platforms, both with word-length of 32 bits: One platform is an IBM PC 300PL, with a 550MHz
Pentium-III processor, running Linux and using the gcc compiler, version 3.0.3. The other platform
is an RS/6000 43P-150 workstation, with a 375MHz 304e PowerPC processor, running AIX 4.3.3 and
using the IBM C compiler (xlc) version 3.6.6. On both platforms, we measured peak throughput,
and also timed the key-setup and nonce-setup routines. To measure peak throughput, we timed
a procedure that produces 256MB of output (all with the same key and nonce). Specifically, the
procedure makes one million calls to a function that outputs the next 256 bytes of the cipher. To
eliminate the effect of cache misses, we used the same output buffer in all the calls. We list our
test results in the table below.

Platform Operation Scream-F Scream SEAL
Pentium-III throughput 5.6 cycle/byte 4.9 cycle/byte 5.0 cycle/byte
550 MHz key-setup 3190 cycles 27500 cycles
Linux, gcc nonce-setup 1276 cycles 1276 cycles
604e PowerPC throughput 3.8 cycle/byte 3.4 cycle/byte 3.45 cycle/byte
375 MHz key-setup 1950 cycles 16875 cycles
AIX, xlc nonce-setup 670 cycles 670 cycles

Implementation in different environments. Being based on a Rijndael-like round function,
Scream is amenable for implementations in many different environments. In particular, it should
be quite easy to implement it in hardware, and the area/speed tradeoff in such implementation
may be similar to Rijndael (except that Scream needs more memory for the mask table). Also,
it should be quite straightforward to implement it for 8- and 16-bit processors (again, as long as
the architecture has enough memory to store the internal state). Scream is clearly not suited for
environments with extremely small memory, but it can be implemented with less than 400 bytes of
memory (although such implementation would be quite slow).

4 Security Analysis

Below we examine some possible attacks on Scream-0 and Scream. The discussion below deals
mostly with Scream-0. At the end we briefly discuss the effect of Scream’s key-dependent S-boxes
on these attacks. We examine two types of attacks, one based on linear approximations of the F
function, and the other exploits the low diffusion provided by a single application of F . In both
attacks, the goal of the attacker is to distinguish the output of the cipher from a truly random
stream.3

4.1 Linear attacks

It is not hard to see that the F function has linear approximations that approximate only three
of the 8-by-8 S-boxes. Since the S-boxes in Scream-0 are based on the Rijndael S-box, the best
approximation of them has bias 2−3, so we can probably get a linear approximation of the F function
with bias 2−9. Namely, there exists a linear function L such that Prx[L(x, F (x)) = 0] = 1/2± 2−9.

3In a separate paper [1], we show that these two types of attacks can be viewed as two special cases of a generalized
distinguishing attack.

9

In Appendix A, we show that there are no approximation of the F function with bias of more than
2−9.

To use such approximation, we need to eliminate the linear masking, introduced by the y, z and
the W [i]’s. Here we use the fact that each one of these masks is used sixteen times before it is
modified. For each step of the cipher, the attacker sees a pair (x⊕ y⊕W [i], F (x)⊕ z ⊕W [i+ 1]),
where x is random. Applying the linear approximation L to this pair, we get the bit

σ = L(x, F (x))⊕ L(y, z)⊕ L(W [i],W [i+ 1])

For simplicity, we ignore for the moment the rotation of the y block after each step. If we add
two such σ’s that use the same y and z blocks, we get τ = σ ⊕ σ′ = L(x, F (x)) ⊕ L(x′, F (x′)) ⊕
L(W [i],W [i + 1]) ⊕ L(W [j],W [j + 1]). The last bit does not depend on y, z anymore. We can
repeat this process, adding two such τ ’s that use the same masks, we end up with a bit

µ = τ ⊕ τ ′ = L(x, F (x))⊕ L(x′, F (x′))⊕ L(x′′, F (x′′))⊕ L(x′′′, F (x′′′))

Since L(x, F (x)) has bias of 2−9, the bit µ has bias of 2−36, so after seeing about 272 such bits, we
can distinguish the cipher from random.

Since each of the masks is used sixteen times before it is modified, we have about
(

16
2

)
choices for

the pairs of σ’s to add (still ignoring the rotation of y), and about
(

16
2

)
choices for the pairs of

τ ’s to add. Hence, 256 steps of the cipher gives us about
(

16
2

)2 ≈ 214 bits µ. After seeing roughly
256 ·258 = 266 steps of the cipher (i.e., 270 bytes of output), we can to collect the needed 272 samples
of µ’s to distinguish the cipher from random.

