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Abstract

We describe very efficient protocols for non-malleable (interactive) proofs of plain-
text knowledge for the RSA, Rabin, Paillier, and El-Gamal encryption schemes whose
security can be proven in the standard model. We also highlight some important ap-
plications of these protocols, where we take care to ensure that our protocols remain
secure when run in an asynchronous, concurrent environment:

• Chosen-ciphertext-secure, interactive encryption. In some settings where both
parties are on-line (e.g., SSL), an interactive encryption protocol may be used.
We construct chosen-ciphertext-secure interactive encryption schemes based on
any of the schemes above. In each case, the improved scheme requires only a
small overhead beyond the original, semantically-secure scheme.

• Password-based authenticated key exchange. We provide efficient protocols for
password-based authenticated key exchange in the public-key model [27, 5]. Secu-
rity of our protocols may be based on any of the cryptosystems mentioned above.

• Deniable authentication. We demonstrate deniable authentication protocols sat-
isfying the strongest notion of security. These are the first efficient constructions
based on, e.g., the RSA or computational Diffie-Hellman assumptions.

Our techniques provide a general methodology for constructing efficient non-malleable
(zero-knowledge) proofs of knowledge when shared parameters are available (for our
intended applications, these parameters can simply be included as part of users’ public
keys). Thus, non-malleable proofs of knowledge are easy to achieve “in practice”.

1 Introduction

Given an instance of a public-key encryption scheme with public key pk and secret key
sk, a proof of plaintext knowledge (PPK) allows a sender S to prove knowledge of the
contents m of some ciphertext C = Epk(m) to a receiver R (a formal definition appears in
Section 2.1). To be useful, a PPK should additionally ensure that no information about m
is revealed, either to the receiver — which is important if the receiver does not have sk —
or to an eavesdropper. As we show here, such PPKs have applications to the construction
of chosen-ciphertext-secure (CCA2) public-key encryption schemes [29, 32], password-based

∗The full version of this work appears in [28, Chapter 5].
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authentication and key exchange (password-AKE) protocols in the public-key model [27, 5],
and deniable authentication [15, 17].

We note that PPKs may be achieved using completeness results for zero-knowledge (ZK)
proofs [25] and proofs of knowledge [20]; non-interactive PPKs are also possible (assuming
appropriate public parameters are included as part of pk) based on the completeness results
for non-interactive zero-knowledge (NIZK) [21] and NIZK proofs of knowledge [12]. For
common encryption schemes such as Rabin [31], RSA [33], Paillier [30], or El-Gamal [19], the
well-studied Σ-protocols [6] for these schemes (e.g., [23, 35, 7]) may be adapted to give PPKs,
although modifications are needed to ensure security against a cheating verifier/receiver.
For the intended applications listed above, however, solutions such as these are not enough;
the following considerations additionally need to be taken into account:

• Non-malleability. An active adversary M may be controlling all communication
between the honest parties in a classic “man-in-the-middle” attack. We then need to
ensure that the adversary cannot divert the proof of knowledge being given by S to
R. For example, S may be giving a PPK of C, yet M might be able to change this
to a PPK of some C ′ even though M has no knowledge of the real decryption of C ′.
In many contexts this is unacceptable.

• Concurrency. A receiver may be interacting asynchronously and concurrently with
many senders who are simultaneously giving PPKs corresponding to different cipher-
texts. The protocol should remain secure even when executed in this environment.

Some solutions to the above problems exist (cf. Section 1.2). However, these solutions —
particularly in the case of non-malleability — are extremely inefficient. The non-malleable
PPKs given here, on the other hand, are very efficient. In fact, the chosen-ciphertext-
secure encryption, password-AKE, and deniable authentication schemes we build from our
non-malleable PPKs are roughly as efficient as (in some cases, more efficient than) exist-
ing provably-secure solutions which are based on different assumptions or consider weaker
notions of security.

1.1 Applications and Results

We informally describe the principal applications of the non-malleable PPKs we give here.
Formal definitions are given in Appendix A.

Interactive public-key encryption. When a sender and receiver are both on-line, it
may be possible to use an interactive encryption protocol1 if this protocol confers other
advantages (e.g., stronger security properties, greater efficiency, etc.). For example, known
(non-interactive) CCA2 encryption schemes are either impractical [15, 34, 13, 10] or are
based on a specific, decisional assumption [9, 10]. Hence, it is reasonable to look for
efficient constructions of interactive CCA2 encryption schemes which may be based on
various computational assumptions.

Interactive schemes for CCA12 encryption based on PPKs have been proposed pre-
viously [22, 26, 24]. For such an approach to yield adaptive CCA2 security, however, a

1Note that interaction is generally taking place already (e.g., to establish a TCP connection) as part of
the larger protocol in which encryption is taking place.

2I.e., secure against non-adaptive chosen-ciphertext attacks; the notation follows [2].
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non-malleable PPK (as introduced here) must be used. A relatively efficient CCA2 interac-
tive encryption scheme (which does not use proofs of knowledge) is given by [15]; however,
their protocol requires a signature from the receiver, making it unsuitable for use in a de-
niable authentication protocol (see below). Moreover, the protocol requires the receiver —
for each encrypted message — to (1) compute an existentially unforgeable signature and
(2) run the key generation procedure for a public-key encryption scheme (often the most
computationally-intensive step).

Using the non-malleable PPKs presented here, we construct efficient interactive encryp-
tion protocols which are provably secure (in the standard model) against chosen-ciphertext
attacks. The efficiency of our protocols is comparable to that of the most efficient non-
interactive scheme [9] which is based on the DDH assumption. In each case, our protocols
require only a small computational overhead beyond a basic, semantically-secure scheme;
furthermore, most of this extra computation may be done in a preprocessing stage. The se-
curity of our protocols may be based on a variety of assumptions; e.g., the RSA assumption,
the computational composite residuosity assumption [30], or the hardness of factoring.

Password-based authentication and key exchange. The usefulness of interactive
encryption schemes is even more apparent when such schemes are used to encrypt messages
sent as part of a larger protocol in which interaction is already taking place. As an example,
consider password-based authentication and key exchange in the public-key model [27, 5].
In this setting, a client and a server share a weak, human-memorizable password which
they use to authenticate each other and to derive a key for securing future communication;
additionally, the server has a public key which is known by the client. Since the password
is short, off-line dictionary attacks must be explicitly prevented. Previous work [27, 5] gives
elegant (interactive3) protocols for securely realizing this task using any CCA2 public-key
cryptosystem; our techniques allow the first efficient implementation of these protocols
based on, e.g., the factoring assumption.

Deniable authentication. A deniable authentication protocol [15, 17, 16] allows a prover
P (who has a public key) to authenticate a message to a verifier V such that the transcript
of the interaction cannot be used as evidence that P actually took part in the protocol
(i.e., P can deny that the authentication took place). The strongest notion of deniability
requires the existence of a simulator which, given access only to the verifier, can output a
transcript indistinguishable from an interaction of the actual prover and verifier. In addition
to deniability, we require (informally) that an adversary who interacts with the prover —
where the prover authenticates messages m1, . . . of the adversary’s choice — should be
unable to falsely authenticate any message m′ /∈ {m1, . . .} for an honest verifier.

Constructions of deniable authentication protocols based on any CCA2 encryption
scheme are known [17, 18, 16]. However, these protocols are not secure (in general) when
a CCA2 interactive encryption scheme is used. For example, the interactive encryption
scheme of [15] requires a signature from the prover and hence the resulting authentication
protocol (using the above constructions) is no longer deniable; this problem is pointed out
explicitly in [17].

The only previously-known deniable authentication protocol which is both practical and
satisfies the strongest notion of deniability use the construction of [17] instantiated with the

3Interaction is necessary in any such protocol in order to prevent replay attacks.
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practical CCA2 encryption scheme of [9]. We present here the first efficient deniable authen-
tication protocols based on factoring (or related assumptions) which are secure under the
strongest notion of security. Our constructions have the same round-complexity and require
roughly the same computation as the most efficient previous solution, but the security of
our protocols may be based on a wider class of assumptions.

Non-malleable proofs of knowledge. Efficient, non-malleable (interactive) proofs of
knowledge are of general interest, and have applicability in a variety of settings. In contrast
to non-interactive proofs (even in the random oracle setting), interactive proofs automati-
cally prevent replay attacks. In addition, they may prove useful in protocol design whenever
man-in-the-middle attacks are a concern.

