
Cryptanalysis of stream ciphers with linear masking

Don Coppersmith Shai Halevi Charanjit Jutla

IBM T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

{copper,shaih,csjutla@watson.ibm.com}

February 16, 2002

Abstract

We describe a cryptanalytical technique for distinguishing some stream ciphers from a truly
random process. The ciphers to which this method applies consist of two processes: one is a
“non-linear process” (say, akin to a typical round function in a block ciphers), and the other is
a “linear process” such as an LFSR (or even fixed tables). These processes can feed each other,
and the output of the cipher can be the linear sum of both processes. This combination seems
to be attractive for designing fast stream ciphers. Examples of such ciphers include SEAL and
PANAMA, and the newer SNOW, MUGI and Scream.

The idea behind our technique is very simple. For the “non linear process”, we look for any
property that can be distinguished from random. In addition, we look for a linear combination
of the linear process that vanishes. We then consider the same linear combination applied to
the cipher’s output, and try to find traces of the distinguishing property.

In this report we analyze the effectiveness of this approach, when applied to specific “dis-
tinguishing properties”. One property is a linear approximation of the non-linear process, and
the other is a “low-diffusion” attack. We demonstrate these attacks by analyzing a few ciphers.
Specifically, we show a linear attack that can distinguish SNOW from a random process after
seeing roughly 295 words of output, with work-load of about 2100. We also show a low-diffusion
attack on Scream-0, that distinguishes it from a random process after seeing only 243 bytes of
output, using 250 space and 280 time. We believe that similar attacks can be devised against
PANAMA and MUGI, but we did not try to look at them yet.

Key words: Hypothesis testing, Linear cryptanalysis, Linear masking, Low-Diffusion attacks,
Stream ciphers.

1 Introduction

A stream cipher (or pseudorandom generator) is an algorithm that takes a short random string, and
expands it into a much longer string, that still “looks random” to adversaries with limited resources.
The short input string is called the seed (or key) of the cipher, and the long output string is called
the output stream (or key-stream). Stream ciphers can be used for shared-key encryption, by using
the output stream as a one-time-pad. Although one could get a pseudorandom generator simply

1

by iterating a block cipher (say, in counter mode), it is believed that one could get higher speeds
by using a “special purpose” stream cipher.

One approach for designing such fast ciphers, it to use some “non-linear process” that may resemble
block cipher design, and to hide this process using linear masking. A plausible rationale behind this
design, is that the non-linear process behaves roughly like a block cipher, so we expect its state at
two “far away” points in time to be essentially uncorrelated. For close points, on the other hand,
it can be argued they are masked by independent parts of the linear process, and so again they
should not be correlated.

Some examples of ciphers that use this approach include SEAL [6] and Scream [1], where the
non-linear process is very much like a block cipher, and the output from each step is obtained by
adding together the current state of the non-linear process and some entries from fixed (or slowly
modified) secret tables. Other examples are PANAMA [2] and MUGI [8], where the linear process
(called buffer) is an LFSR (Linear Feedback Shift Register), which is used as input to the non-linear
process, rather than to hide the output. Yet another example is SNOW [3], where the linear LFSR
is used both as input to the non-linear finite state machine, and also to hide its output.

In this work we describe a technique that can be used to distinguish such ciphers from random. The
basic idea is very simple. We first concentrate on the non-linear process, looking for a characteristic
that can be distinguished from random. For example, a linear approximation that has noticeable
bias. We then look at the linear process, and find some linear combination of it that vanishes.
If we now take the same linear combination of the output stream, then the linear process would
vanish, and we are left with a sum of linear approximations, which is itself a linear approximation.
As we show below, this technique is not limited to linear approximations. In some sense, it can be
used with “any distinguishing characteristic” of the non-linear process. In this report we analyze in
details two types of “distinguishing characteristics”, and show some examples of its use for specific
ciphers.

Linear attacks. Perhaps the most obvious use of our technique, is to devise linear attacks. This
is also the easiest case to analyze. We obtain an exact formula for the amount of text that must be
observed in order to distinguish the cipher from random using a linear approximation, as a function
of the quality of the original approximation of the non-linear process, and the weight distribution
of some linear code that is related to the linear process of the cipher.

Low-diffusion attacks. Another type of attacks uses the low diffusion in the non-linear process.
Namely, some input and output bits of this process depend only on very few other input and output
bits. For this type of attacks, we again analyze the amount of text that an attacker needs to see,
as a function of the number of bits in the low-diffusion characteristic. This analysis is substantially
harder than for the linear attacks. Indeed, here we do not have a complete characterization of the
possible attacks of this sort, but only an analysis for the most basic such attack.

Specific ciphers. We demonstrate the usefulness of our technique by analyzing two specific
ciphers. One is the cipher SNOW [3], for which we demonstrate a linear attack, and the other is
Scream-0 [1] for which we demonstrate a low-diffusion attack.

In addition to the cryptanalytical technique, we believe that our explicit formulation of attacks on
stream ciphers, as done in Section 3, is a further contribution of this work.

2

Organization. In Section 2 we briefly review some background material on statistical distance
and hypothesis testing. In Section 3 we formally define the framework in which our techniques
apply. In Section 4 we describe how these techniques apply to linear attacks, and in Section 5 we
show how they apply to low-diffusion attacks.

2 Preliminaries

We recall some basic definitions and facts about statistical distance between distributions, and
about hypothesis testing. If D is a distribution over some finite domain X and x is an element of
X, then by D(x) we denote probability mass of the element x according to the distribution D. For
notational convenience, we sometimes denote the same probability mass by PrD[x], or even just
Pr[x], if the distribution D is clear from the context. Similarly, if S ⊆ X then D(S) = PrD[S] =∑

x∈S D(x). By x← D, we denote drawing an element x ∈ X according to D. If D is a distribution
over X and f : X → Y is some function, then we denote by f(D) the distribution over Y , which is
induced by picking x← D and setting y := f(x).

Definition 1 (Statistical distance) Let D1,D2 be two distributions over some finite domain X.
The statistical distance between D1,D2, denoted |D1 −D2|, if defined as

|D1 −D2|
def=

∑
x∈X

|D1(x)−D2(x)| = 2 ·max
S⊆X

D1(S)−D2(S)

In our analysis, it would often be convenient to adopt the following interpretation of the statistical
distance: Note that we can write

|D1 −D2| = |X| ·
∑

x

1
|X| · |D1(x)−D2(x)| = |X| · Ex[|D1(x)−D2(x)|]

In words, the statistical distance |D1 −D2| is (a scaling of) the expected value of |D1(x)−D2(x)|,
where x is chosen according to the uniform distribution. Some other useful facts about this measure
are as follows:

1. Denote by DN the distribution which is obtained by picking independently N elements
x1, ..., xn ∈ X according to D. If |D1 −D2| = 2ε, then 2(1− 2e−Nε2/2) ≤ |DN

1 −DN
2 | ≤ 2Nε.

It follows that to get |DN
1 −DN

2 | = 1, the number N needs to be between Ω(1/ε) and O(1/ε2).

In the analysis below, we sometimes make the heuristic assumption that the distributions
that we consider are “smooth enough”, so that to get the statistical distance up to 1, we need
to set N ≈ 1/ε2.

2. If D1, ...,DN are distributions over n-bit strings, we denote by
∑
Di the distribution over the

sum (exclusive-or),
∑N

i=1 xi, where each xi is chosen according to Di, independently of all the
other xj ’s.

Denote by U the uniform distribution over {0, 1}n. If for all i, |U−Di| = εi, then |U −
∑
Di| ≤∏

i εi. (For the sake of self-containment, we include a proof of this simple “xor lemma” in
Section 2.1 below.) In the analysis in this paper, we sometimes assume that the distributions
Di are “smooth enough”, so that we can use the approximation |U −

∑
Di|
∏

i εi.

3

Hypothesis testing. The following is a very brief overview of (binary) hypothesis testing. This
material is covered in many statistics and engineering textbooks (e.g., [5, Ch.5]). In a binary
hypothesis testing problem, there are two distributions D1,D2, defined over the same domain X.
We are given an element x ∈ X, which was drawn according to either D1 or D2, and we need
to guess which is the case. A decision rule for such hypothesis testing problem is a function
DR : X → {1, 2}, that tells us what should be our guess for each element x ∈ X. Perhaps the
simplest notion of success for a decision rule DR, is the statistical advantage that it gives (over a
random coin-toss), in the case that the distributions D1,D2 are equally likely a-priori. Namely,

adv(DR) =
1
2

(
Pr

x←D1

[DR(x) = 1] + Pr
x←D2

[DR(x) = 2]
)
− 1

2

The following is easy to verify:

Proposition 2 For any hypothesis-testing problem 〈D1,D2〉, the decision rule with the largest ad-
vantage is the maximum-likelihood rule,

ML(x) =
{

1 if D1(x) > D2(x)
2 otherwise

The advantage of the ML decision rule equals half the statistical distance, adv(ML) = 1
4 |D1 −D2|.