The rotation of y. The rotation of y makes it harder to devise attacks as above. To cancel both
the y and the z blocks, one would have to use two different approximations with the same output
bit pattern, but where the input bit patterns are rotated accordingly. We do not know if it possible
to devise such approximation with “reasonably high” bias.

The secret S-boxes. The introduction of key-dependent S-boxes in Scream does not significantly
alter the analysis from above. Since the S-boxes are key-dependent, an attacker cannot pick “the
best approximations” for them, but on the other hand these S-boxes have better approximations
than the Rijndael S-box. Thus, the attacker can use a random approximation, and it will likely to
be roughly as good as the best approximation for the fixed S-boxes.

The nonce-setup procedure. The analysis from above assumed that the attacker only uses one
nonce, and watches many output bytes from the resulting stream. In our attack model, however, the
attacker is able to feed the cipher with many different nonces. To see why this may be an effective
attack, consider what would happen if we eliminate the mask modification process (Lines 5–10)
from the nonce-setup procedure. The attacker could then feed many different nonces, watching
only the first few output blocks from each nonce. In this process, the masks are fixed, and therefore
there is no need to cancel them out. The only thing that needs to be canceled out are the y, z
blocks, and the attacker can do that by approximating only two steps for each nonce. This could
potentially yield an approximation with bias as high as 2−18, so the attacker only needs about 236

different nonces before it can distinguish the cipher from random. 4

4As noted above, the achievable bias is likely to be smaller, due to the rotations of the y block.

10

The simplest fix is to modify all the masks (in an “uncorrelated” way) during the nonce-setup.
However, doing that is rather expensive. We therefore used an “optimization trick”, where we
modified the odd entries by adding to them different values, and modified all the even entries by
adding to them the same value. The reason that this helps, is that an approximation of a single
step includes two masks, one even and one odd. Thus, we still need to cancel out the odd masks,
which means that we still need to add at least four approximations.

The only way to avoid using masks from odd steps, is to use an approximation of two consecutive
F functions, and this is likely to have small bias. Moreover, to be able to cancel the value that was
added to the even masks, and also the y and z blocks, and to do it using just two steps, one must
use approximations of the F function, where

(a) the same bitwise pattern is used on both the input and the outputs of the function; and

(b) this bitwise pattern is periodic.

We were not able to find such an approximation that uses less than all the S-boxes.

4.2 Low-diffusion attacks

A low-diffusion attack exploits the fact that not every byte of F (x) is influenced by every byte of
x (and vise versa). For example, there are output bytes that only depend on six input bytes. In
fact, in Appendix B we show that knowing two bytes of x and one byte of (linear combination of
bytes in) F (x), we can compute another byte of (linear combination of bytes in) F (x). Namely, we
have a (non-degenerate) linear function L with output length of four bytes, so that we can write
L(X,F (x))3 = g(L(X,F (x))0..2), where g is an known deterministic function (with three bytes of
input and one byte of output).

As for the linear attacks, here too we need to eliminate the linear masking, introduced by the y, z
and the W [i]’s. This is done in very much the same way. Again, we ignore for now the rotation of the
block y. For each step of the cipher the attacker sees the four bytes L(x⊕y⊕W [i], F (x)⊕z⊕W [i+1]).
We eliminate the dependence on y, z by adding two such quantities that use the same y, z blocks.
This gives a four-byte quantity L(x, F (x))⊕ L(x′, F (x′))⊕ L(W [i],W [i+ 1])⊕ L(W [j],W [j + 1]).
Adding two of those with the same i, j, we then obtain the four byte quantity

L(x, F (x))⊕ L(x′, F (x′))⊕ L(x′′, F (x′′))⊕ L(x′′′, F (x′′′))

We can write this last quantity in terms of the function g, as a pair (s⊕t⊕u⊕v, g(s)⊕g(t)⊕g(u)⊕
g(v)), where each of s, t, u, v is three-byte long, and the g(?)’s are one-byte long. In a separate
paper [1], we analyze the statistical properties of such expressions, and calculate the number of
samples that needs to be seen to distinguish them from random.

The rotation of y. Again, the rotation of y makes it harder to devise attacks as above. In
Appendix B we show, however, that we can still use a low-diffusion attack on the F function, in
which guessing six bytes of (x, F (x)) yields the value of four other bytes. Applying tools from
our paper [1] to this relation, we can compute that the amount of output text that is needed
to distinguish the cipher from random along the lines above, is merely 243 bytes. However, the
procedure for distinguishing is quite expensive. The most efficient way that we know how to use
these 243 bytes would require roughly 250 space and 280 time.

11

The secret S-boxes. At present, we do not know how to extend low-diffusion attacks such as
above to deal with secret S-boxes. Although we can still write the same expression L(X,F (x))3 =
g(L(X,F (x))0..2), the function g now depends on the key, so it is not known to the attacker.
Although it is likely that some variant of these attacks can be devised for this case too, we strongly
believe that such variants would require significantly more text than the 264 bytes that we “allow”
the attacker to see.