Previous constructions of non-malleable proofs of knowledge [15, 34, 13] — especially in
the interactive case where a logarithmic number of rounds are needed — are very inefficient.
The present work shows that, when public information is available, non-malleable proofs
of knowledge can be obtained easily. In particular, for applications such as those outlined
above, the public information may be published along with the already necessary public keys
(and there is no motivation for the party publishing the information to cheat). Our results
also extend to the auxiliary string model. Thus, analogous to the results of Damg̊ard [11] for
concurrent zero-knowledge, we demonstrate that non-malleable proofs of knowledge are easy
to obtain “in practice”. Yet, our results do not address the important theoretical question
of obtaining constant-round non-malleable ZK proofs without extra setup assumptions.

Concurrent proofs of knowledge. Although the issue of concurrency in the context
of zero-knowledge proofs has been investigated extensively (following the initial work by
Dwork, Naor, and Sahai [17]), we are not aware of any previous work dealing with concur-
rency in the context of proofs of knowledge. In the context of zero-knowledge, the difficulty
is to ensure that the interaction of a single prover with multiple verifiers (in a concurrent
fashion) can be simulated in expected polynomial time. In the context of proofs of knowl-
edge, on the other hand, the difficulty arises from having to extract (in expected polynomial
time) witnesses from multiple provers all proving different statements and interacting con-
currently with a single verifier. Following [17], we use timing constraints to ensure the
security of our protocols when they are run in a concurrent, asynchronous environment.

1.2 Related Work

Proofs of plaintext knowledge are explicitly considered by Aumann and Rabin [1], who
provide an elegant solution for any public-key encryption scheme. Our solutions improve
upon theirs in many respects: (1) by working with specific, number-theoretic assumptions
we obtain simple, 3-round schemes that are vastly more efficient; (2) we explicitly consider
malleability and ensure that our protocols are non-malleable; (3) our protocols are secure
even against a dishonest verifier, whereas Aumann and Rabin consider only security against
an honest verifier (i.e., the intended recipient); (4) we explicitly handle concurrency and
our protocols remain provably-secure under asynchronous, concurrent composition.

Non-malleable zero-knowledge (interactive) proofs were defined and constructed by
Dolev, Dwork, and Naor [15]; subsequently, Sahai [34] and De Santis, et al. [13] provide
definitions and constructions for non-malleable, non-interactive zero-knowledge proofs and
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proofs of knowledge.4 Thus, in principal, solutions to our problem exist. Yet, these so-
lutions are based on general assumptions and are completely impractical. In particular,
known non-malleable interactive proofs [15] require a poly-logarithmic number of rounds,
while in the non-interactive setting we do not even know how to give efficient NIZK proofs
— let alone non-malleable ones — for number-theoretic problems of interest (i.e., without
reducing the problem to a general NP-complete language).

Non-malleable PPKs were considered, inter alia, by Cramer, Damg̊ard, and Nielsen [7]
in the context of communication-efficient multi-party computation; they also present an
efficient construction suitable for their intended application (we note that no definitions of
non-malleable PPKs are given in [7]). Here, in addition to constructions, we give formal
definitions and also show applications to a number of other cryptographic protocols. Fur-
thermore, we note a number of differences between our approaches. First, the solution of [7]
relies in an essential way upon the fact that the set of participants (and thus their number
and their identities) is fixed and publicly known. Our protocols, on the other hand, do not
require any notion of user identities and we assume no bound on the number of potential
participants. When the set of users is fixed (e.g., in the context of multi-party computa-
tion), our approach improves upon previous work in that the size of our public parameters is
independent of the number of users n (instead of O(n), as in [7]). Finally, Cramer, et al. as-
sume a synchronous communication model; here, we allow for asynchronous and concurrent
communication which is more realistic in the context of, e.g., public-key encryption. On the
other hand, the schemes of [7] are non-malleable even when multiple proofs are executed
whereas our schemes are only provably non-malleable when a single proof is performed.
This level of security, however, is sufficient for all our intended applications.

2 Definitions and Preliminaries

Definitions for CCA2 interactive encryption and deniable authentication appear in Ap-
pendix A.

2.1 Non-Malleable Proofs of Plaintext Knowledge

The definitions given in this section focus on proofs of plaintext knowledge, yet they may
be easily extended to proofs of knowledge for general NP-relations. We assume a non-
interactive public-key encryption scheme (K, E ,D). The encryption of message m under
public key pk using randomness r to give ciphertext C is denoted as C := Epk(m; r). In
this case, we say that tuple (m, r) is a witness to the decryption of C under pk. For
convenience, we assume that |pk| = k, where k is the security parameter. We let the
notation 〈A(a), B(b)〉(c) be the random variable denoting the output of B following an
execution of an interactive protocol between A (with private input a) and B (with private
input b) on joint input c, where A and B have uniformly-distributed random tapes.

A proof of plaintext knowledge (PPK) allows a sender S to prove knowledge of a witness
to the decryption of some ciphertext C to a receiver R. Both S and R have an additional
joint input σ generated by some algorithm G(pk); in practice, σ will be generated by R and

4Interestingly, ours is the first work to explicitly consider non-malleable interactive proofs of knowledge.
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published along withR’s public key pk.5 To ensure that no information about m is revealed,
we require our PPKs to be zero-knowledge in the following sense: We require the existence
of a simulator SIM which takes pk as input and outputs parameters σ whose distribution
will be equivalent to the output of G(pk). Furthermore, given any valid ciphertext C (but
no witness to its decryption), SIM must be able to perfectly simulate a PPK of C with
any malicious receiver R′ using parameters σ. The zero-knowledge property we require is
actually quite strong: SIM2 must achieve a perfect simulation without rewinding R′. This
definition is met by our constructions.

Our definitions build on the now-standard one for proofs of knowledge [3], except that
our protocols are technically arguments of knowledge and we therefore restrict ourselves to
consideration of provers running in probabilistic, polynomial time.

Definition 1 Let Π = (G,S,R) be a tuple of ppt algorithms. We say Π is a proof of
plaintext knowledge (PPK) for encryption scheme (K, E ,D) if the following conditions hold:

(Completeness) For all pk output by K(1k), all σ output by G(pk), and all C with witness
w to the decryption of C under pk we have 〈S(w),R〉(pk, σ, C) = 1 (when R outputs 1 we
say it accepts).

(Perfect zero-knowledge) There exists a ppt simulator SIM = (SIM1,SIM2) such
that, for all pk output by K(1k), all computationally-unbounded R′, and all m, r, the fol-
lowing distributions are equivalent:

{σ ← G(pk);C := Epk(m; r) : 〈S(m, r),R′〉(pk, σ, C)}

{(σ, s)← SIM1(pk);C := Epk(m; r) : 〈SIM2(s),R
′〉(pk, σ, C)}.

(Witness extraction) There exists a function κ : {0, 1}∗ → [0, 1], a negligible function ε(·),
and an expected-polynomial-time knowledge extractor KE such that, for all ppt algorithms
S ′, with all but negligible probability over pk output by K(1k), σ output by G(pk), and
uniformly-distributed r, machine KE satisfies the following:

Denote by ppk,σ,r the probability that R accepts when interacting with S ′ (using
random tape r) on joint input pk, σ, C (where C is chosen by S ′). On input pk, σ,
and access to S ′r, the probability that KE outputs a witness to the decryption of
C under pk is at least:

ppk,σ,r − κ(pk)− ε(|pk|).

Our definition of interactive non-malleable PPKs builds on the ideas of De Santis, et
al. [13], who define a similar notion in the non-interactive setting. Informally, a non-
malleable PPK should satisfy the intuition that “anything proven by a man-in-the-middle
adversaryM is known byM (unlessM simply copies a proof).” To formalize this idea, we
allow M to interact with a simulator (whose existence is guaranteed by Definition 1) while
simultaneously interacting with a receiver R. M chooses (adaptively) ciphertexts C,C ′

and then executes a PPK of C ′ to R while the simulator executes a PPK of C to M. The
following definition states (informally) that if R accepts M’s proof — yet the transcripts

5It is important to note that there will be no incentive for R to cheat when choosing σ.
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of the two proofs are different — then a knowledge extractor KE ∗ can extract a witness to
the decryption of C ′. The reason we haveM interact with the simulator instead of the real
sender S is that we must ensure that the knowledge is actually extracted fromM and not
from the real sender.