2.1 Proof of the xor-lemma for statistical distance

Lemma 3 Let D1,D2 be two distributions over {0, 1}k, let D3 = D1 + D2, and denote by U the
uniform distribution over {0, 1}k, and εi = |U − Di|. Then ε3 ≤ ε1ε2.

Proof: For each r, s ∈ {0, 1}k, denote er = D1(r) − 2−k and fs = D2(s) − 2−k. By definition
of statistical distance, we have ε1 = |U − D1| = 1

2

∑
r |er| and similarly ε2 = 1

2

∑
s |fs|. For each

t ∈ {0, 1}k, we then have

D3(t) =
∑

r+s=t

(2−k + er)(2−k + fs)

= 2k · 2−2k +
∑

r+s=t

2−k(er + fs) +
∑

r+s=t

erfs = 2−k +
∑

r+s=t

erfs

(where the last equality holds since
∑

r er =
∑

s fs = 0). Therefore we have

|U − D3| =
∑

t

∣∣∣D3(t)− 2−k
∣∣∣ =

∑
t

∣∣∣∣∣ ∑
r+s=t

erfs

∣∣∣∣∣
≤

∑
t

∑
r+s=t

|erfs| =
∑
r,s

|erfs| =

(∑
r

|er|

)(∑
s

|fs|

)
= ε1ε2

2

Corollary 4 If Di, i = 1...N are distributions with |U − Di| = εi, then |U −
∑

iDi| ≤
∏

i εi.

4

3 Formal framework

We consider ciphers that are built around two repeating functions (processes). One is a non-linear
function NF (x) and the other is a linear function LF (y). The non-linear function NF is usually
a permutation on n-bit blocks (typically, n ≈ 100). The linear function LF is either an LFSR, or
just fixed tables (that can be viewed as cyclic registers with no feedback additions) of size between
a few hundred and a few thousand bits.

The operation of the cipher may be as follows: The state of the cipher consists of the “non-linear
state” x and the “linear state” y. In each step, some bits of y are added to some bits of x, and
some other bits of x are added to some other bits of y. Then, the non-linear function NF is applied
to the resulting x and the linear function LF is applied to the resulting y. Finally, some bits of x
and y are added together to form the output from this step.

To simplify the presentation of this report, we concentrate on a special case, similar to Scream.
(When we describe the attack on SNOW, we show how our techniques can handle other variants.)
We view the linear state as y = (y1, y2, y3), where y1, y2 are used in the current step, and y3 is
the rest of the linear state. In each step we do the following:

1. Set x := NF (x + y1) + y2 // ‘+’ denotes exclusive-or
2. Set y := LF (y)
3. Output the new x

3.1 The linear process

For the linear process, we assume that the initial “linear state” y0 is chosen uniformly at random,
and then it keeps evolving according to the linear function LF . Hence, the string y0y1 . . . is a
random element in some linear subspace of {0, 1}?.
Perhaps the most popular linear process is to view the “linear state” y as the contents of an LFSR.
The linear modification function LF just clocks the LFSR some fixed number of times (e.g., 32
times). This scheme is used for example in PANAMA, SNOW, and MUGI. Often, the LFSR is
defined over some extension field (e.g., GF (232)), but it always has an equivalent representation as
an LFSR over Z2. If we denote the LFSR polynomial by p, then the linear subspace of y0y1 . . . is
the subspace orthogonal to p · Z2[x].

A different approach is taken in Scream. There, the “linear state” y resides in some tables, that are
“almost fixed”. 1 In particular, in Scream, each entry in these tables is modified (via the non-linear
function NF) after 16 times that it is used. To simplify the analysis in this paper, we consider a
variation of Scream, in which the tables are modified “in sync”. That is, we analyze a process in
which all the entries in all the tables are modified at once, and then the tables are used without
further modifications until each entry is used exactly 16 times. Then all the entries are modified
again, etc.

For our purposes, we model this scheme by assuming that whenever an entry is modified, it is
actually being replaced by a new, random and independent value. This assumptions means that
we do not try to exploit correlations between the values of the entries before and after the modi-
fication. A justification of this assumption, is that “correlations between an entry and itself” are
far stronger than correlation between an entry and its modification. Therefore, we concentrate
solely on exploiting the fact that each entry is used several times, and we expect that ignoring the

1One can view a fixed table as a special case of LFSR, with no feedback additions.

5

correlation between a mask and its modification will have only a small influence on the effectiveness
of the attacks.

The masking scheme in Scream can be thought of as a “two-dimensional” scheme, where there are
two tables, each with 16 entries, and these entries are used in lexicographical order. Namely, we
have a “row table” R[·] and a “column table” C[·], each with 16 entries, and the steps of the cipher
are partitioned into batches of 256 steps each. At the beginning of a batch, all the entries in the
tables are “chosen at random”. Then, in step i + 16j in a batch, we set (y1, y2) := R[i] + C[j].

3.2 Attacks on stream ciphers

The attack model that we consider here, is an attacker that watches the output stream and tries to
distinguish it from a truly random stream. The relevant parameters in an attack are the amount of
text that the attacker must see before the attack can reliably distinguish the cipher from random,
as well as the time and space complexity of the distinguishing procedure. The attacks that we
analyze in this report exploit the fact that for a (small) subset of the bits of x and NF (x), the joint
distribution of these bits differs from the uniform distribution by some noticeable amount. Intu-
itively, such attacks never try to exploit correlations between “far away” points in time. The only
correlations that are considered, are the ones between the input and output of a single application
of the non linear function.2

Formally, we view the non-linear process not as one continuous process, but rather as a sequence
of uncorrelated steps. That is, for the purpose of the attack, one can view the non-linear state x at
the beginning of each step as a new random value, independent of anything else. Under this view,
the attacker sees a collection of pairs 〈xj + y1j , NF (xj) + y2j〉, where the xj ’s are chosen uniformly
at random and independently of each other, and the yj ’s are taken from the linear process.

One example of attacks that fits in this model are linear attacks. In linear cryptanalysis, the
attacker exploits the fact that a one-bit linear combination of 〈x,NF (x)〉 is more likely to be
zero than one (or vice versa). In these attack, it is always assumed that the bias in one step is
independent of the bias in all the other steps. Somewhat surprisingly, differential cryptanalysis too
fits into this framework (under our attack model). Since the attacker in our model is not given
chosen-input capabilities, it exploits differential properties of the round function by waiting for the
difference xi +xj = ∆ to happen “by chance”, and then using the fact that NF (xi)+NF (xj) = ∆′

is more likely than you would expect from a random process. It is clear that this attack too is just
as effective against pairs of uncorrelated steps, as when given the output from the real cipher.

We are now ready to define formally what we mean by “an attack on the cipher”. The attacks that
we consider, observe some (linear combinations of) input and output bits from each step of the
cipher, and try to decide if these indeed come from the cipher, or from a random source. This can
be framed as a hypothesis testing problem. According to one hypothesis (Random), the observed
bits in each step are random and independent. According to the other (Cipher), they are generated
by the cipher.

Definition 5 (Attacks on stream ciphers with linear masking) An attack is specified by a
linear function `, and by a decision rule for the following hypothesis-testing problem: The two
distribution that we want to distinguish are

2When only a part of x is used as output, we may be forced to look at a few consecutive applications of NF . This
is the case in SNOW, for example.

6

Cipher. The Cipher distribution is Dc = 〈` (xj + y1j , NF (xj) + y2j)〉j=1,2,..., where the xj’s are
random and independent and the yj’s are chosen at random from the appropriate linear sub-
space (as defined by the linear process of the cipher).

Random. Using the same notations, the “random process” distribution is Dr
def=
〈
`(xj , x

′
j)
〉

j=1,2,...
,

where the xj’s and x′j’s are random and independent.

We often refer to the function ` as the distinguishing characteristic used by attack.

The amount of text needed for the attack is the smallest number of steps for which the decision
rule has a constant advantage (e.g., advantage of 1/4) in distinguishing the cipher from random.
An obvious lower bound on the amount of text is provided by the statistical distance between the
Cipher and Random distributions after N steps. Other relevant parameters of the attack are the
time and space complexity of the decision rule.

4 Linear attacks

A linear attack [4] exploits the fact that some linear combination of the input and output bits
of the non-linear function is more likely to be zero than one (or vice versa). Namely, we have a
(non-trivial) linear function ` : {0, 1}2n → {0, 1}, such that for a randomly selected n bit string x,
Pr[`(x,NF (x)) = 0] = (1+ ε)/2. The function ` is called a linear approximation (or characteristic)
of the non-linear function, and the quantity ε is called the bias of the approximation.