5 The cipher Scream-F

In Scream, we used key-dependent S-boxes to defend against “low-diffusion attacks”. A different
approach is to keep the S-box fixed, but to add to the main body of the cipher some “key dependent
operation” before outputting each block. This approach was taken in Scream-F, where we added
one round of Feistel ladder after the round function, using a key-dependent table. However, since
the only key-dependent table that we have is the mask table W, we let W double also as an “S-box”.
Specifically, we add the following lines 3a-3e between lines 3 and 4 in the main-loop routine from
Figure 3.

3a. view the table W as an array of 64 4-byte words Ŵ [0..63]
3b. x0..3 := x0..3 ⊕ Ŵ [1 + (x4 ∧ 00111110)]
3c. x4..7 := x4..7 ⊕ Ŵ [x8 ∧ 00111110]
3d. x8..11 := x8 ..11 ⊕ Ŵ [1 + (x12 ∧ 00111110)]
3e. x12..15 := x12..15 ⊕ Ŵ [x0 ∧ 00111110]

We note that the operation xi ∧ 00111110 in these lines returns an even number between 0 and 62,
so we only use odd entries of W to modify x0..3 and x8..11, and even entries to modify x4..7 and
x12..15. The reason is that to form the output block, the words x0..3, x8..11 will be masked with even
entries of W , and the words x4..7, x12..15 will be masked by odd entries. The odd/even indexing is
meant to avoid the possibility that these masks cancel with the entries that were used in the Feistel
operation.5

5.1 Conclusions

We presented Scream, a new stream cipher with the same design style as SEAL. The new cipher
is roughly as fast as SEAL, but we believe that it is more secure. It has some practical advantages
over SEAL, in flexibility of implementation, and also in the fact that it can take a full 128-bit nonce
(vs. 32 bits in SEAL). In the process of designing Scream, we studied the advantages and pitfalls
of the SEAL design style. We hope that the experience from this work would be beneficial also for
future ciphers that uses this style of design.

Acknowledgments

This design grew out of a study group in IBM, T.J. Watson during the summer and fall of
2000. Other than the authors, the study group also included Ran Canetti, Rosario Gennaro,

5It is still possible that two words, say x0..3 and x4..7, are masked with the same mask, but it seems less harmful.

12

Nick Howgrave-Graham, Tal Rabin and J.R. Rao. The motivation for this work was partly due to
the NESSIE “call for cryptographic primitives” (although we missed their deadline by more than
one year).

References

[1] D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream ciphers with linear masking.
Available from the ePrint archive, at http://eprint.iacr.org/2002/020/, 2002.

[2] J. Daemen and V. Rijmen. AES proposal: Rijndael. Available on-line from NIST at
http://csrc.nist.gov/encryption/aes/rijndael/, 1998.

[3] S. Fluhrer. Cryptanalysis of the SEAL 3.0 pseudorandom function family. In Proceedings of the
Fast Software Encryption Workshop (FSE’01), 2001.

[4] H. Handschuh and H. Gilbert. χ2 cryptanalysis of the SEAL encryption algorithm. In Pro-
ceedings of the 4th Workshop on Fast Software Encryption, volume 1267 of Lecture Notes in
Computer Science, pages 1–12. Springer-Verlag, 1997.

[5] K. Nyberg. Differentially uniform mappings for cryptography. In Advances in Cryptography,
Eurocrypt’93, volume 765 of Lecture Notes in Computer Science, pages 55–64. Springer-Verlag,
1993.

[6] P. Rogaway and D. Coppersmith. A software optimized encryption algorithm. Journal of
Cryptology, 11(4):273–287, 1998.

A Linear approximations of the F function of Scream-0

A detailed description of the round function F is provided again in Figure 6. Throughout the next
two sections, we refer to the notation that are used in that figure.

A.1 The S-boxes

Since every S-box lookup in F uses the same input for the two S-boxes S1, S2, one should view these
two S-boxes as one box, with one byte input and two byte output. As both S1, S2 are permutations,
any approximation of this 8×16 S-box (with non-zero bias) must look at at least two of the three
bytes (x, S1[x], S2[x]). Below we say that an approximation is a two-value approximation if it uses
only two of these values, and it is a three-value approximation if it uses all three.

Proposition 1 For the S-boxes S1, S2 of Scream-0:
(a) Any two-value approximation of x, S1[x], S2[x] has bias of at most 2−3.
(b) Any three-value approximation of x, S1[x], S2[x] has bias of at most 2−2.