Definition 2 PPK (G,S,R) is non-malleable if there exists a simulator SIM (satisfying
the relevant portion of Definition 1), a function κ∗ : {0, 1}∗ → [0, 1], a negligible func-
tion ε∗(·), and an expected-polynomial-time knowledge extractor KE ∗ such that, for all ppt

algorithms M, with all but negligible probability over pk output by K(1k), σ, s output by
SIM1(pk), and uniformly-distributed r, r ′, machine KE∗ satisfies the following:

Assume M (using random tape r′) acts as a receiver with SIM2(s; r) on joint
input pk, σ, C and simultaneously as a sender with R on joint input pk, σ, C ′

(where C is a valid ciphertext and C,C ′ are adaptively chosen by M). Let the
transcripts of these two interactions be π and π ′. Denote by p∗ the probability
(over the random tape of R) that R accepts in the above interaction and π 6= π ′.
On input pk, σ, s, r, and access toMr′, the probability that KE ∗ outputs a witness
to the decryption of C ′ under pk is at least:

p∗ − κ∗(pk)− ε∗(|pk|).

Our definitions of zero-knowledge (in Definition 1) and non-malleability (in Definition 2)
both consider the single-theorem case only. The definitions may be modified for the multi-
theorem case; however, the present definitions suffice for our intended applications.

2.2 A Note on Complexity Assumptions

Our number-theoretic complexity assumptions are with respect to adversaries permitted
to run in expected polynomial time. For example, we assume that RSA inverses cannot
be computed with more than negligible probability by any expected polynomial-time algo-
rithm. The reason for this is our reliance on constant-round proofs of knowledge, for which
only expected polynomial-time knowledge extractors are currently known. For simplicity,
security definitions of protocols are stated with respect to ppt adversaries. Thus, a deniable
authentication protocol is called secure (cf. Appendix A) if any ppt adversary attacking
the protocol has negligible success probability.

3 A Non-Malleable Proof of Plaintext Knowledge

In the present abstract we describe the RSA-based construction only. Non-malleable PPKs
for the Rabin (based on the hardness of factoring), Paillier (based on the computational com-
posite residuosity assumption), and El Gamal (based on the computational Diffie-Hellman
assumption) encryption schemes appear in the full version of this work [28, Chapter 5].

We begin with an overview of our technique. Recall the parameter σ which is shared
by the sender and receiver and which is used as a common input during execution of the
PPK. Embedded in σ will be a particular value y for which the simulator knows a witness
x such that R(y, x) = 1. A PPK for ciphertext C will be a witness indistinguishable proof
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of knowledge of either a witness to the decryption of C or a witness for y, using the generic
techniques for constructing such proofs [8]. Note that soundness of the protocol is not
affected since a ppt adversary cannot derive a witness for y, while ZK simulation is easy
for a simulator who knows the witness x.

As stated, this simple approach does not suffice to achieve non-malleability. To see why,
consider a simulator interacting with man-in-the-middleM whileM simultaneously inter-
acts with verifier V. Since the simulator must simulate a proof of “w or x” (where w is the
witness to the decryption of the ciphertext C chosen by the adversary), the simulator must
know x. However, if we use the knowledge extractor to extract from M, who is proving
“w′ or x” (where w′ is the witness to the decryption of C ′), there is nothing which pre-
cludes extracting x! Note that without initial knowledge of x the simulator cannot properly
perform the simulation; yet, if the simulator initially knows x, there is no contradiction in
extracting this value fromM. Thus, a more careful approach is needed.

To overcome this obstacle, we borrow a technique used previously by Di Crescenzo, et
al. [14]. Namely, the value y will depend on a parameter α which M cannot re-use; thus,
the simulator proves knowledge of “w or xα” whileM is forced to prove knowledge of “w′ or
xα′”, for some α′ 6= α. The resulting proof will be non-malleable if the following conditions
hold: (1) it is possible for the simulator to know the witness xα; yet (2) learning xα′ for any
α′ 6= α results in a contradiction; furthermore, (3)M cannot duplicate the value α used by
the simulator. Details follow in the remainder of this section.

We briefly review the RSA cryptosystem, extended to allow encryption of `-bit messages
using the techniques of Blum and Goldwasser [4]. The public key N is chosen as a product
of two random k/2-bit primes (where k is the security parameter), and e is a prime number
such that |e| = O(k).6 Let hc(·) be a hard-core bit [24] for the RSA permutation (so
that, given re, hc(r) is computationally indistinguishable from random; note that hc(·)

may depend on information included with the public parameters), and define hc∗(r)
def
=

hc(re`−1

) ◦ · · · ◦hc(re) ◦hc(r). Encryption of `-bit message m is done by choosing a random

element r ∈ Z
∗
N , computing C = re`

mod N , and sending 〈C, c
def
= hc∗(r) ⊕m〉. It is easily

shown that this scheme is semantically secure under the RSA assumption.
Our protocol uses a Σ-protocol for proving knowledge of e`-th roots based on the Σ-

protocol for proving knowledge of e-th roots [23]. To prove knowledge of r = C 1/e`

, the

prover chooses a random element r1 ∈ Z
∗
N and sends A = re`

1 to the verifier. The verifier
replies with a challenge q selected randomly from Ze. The prover responds with R = rqr1

and the receiver verifies that Re` ?
= CqA. To see that special soundness holds, consider two

accepting conversations (A, q,R) and (A, q ′, R′). Since Re`

= CqA and (R′)e
`

= Cq′A we

have (R/R′)e
`

= Cq−q′ . Noting that |q−q′| is relatively prime to e`, standard techniques may

be used to compute the desired witness C1/e`

[23]. Special honest-verifier zero knowledge
is demonstrated by the simulator which, on input C and a “target” challenge q, chooses
random R ∈ Z

∗
N , computes A = Re`

/Cq, and outputs the transcript (A, q,R).
We now describe the non-malleable PPK in detail (cf. Figure 1). Parameters σ are

generated by selecting two random elements g, h ∈ Z
∗
N . Additionally, a function H :

{0, 1}∗ → Ze from a family of universal one-way hash functions is chosen at random. Once
σ is established, a PPK for ciphertext 〈C, c〉 proceeds as follows: first, a key-generation

6A 3-round protocol for the case of small e (e.g., e = 3) is also possible, but we omit details here.
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Public key: N ; prime e

σ : g, h ∈ Z
∗

N
; H : {0, 1}∗ → Ze

S (input m ∈ {0, 1}`) R

(VK,SK)← SigGen(1k)

r, r1, R2 ← Z
∗
N ; q2 ← Ze

C := re`

; c := hc∗(r)⊕m
α := H(VK)

A1 := re`

1

A2 := Re
2/ (gαh)q2

VK, C, c, A1, A2
-

q ← Zeq
�

q1 := q − q2 mod e

R1 := rq1r1

s← SignSK(transcript) q1, R1, R2, s
-

Verify: Re`

1
?
= Cq1A1

Re
2

?
=

(

gH(VK)h
)(q−q1 mod e)

A2

VrfyVK(transcript, s)
?
= 1

Figure 1: Non-malleable PPK for the RSA cryptosystem.

algorithm for a one-time signature scheme is run to yield verification key VK and signing
key SK, and α = H(VK) is computed. The PPK will be a witness indistinguishable proof

of knowledge of either r = C1/e`

or xα
def
= (gαh)1/e. In more detail, the sender chooses

random elements r1, R2 ∈ Z
∗
N along with a random element q2 ∈ Ze. The sender computes

A1 = re`

1 and A2 = Re
2/(g

αh)q2 . These values are sent (along with VK, C, c) as the first
message of the PPK. The receiver chooses challenge q ∈ Ze as before. The sender sets
q1 = q − q2 mod e and answers with R1 = rq1r1 (completing the “real” proof of knowledge
with challenge q1) and R2 (completing the “simulated” proof of knowledge with challenge
q2). The values q1, R1, R2 are sent to the receiver. To complete the proof, the sender signs
a transcript of the entire execution (including C, c) using SK and sends the signature to the

receiver. The receiver verifies the correctness of the proofs by checking that Re`

1
?
= Cq1A1

and Re
2

?
= (gαh)(q−q1 mod e)A2. Finally, the receiver verifies the correctness of the signature

on the transcript.
For greater efficiency, it is possible to modify the protocol for the case of small e (e.g.,

e = 3) without increasing the round complexity. We omit details in the present abstract.