When trying to exploit one such linear approximation, the attacker observes for each step j of the
cipher the masked bit σj = `(xj +y1j , NF (xj)+y2j). Note that σj by itself is likely to be unbiased,
but the σ’s are correlated. In particular, since the y’s come from a linear subspace, it is possible
to find some linear combination of steps for which they vanish. Let J be a set of steps such that∑

j∈J y1j =
∑

j∈J y2j = 0. Then we have∑
j∈J

σj =
∑
j∈J

`(xj , NF (xj)) +
∑
j∈J

`(y1j , y2j) =
∑
j∈J

`(xj , NF (xj))

(where the equalities follow since ` is linear). Therefore, the bit ξJ =
∑

j∈J σj has bias of ε|J |. If
the attacker can observe “sufficiently many” such sets J , it can reliably distinguish the cipher from
random.

The rest of this section is organized as follows: We first characterize the effectiveness of linear
attacks in terms of the bias ε and the weight distribution of some linear subspace. Then we apply
this characterization to an LFSR-based linear process, and show how it can be used for an attack
on SNOW. Finally, we briefly describes how it applies to the “two-dimensional masking” of Scream.

4.1 The statistical distance

Recall that we model an attack in which the attacker observes a single bit per step, namely the bit
σj = `(xj + y1j , NF (xj) + y2j). Below we denote τj = `(xj , NF (xj)) and ρj = `(y1j , y2j). We can
re-write the Cipher and Random distributions for this case as

7

Cipher. Dc
def= 〈τj + ρj〉j=1,2,..., where the τj ’s are independent but biased, Pr[τj = 0] = (1 + ε)/2,

and the string ρ1ρ2 . . . is chosen at random from the appropriate linear subspace (i.e., the
image under ` of the linear subspace of the y’s).

Random. Dr
def= 〈σj〉j=1,2,..., where the σj ’s are independent and unbiased.

Below we analyze the statistical distance between the Cipher and Random distributions, after ob-
serving N bits σ1 . . . σN . Denote the linear subspace of the ρ’s by L ⊆ {0, 1}N , and let L⊥ ⊆ {0, 1}N
be the orthogonal subspace. The weight distribution of the space L⊥ plays an important role in
our analysis. For r ∈ {0, 1, . . . , N}, let AN (r) be the set of strings ~χ ∈ L⊥ of Hamming weight r,
and let AN (r) denote the cardinality of AN (r). We prove the following theorem:

Theorem 6 The statistical distance between the Cipher and Random distributions from above, is

bounded by
√∑N

r=1 AN (r)ε2r .

Proof: Recall that the statistical distance |Cipher−Random| (for N observed bits) can be expressed
in terms of the expected value of |PrCipher[~σ]− PrRandom[~σ]|, where ~σ is chosen uniformly at random
from {0, 1}N . Fix a string ~σ ∈ {0, 1}N , and we want to analyze the probability PrCipher[~σ]. We can
express that probability as

Pr
Cipher

[~σ] =
∑
~ρ∈L

1
|L|
·

N∏
j=1

(
1
2

+
ε

2
· sign(ρi + σi)

)

where the sign indicator is taken to be (+1) if ρi = σi, and (−1) otherwise. In other words,
sign(x) def= (−1)x. We can break the expression above into a power series in ε. In this power series,
the constant term is 2−N , and the series looks as follows PrCipher[~σ] = 2−N

(
1 +

∑N
r=1 εrcoefr

)
,

where the coefficients coefr are defined as

coefr
def=
∑
~ρ∈L

1
|L|
·
∑
{j1...jr}

r∏
t=1

sign(σjt + ρjt) =
∑
{j1...jr}

1
|L|
·
∑
~ρ∈L

sign

(
r∑

t=1

σjt + ρjt

)
(1)

The summation over {j1...jr} in the expression above ranges over all ordered sets of cardinality r in
[1, N]. (In other words, we have 1 ≤ j1 < j2 · · · < jr ≤ N .) Consider one such r-set J = {j1...jr},
and we analyze its contribution to the total sum. Let χ(J) be the characteristic vector of this set.
That is, χ(J) is an N -bit string, which is 1 in bit positions {j1...jr}, and 0 everywhere else.

Proposition 7 Let J = {j1...jr} be a set of cardinality r. If χ(J) /∈ L⊥, then the total contribution
to coefr due to the set J is zero. If χ(J) ∈ L⊥ then the total contribution to coefr due to the set J

is sign
(∑

j∈J σj

)
.

Proof: If ~χ = χ(J) is not in L⊥, then for exactly half of the strings ~ρ ∈ L it holds that
∑

j∈J ρj =
〈~χ, ~ρ〉 = 0 (mod 2). Thus, for exactly half of the strings ~ρ ∈ L we have sign (

∑r
t=1 σjt + ρjt) = +1,

and for the other half we have sign (
∑r

t=1 σjt + ρjt) = −1, so
∑

~ρ∈L sign (
∑r

t=1 σjt + ρjt) = 0.

If χ(J) ∈ L⊥, then for all ~ρ ∈ L we have
∑r

t=1 ρjt = 0 (mod 2), and therefore sign (
∑r

t=1 σjt + ρjt) =
sign (

∑r
t=1 σjt). Thus, we get 1

|L| ·
∑

~ρ∈L sign (
∑r

t=1 σjt + ρjt) = sign (
∑r

t=1 σjt). 2

8

We now view the terms in the power series above as random variables. Formally, for any set J with
χ(J) ∈ L⊥, denote ξJ(~σ) def= sign

(∑
j∈J σj

)
, and we view the ξJ ’es as random variables, which

are defined over the choice of ~σ uniformly at random in {0, 1}N . Then, we define the normalized
probability difference

∆(~σ) def= 2N ·
(

Pr
Cipher

[~σ]− Pr
Random

[~σ]
)

=
N∑

r=1

εr
∑

χ(J)∈AN (r)

ξJ(~σ)

Again, we stress that we view ∆(~σ) as a random variable over the uniform choice of ~σ ∈ {0, 1}N .

It is easy to see that for any non-empty J , we have E[ξJ] = 0 and VAR[ξJ] = 1. Also, if J1 6= J2,
then ξJ1 , ξJ2 are independent. Therefore, the variable ∆ has zero mean, and its variance equals the
weighted sum of the ξJ variances. Namely, VAR[∆] =

∑N
r=1 AN (r)ε2r

We can now write the statistical distance between the Cipher and Random distributions as

|Cipher − Random| =
∑
~σ

∣∣∣∣ Pr
Cipher

[~σ]− Pr
Random

[~σ]
∣∣∣∣ =

∑
~σ

2−N |∆(~σ)| = E~σ [|∆|]

By the convexity of the squaring function, we have E[|∆|] ≤
√

VAR[∆], and therefore

|Cipher − Random| = E~σ [|∆|] ≤
√

VAR[∆] =

√√√√ N∑
r=1

AN (r)ε2r (2)

2

Remark. It turns out that this bound is nearly tight. Indeed, since ∆ is a sum of many “mostly
independent” random variables, it usually “behaves very much like a Gaussian”. If it were a
Gaussian, we would have E[|∆|] =

√
2VAR[∆]/π. This estimate suggests that to get the statistical

distance up to 1, we need to make N large enough so that
∑N

r=1 AN (r)ε2r = π/2.

4.2 LFSR masking

When the linear process is an LFSR, the orthogonal subspace L⊥ is the space of (bitwise reversal
of) polynomials over Z2 of degree ≤ N , which are divisible by the LFSR polynomial p.

Since the linear space L itself typically has dimension of just a few hundreds, the statistical distance
is likely to approach 1 for relatively small N . However, this still does not suggest an efficient
procedure for distinguishing the cipher from random. Indeed, it is likely that the maximum-
likelihood decision rule for the hypothesis testing problem from above is at least as expensive as an
exhaustive search for the key. The reason is that most of the “mass” in the power series in Eq. (2)
is likely to come from terms with relatively high weight. (The largest contributions to the sum are
likely to come from terms ε2rAN (r) with r ≈ N/(log(1/ε) log log(1/ε)), where we expect the growth
of AN (r) to more than compensate for the increase in the exponent ε2r.)

However, the analysis does suggest an efficient sub-optimal decision rule. For a given bound on the
work-load W and the amount of text N , we only consider the first few terms in the power series.
That is, we observe the N bits ~σ = σ1 . . . σN , but only consider the W combinations ~χ ∈ L⊥ with
the smallest (non-zero) weight. For each such combination ~χ, the inner product (i.e., sum of steps)
〈~χ, ~σ〉 has bias of εweight(~χ), and these can be used to distinguish the cipher from random. If we

9

1. fj := Lj [0]
2. Fj := (fj + R1j)⊕R2j

3. output Fj ⊕ Lj [15]
4. R1j+1 := R1j ⊕ ((R2j + Fj)�< 7)
5. R2j+1 := S[R1j]
6. update the LFSR

Figure 1: One step of SNOW: ⊕ is xor and + is addition mod 232.

take all the combinations with weight upto R, we expect the advantage of such a decision rule to

be roughly 1
4

√∑R
r=1 AN (r)ε2r .

The simplest form of this attack (which is probably the most useful), is to consider only the
minimum-weight terms. If the minimum-weight of L⊥ is r0, then we need to make N big enough3

so that
√

AN (r0) · εr0 = 1.