Proof: These facts can be confirmed by an exhaustive search. Below we provide an analytical
proof for (a): Recall that the S-boxes S1, S2 in Scream-0 are defined as S1[x] = A(1

x)⊕ b, S2[x] =
A(1

x⊕δ) ⊕ b, where A is an invertible boolean matrix, the (1/x) operation is defined in GF (28),

13

x0 x4 x8 x12

x1 x5 x9 x13

v2 v6 v10 v14

v3 v7 v11 v15

byte substitution byte substitution

u2 u6 u10 u14

u3 u7 u11 u15

byte substitution byte substitution

w0 w4 w8 w12

w1 w5 w9 w13

l

l

hhhhhhhhhhhhhh
hhhhhhhhhhhhhh

(((((((((((((((((((((((((((((((

x2 x6 x10 x14

x3 x7 x11 x15

v10 v14 v2 v6

v11 v15 v3 v7

matrix shift

column mix

row shift

c := M2 · c
column mix
c := M1 · c

u0 u4 u8 u12

row shift

column mix

row shift

c := M2 · c
column mix
c := M1 · c

row shift

S1[v10] S1[v14] S1[v2] S1[v6] S2[v10] S2[v14] S2[v2] S2[v6]

S1[x0] S1[x4] S1[x8] S1[x12]
S1[x13] S1[x1] S1[x5] S1[x9]

S2[x0] S2[x4] S2[x8] S2[x12]
S2[x13] S2[x1] S2[x5] S2[x9]

S1[v7] S1[v11] S1[v15] S1[v3] S2[v7] S2[v11] S2[v15] S2[v3]

u1 u5 u9 u13

w2 w6 w10 w14

w3 w7 w11 w15

x′0 x′4 x′8 x′12

x′1 x′5 x′9 x′13

x′2 x′6 x′10 x′14

x′3 x′7 x′11 x′15

Figure 6: Details of the round function F . (The bytes in boldface are used in the low-diffusion
attack from Appendix B.)

14

and b, δ are two bytes, with δ 6= 0. As the operation Az ⊕ b is just an affine transformation, it is
sufficient to prove the assertion for the “underlying S-boxes”

S′1[x] =
1
x

S′2[x] =
1

x⊕ δ

It is known that the best linear approximation of the function f(x) = 1/x in GF (2n) has bias
21−n/2 [5]. Hence, every approximation that only uses (x, S′1[x]) (or only uses (x, S′2[x])) must have
bias at most 2−3. It is left to show that an approximation that only uses the values (S′1[x], S′2[x])
cannot do any better. For any two masks ρ1, ρ2 and any bit σ, denote

Xρ1,ρ2,σ = {x : ρ1 · (1/x)⊕ ρ2 · (1/(x⊕ δ)) = σ}

We need to show that for any ρ1, ρ2, σ, we have |Xρ1,ρ2,σ| ≤ 256
2 (1 + 2−3) = 144.

We now change the variable, setting y = 1 ⊕ (δ/x) (all the operations in GF (28)). With this
assignment, we have 1/x = (1⊕ y)/δ and 1/(x⊕ δ) = (1⊕ (1/y))/δ. The transformation from x to
y is a bijection, so we have

|Xρ1,ρ2,σ| =
∣∣∣∣ {y : ρ1 ·

(
1⊕ y
δ

)
⊕ ρ2 ·

(
1⊕ (1/y)

δ

)
= σ

} ∣∣∣∣
Finally, since δ is fixed, then division by δ in GF (28) is a linear operation, and therefore it commutes
with the inner-product operation. Hence, we have

|Xρ1,ρ2,σ| =
∣∣∣∣ {y : (ρ1/δ) · y ⊕ (ρ2/δ) · (1/y) = σ ⊕ ((ρ1/δ) · 1)⊕ ((ρ2/δ) · 1)}

∣∣∣∣ ≤ 144

where the last inequality follows since this is the bias of some linear approximation of the function
f(y) = 1/y, and we already know that that function cannot be approximated with bias of more
than 2−3. 2

A.2 The F function

It is easy to see that the F function has approximations that only look at three S-boxes. For example
(using the notations from Figure 6), one can use the 2-value approximations (x0, S2[x0]), (x13, S2[x13])
and (v2, S1[v2]). Since there is a linear relation between S2[x0], S2[x13], x2 and v2, and another linear
relation between S1[v2], x′8, x

′
9, we obtain an approximation of input bytes x0, x13, x2 and output

bytes x′8, x
′
9. Since the approximations of the S-boxes have bias at most 2−3, this approximation

of F has bias at most 2−9. This, however, is the best possible approximation of the F function, as
we prove below.

Proposition 2 Any approximation of the F function has bias of at most 2−9.