Theorem 1 Assuming the hardness of the RSA problem for expected-polynomial-time al-
gorithms, the protocol of Figure 1 is a non-malleable PPK (with κ∗(pk) = 1/e) for the RSA
encryption scheme outlined above.

Proof That the protocol is indeed a PPK will follow from the stronger properties we

9



prove below. We use the following simulator: SIM1(N, e) chooses random hash function
H, runs SigGen(1k) to generate (VK,SK), and computes α = H(VK). Random elements
g, x ∈ Z

∗
N are chosen, and h is set equal to g−αxe. Finally, σ = 〈g, h,H〉 is output along

with state information state = 〈VK,SK, x〉. Note that σ output by SIM1 has the correct
distribution. Furthermore, given state, SIM2 can simulate the witness indistinguishable
proof of Figure 1 for any ciphertext: simply use verification key VK and then the witness
x = (gαh)1/e is known. Note that the resulting simulation is perfect and is achieved without
rewinding the (potentially) dishonest verifier.

Fix pk, σ, state, and randomness r for SIM2. We are given adversary M using (un-
known) random tape r′ who interacts with both SIM2(state; r) and honest receiver R.
Recall that ciphertext 〈C, c〉, for which SIM2 will be required to prove a witness, is cho-
sen adaptively by M. Once the challenge q ′ of R is fixed, the entire interaction is com-
pletely determined; thus, we may define π(q ′) as the transcript of the conversation between
SIM2(state; r) and Mr′ when q′ is the challenge sent by R; analogously, we define π ′(q′)
as the transcript of the conversation between Mr′ and R when q′ is the challenge of R.

The knowledge extractor KE ∗ is given pk, σ, state, r, and access to Mr′ . When we say
that KE∗ runs Mr′ with challenge q we mean that KE ∗ interacts with Mr′ by running
algorithm SIM2(state; r) and sending challenge q for R. We stress that interleaving of
messages (i.e., scheduling of messages to/from R and SIM2) is completely determined by
Mr′ . KE

∗ operates as follows: First, KE ∗ picks a random value q′1 ∈ Ze and runs Mr′

with challenge q′1 (cf. Figure 2). If π′(q′1) is not accepting, or if π′(q′1) = π(q′1), stop and
output ⊥. Otherwise, run the following:

For i = 0 to e− 1:

q′2 ← Ze

RunMr′ with challenge q′2

If π′(q′2) is accepting and π(q′2) 6= π′(q′2) and q′2 6= q′1:

Output π′(q′2) and stop
RunMr′ with challenge i

If π′(i) is accepting and π(i) 6= π′(i) and i 6= q′1:
Output π′(i) and stop

Output ⊥ and stop.

At this point, KE∗ has either output ⊥ or has the transcripts π(q ′1), π′(q′1), π′(q′2),
where π(q′1) 6= π′(q′1) and π′(q′1), π′(q′2) are accepting transcripts with q′1 6= q′2 (see
Figure 2).

We first verify that the expected running time of KE ∗ until this point is polynomial in
k. Fix pk, σ, state, and r as above. Let p∗ be the probability (over challenges q sent by
R) that Mr′ gives a valid proof and π(q) 6= π′(q). If p∗ > 1/e, the expected number of
iterations of the loop above (assuming this loop is executed) is at most 2/p∗; furthermore,
the probability of executing this loop (which is only done following an initial success) is

exactly p∗. Thus, the expected running time is upper-bounded by p∗ · poly(k)
p∗ = poly(k),

where poly(k) is an upper bound on the running time ofM. On the other hand, if p∗ ≤ 1/e,
the number of iterations of the loop above is at most e, yet the probability of executing
the loop is at most 1/e. Thus, the expected running time of KE ∗ in this case is at most
1
e · e · poly(k) = poly(k).
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SIM2(state; r) Mr′ R

VK, C, c, A1, A2
-

VK′, C ′, c′, A′
1, A

′
2
-

q′1
�

q
�

q1, R1, R2, s
-

q′1
1, R′

1
1, R′

2
1, s′1

-

Rewind:

q′2
�

q′1
2, R′

1
2, R′

2
2, s′2

-

π(q′1)
def
= 〈VK, C, c, A1, A2, q, q1, R1, R2, s〉

π′(q′1)
def
= 〈VK′, C ′, c′, A′

1, A
′
2, q

′1, q′1
1, R′

1
1, R′

2
1, s′1〉

π′(q′2)
def
= 〈VK′, C ′, c′, A′

1, A
′
2, q

′2, q′1
2, R′

1
2, R′

2
2, s′2〉

Figure 2: Knowledge extraction.

Let Good be the event that KE∗ does not output ⊥. In this case, let the transcripts
be as indicated in Figure 2. Note that the probability of event Good is exactly p∗ when
p∗ > 1/e and 0 otherwise. In either case, we have Pr[Good] ≥ p∗ − 1/e.

Assuming event Good occurs, π′(q′1) and π′(q′2) are accepting transcripts with q′1 6= q′2

and therefore we must have either q′1
1 6= q′1

2 or q′1 − q′1
1 6= q′2 − q′1

2 mod e (or possibly
both). In case q′1 − q′1

1 = q′2 − q′1
2 mod e (denote this event by Real) and hence q ′1

1 6= q′1
2,

we have the two equations:

(

R′
1
1
)e`

=
(

C ′
)q′

1

1

A′
1 mod N

(

R′
1
2
)e`

=
(

C ′
)q′

1

2

A′
1 mod N.

Therefore, (∆R)e
`

= (C ′)∆q , where ∆R
def
= R′

1
1/R′

1
2 (we assume all values in ZN are in-

vertible; if not, N may be factored and eth roots easily computed) and ∆q
def
= q′1

1 − q′1
2.

Since ∆q and e` are relatively prime, we can efficiently compute integers A,B such that

A∆q + Be` = 1; we may then compute r′
def
= (∆R)A(C ′)B = (C ′)1/e`

. Once r′ is known,
KE∗ may compute hc∗(r′) and hence determine the witness to the decryption of ciphertext
〈C ′, c′〉.

On the other hand, if q′1 − q′1
1 6= q′2 − q′1

2 mod e (denote this event by Fake), we have
the two equations:

(

R′
2
1
)e

=
(

gα′

h
)q′1−q′

1

1

A′
2

(

R′
2
2
)e

=
(

gα′

h
)q′2−q′

1

2

A′
2,
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where α′ def
= H(VK′), from which KE∗ may compute y′

def
= (gα′

h)1/e (using the same tech-
niques as above). Since Good = Real ∪ Fake, we have Pr[Real] + Pr[Fake] ≥ p∗ − 1/e. To
complete the proof (since Real∩ Fake = ∅), we show that Pr[Fake] (where the probability is
over the random tape ω of KE∗) is less than some negligible function with all but negligible
probability over choice of pk, σ, state, r, r ′.

Claim 1 Prpk,σ,state,r,r′,ω[VK = VK′ ∧ Good] is negligible.

Consider algorithm Forge which takes input VK, has access to a signing oracle, and runs
as follows: emulating KE∗, algorithm Forge generates pk, σ, and parameters state and r
for SIM2. However, Forge does not run the key-generation procedure for the one-time
signature scheme, but instead uses VK. Next, Forge runs the initial portion of KE ∗ by
choosing random r′ forM, choosing q′ randomly from Ze, and runningMr′ with challenge
q′. When a signature under VK is needed (during the single execution of SIM2), Forge
obtains the required signature from its signing oracle. Once Mr′ completes its execution,
Forge stops and outputs the transcript π ′(q′).

The probability that the transcript output by Forge contains a valid forgery under VK is
at least Prpk,σ,state,r,r′,ω[VK = VK′ ∧Good]. However, the security of the one-time signature
scheme guarantees that this is negligible. Note that, since no rewinding is involved and
consequently Forge runs in strict polynomial time, the signature scheme need only be secure
against ppt adversaries.

Claim 2 Prpk,σ,state,r,r′,ω[VK 6= VK′ ∧H(VK) = H(VK′) ∧ Good] is negligible.