4.3 An attack on SNOW

The stream cipher SNOW was submitted to NESSIE in 2000, by Ekdahl and Johansson. A detailed
description of SNOW is available from [3]. Here we outline a linear attack on SNOW along the
lines above, that can reliably distinguish it from random after observing roughly 295 steps of the
cipher, with work-load of roughly 2100.

SNOW consists of a non-linear process (called there a Finite-State Machine, or FSM), and a linear
process which is implemented by an LFSR. The LFSR of SNOW consists of sixteen 32-bit words,
and the LFSR polynomial, defined over GF (232), is p(z) = z16 +z13 +z7 +α, where α is a primitive
element of GF (232). At a given step j, we denote the content of the LFSR by Lj [0..15], so we have
Lj+1[i] = Lj [i− 1] for i > 0 and Lj+1[0] = α · (Lj [15] + Lj [12] + Lj [6]).

The “FSM state” of SNOW in step j consists of only two 32-bit words, denoted R1j , R2j . The
FSM update function modifies these two values, using one word from the LFSR, and also outputs
one word. The output word is then added to another word from the LFSR, to form the step output.
We denote the “input word” from the LFSR to the FSM update function by fj , and the “output
word” from the FSM by Fj . The FSM uses a “32× 32 S-box” S[·] (which is built internally as an
SP-network, from four identical 8×8 boxes and some bit permutation). A complete step of SNOW
is described in Figure 1. In this figure, we deviate from the notations in the rest of the paper, and
denote exclusive-or by ⊕ and integer addition mod 232 by +. We also denote 32-bit cyclic rotation
to the left by �<.

According to the paradigm above, to devise an attack we need to find a good linear approximation
of the non-linear FSM process, and low-weight combinations of steps where the Lj [·] values vanish
(i.e., low-weight polynomials which are divisible by the LFSR polynomial p). The best linear
approximation that we found for the FSM process, uses six bits from two consecutive inputs and
outputs, fj , fj+1, Fj , Fj+1. Specifically, for each step j, the bit

σj
def= (fj)15 + (fj)16 + (fj+1)22 + (fj+1)23 + (Fj)15 + (Fj+1)23

is biased. (Of these six bits, the bits (fj)15, (Fj)15 and (Fj+1)22 are meant to approximate carry
3The minimum-distance r0 may decrease as N increases, but for LFSR codes, which are truncated cyclic codes,

we expect r0 to be essentially fixed (after a short initial period).

10

bits.) We measured the bias experimentally, and it appears to be at least 2−8.3.

At first glance, one may hope to find weight-4 polynomials that are divisible by the LFSR polynomial
p. After all, p itself has only four non-zero terms. Unfortunately, one of these terms is the element
α ∈ GF (232), whereas we need a low-weight polynomial with 0-1 coefficients. What we can show,
however, is the existence of 0-1 polynomials of weight-six that are divisible by p.

Proposition 8 The polynomial q(z) = z16×232−7 + z13×232−7 + z7×232−7 + z9 + z6 + 1 is divisible
by the LFSR polynomial p(z) = z16 + z13 + z7 + α.

Proof: Since α ∈ GF (232), then the polynomial t+α divides t2
32

+t. That is, there is a polynomial
r(·) (with coefficients in GF (232)) such that r(t) · (t + α) = t2

32
+ t, as formal polynomials over

GF (232). It follows that for any polynomial t(z) over GF (232), we have r(t(z)) · (t(z) + α) =
t(z)2

32
+t(z), again, as formal polynomials over GF (232). Specifically, if we take t(z) = z16+z13+z7,

we get
r(t(z)) · (z16 + z13 + z7 + α) = z16×232

+ z13×232
+ z7×232

+ z16 + z13 + z7

so the polynomial on the right hand side is divisible by p(z). Since p(z) is co-prime with the
polynomial z, we can divide the right-hand-side polynomial by z7 and still get a polynomial divisible
by p(z). 2

Corollary 9 For all m,n, the polynomial

qm,n(z) def= q(z)2
m · zn = z16×232+m−7×2m+n + z13×232+m−7×2m+n + z7×232+m−7×2m+n

+ z9×2m+n + z6×2m+n + zn

is divisible by p(z).

If we take, say, m = 0, 1, . . . 58 and n = 0, 1, . . . 294, we get about 2100 different 0-1 polynomials, all
with weight 6 and degree less than N = 295, and all divisible by p(z). Each such polynomial yields
a sequence of six steps, such that the sum of the Lj [·] values in these steps vanish. Specifically, the
polynomial qm,n(z) corresponds to the sequence of steps

Jm,n = { N − n− 16 · 232+m + 7 · 2m, N − n− 9 · 2m,
N − n− 13 · 232+m + 7 · 2m, N − n− 6 · 2m,
N − n− 7 · 232+m + 7 · 2m, N − n }

with the property that for all m,n,
∑

j∈Jm,n
Lj [0..15] =

∑
j∈Jm,n

Lj+1[0..15] = [0, 0, . . . , 0].
Therefore, if we denote the output word of SNOW at step j by Sj , then for all m,n we have,

τm,n
def=

∑
j∈Jm,n

(Sj)15 + (Sj+1)23 =
∑

j∈Jm,n

σj

and therefore each τm,n has bias of 2−8.3×6 = 2−49.8. Since we have roughly 2100 of them, we can
reliably distinguish them from random.

11

4.4 Two-dimensional masking

For two-dimensional masking (with k rows and k columns), since we model each “batch” of k2 steps
as independent, it is enough to analyze one such batch. For one such batch, the linear subspace
L is defined by picking 2k random values R[0..k − 1] and C[0..k − 1], and then for 0 ≤ i, j < k,
setting yi+n×j = R[i]+C[j]. If we have a set of steps J = {i1 +kj1, . . . ir +kjr}, then χ(J) belongs
to the orthogonal space L⊥ iff each index i (resp. j) appears even number of times as the first
(resp. second) coordinate in J . Formally, for every 0 ≤ m < k, the sets {t ≤ r : it = m} and
{t ≤ r : jt = m} have even cardinality. A set of steps J is called an even set if it satisfies the above
condition.

It is easy to see that even sets must have even cardinality of at least 4, there are exactly
(
k
2

)2
even

sets of cardinality 4, and there are less than (2k + r)2r even sets of cardinality 2r for 3 ≤ r ≤ k2/2.
In terms of Eq. (2), we have N = k2, AN (4) =

(
k
2

)2
, AN (2r) < (2k + r)2r for 3 ≤ r ≤ k2/2,

and AN (r) = 0 for any other r. It follows that when ε � 1/k, the dominant term in Eq. (2) is
ε8AN (4) = ε8

(
k
2

)2
. Thus, for each batch of k2 steps we have statistical distance of roughly ε4k2/2, so

we need to observe about 4ε−8/k4 such batches (or a total of 4ε−8/k2 steps) to reliably distinguish
the cipher from random.

Indeed, this lower bound matches the following obvious attack: for each batch of k2 steps, we
consider sets of steps of the form J = {i+ kj, i′+ kj, i+ kj′, i′+ kj′} (aka even sets of cardinality
4). For each set we add the four σ’s, to get a bit with bias ε4. This way, each batch gives us

(
k
2

)2
bits with bias ε4, so after seeing ε−8/

(
k
2

)2
batches (i.e., total of 4ε−8/k2 steps) we have enough bits

to distinguish them from random.

5 Low-diffusion attacks

In low-diffusion attacks, the attacker tries to find a small set of (linear combinations of) input
and output bits of the non-linear function NF , whose values completely determine the values of
some other (linear combinations of) input and output bits. Then, the attacker uses some guessing
strategy to guess the first set of bits, computes the values of the other bits, and uses the computed
value to verify the guess against the cipher’s output. The complexity of such attacks is exponential
in the number of bits that the attacker needs to guess.

We introduce some notations in order to put such attacks in the context of our framework. To
simplify the notations, we assume that the guessed bits are always input bits, and the determined
bits are always output bits. (Eliminating this assumption is usually quite straightforward.) As
usual, let NF : {0, 1}n → {0, 1}n be the non-linear function. The attack exploits the fact that
some input bits `in(x) are related to some output bits `out(NF (x)) via a known deterministic
function f . That is, we have

`out(NF (x)) = f(`in(x))

Here, `in, `out are linear functions, and f is an arbitrary function, all known to the attacker. We
denote the output size of `in, `out by m,m′, respectively. That is, we have `in : {0, 1}n → {0, 1}m,
`out : {0, 1}n → {0, 1}m′

, and f : {0, 1}m → {0, 1}m′
.

In each step j, the attacker observes the bits `in(xj +y1j) and `out(NF (xj)+y2j). Below we denote
uj = `in(xj), u′j = `out(NF (xj)), vj = `in(y1j), u′j = `out(y2j), and wj = uj + vj , w′j − u′j + v′j . We
can re-write the Cipher and Random distributions for this case as

12

1. for i = 0 to 15 do
2. x := NF (x + c1) + c2
3. output x + R[i]
4. if i is even, rotate c1 by 64 bits
5. if i is odd, rotate c1 by some other amount
6. end-for
7. modify c1, c2, and one entry of R, using the function NF (·)

Figure 2: sixteen steps of Scream-0.