Proof: First some terminology: As usual, we view an approximation of the function F as a sum
(modulo 2) of approximations involving the intermediate components. Since the only non-linear
components are the S-boxes, we identify an approximation of F with an assignment of masks to the
inputs and outputs of all the S-boxes in Figure 6. For example, we may talk about “the mask of
S1[x0]” in some approximation. We say that an approximation uses some specific byte, if it assigns
a non-zero mask to that byte, and it uses some S-box if it uses some of its input and outputs.

15

We now present some useful observations. Consider, for example, the mask of the bytes S2[x0],
S2[x13], S2[v10] and S2[v7]. Note that these bytes (and the output bytes x′2, x

′
3) are related by(

S2[v10]
S2[v7]

)
= M−1

2

(
x′2
x′3

)
⊕M−1

2 M1

(
S1[x0]
S1[x13]

)
Therefore, in any approximation (with non-zero bias), the masks of these bytes must also be related.
Namely, if we have an approximation with the masks ρ1, ρ2, ρ3, ρ4 assigned respectively to S2[x0],
S2[x13],S2[v10],S2[v7], then it must be the case that(

ρ1

ρ2

)
= M−1

2 M1

(
ρ3

ρ4

)
(1)

In particular, the values of ρ1, ρ2 determine the values of ρ3, ρ4, and vice versa. Moreover, since
M−1

2 M1 is an MDS matrix, then if one of these masks is non-zero, at least three of them must be
non-zero. Similarly, the masks assigned to the bytes S2[x0], S2[x13], v2 and v3 are related by(

ρ1

ρ2

)
= M2

(
ρ3

ρ4

)
(2)

Again, since M2 is MDS, then if one of these masks is non-zero, at least three of them must be
non-zero. In Table 1 we list eight sets of bytes for which the masks must be related in the same
manner. The analysis above says that for any column in Table 1, either all the bytes are assigned
the mask zero, or at least three are assigned a non-zero mask. The rest of the proof follows by
some observations on the structure of that table.

Bytes related by Eq. (1) Bytes related by Eq. (2)
S1[x0] S1[x4] S1[x7] S1[x12]
S1[x13] S1[x1] S1[x5] S1[x9]
S2[v10] S2[v14] S2[v2] S2[v6]
S2[v7] S2[v11] S2[v15] S2[v3]

S2[x0] S2[x4] S2[x7] S2[x12]
S2[x13] S2[x1] S2[x5] S2[x9]
v2 v6 v10 v14

v3 v7 v11 v15

Table 1: Some intermediate bytes of the F function

Looking at Table 1, we see that it contains two of the three bytes from every S-box in the F
function, and that these two bytes never appear in the same column. Therefore, every two-value
approximation of an S-box in F must assign non-zero mask to at least one byte in Table 1, and
every three-value approximation of an S-box must assign non-zero mask to at least two byte in two
different columns.

Below we say that two columns in Table 1 intersect, if they contain bytes from the same S-box.
We say that the columns intersect at the top if the upper halves of these columns intersect, and
that they intersect at the bottom if the lower halves intersect. Due to the “matrix shift” operation
in the F function, there are no two columns in Table 1 that intersect both at the top and at the
bottom. That is, if the top halves of two columns intersect, then their bottom halves do not, and
vice versa.

We now can prove Proposition 2. First, every approximation must assign non-zero value to at least
one byte in some column the table. But this implies that at least three bytes in that column has

16

to be assigned non-zero values. Hence, every approximation must use bytes from at least three
different S-boxes.

Next, if an approximation of F uses any three-value approximation of an S-box, then it must assign
non-zero values to bytes in at least two different columns of Table 1. Since in each of these columns
there must be at least three bytes with non-zero masks (and since these columns cannot intersect
both at the top and at the bottom), it follows that the approximation uses bytes from at least four
different S-boxes.

Finally, if an approximation of F uses only three-value approximations of S-boxes, then it must
assign non-zero values to bytes in more than two columns, and therefore use bytes from more than
four different S-boxes (in fact, at least six S-boxes). Using the bounds from Proposition 1 on the
bias of S-box approximations, we conclude that in either case, an approximation of the F function
cannot have bias of more than 2−9. 2

B Low-diffusion attack on the F function

Low-diffusion attacks exploit the limited diffusion provided by just one application of the F function.
The goal is to guess just a few of the input/output bytes of the function, and get at least one byte of
consistency check. It is not hard to see that we can get some relations by guessing only four (linear
combinations of the) input and output bytes. For example, it can be seen from Figure 6, that there
is a relation involving input bytes x0, x13, a one-byte linear combination of x′0, x

′
1 (namely S1[v10]),

and a one-byte linear combination of x′2, x
′
3: If we guess S1[v10], then we also know S2[v10], which

is some linear combination of w2 = u0 ⊕ x′2 and w3 = u1 ⊕ x′3. If we also guess x0 and x13, we
can compute u0 and u1, thereby deducing the linear combination of x′2 and x′3. 6 It is not hard to
see that guessing any three of these bytes, we can compute the fourth byte. Another example is a
relation between S1[v10] and the three input bytes x5, x8, x10.