The proof is similar to that of Claim 1, but is based on the security of the family of universal
one-way hash functions. As in Claim 1, the family of universal one-way hash functions need
only be secure against ppt adversaries. Details omitted.

Claim 3 Prpk,σ,state,r,r′,ω[H(VK) 6= H(VK′) ∧ Fake] is negligible.

Note that algorithm KE ∗, as described previously, does not require any secret information
about N, e, g in order to run. Thus, we can consider the expected polynomial-time algorithm
KE ′ which takes as input a modulus N , a prime e, and a (random) element g ∈ Z

∗
N and

otherwise runs identically to KE ∗. Clearly, the probability that both Fake and H(VK) 6=
H(VK′) occur remains unchanged.

Let α = H(VK) and α′ = H(VK′); define ∆
def
= α′ − α 6= 0. By definition of event Fake,

KE ′ may compute y′ such that (y′)e = gα′
h; but then:

y′
def
=

(

gα′

h
)1/e

=
(

g∆xe
)1/e

=
(

g∆
)1/e

x,

and therefore y
def
= y′/x satisfies ye = g∆. Note that |∆| and e are relatively prime since

∆ ∈ (−e, e). The same techniques used above allow efficient computation of g1/e. In other
words, whenever Fake and α′ 6= α occur, algorithm KE ′ inverts the given RSA instance g.
Therefore, under the RSA assumption, Prpk,σ,state,r,r′,ω[H(VK) 6= H(VK′) ∧ Fake] must be
negligible.
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Claims 1–3 imply that Prpk,σ,state,r,r′,ω[Fake] < ε(k) for some negligible function ε(·).
But then:

ε(k) > Pr
pk,σ,state,r,r′,ω

[Fake] >
√

ε(k) · Pr
pk,σ,state,r,r′

[

Pr
ω

[Fake] >
√

ε(k)
]

,

and hence Prpk,σ,state,r,r′

[

Prω[Fake] ≤
√

ε(k)
]

≥ 1 −
√

ε(k). Thus, with all but negligible

probability over choice of pk, σ, state, r, r ′, the probability of event Fake is negligible

4 Applications

In this section, we discuss applications of non-malleable PPKs to the construction of (1)
interactive CCA2 encryption protocols, (2) password-AKE in the public-key model, and
(3) strong deniable-authentication protocols. We describe protocols based on the PPK of
Figure 1 whose security is therefore based on the RSA assumption; analogous constructions
based on the PPKs given in the full version of this work [28] yield protocols whose security
is based on alternate assumptions (hardness of factoring, etc.).

Concurrent composition. In our intended applications, the man-in-the-middle adversary
may conduct multiple PPKs in an asynchronous and concurrent fashion. Witness extraction
will be required for each such execution; furthermore, extraction of this witness will be
required as soon as the relevant proof is completed. If arbitrary interleaving of the proofs is
allowed, extracting all witnesses in the naive way may require exponential time due to the
nested rewinding of the prover (a similar problem is encountered in simulation of concurrent
zero-knowledge proofs [17]). To avoid this problem, we introduce timing constraints [17] in
our protocols. These are explained in detail below.

4.1 Interactive CCA2 Encryption

The non-malleable PPK of the previous section (cf. Figure 1) immediately yields an inter-
active encryption scheme: The receiver generates N, e as in the original RSA scheme and
also runs G(pk) to give parameters σ. The public key pk is (N, e, σ) and the secret key is
the factorization of N . To encrypt message m under public key pk, the sender computes
C = re`

and c = hc∗(r) ⊕m, sends 〈C, c〉 to the receiver, and then executes algorithm S
for the ciphertext using parameters σ (i.e., the sender proves knowledge of a witness to
the decryption of C). To decrypt, the receiver uses R to determine whether to accept or
reject the proof; if the receiver accepts, the receiver decrypts 〈C, c〉 as in the standard RSA
scheme. If the proof is rejected, the receiver outputs ⊥.

This interactive scheme, as described, is secure against adaptive chosen-ciphertext at-
tacks when the adversary is given sequential access to the decryption oracle. To ensure
security against an adversary given concurrent access to the decryption oracle, timing con-
straints are necessary. In particular, we require that S respond to the challenge (i.e., send
the third message of the protocol) within time α from when the second message of the pro-
tocol is sent. If S does not respond in this time, the proof is rejected. Additionally, a fourth
message is sent from the receiver to the sender; this message is simply an acknowledgment
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message which is ack if the sender’s proof was verified to be correct and ⊥ otherwise. Fur-
thermore, R delays the sending of this message until at least time β has elapsed from when
the second message of the protocol was sent (with β > α). We stress that, when concurrent
access to the decryption oracle is allowed, the decryption oracle enforces the above timing
constraints by (1) rejecting any proofs for which more than time α has elapsed between
sending the second message and receiving the third message, and (2) the decrypted cipher-
text is not returned to the adversary until after the acknowledgment message is sent (in
particular, until time β has elapsed since sending the second message).

Theorem 2 Assuming the hardness of the RSA problem for expected-polynomial-time al-
gorithms, the protocol of Figure 1 (with |e| = Θ(k)) is an interactive encryption scheme
secure against sequential chosen-ciphertext attacks. If timing constraints are enforced as
outlined above, the protocol is secure against concurrent chosen-ciphertext attacks.

The proof appears in Appendix B.
The resulting encryption scheme is computationally efficient, especially in comparison

with the basic semantically-secure scheme. For example, the scheme of Figure 1 for encryp-
tion of `-bit messages requires only 2`+4 exponentiations compared to the ` exponentiations
required by the underlying RSA scheme. Furthermore, most of the additional computation
may be done in a preprocessing stage before the message to be sent is known.

4.2 Password-Based Authentication and Key Exchange

As shown by Halevi and Krawczyk [27] and Boyarsky [5], protocols for password-based
authentication may be constructed from any CCA2 encryption scheme as follows: Let pw
be the password of the user which is stored by the server. A password-based authentication
protocol using a (non-interactive) CCA2 encryption scheme has the server send a random,
sufficiently-long nonce n to the user, who replies with an encryption of pw ◦n (actually, this
brief description suppresses details which are unimportant for the discussion which follows;
see [27, 5]). The server decrypts and verifies correctness of the password and the nonce;
the nonce is necessary to prevent replay attacks. If desired, a key K may be exchanged by
encrypting K ◦ pw ◦ n instead.

Our interactive CCA2 encryption schemes allow the first efficient implementations of
these protocols based on, for example, the RSA or factoring assumptions. Note that these
protocols already require interaction and therefore using an interactive encryption scheme
is not a serious drawback. Furthermore, when an interactive encryption scheme is used the
nonce is not necessary if the probability that a server repeats its messages is negligible [5]; in
this case, authentication (for example) may be achieved by simply having the user perform
a (random) encryption of pw. Thus, our constructions require only one more round than
those of [27, 5].

4.3 Deniable Authentication

Our non-malleable PPKs may be easily adapted to give deniable-authentication protocols
whose security is based on the one-wayness of the appropriate encryption scheme; semantic
security is not required. This allows for very efficient deniable-authentication protocols

14



Public key: N ; prime e; g, h ∈ Z
∗

N
; H : {0, 1}∗ → Ze

V (input m ∈ {0, 1}∗) P (input d)

(VK,SK)← SigGen(1k)

y, r1, R2 ← Z
∗
N ; q2 ← Ze

C := ye;α := H(VK)

A1 := re
1

A2 := Re
2/ (gαh)q2

VK,m,C,A1, A2
-

q ← Zeq
�

q1 := q − q2 mod e

R1 := yq1r1

s← SignSK(transcript) q1, R1, R2, s
-

Verify: Re
1

?
= Cq1A1

Re
2

?
=

(

gH(VK)h
)(q−q1 mod e)

A2

VrfyVK(transcript, s)
?
= 1Cd

�

Figure 3: A deniable-authentication protocol based on RSA.

since, for example, we may use the “simple” RSA encryption scheme in which r is encrypted
as re mod N (under the RSA assumption, this scheme is one-way). Furthermore, efficient
deniable-authentication protocols may be constructed using weaker assumptions; e.g., the
CDH assumption [28] (previous efficient constructions require the DDH assumption).