Cipher. Dc
def=
〈
(wj = uj + vj , w′j = u′j + v′j)

〉
j=1,2,...

, where the uj ’s are uniform and independent,

u′j = f(uj), and the string v1v
′
1v2v

′
2 . . . is chosen at random from the appropriate linear

subspace (i.e., the image under `in, `out of the linear subspace of the y’s).

Random. Dr
def=
〈
(wj , w

′
j)
〉

j=1,2,...
, where the uj ’s and u′j ’s are uniform and independent.

It is not hard to see that there may be enough information there to distinguish these two distribu-
tions after only a moderate number of steps of the cipher. Suppose that the dimension of the linear
subspace of the vj ’s and v′j ’s is d, and the attacker observes N steps such that m′N > d. Then, the
attacker can (in principle) go over all the 2d possibilities for the vj ’s and v′j ’s. For each guess, the
attacker can compute the uj ’s and u′j ’s. Then, the attacker can verify the guess by checking that
indeed u′j = f(uj) for all j. This way, the attacker guesses d bits and gets m′N bits of consistency
checks. Since m′N > d we expect only the “right guess” to pass the consistency checks.

This attack, however, is clearly not efficient. To devise an efficient attack, we can again concentrate
on sets of steps where the linear process vanishes: Suppose that we have a set of steps J , such that∑

j∈J [vj , v
′
j] = [0, 0]. Then we get∑

j∈J

(wj , w
′
j) =

∑
j∈J

(uj , u
′
j) =

∑
j∈J

(uj , f(uj))

and the distribution over such pairs may differ from the uniform distribution by a noticeable amount.
The distance between this distribution and the uniform one depends on the specific function f , and
on the cardinality of the set J .

5.1 An attack on Scream-0

The stream cipher Scream (with its variants Scream-0 and Scream-F) was proposed very recently
by Coppersmith, Halevi and Jutla. A detailed description of Scream is available in [1]. Below we
only give a partial description of Scream-0, which suffices for the purpose of our attack.

Scream-0 maintains a 128-bit “non-linear state” x, two 128-bit “column masks” c1, c2 (which are
modified every sixteen steps), and a table of sixteen “row masks” R[0..15]. It uses a non-linear
function NF , somewhat similar to a round of Rijndael. Roughly speaking, the steps of Scream-0
are partitioned to chunks of sixteen steps. A description of one such chunk is found in Figure 2.

Here we outline a low-diffusion attack on the variant Scream-0, along the lines above, that can
reliably distinguish it from random after observing merely 243 bytes of output, with memory re-
quirement of about 250 and work-load of about 280. This attack will be described in much more
details in the full version of [1].

13

As usual, we need to find a “distinguishing characteristic” of the non-linear function (in this case,
a low-diffusion characteristic as above), and a combination of steps in which the linear process
vanishes. The linear process consists of the ci’s and the R[i]’s. Since each entry R[i] is used
sixteen times before it is modified, we can cancel it out by adding two steps were the same entry
is used. Similarly, we can cancel c2 by adding two steps within the same “chunk” of sixteen steps.
However, since c1 is rotated after each use, we need to look for two different characteristics of the
NF function, such that the pattern of input bits in one characteristic is a rotated version of the
pattern in the other.

The best such pair of “distinguishing characteristics” that we found for Scream-0, uses a low-
diffusion characteristic for NF in which the input bits pattern is 2-periodic (and the fact that c1
is rotated every other step by 64 bits). Specifically, the four input bytes x0, x5, x8, x13, together
with two bytes of linear combinations of the output NF (x), yield the two input bytes x2, x10, and
two other bytes of linear combinations of the output NF (x). In terms of the parameters that we
used above, we have m = 48 input and output bits, which completely determine m′ = 32 other
input and output bits.

To use this relation, we can observe these ten bytes from each of four steps, e.g., j, j+1, j+16, j+17
for some even j (in general, we can observe steps j, j + 1, j + 16k, j + 1 + 16k for some k < 16). We
can then add them up (with the proper rotation of the input bytes in steps j + 1, j + 17), to cancel
both the “row masks” R[i] and the “column masks” c1, c2. This gives us the following distribution

D = 〈u1 + u2 + u3 + u4, f1(u1) + f2(u2) + f1(u3) + f2(u4)〉

where the ui’s are modeled as independent, uniformly selected, 48-bit strings, and f1, f2 are two
known functions fi : {0, 1}48 → {0, 1}32. (The reason that we have two different functions is that
the order of the input bytes is different between the even and odd steps.) It remains to estimate
the statistical distance between D and the uniform distribution R, and to show how to implement
the decision rule to distinguish between them.

In Section 6 we analyze several “types” of distributions such as D, and also explain how to efficiently
implement the maximum-likelihood decision rule for distinguish D from R. Plugging the values
m = 48,m′ = 32 into the general bounds from Section 6 (using the special form of the functions
fi, as discussed in Section 6.1), we estimate the statistical distance |D −R| to be as high as 2−20.5.
We therefore need about 241 samples to reliably distinguish D from random. Roughly speaking,
we can get 8 ·

(
15
2

)
≈ 210 samples from 256 steps of Scream-0. (We have 8 choices for an even step

in a chunk of 16 steps, and we can choose two such chunks from a collection of 15 in which both
the row masks in use remain unchanged.) So we need about 231 · 256 = 239 steps, or 243 bytes of
output.

Also, in Section 6.3 we show how one could efficiently implement the maximum-likelihood decision
rule to distinguish D from R, using Walsh-Hadamard transforms. Plugging the parameters of the
attack on Scream into the general techniques that are described there, we get space complexity
about 250, and time complexity about 280.

6 Analysis of low-diffusion attacks

Below we analyze in details the simplest case of “low-diffusion” attack, where we use the same
functions f in all the steps, and we need to add up four steps in order to cancel the masks. Later
we explain how this analysis can be extended for other settings, an in particular for the case of the

14

functions in Scream. For a given function, f : {0, 1}m → {0, 1}m′
, we denote

Df def=

〈
d =

4∑
j=1

uj , d′ =
4∑

j=1

f(uj)

〉

where the uj ’s are uniform in {0, 1}m and independent. In the simple case that we analyze here,
the attacker knows f , and it sees many instances of 〈d, d〉. The attacker needs to decide these
instances come from Df or from the uniform distribution on {0, 1}m+m′

. Below we denote the
uniform distribution by R. If the function f “does not have any clear structure”, it makes sense
to analyze it as if it was a random function. Here we prove the following theorem:

Theorem 10 For a uniformly selected function f : {0, 1}m → {0, 1}m′
, we have

Ef [|Df −R| ≤
√

96 · (1 + o(1)) · 2(m′−3m)/2

Proof: For any value d ∈ {0, 1}m, denote by Df
d the distribution which is induced by picking

at random the uj ’s, subject to
∑

uj = d, and computing d′ =
∑

f(uj). In other words, the
distribution Df

d is induced by picking uniformly at random three strings x, y, z ∈ {0, 1}m, and
computing d′ = f(x) + f(y) + f(z) + f(d + x + y + z). Also, denote by U the uniform distribution
over {0, 1}m′

. Since the “d” part of both the Df and R distributions is uniform over {0, 1}m, we
can write the distance between them as the expected value, over a random choice of d ∈ {0, 1}m,
of |Df

d − U|. Namely, for any function f we have

|Df −R| =
∑

d

2−m|Df
d − U|

=
∑

d

2−m
∑
d′

∣∣∣∣ Pr
x,y,z

[f(x) + f(y) + f(z) + f(x + y + z + d) = d′]− 2−m′
∣∣∣∣

In the analysis below, we view the quantity Prx,y,z[· · ·] as a random variable, defined over the choice
of d ∈ {0, 1}m and the choice of f : {0, 1}m → {0, 1}m′

. Formally, this is done as follows: For fixed
d′ ∈ {0, 1}m′

and x, y, z ∈ {0, 1}m, we define the random variables χd′
x,y,z and Sd′

, over the choices
of f and of d:

χd′
x,y,z(f, d) def=

{
1 if f(x) + f(y) + f(z) + f(x + y + z + d) = d′

0 otherwise

Sd′
(f, d) def= 2−3m

∑
x,y,z

χd′
x,y,z(f, d)

Then, for any f, d, d′, we have Sd′
(f, d) = Prx,y,z[f(x) + f(y) + f(z) + f(x + y + z + d) = d′]. Using

these notations, we can write the distance |Df −R| (for a fixed function f) as

Ed

[
|U − Df

d |
]

= Ed

[∑
d′

∣∣∣Sd′
(f, d)− 2−m′

∣∣∣] =
∑
d′

Ed

[∣∣∣Sd′
(f, d)− 2−m′

∣∣∣] (3)

For a random function f , we can bound the expected value of Eq. (3) as follows:

Ef [|Df −R|] =
∑
d′

Ef,d

[∣∣∣Sd′ − 2−m′
∣∣∣]

15

(a)

≤
∑
d′

Ef,d

[∣∣∣Sd′ − Ef,d[Sd′
]
∣∣∣] +

∑
d′

∣∣∣Ef,d[Sd′
]− 2−m′

∣∣∣
(b)

≤
∑
d′

√
VARf,d [Sd′] +

∑
d′

∣∣∣Ef,d[Sd′
]− 2−m′

∣∣∣ (4)

where (a) is just the triangle inequality, and (b) follows from the convexity of the squaring function.
To bound the last expression, we use the following proposition (whose proof is given later in
Section 6.2):

Proposition 11 For a random function f : {0, 1}m → {0, 1}m′
, and a random d ∈ {0, 1}m,∣∣∣Ef,d

[
Sd′
]
− 2−m′

∣∣∣ <

{
3 · 2−2m−m′

for d′ 6= 0
3 · 2−2m for d′ = 0

VARf,d[Sd′
] <

{
96 · 2−3m−m′

for d′ 6= 0
9 · 2−3m(1 + 122

3 · 2
−m′

+ 3 · 2−2m) for d′ = 0

Let us now denote 3 + ε =
√

9
(
1 + 122

3 · 2−m′ + 3 · 2−2m
)
. We plug the bounds from Proposion 11

into Eq. (4), and get:

Ef [|Df −R|] <
(
(3 + ε) · 2−3m/2 + 2m′ ·

√
96 · 2(−3m−m′)/2

)
+
(
3 · 2−2m + 2m′ · 3 · 2−2m−m′

)
= (3 + ε) · 2−3m/2 +

√
96 · 2(m′−3m)/2 + 6 · 2−2m

=
√

96 · 2(m′−3m)/2
(
1 + 3+ε√

96
· 2−m′/2 + 6√

96
· 2−(m′+m)/2

)
=
√

96 · (1 + o(1)) · 2(m′−3m)/2

That completes the proof of Theorem 10. 2

How tight is this bound? It turns out that the only inequality in the proof that is not asymptot-
ically tight, is Inequality (b) from Eq. (4). Making the heuristic assumption that the Sd′

’s “behave
like Gaussian random variables”, we expect the ratio between E[|Sd′ −E[Sd′

]|] and
√

VAR[Sd′] to
be roughly

√
2/π. Therefore, we expect that the constant

√
96 ≈ 9.8 be replaced by

√
192/π ≈ 7.8.

Indeed we ran some experiments to measure the statistical distance |Df −R|, for random function
with a few values of m,m′. These experiments are described in Appendix A. The results confirm
that the distance between these distributions is just under 7.8 · 2(m′−3m)/2.

6.1 Variations and extensions

Here we briefly discuss a few possible extensions to the analysis from above.

When f is a sum of a few functions. An important special case, is when f is a sum of a few
functions. For example, in the functions that are used in the attack on Scream, the m-bit input to f
can be broken into three disjoint parts, each with m/3 bits, so that f(x) = f1(x1)+f2(x2)+f3(x3).
(Here we have |x1| = |x2| = |x3| = m/3 and x = x1x2x3.) If f1, f2, f3 themselves do not have any
clear structure, then we can apply the analysis from above to each of them. That analysis tells us,

16

that for a random d ∈ {0, 1}m (which we view as a triple, d = d1d2d3, with |d1| = |d2| = |d3| = m/3)
we expect each of the three distributions D1,D2,D3 below to be c ·2(m′−m)/2 away from the uniform
distribution (with c ≈

√
192/π). The distributions Db (b = 1, 2, 3) are defined

Db =
{

fb(x) + fb(y) + fb(z) + fb(x + y + z + db) : x, y, z are random in {0, 1}m/3
}

The distribution Dd
f that we want to analyze, can be expressed as Dd

f = D1 +D2 +D3, so we expect

to get |Df −R| = Ed[|Dd
f − U|] ≈

∏
b |U − Db| ≈

(
c · 2(m′−m)/2

)3
= c32(3m′−3m)/2.

More generally, suppose we can write f as a sum of r functions over disjoint arguments of the same
length. Namely, f(x) =

∑r
i=1 fi(xi), where |x1| = ... = |xr| = m/r and x = x1...xr. Repeating

the calculations from above, we get that the expected distance |Df − R| is about cr2(rm′−3m)/2

(assuming that this is still smaller than one).

Using different f ’s for different steps. Instead of using the same f everywhere, we can have
different f ’s for different steps. I.e., in step j we have `out(NF (xj)) = fj(`in(xj)), and we make
the assumptions that the fj ’s are random and independent. The analysis from above still works
for the most part, as long as `in, `out do not change. The main difference is that the factor c =

√
96

is replaced by a smaller one. If we use four independent functions, then we get c = 1, since all the
symmetries in the proof of Proposion 11 disappear.

In the case of the attack on Scream, where we use two functions, f1 = f3 and f2 = f4, we get a
constant of c =

√
8. Again, when we factor in the heuristic argument that the Sd’s “behaving like

Gaussians”, we can reduce this factor from c =
√

8 ≈ 2.83 to c =
√

16/π ≈ 2.26. Indeed, we ran
some experiments for this case (similar to the ones reported in Appendix A), and they confirm this
factor of 2.26.

When each of the fi’s is the sum of r functions, we can repeat the argument from above, and
conclude that the expected statistical distance is cr2(rm′−3m)/2, this time with the smaller constant
c. For the case of Scream, we have c =

√
16/π, r = 3 and m = 48,m′ = 32, so we expect the

statistical distance |D −R| to be roughly (16/π)3/2 · 2−24 ≈ 2−20.5.

Linear masking over different groups. Another variation is when we do linear masking over
different groups. For example, instead of xor-ing the masks, we add them modulo some prime q, or
modulo a power of two. Again, the analysis stays more or less the same, but the constants change.
If we work modulo a prime q > 4, we get a constant of c =

√
6 (instead of

√
96), since the only

symmetry that is left is between {x, y, z} and its other five orderings. When we work modulo a
power of two, the constant will be somewhere between

√
6 and

√
96, probably closer to the former.

6.2 Proof of Proposion 11

We use the following notation: For a multi-set M , denote by [M]2 the set of values that appear
odd number of times in M . We observe the following:

• Since f is a random function, then for any x, y, z, d such that [x, y, z, x + y + z + d]2 6= ∅,
we have Prf [χd′

x,y,z(f, d) = 1] = 2−m′
.

If [x, y, z, x + y + z + d]2 = ∅, then for that d, χd′
x,y,z(f, d) is either identically one (if d′ = 0)

or identically zero (if d′ 6= 0). Notice that to get [x, y, z, x + y + z + d]2 = ∅, we must have
d = 0 and x, y, z that are not all distinct.

17

• Similarly, if for some fixed x, y, z, x′, y′, z′, d we have [x, y, z, x+y+z+d]2 6= [x′, y′, z′, x′+
y′+z′+d]2, then the variables χd′

x,y,z, χ
d′
x′,y′,z′ are independent (conditioned on d). If [x, y, z, x+

y+z+d]2 = [x′, y′, z′, x′+y′+z′+d]2, then the variables χd′
x,y,z, χ

d′
x′,y′,z′ are identical (again,

conditioned on d).

Using the first observation, we can calculate the expected values of the χ variables.

Ef,d

[
χd′

x,y,z

]
=

2−m′

if x, y, z are distinct
2−m′

(1− 2−m) if x, y, z are not distinct, and d′ 6= 0
2−m′

(1− 2−m) + 2−m if x, y, z are not distinct, and d′ = 0

The number of choices where x, y, z are not distinct is 3 · 22m − 2 · 2m. We can therefore calculate
the expected value of Sd′

:

For d′ 6= 0, Ef,d

[
Sd′
]

= (1− 3 · 2−m + 2−2m) · 2−m′
+ (3 · 2−m − 2−2m) · 2−m′

(1− 2−m)

= 2−m′
(1− 3 · 2−2m + 2 · 2−3m)

For d′ = 0, Ef,d

[
Sd′
]

= (1− 3 · 2−m + 2−2m) · 2−m′
+ (3 · 2−m − 2−2m) · (2−m′

(1− 2−m) + 2−m)

= 2−m′
+ (3 · 2−2m − 2 · 2−3m)(1− 2−m′

)

In particular, we get that∣∣∣E [Sd′
]
− 2−m′

∣∣∣ <

{
3 · 2−2m−m′

for d′ 6= 0
3 · 2−2m for d′ = 0

Next we analyze the variance of Sd′
. Recall that the variance of a sum is the sum of all the

covariances of the summands, namely

VARf,d[Sd′
] = 2−6m

∑
x,y,z

∑
x′,y′,z′

COVf,d[χd′
x,y,z, χd′

x′,y′,z′]

where COV[χ, χ′] = E[χ·χ′]−E[χ]E[χ′]. (We allow 〈x, y, z〉 = 〈x′, y′, z′〉 in the summation above, in
which case COV[χd′

x,y,z, χd′
x′,y′,z′] = VAR[χd′

x,y,z].) Fix two specific variables, χ = χd′
x,y,z, χ

′ = χd′
x′,y′,z′ ,

and we examine their covariance. There are three main cases to consider:

1. The first case is where x, y, z are distinct, and x′, y′, z′ are also distinct. It is easy to see that
if {x, y, z} and {x′, y′, z′} are disjoint, or if they have just a single element in common, then
the variables χd′

x,y,z, χd′
x′,y′,z′ are independent, and therefore COV[χd′

x,y,z, χd′
x′,y′,z′] = 0. This

leave two sub-cases to consider:

(a) If the sets {x, y, z}, {x′, y′, z′} have two elements in common, there are exactly two values
of d for which [x, y, z, x + y + z + d]2 = [x′, y′, z′, x′ + y′ + z′ + d]2. (Assume, for
example, that x = x′, y = y′, but z 6= z′. In this case, these values are d = x + y and
d = x + y + z + z′.) Therefore, we have E[χχ′] = 21−m · 2−m′

+ (1− 21−m) · 2−2m′
, and

so COV[χ, χ′] = 21−m(2−m′ − 2−2m′
) < 2 · 2−m−m′

.
The number of pairs in this category can be bounded by 18 · 24m: We have less than
23m ways of choosing disjoint x, y, z, then

(
3
2

)
= 3 ways of choosing the two elements in

the intersection with {x′, y′, z′}, then less than 2m ways of choosing the last element in
{x′, y′, z′}, and finally six ways of ordering {x′, y′, z′}.

18

(b) When {x, y, z} = {x′, y′, z′}, the variables χd′
x,y,z, χd′

x′,y′,z′ are identical, and therefore
COV[χd′

x,y,z, χd′
x′,y′,z′] = VAR[χd′

x,y,z] = 2−m′ − 2−2m′
< 2−m′

.

There are 62 ·
(
2m

3

)
< 6 · 23m pairs χd′

x,y,z, χ
d′
x′,y′,z′ in this category.

2. The second case is where neither x, y, z nor x′, y′, z′ are distinct. Here too there are two
sub-cases to consider:

(a) When [x, y, z]2 6= [x′, y′, z′]2, there are exactly two d’s for which [x, y, z, x + y + z + d]2
= [x′, y′, z′, x′+y′+z′+d]2. One value is d = 0, for which both sets are empty, and an-
other value for which they are equal but non-empty. Omitting some (easy) intermediate
calculations, the covariance can be bounded by

COV[χd′
x,y,z, χd′

x′,y′,z′] <

{
2−m−m′

if d′ 6= 0
2−m(1 + 2−m′

) if d′ = 0

The number of pairs in this category is bounded by (3 · 22m − 2 · 2m)2 < 9 · 24m.

(b) When [x, y, z]2 = [x′, y′, z′]2, the variables χd′
x,y,z, χd′

x′,y′,z′ are identical, and therefore

COV[χd′
x,y,z, χd′

x′,y′,z′] = VAR[χd′
x,y,z] <

{
2−m′

if d′ 6= 0
2−m′

+ 3 · 2−2m if d′ = 0

The number of pairs in this category is bounded by 9 · 23m: We have less than 3 · 22m

choices for x, y, z. Since x, y, z are not all distinct, then [{x, y, z}]2 contains a single
element, and this element must be also in {x′, y′, z′}. We then have 2m choices for
another element that appears twice in {x′, y′, z′}, and then at most 3 ways of ordering
the resulting multi-set.

3. The third case is where x, y, z are distinct, but x′, y′, z′ are not, or vice versa. (In the
description below we assume that x, y, z are distinct and x′, y′, z′ are not.) If [x′, y′, z′]2 6⊆
{x, y, z} then the variables χd′

x,y,z, χd′
x′,y′,z′ are independent, and their covariance is zero.

When [x′, y′, z′]2 ⊆ {x, y, z} then, just as in case 1a above, there are two values of d for which
[x′, y′, z′, x′ + y′ + z′ + d]2 = [x, y, z, x + y + z + d]2. (Assume, for example, that x = x′ and
y′ = z′, then these values are d = x + y and d = x + z). Another “special value” is d = 0, for
which [x′, y′, z′, x′+y′+z′+d]2 = ∅. For all other values of d we have [x′, y′, z′, x′+y′+z′+d]2
6= [x, y, z, x + y + z + d]2, and both are non-zero.

Therefore, for d′ 6= 0 we have E[χχ′] = 21−m · 2−m′
+ (1− 3 · 2−m) · 2−2m′

, and for d′ = 0 we
have E[χχ′] = (3 ·2−m) ·2−m′

+(1−3 ·2−m) ·2−2m′
. Omitting some more (easy) calculations,

we get

COV[χd′
x,y,z, χd′

x′,y′,z′] <

{
2 · 2−m−m′

if d′ 6= 0
3 · 2−m−m′

if d′ = 0

There are at most 18 · 24m pairs in this category: When {x, y, z} are distinct, we have
less than 23m ways to choose {x, y, z}, then 3 possibilities of choosing the single element in
[x′, y′, z′]2 from the elements {x, y, z}, then 2m possibilities for the element that appears twice
in {x′, y′, z′}, and then at most 3 ways to order the resulting multi-set. This gives at most
9 · 24m pairs with {x, y, z} distinct, and 9 · 24m pairs with {x′, y′, z′} distinct.

19

Summing up the contributions from all the cases above, we get

case # of pairs contribution d′ = 0 contribution d′ 6= 0
1a. < 18 · 24m 2 · 2−m−m′

2 · 2−m−m′

1b. < 6 · 23m 2−m′
2−m′

2a. < 9 · 24m 2−m(1 + 2−m′
) 2−m−m′

2b. < 9 · 23m 2−m′
+ 3 · 2−2m 2−m′

3. < 18 · 24m 3 · 2−m−m′
2 · 2−m−m′

total: 2−6m · 9 · 23m(1 + 122
3 · 2

−m′
+ 3 · 2−2m) 96 · 23m−m′

This complete the proof. 2

6.3 Efficiency considerations

The analysis from above says nothing about the computational cost of distinguishing between Df

and R. It should be noted that in a “real life” attack, the attacker may have access to many
different relations (with different values of m,m′), all for the same non-linear function NF . To
minimize the amount of needed text, the attacker may choose to work with the relation for which
the quantity 3m −m′ is minimized. However, the choice of relations is limited by the attacker’s
computational resources. Indeed, for large values of m,m′, computing the maximum-likelihood
decision rule may be prohibitively expensive in terms of space and time. Below we review some
strategies for computing the maximum-likelihood decision rule.

Using one big table. Perhaps the simplest strategy, is for the attacker to prepare off-line a table
of all possible pairs 〈d, d′〉 with d ∈ {0, 1}m, d′ ∈ {0, 1}m′

. For each pair 〈d, d′〉 the table contains
the probability of this pair under the distribution Df (or perhaps just one bit that says whether
this probability is more than 2−m−m′

).

Given such a table, the on-line part of the attack is trivial: for each set of steps J = {j1, j2, j3, j4},
compute (d, d′) =

∑
j∈J(wj , w

′
j), and look into the table to see if this pair is more likely to come

from Df or from R. After observing roughly 23m−m′−6 such steps J , a simple majority vote can
be used to determine if this is the cipher or a random process. Thus, the on-line phase is linear in
the amount of text that has to be observed, and the space requirement in 2m+m′

.

As for the off-line part (in which the table is computed), the naive way is to go over all possible values
of u1, u2, u3, u4 ∈ {0, 1}m, for each value computing d =

∑
ui and d′ =

∑
f(ui) and increasing

the corresponding entry 〈d, d′〉 by one. This takes 24m time. However, in the (typical) case where
m′ � 3m, one can use a much better strategy, whose running time is only O((m + m′)2m+m′

).

First, we represent the function f by a 2m×2m′
table, with F [x, y] = 1 if f(x) = y, and F [x, y] = 0

otherwise. Then, we compute the convolution of F with itself,4

E[s, t] def= (F ? F)[s, t] =
∑

x+x′=s

∑
y+y′=t

F [x, y] · F [x′, y′] = |{x : f(x) + f(x + s) = t}|

One can use the Walsh-Hadamard transform to perform this step in time O((m + m′)2m+m′
) (see,

e.g., [7]). Then, we again use the Walsh-Hadamard transform to compute the convolution of E

4Recall that the convolution operator is defined on one-dimensional vectors, not on matrices. Indeed, in this
expression we view the table F as a one-dimensional vector, whose indices are m + m′-bits long.