These “guess three, get one free” relations, however, cannot be used directly to mount an attack,
because of the rotations of the y block. To mount an attack, we need to cancel out both the rotated
y blocks, and the fixed z block (and also the fixed masks W [i]). This means that we must find
two relations that use the same (linear combinations of) output bytes, but rotated version of the
(linear combinations of) input bytes.

The best strategy that we found for doing that, is to use two copies of the “guess three, get one
free” relations from above. For example, the attacker can guess the six bytes x0, x13, S1[v10] and
x8, x5, S1[v2] and use the fact that every other step, the y block is rotated by eight bytes. An
added bonus (for the attacker) is that now both types of the relations from above can be used.
Namely, guessing these six bytes, one can derive four other bytes: a one-byte linear combination of
x′2, x

′
3, a one-byte linear combination of x′10, x

′
11, and the bytes x10 and x2. Notice that the input

bytes in these relations are arranged in pairs, (x0, x8), (x5, x13), and (x2, x10), so we still use the
same six bytes of y as masks, even after y is rotated by eight positions.

To make the notations below a little less horrible, we denote x′a = S1[v2], x′b = S1[v10], also also
denote the one-byte linear combination of x′2, x

′
3 by x′c, and the one-byte linear combination of

x′10, x
′
11 by x′d. The important thing to remember is that x′a, x

′
b, x

′
c, x

′
d are all one-byte linear

6We note that guessing just one of x0, x13 yields some linear combination of u0, u1, but since M−1
2 M1 is MDS, we

cannot get the “right” combination.

17

combinations of some bytes of x′. The relation that we use can now be described as
f1(x0)
f1(x8)
f2(x0)
f2(x8)

+

g1(x13)
g1(x5)
g2(x13)
g2(x5)

+

h1(x′a)
h1(x′b)
h2(x′b)
h2(x′a)

 =

x2

x10

x′c
x′d

 (3)

where the fi, gi, hi functions are known permutations. (For example, f1(α) = S2[α], and h1(α) =
S2[S−1

1 [α]].)

To cancel out the y, z blocks and the masks W [i], the attacker considers a “2× 2 matrix of steps”,
i, i+ 1, i+ 16, i+ 17 for even i. Since i is even, then the y block is rotated by eight bytes between
steps i, i+ 1 and between steps i+ 16, i+ 17. Also, the masks from W that are used in the steps
i− 1, i, i+ 1 are the same as in steps i+ 15, i+ 16, i+ 17. For example, below we consider steps 2,
3, 18 and 19 in the cipher. We use the following notations:

• We denote by x(i) the input block to the F function in step i, and by x′(i) the corresponding
output block. As before, we use subscript to denote bytes withing a block. For example,
x(2)10 or x′(18)c.

• We denote the y, z blocks at step 2 by y1, z1, and the y, z blocks at step 18 by y2, z2. Note that
in step 3 we have z = z1, y = y18..15,0..7 and similarly in step 19 we have z = z2, y = y28..15,0..7.

• We denote the mask in steps 1,17 by W [1], the mask in steps 2,18 by W [2], and the mask in
steps 3,19 by W [3].

The attacker, watching the output stream, can see the sums of those bytes. For example, it can get
the byte x(2)2 ⊕ y12 ⊕W [1]2 from the output block in step 1, and the bytes x′(2)c ⊕ z1c ⊕W [2]c
and x(3)2 ⊕ y110 ⊕W [2]2 from the output block from step 2. In the sums that we get from these
six steps, each byte of y1, y2, z1, z2,W [1],W [2],W [3] appears exactly twice. The attacker can then
sum-up these bytes, to eliminate the y’s, z’s and W ′s. For example, we have the following:

from step 2 we have x′(2)c ⊕ z1c ⊕ W [2]c
from step 3 we have x′(3)c ⊕ z1c ⊕ W [3]c
from step 18 we have x′(18)c ⊕ z2c ⊕ W [2]c
from step 19 we have x′(19)c ⊕ z2c ⊕ W [3]c
summing them, we get x′(2)c ⊕ x′(3)c ⊕ x′(18)c ⊕ x′(19)c

Another example, relating to input bytes is as follows:

from step 1 we have x(2)0 ⊕ y10 ⊕ W [1]0
from step 2 we have x(3)8 ⊕ y10 ⊕ W [2]8
from step 17 we have x(18)0 ⊕ y20 ⊕ W [1]0
from step 18 we have x(19)8 ⊕ y20 ⊕ W [2]8
summing them, we get x(2)0 ⊕ x(3)8 ⊕ x(18)0 ⊕ x(19)8