We first present the paradigm for the construction of our deniable authentication pro-
tocols. The basic idea is for the receiver to give a non-malleable PPK for a ciphertext C
encrypted using an encryption scheme which is one-way for random messages. Additionally,
the message m which is being authenticated is included in the transcript and is signed along
with everything else. Assuming the verifier’s proof succeeds, the prover authenticates the
message by responding with the decryption of C.

Figure 3 shows an example of this approach applied to the non-malleable PPK of Figure
1. The public key of the prover P is an RSA modulus N , a prime e (with |e| = Θ(k)),
elements g, h ∈ Z

∗
N , and a hash function H chosen randomly from a family of universal one-

way hash functions. Additionally, the prover has secret key d such that de = 1 mod ϕ(N).
The verifier V has message m taken from an arbitrary message space (of course, |m| must be
polynomial in the security parameter). To have m authenticated by P, the verifier chooses
a random y ∈ Z

∗
N , computes C = ye, and then performs a non-malleable proof of knowledge

of the witness y to the decryption of C (as in Figure 1). Additionally, the message m is
sent as the first message of the protocol, and is signed along with the rest of the transcript.
If the verifier’s proof succeeds, the prover computes C d and sends this value to the verifier.
If the proof does not succeed, the prover simply replies with ⊥.

As in the case of interactive encryption, timing constraints are needed when concurrent
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access to the prover is allowed. In this case, we require that the verifier respond to the
challenge (i.e., send the third message of the protocol) within time α from when the challenge
was sent. If V does not respond within this time, the proof is rejected. Additionally, the
last message of the protocol is not sent by the prover until at least time β has elapsed since
sending the challenge (clearly, we must have β > α).

Theorem 3 Assuming the hardness of the RSA problem for expected-polynomial-time al-
gorithms, the protocol of Figure 3 is a strong deniable-authentication protocol (over an
arbitrary message space) for adversaries given sequential access to the prover. If timing
constraints are enforced as outlined above, the protocol is a strong ε-deniable-authentication
protocol for adversaries given concurrent access to the prover.

The proof is similar to that of Theorem 2, and appears in the full version [28].
We stress that the resulting deniable authentication protocols are quite practical. For

example, the full version of this work [28] shows a deniable authentication protocol based
on the CDH assumption which has the same round-complexity, requires fewer exponen-
tiations, has a shorter public key, and is based on a weaker assumption than the most
efficient previously-known protocol for strong deniable authentication (i.e., the protocol of
[17] instantiated with the Cramer-Shoup encryption scheme [9]). Furthermore, no previous
efficient protocols were known based on the RSA, factoring, or computational/decisional
composite residuosity assumptions.

We also remark that interactive CCA2 encryption schemes do not, in general, yield
deniable authentication protocols using this paradigm. For example, when using the chosen-
ciphertext-secure encryption scheme of [15], two additional rounds are necessary just to
achieve weak deniable authentication (our use of the terms “strong” and “weak” is explained
in Appendix A.2).

Further efficiency improvements are possible; however, the resulting protocols are prov-
ably secure for polynomial-sized message spaces only. In Figure 4, we illustrate the improve-
ment for the deniable authentication protocol of Figure 3. In the improved protocol, we
rely on the fact that the adversary cannot re-use the value m (since, to break the security
of the scheme, the adversary must authenticate a new message which the prover does not
authenticate). This eliminates the need for a verification key and a one-time signature on
the transcript. However, since the adversary chooses m (and this value must be guessed by
the simulator in advance), the scheme is only provably secure when the message space is
polynomial-size.

Theorem 4 Assuming the hardness of the RSA problem for expected-polynomial-time al-
gorithms, the protocol of Figure 4 is a strong deniable-authentication protocol (over any
polynomial-size message space Mk ⊂ Ze) for adversaries given sequential access to the
prover. If timing constraints are enforced as outlined above, the protocol is a strong ε-
deniable-authentication protocol for adversaries given concurrent access to the prover.

The proof appears in the full version of this work [28].

Acknowledgments. I am grateful to Moti Yung and Rafail Ostrovsky for their many
helpful comments and suggestions regarding the work described here.
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Public key: N ; prime e; g, h ∈ Z
∗

N

V (input m ∈Mk ⊂ Ze) P (input d)

y, r1, R2 ← Z
∗
N ; q2 ← Ze

C := ye;A1 := re
1

A2 := Re
2/ (gmh)q2

m,C,A1, A2
-

q ← Zeq
�

q1 := q − q2 mod e

R1 := yq1r1 q1, R1, R2
-

Verify: Re
1

?
= Cq1A1

Re
2

?
= (gmh)(q−q1 mod e) A2Cd

�

Figure 4: A deniable-authentication protocol with improved efficiency.
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A Additional Definitions

A.1 Chosen-Ciphertext-Secure, Interactive Encryption

A number of definitional approaches to chosen-ciphertext security in the interactive setting
are possible. For example, the notion of non-malleability [15] may be extended for the case
of interactive encryption. An oracle-based definition is also possible, and we sketch such a
definition here.7

We have a sender, a receiver (where the receiver has published public-key pk), and a
man-in-the-middle adversaryM who controls all communication between them. To model
this, we define an encryption oracle and a decryption oracle to whichM is given access. The
encryption oracle Eb,pk plays the role of the sender. The adversary may interact with this
oracle multiple times at various points during its execution, and may interleave requests to
this oracle with requests to the decryption oracle in an arbitrary manner. At the outset of
protocol execution, a bit b is chosen at random. An instance of the adversary’s interaction
with the encryption oracle proceeds as follows: first, the adversary chooses two messages
m0,m1 and sends these to Eb,pk. The oracle then executes the encryption protocol for
message mb. The adversary, however, need not act as an honest receiver. The oracle
maintains state between the adversary’s oracle calls, and the adversary may have multiple
concurrent interactions with the oracle. When Eb,pk sends the final message for a given
instance of its execution, we say that instance is completed.

The decryption oracle Dsk plays the role of a receiver. This oracle also maintains ap-
propriate state between oracle calls, and the adversary may again have multiple concurrent

7To obtain an equivalent definition using the language of non-malleability, we would need to define a
notion of non-malleability with respect to vectors of ciphertexts. Such a definition becomes cumbersome in
the interactive setting.
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interactions with this oracle. Furthermore, the adversary need not act as an honest sender.
Each time a given decryption-instance is completed, the decryption oracle decrypts using
sk and following the correct decryption protocol and then sends the result (i.e., a message
or ⊥) to the adversary.

The adversary succeeds if it can guess the bit b. Clearly, some limitations must be
placed on the adversary’s access to the decryption oracle or else the adversary may simply
forward messages between Eb,pk and Dsk and therefore trivially determine b. At any point
during the adversary’s execution, the set of transcripts of completed encryption-instances
of Eb,pk is well defined. Upon completing a decryption-instance, let {π1, . . . , π`} denote the
transcripts of all completed encryption-instances. We allow the adversary to receive the
decryption corresponding to a decryption-instance with transcript π ′ only if π′ 6= πi for
1 ≤ i ≤ `.

Definition 3 Let Π = (K, E ,D) be an interactive, public-key encryption scheme. We say
that Π is CCA2-secure if, for any ppt adversary A, the following is negligible (in k):

∣

∣

∣
Pr

[

(sk, pk)← K(1k); b← {0, 1} : AEb,pk ,Dsk(1k, pk) = b
]

− 1/2
∣

∣

∣
,

where A’s access to Dsk is restricted as discussed above.

A.2 Deniable Authentication

We review the definition given in [17, 16]. Formal definitions appear in the full version
of this work [28]. We have a prover P who has established a public key and is willing
to authenticate messages to a verifier V; however, P is not willing to allow the verifier to
convince a third party (after the fact) that P authenticated anything. This is formalized
by ensuring that any transcript of an execution of the authentication protocol could have
been simulated by a verifier alone (without any access to P ). Furthermore, an adversaryM
(acting as man-in-the-middle between P and a verifier) should not be able to authenticate
a message m to the verifier which P does not authenticate forM. More formally, a strong
deniable authentication protocol should satisfy the following:

• Completeness. For any message m, if the prover and a verifier follow the protocol
for authenticating m, then the verifier accepts.

• Soundness. Assume P concurrently authenticates any polynomial number of mes-
sages m1,m2, . . . chosen adaptively by a ppt adversary M. Then M will succeed
with at most negligible probability in authenticating a message m 6∈ {m1, . . .} to an
honest verifier.