20

with itself,

D[d, d′] def= (E ? E)[d, d′] =
∑

s+s′=d

∑
t+t′=d′

E(s, t) · E(s′, t′)

=
∣∣{〈x, s, z〉 : f(x) + f(x + s) + f(z) + f(z + s + d) = d′}

∣∣
=

∣∣{〈x, y, z〉 : f(x) + f(y) + f(z) + f(x + y + z + d) = d′}
∣∣

When f is a sum of functions. We can get additional flexibility when f is a sum of functions
on disjoint arguments, f(x) = f1(x1) + ... + fr(xr) (with x = x1..xr). In this case, one can use
the procedure from above to compute the tables Di[d, d′] for the individual fi’s. If all the xi’s are
of the same size, then each of the Di’s takes up 2m′+(m/r) space, and can be computed in time
O((m′+ (m/r))2m′+(m/r)). Then, the “global” D table can again be computed using convolutions.
Specifically, for any fixed d = d1...dr, the 2m′

-vector of entries D[d, ·] can be computed as the
convolutions of the 2m′

-vectors D1[d1, ·], D2[d2, ·], ..., Dr[dr, ·],

D[d, ·] = D1[d1, ·] ? D2[d2, ·] ? · · · ? Dr[dr, ·]

At first glance, this does not seem to help much: Computing each convolution takes time O(r ·
m′2m′

), and we need to repeat this for each d ∈ {0, 1}m, so the total time is O(rm′2m+m′
). However,

we can do much better than that.

Instead of storing the vectors Di[di, ·] themselves, we store their image under the Walsh-Hadamard
transform, ∆i[di, ·]

def= H(Di[di, ·]). Then, to compute the vector D[〈d1...dr〉 , ·], all we need is to
multiply (point-wise) the corresponding ∆i[di, ·]’s, and then apply the inverse Walsh-Hadamard
transform to the result. Thus, once we have the tables Di[·, ·], we need to compute r · 2m/r

“forward transforms” (one for each vector Di[di, ·]), and 2m inverse transforms (one for each
〈d1...dr〉. Computing each transform (or inverse) takes O(m′2m′

) time. Hence, the total time (in-
cluding the initial computation of the Di’s) is O

(
r(m′ + (m/r)2m′+(m/r)) + (r2m/r + 2m)m′2m′

)
= O

(
(rm′ + m)2m′+m/r + m′2m+m′

)
, and the total space that is needed is O(2m+m′

).

If the amount of text that is needed is less than 2m, then we can optimize even further. In this
case the attacker need not store the entire table D in memory. Instead, it is possible to store only
the Di tables (or rather, the ∆i[·, ·] vectors), and compute the entries of D during the on-line part,
as they are needed. Using this method, the off-line phase takes O((rm′ + m)2m′+m/r) time and
O(r2m′+m/r) space to compute and store the vectors ∆i[·, ·], and the on-line phase takes O(m′2m′

)
time per sample. Thus the total time complexity here is O((rm′ + m)2m′+m/r + Sm′2m′

), where S
is the number of samples needed to distinguish D from R.

In the case of the attack on Scream, we have m = 48, m′ = 32, r = 3, and S = 241, so we get space
complexity of 3× 232+48/3 ≈ 250, and time complexity of roughly (3× 32 + 48)× 232+48/3 + 241 ×
32× 232 ≈ 278.

7 Conclusions

In this work we described a general cryptanalytical technique, which can be used to attack ciphers
that employ a combination of a “non-linear” process and a “linear process”. We analyze in details
the effectiveness of this technique for two special cases. One is when we exploit linear approxima-
tions of the non linear process, and the other is when we exploit the low diffusion of (one step of)

21

the non linear process. We also show how these two special cases are useful in attacking the ciphers
SNOW [3] and Scream-0 [1].

In addition to the cryptanalytical technique, we believe that another contribution of this work is
our formulation of attacks on stream ciphers. We believe that explicitly formalizing an attack as
considering sequence of uncorrelated steps (as opposed to one continuous process) can be used to
shed light on the strength of many ciphers.

References

[1] D. Copersmith, S. Halevi, and C. Jutla. Scream: a software-efficient stream cipher. In Fast
Software Encryption, Lecture Notes in Computer Science. Springer-Verlag, 2002.

[2] J. Daemen and C. S. K. Clapp. Fast hashing and stream encryption with Panama. In S. Vau-
denay, editor, Fast Software Encryption: 5th International Workshop, volume 1372 of Lecture
Notes in Computer Science, pages 23–25. Springer-Verlag, 1998.

[3] P. Ekdahl and T. Johansson. SNOW – a new stream cipher. Submitted to NESSIE. Available
on-line from http://www.it.lth.se/cryptology/snow/.

[4] M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology, EURO-
CRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer-Verlag,
1993.

[5] R. N. McDonough and A. D. Whalen. Detection of Signals in Noise. Academic Press, Inc., 2nd
edition, 1995.

[6] P. Rogaway and D. Coppersmith. A software optimized encryption algorithm. Journal of
Cryptology, 11(4):273–287, 1998.

[7] D. Sundararajan. The Discrete Fourier Transform: Theory, Algorithms and Applications. World
Scientific Pub Co., 2001.

[8] D. Watanabe, S. Furuya, H. Yoshida, and B. Preneel. A new keystream generator MUGI. In Fast
Software Encryption, Lecture Notes in Computer Science. Springer-Verlag, 2002. Description
available on-line from http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html.

A Experimental results

We tested our analysis from Section 6, by choosing a few random functions f : {0, 1}m →
{0, 1}m′

(for several settings of m,m′), and evaluating the distance |Df − R|. For each func-
tion f , we used the techniques from Section 6.3 (based on the Welsh-Hadamard transform) to
compute the statistical distance. In this computation, we used the SPIRAL implementation of
the Welsh-Hadamard transform, due to Markus Pueschel, Bryan Singer, and Adrian Sox (see
http://www.ece.cmu.edu/∼spiral).

For each setting of m,m′, we chose sixteen random functions, and computed the average distance
for these functions. For each setting we also computed the average variance of S0, and the average
variance of the Sd′

’s for d′ 6= 0. The results are presented below. One can see that the only deviation
from the expected values in our analysis, is in the cases where m is significantly smaller than m′.

22

In these cases, the distance is less than what we expect from the analysis. We speculate that the
reason for this deviation, is that for such settings the Sd′

’s are “not as smooth”, and therefore,
there is a larger gap between the quantities E[|Sd′ − E[Sd′

]|] and
√

VAR[Sd′].

Testing 16 random functions, m=6, m’=6:
average statistical distance is 1.174e-01 = 7.514 * 2^{(m’-3m)/2}
average variance (d’=0) is 3.731e-05 = 9.780 * 2^{-3m}
average variance (d’!=0) is 5.201e-06 =87.259 * 2^{-m’-3m}

Testing 16 random functions, m=8, m’=8:
average statistical distance is 3.022e-02 = 7.736 * 2^{(m’-3m)/2}
average variance (d’=0) is 5.505e-07 = 9.235 * 2^{-3m}
average variance (d’!=0) is 2.207e-08 =94.802 * 2^{-m’-3m}

Testing 16 random functions, m=10, m’=10:
average statistical distance is 7.569e-03 = 7.750 * 2^{(m’-3m)/2}
average variance (d’=0) is 8.441e-09 = 9.063 * 2^{-3m}
average variance (d’!=0) is 8.707e-11 =95.736 * 2^{-m’-3m}

Testing 16 random functions, m=6, m’=12:
average statistical distance is 5.700e-01 = 4.560 * 2^{(m’-3m)/2}
average variance (d’=0) is 3.314e-05 = 8.687 * 2^{-3m}
average variance (d’!=0) is 8.190e-08 =87.941 * 2^{-m’-3m}

Testing 16 random functions, m=8, m’=12:
average statistical distance is 8.417e-02 = 5.387 * 2^{(m’-3m)/2}
average variance (d’=0) is 5.329e-07 = 8.941 * 2^{-3m}
average variance (d’!=0) is 1.371e-09 =94.211 * 2^{-m’-3m}

Testing 16 random functions, m=10, m’=12:
average statistical distance is 1.310e-02 = 6.706 * 2^{(m’-3m)/2}
average variance (d’=0) is 8.375e-09 = 8.993 * 2^{-3m}
average variance (d’!=0) is 2.167e-11 =95.297 * 2^{-m’-3m}

Testing 16 random functions, m=12, m’=6:
average statistical distance is 2.380e-04 = 7.799 * 2^{(m’-3m)/2}
average variance (d’=0) is 1.485e-10 = 10.205 * 2^{-3m}
average variance (d’!=0) is 2.169e-11 =95.405 * 2^{-m’-3m}

Testing 16 random functions, m=12, m’=8:
average statistical distance is 4.767e-04 = 7.811 * 2^{(m’-3m)/2}
average variance (d’=0) is 1.354e-10 = 9.306 * 2^{-3m}
average variance (d’!=0) is 5.449e-12 =95.857 * 2^{-m’-3m}

Testing 16 random functions, m=12, m’=10:
average statistical distance is 9.520e-04 = 7.799 * 2^{(m’-3m)/2}
average variance (d’=0) is 1.321e-10 = 9.075 * 2^{-3m}
average variance (d’!=0) is 1.365e-12 =96.043 * 2^{-m’-3m}

23