The attacker collect ten such sums, one for each byte in Eq. (3). We now claim that the distribution
over these ten bytes is significantly different than the uniform distribution. To see that, we show
that we can write these ten sums as

〈s⊕ t⊕ u⊕ v, F1(s)⊕ F2(t)⊕ F1(u)⊕ F2(v)〉 (4)

18

for some function F1, F2 : {0, 1}48 → {0, 1}32, both known to the adversary. Indeed, it is easy to
check that this is exactly what we get when we set

s0..5 =
〈
x(2)0, x(2)8, x(2)13, x(2)5, x′(2)a, x′(2)b

〉
t0..5 =

〈
x(3)8, x(3)0, x(3)5, x(3)13, x

′(3)a, x′(3)b
〉

u0..5 =
〈
x(18)0, x(18)8, x(18)13, x(18)5, x

′(18)a, x′(18)b
〉

v0..5 =
〈
x(19)8, x(19)0, x(19)5, x(19)13, x

′(19)a, x′(19)b
〉

and

F1(a0..5) def=

f1(a0)
f1(a1)
f2(a0)
f2(a1)

+

g1(a2)
g1(a3)
g2(a2)
g2(a3)

+

h1(a4)
h1(a5)
h2(a5)
h2(a4)

F2(a0..5) def=

f1(a0)
f1(a1)
f2(a1)
f2(a0)

+

g1(a2)
g1(a3)
g2(a3)
g2(a2)

+

h1(a5)
h1(a4)
h2(a5)
h2(a4)

Moreover, each of the functions Fi is a sum, Fi(a0..5) = F 1
i (a0,1) + F 1

i (a2,3) + F 1
i (a4,5).

In our paper [1] we analyze distributions such as the one in Eq. (4). In that paper, it is shown
that for the case of two functions Fi : {0, 1}m → {0, 1}m′ , each a sum of three functions F ji :
{0, 1}m/3 → {0, 1}m′ , we expect the statistical distance between the distribution from Eq. (4) and
the uniform distribution to be

√
16/π · 23(m′−m)/2. Plugging in the values m = 48, m′ = 32 we get√

16/π · 23·(32−48)/2 ≈ 2−20.5.

The attack. The attack can now be succinctly described as follows: Watching the output stream,
the attacker collects sufficiently many samples from the distribution of Eq. (4), until it can dis-
tinguish this distribution from random. Since we have statistical distance 2−20.5, then we need
roughly 241 such samples.

It can be shown that from 256 steps of the cipher, the attacker can collect about 210 samples. To
see this, note that each pair of y, z blocks is used 16 times before it is modified, and we can partition
these 16 times into eight pairs (i, i+1) (with even i) and use each of these pairs in place of steps 2,3
above. Next, the attack above looks at three consecutive masks, W [i−1],W [i],W [i+1]. In Scream-
0, we have 14 “batches” of 16 steps where all three masks are the same, before we modify one of
them. We can choose any pair of these batches to cancel out the masks W . Namely, instead of steps
2,3,18,19 as in the example above, we can use any four steps of the form i, i+ 1, i+ 16j, i+ 16j+ 1,
with even i ≤ 16 and as long as the masks W [i− 1 mod 16], W [i mod 16], W [i+ 1 mod 16] remain
the same in all these steps (which means that we must have j ≤ 14). This gives us 8×

(
14
2

)
≈ 210

smaples from each collection of 16 batches (or 256 steps). To get the 241 samples that we need, we
therefore need to see about 231 collesctions, which is 243 bytes of output.

The attack works by collecting these 241 samples, and for each one computing the probability of
that value according to the distribution from Eq. (4). In our paper [1], we show how one can
efficiently compute this distribution, by pre-computing some large tables that can be used during
the attack, using Walsh-Hadamard transforms. For the case of Scream-0, where each function Fi
is a sum of three functions, each from m/3 to m′ bits, the total time that we spend on the attack
is roughly m′ · 2m′ per sample, and the space requirement is 3 · 2(m/3)+m′ . In our case, we have
m = 48 and m′ = 32, so we need about 250 space and 242 · 32 · 232 = 279 time.