• Strong Deniability. Assume P concurrently authenticates any polynomial number
of messages chosen adaptively by a ppt adversary V ′. Then there exists an expected-
polynomial-time simulator that, given black-box access to V ′, can output a transcript
indistinguishable from a transcript of a real execution between V ′ and P .

A relaxation of the above definition which has been considered previously (e.g., [17])
allows the simulator to have access to the real P when producing the simulated transcript,
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but P authenticates some fixed sequence of messages independent of those chosen by V ′. We
call this weak deniable authentication. In practice, weak deniability may not be acceptable
because the protocol then leaves an undeniable record that P authenticated something (even
if not revealing what). However, P may want to deny that any such interaction ever took
place. Note that any solution based on non-malleable encryption [15, 17, 18, 16] which
uses the interactive non-malleable encryption scheme suggested by [15] (which requires a
signature from P ) will achieve only weak deniability.

The notion of ε-deniability [17] requires that for any given ε > 0, there exists a simulator
whose expected running time is polynomial in k and 1/ε and which outputs a simulated
transcript such that the advantage of any poly-time algorithm in distinguishing real tran-
scripts from simulated transcripts is negligibly close to ε.

B Proof of Theorem 2

A straightforward hybrid argument shows that it is sufficient to consider adversaries with
only a single access to the encryption oracle. We prove security for the more challenging
case of concurrent access to the decryption oracle. The protocol Π of Figure 1 is a PPK
for encryption scheme (K, E ,D) in which K(1k) outputs as the public key a k-bit modulus
N and a k-bit prime e. Encryption of `-bit message m is done by choosing random r ∈
Z
∗
N and sending C̃ = 〈re`

, hc∗(r) ⊕ m〉, where hc∗(·) is a hard-core function for the RSA
permutation. Assuming the hardness of the RSA problem for expected-polynomial-time
algorithms, (K, E ,D) is semantically secure against expected-polynomial-time adversaries.
We transform any ppt adversary A mounting a CCA2 attack against Π into an expected-
polynomial-time adversary A′ attacking the semantic security of (K, E ,D). Furthermore,
we show that the advantage of A′ is not negligible if the advantage of A is not negligible.
This will immediately imply CCA2 security of Π.

Let t(k), which is polynomial in k, be a bound on the number of times A accesses the
decryption oracle when run on security parameter 1k; without loss of generality, we assume
that t(k) ≥ k (for convenience, in the remainder of the proof we suppress the dependence on
k and simply write t). In the real experiment Expt0, the final output b′ of A is completely
determined by pk′ = 〈pk, σ〉, random coins r′ for A, the vector of challenges ~q = q1, . . . , qt

used during the t instances A interacts with the decryption oracle, and the randomness used
by the encryption oracle (this includes the bit b, the randomness ω used for the encryption,
and the randomness used for execution of the PPK). Let Succ denote the event that b ′ = b,
and let Pr0[Succ] denote the probability of this event in the real experiment.

We modify the real experiment, giving Expt1, as follows. Key generation is done by
running K(1k) to generate pk, sk. Additionally, SIM1(pk) (cf. the proof of Theorem 1) is
run to generate parameters σ and state (in the real experiment σ was generated by G(pk)).
The public key pk′ is 〈pk, σ〉 and the secret key is sk. The adversary’s calls to the decryption
oracle are handled as in Expt0 (in particular, any ciphertext C̃ may be decrypted since sk is
known), but the adversary’s encryption oracle call will be handled differently. When A calls
the encryption oracle on messages m0,m1, we pick b randomly, compute C̃∗ = Epk(mb;ω)
for random ω, and simulate the PPK for C̃∗ using algorithm SIM2(state; r) with randomly-
chosen r. Now, the final output b′ of A is completely determined by pk′ = 〈pk, σ〉, random
coins r′ for A, the vector of challenges ~q used by the decryption oracle, the values b and
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ω used in computing C̃∗, and the values state and r used by SIM2 in simulating the
encryption oracle. Since SIM yields a perfect simulation of a real execution of the PPK,
we have Pr1[Succ] = Pr0[Succ], where the first probability refers to the probability of an
event in Expt1.

We now describe our adversary A′ attacking the semantic security of (K, E ,D). Given
the public key pk, adversary A′ runs SIM1(pk) to generate parameters σ and state. A′

then fixes the randomness r′ of A, and runs A on input pk′ = 〈pk, σ〉. Simulation of the
encryption oracle for A is done as follows: when A submits two messages m0,m1, adversary
A′ simply forwards these to its encryption oracle and receives in return a ciphertext C̃∗ (note
that the encryption oracle thus implicitly defines values b∗ and ω∗). Then, A′ simulates the
PPK for C̃∗ using algorithm SIM2(state; r) for randomly-chosen coins r. Simulation of the
decryption oracle for A is done by choosing a random vector of queries ~q ∗ and attempting
to extract the relevant witnesses (in expected polynomial time) from the PPKs given by A.
Details of the simulation are described below. In case the simulation is successful, the final
output b′ is just the final output of A; if the simulation is not successful, the final output b ′

is a randomly-chosen bit. As we show below, the simulation will succeed with sufficiently
high probability such that if the advantage of A (in attacking the CCA2 security of Π) is
not negligible then the advantage of A′ (in attacking the semantic security of (K, E ,D) is
not negligible as well. This will complete the proof.

It remains to show how to simulate the decryption oracle. Our proof requires techniques
used in an analysis of concurrent composition of zero-knowledge proofs [17]. We assume
that A controls the scheduling of all messages to and from all the oracles; so, for example,
the decryption oracle does not send its next message until A requests it. Define the ith

instance of the decryption oracle as the ith time A requests the second message (i.e., the
challenge) of the PPK be sent by the decryption oracle. In any transcript of the execution
of A, we let Ci denote the ciphertext sent by A in the ith instance of the decryption oracle.
For any instance of the decryption oracle, we say the instance succeeds if (1) an honest
receiver would accept the instance, (2) the transcript of the instance is different from the
transcript (if it yet exists) of the interaction of A with the encryption oracle, and (3) the
timing constraints are satisfied for that instance. Otherwise, we say the instance fails.

Recall that the simulator has values 〈pk, σ, r ′, ~q ∗, state, r〉 and has access to an encryption
oracle which, on input m0,m1, outputs Epk(mb∗ ;ω

∗) for random b∗ and ω∗. Note that the
value state defines a key VK which is used by SIM2 when giving its simulated proof. The
values pk, σ, r′, state, and r are fixed throughout the simulation. When we say the simulator
interacts with A using 〈~q, ω, b〉 we mean that the simulator runs A as in Expt1; that is,
encryption oracle query m0,m1 is answered by encrypting mb using randomness ω and then
running SIM2(state; r), and the challenge sent by the ith instance of the decryption oracle
is qi. We note that decryption requests cannot be immediately satisfied; this will not be a
problem, as we show below.

We begin with simulation of the first instance. The simulator chooses random ~q, ω, b and
interacts with A using 〈~q, ω, b〉. If A makes a call m0,m1 to the encryption oracle before q1

is requested, the simulator forwards m0,m1 to its encryption oracle and receives in return
a ciphertext C̃∗; we then say the ciphertext is defined at instance 1. Once the ciphertext is
defined, the simulator no longer needs to choose values ω, b and, in effect, interacts with A
using 〈~q, ω∗, b∗〉. If the verification key VK1 used by A in the first instance is equal to VK
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defined by state, the first instance is declared conditionally delinquent and the simulator
proceeds to simulation of instance 2.

If the ciphertext is not defined at instance 1, the simulator interacts with A using
〈~q, ω, b〉 until the first instance either succeeds or conclusively fails. Note that decryption of
ciphertexts C̃i with i > 1 is not required since such a request would imply that time β has
elapsed since the sending of the second message of instance i, but this would mean that time
α has already elapsed since the second message of instance 1 was sent (and therefore the
first instance has either succeeded or failed by that point). If the first instance succeeds,
the simulator proceeds with witness extraction as described below. If the first instance
fails, the simulator chooses new, random ~q, ω, b and interacts with A using 〈~q, ω, b〉. This
is repeated for a total of at most t4/τ times (using new, random ~q, ω, b each time) or until
the first instance succeeds, where τ = τ(k) is an inverse polynomial whose value we will
fix at the end of the proof and t = t(k) is a bound on the number of times A interacts
with the decryption oracle. If the first instance ever succeeds, the simulator proceeds with
witness extraction. Otherwise, the first instance is declared conditionally delinquent and
the simulator proceeds to simulation of the second instance.