19

C Constants and Test Vectors

The Rijndael S-box, S[0..255] = [
63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 ca 82 c9 7d fa 59 47 f0
ad d4 a2 af 9c a4 72 c0 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 09 83 2c 1a 1b 6e 5a a0
52 3b d6 b3 29 e3 2f 84 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 51 a3 40 8f 92 9d 38 f5
bc b6 da 21 10 ff f3 d2 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db e0 32 3a 0a 49 06 24 5c
c2 d3 ac 62 91 95 e4 79 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 70 3e b5 66 48 03 f6 0e
61 35 57 b9 86 c1 1d 9e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16]

The constant pi (for key-setup)
pi = [24 3f 6a 88 85 a3 08 d3 13 19 8a 2e 03 70 73 44]

Test vectors for Scream-S
*** key-setup test vectors ***
key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
W0[0] = [b6 a5 0b bf f3 9b 9e 99 28 b0 35 18 7b 7d 9c 7b]
W0[15] = [83 32 53 22 db 10 00 31 49 3a a4 80 3a 41 8c b3]

*** nonce-setup test vectors ***
key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
nonce = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
X = [b4 b7 7e 35 6a 24 0c c8 a7 41 b8 c7 d7 29 68 82]
Y = [e4 f4 1d 3b fd 07 d4 3c cb df a9 bb 25 df 65 6c]
Z = [87 de 72 cd 96 5a 96 24 b4 eb 79 66 57 26 fd f9]
W[0] = [66 d4 35 4d 2c 90 5f 0e 7f cc 25 59 43 ba d2 22]
W[15] = [a8 0e b6 56 be aa 5d d2 8d ca fe 07 1b f9 9c 7a]

*** stream test vectors ***
key = [01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10]

nonce = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
out[0] = [74 8c 59 f2 0d 76 9e a8 7a 6d c1 87 46 e6 4a c0]
out[1] = [bd 3b 39 cd 12 18 43 0f 80 fa e0 1b 2e 60 f1 74]
out[4] = [15 21 8a 46 fb ee 26 54 98 8d 2b 80 8a 87 f4 5e]
out[16] = [cb 32 f4 d6 f7 ce 57 69 e2 a3 ac d8 37 e1 37 82]
out[1023] = [97 ec 87 f0 a0 6c e7 0b 75 e6 12 25 50 1f 82 e3]

nonce = [01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01]
out[0] = [47 68 06 37 83 85 99 af d2 8f fb 2e dd fc 9d 2e]
out[1] = [7b d3 0b e4 7a a6 3b 5f 4f 5f 05 06 66 17 d5 a2]
out[4] = [98 aa 20 75 73 c7 fa fc 1c 4c 27 61 46 14 3c 1d]
out[16] = [b3 33 a4 8e 17 50 8e ab b2 68 fb 60 67 56 46 1e]
out[1023] = [a5 41 b3 37 c6 bd 8a 4b 41 a1 40 5f ea c5 a3 f5]

Test vectors for Scream-F

20

*** key-setup test vectors ***
key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
W0[0] = [be a0 cd 9a 5d f6 85 59 c0 3f a9 c5 53 fd ad e1]
W0[15] = [eb 2e ab 45 26 ee 49 e1 34 db 97 87 62 d1 3b 25]

*** nonce-setup test vectors ***
key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
nonce = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
X = [d4 10 c5 bf bd 7b fd 81 37 4e e3 b0 c1 bf 8b a6]
Y = [51 a6 7f 38 3d 0d 95 26 bf b5 b0 e8 26 b5 e4 93]
Z = [53 50 b7 d6 87 3d df 8c 7f 9b 10 7c e0 92 d0 02]
W[0] = [cb ad d5 c2 b0 85 af 77 6c d8 ef ce 7b 36 65 3a]
W[15] = [19 14 5e 0a 4d 23 1c d5 f9 6f 85 8a 39 38 81 a1]

*** stream test vectors ***
key = [01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10]

nonce = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
out[0] = [39 ec 4a 06 45 4d c3 cd 96 dd ef 0c f0 c2 67 40]
out[1] = [a0 ea 56 e7 e3 c8 f5 df 34 ea 35 ee 77 ed da 66]
out[4] = [8a c8 93 af 83 ed 0a 53 6b e9 f4 7c b6 6d 21 67]
out[16] = [e0 8c fe 31 34 a7 48 ca 14 10 f9 58 50 71 49 20]
out[1023] = [a4 e2 fc be 0a 47 53 9a 23 e0 79 25 5c be ea e7]

nonce = [01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01]
out[0] = [2e 70 fb 8c d5 d8 50 a8 94 38 0e 85 46 9d 33 fc]
out[1] = [33 39 da 86 9c a1 f7 1b 3a d0 16 16 ea 42 24 1a]
out[4] = [1a 79 cf 13 01 67 2c 52 25 13 8c c8 89 fb 50 72]
out[16] = [c8 f2 3f ca 4e 0c 47 46 1a b3 7b 34 1b 57 c7 96]
out[1023] = [6e 63 21 c1 9b 49 08 57 84 87 14 ea 4f 08 4b 7d]

21