If the ciphertext is defined at instance 1, the simulator proceeds as above, but uses
values ω∗, b∗ to interact with A (where these values are defined by ciphertext C̃∗ received
from the simulator’s encryption oracle, as discussed previously).

If the first instance ever succeeds, witness extraction will be performed. Assume the
first instance succeeded when interacting with A using 〈~q, ω, b〉. The simulator then does
the following:

For n = 0 to e− 1:
q′1 ← Ze

Interact with A using 〈q′1, q2, . . . , qt, ω, b〉
If the first instance succeeds and q′1 6= q1, output the transcript and stop

Interact with A using 〈n, q2, . . . , qt, ω, b〉
if the first instance succeeds and n 6= q1, output the transcript and stop

Output ⊥ and stop

If ⊥ is not output, the simulator attempts to compute a witness to the decryption of C̃1

as in the proof of Theorem 1. If such a witness is computed, we say the first instance is
extracted and the simulator proceeds with simulation of instance 2. If ⊥ is output, or if ⊥ is
not output but a witness to the decryption of C̃1 cannot be computed, the entire simulation
is aborted; we call this a failure to extract.

In general, when we are ready to simulate the ith instance (assuming the entire simulation
has not been aborted), each of the first i−1 instances has been classified as either extracted
or conditionally delinquent. If instance j is extracted, the simulator knows the decryption
of C̃j and can send it to A upon successful completion of that instance in the current
simulation. On the other hand, if instance j is classified as conditionally delinquent, then
with sufficiently high probability that instance will never succeed.

We say the ciphertext is defined before instance i if, for some j ≤ i, the ciphertext is
defined at j. At the beginning of simulation of the ith instance, if the ciphertext is not
defined before instance i − 1, the simulator chooses random qi, . . . , qt, ω, b and interacts
with A using 〈q∗1 , . . . q

∗
i−1, qi, . . . , qt, ω, b〉. If A makes a call m0,m1 to the decryption oracle
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before qi is requested, the simulator forwards m0,m1 to its encryption oracle and receives in
return a ciphertext C̃∗; we then say the ciphertext is defined at instance i. If the verification
key VKi used by A during the ith instance of the decryption oracle is equal to VK defined
by state, the ith instance is declared conditionally delinquent and the simulator proceeds
with simulation of the next instance.

If the ciphertext is not defined before instance i, the simulator continues to interact
with A using 〈q∗1 , . . . q

∗
i−1, qi, . . . , qt, ω, b〉 until the ith instance either succeeds or conclusively

fails. If a success occurs, witness extraction is performed as described below. In case the
ith instance fails, the simulator chooses new, random qi, . . . , qt, ω, b and interacts with A
using 〈q∗1 , . . . , q

∗
i−1, qi, . . . , qt, ω, b〉. This is repeated for a total of at most t4/τ times or until

the ith instance succeeds. If the ith instance ever succeeds, the simulator proceeds with
witness extraction as described below. Otherwise, the ith instance is declared conditionally
delinquent and the simulator proceeds to simulation of the next instance.

Note that during simulation of instance i, decryption of ciphertexts Cj with j > i is not
required since such a request would imply that time β has elapsed since the sending of the
second message of instance j, but this would mean that time α has already elapsed since the
second message of instance i was sent (and therefore the ith instance has either succeeded
or failed by that point). However, the simulator may be required to decrypt ciphertext C̃j

with j < i. In case instance j is extracted, this is no problem, since the simulator knows
the witness to the decryption of C̃j. On the other hand, when j is conditionally delinquent,
there is a problem. We handle this as follows: if conditionally delinquent instance j succeeds
before qi is sent, the entire simulation is aborted; we call this a classification failure. If a
conditionally delinquent instance j succeeds after qi is sent, we consider this an exceptional
event at instance j during simulation of i, and do not include it in the count of failed trials.
However, if 3t3/τ such exceptional events occur for any j, the entire simulation is aborted;
we call this an exception at j during simulation of i.

If the ciphertext is defined before instance i, the simulator proceeds as above but using
ω∗, b∗ (where these values are defined by the ciphertext C ∗ obtained from the simulator’s
encryption oracle, as discussed previously).

If the ith instance ever succeeds, witness extraction will be performed. Assume the
first instance succeeded when interacting with A using 〈~q, ω, b〉. The simulator then does
the following (success here means that the ith instance succeeds and no exceptional events
occurred during the interaction with A):

For n = 0 to e− 1:
q′i ← Ze

Interact with A using 〈q1, qi−1, q
′
i, qi+1, . . . , qt, ω, b〉

If the first instance succeeds and q′i 6= qi, output the transcript and stop
Interact with A using 〈q1, qi−1, n, qi+1, . . . , qt, ω, b〉
if the first instance succeeds and n 6= qi, output the transcript and stop

Output ⊥ and stop

If ⊥ is not output, the simulator attempts to compute a witness to the decryption of C̃i

as in the proof of Theorem 1. If such a witness is computed, we say the ith instance is
extracted and proceed with simulation of the next instance. If ⊥ is output, or if ⊥ is not
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output but a witness to the decryption of C̃i cannot be computed, the entire simulation is
aborted; we call this a failure to extract.

Once all t instances have been simulated, if the ciphertext is not defined before t, the
simulator simply interacts with A on input 〈~q ∗,⊥,⊥〉 until A makes call m0,m1 to the
encryption oracle. The simulator forwards these values to its encryption oracle, receiving
in return C̃∗. Simulation of the encryption oracle for A is done using SIM2, as above. In
this case, we say the ciphertext is defined at t + 1.

As long as the entire simulation is not aborted, the result is a perfect simulation of the

view of A in Expt1 with random variables Ω∗ def
= 〈pk, σ, r′, state, r, w∗, b∗〉. We now show

that: (1) the expected running time of the above simulation is polynomial in t and 1/τ ,
and (2) with all but negligible probability over Ω∗ and for some negligible function µ(·), the
simulation fails with probability at most 3τ/4+µ(k). Fixing τ(k) to an appropriate inverse
polynomial function then yields a correct simulation with sufficiently high probability.

Claim 4 The expected running time of the simulation is polynomial in t and 1/τ .

For simulation of each instance, at most 4t4/τ trials are run before either aborting, declaring
the instance conditionally delinquent, or attempting to extract. Say extraction is attempted
at instance i because the ith instance succeeded (and no exceptional events occurred) when
interacting with A using 〈~q, ω, b〉. Let pi denote the probability, over choice of q ′i, that
the ith instance succeeds and no exceptional events occur when interacting with A using
〈q1, . . . , qi−1, q

′
i, qi+1, . . . , qt, ω, b〉. If pi > 1/e, extraction requires expected number of steps

at most 2/pi. Since extraction with these values of ~q, ω, b is performed with probability at
most pi · (4t

4/τ), the contribution to the expected running time is at most (4t4pi/τ) ·2/pi =
8t4/τ . If pi ≤ 1/e, extraction requires at most e steps, and the contribution to the expected
running time is then at most (4t4/eτ) · e = 4t4/τ . In either case, the contribution to the
expected running time for simulation of any instance is polynomial in t and 1/τ . Since
there are at most t instances, the entire simulation has expected running time polynomial
in t and 1/τ .

Claim 5 With all but negligible probability over Ω∗, the probability of a classification failure
is at most τ/4 + ε4(k), where ε4(·) is negligible.

The analysis follows [17]. Say the ciphertext is defined at instance v, where 1 ≤ v ≤ t + 1.
For i < v, define the values defined before i as q∗1 , . . . , q

∗
i−1 and the variables not defined before

i as variables qi, . . . , qt, ω, b; for i ≥ v, define the values defined before i as q∗1, . . . , q
∗
i−1, ω

∗, b∗

and the variables not defined before i as qi, . . . , qt. For each i, recursively define di as the
probability (over variables not defined before i) that instance i succeeds, conditioned on
the values defined before i and on the event that no delinquent instance j (j < i) succeeds.
Define an instance i to be delinquent if di is at most τ/4t3. We now compute the probability
that an instance which is not delinquent is classified as conditionally delinquent.

If an instance i is declared conditionally delinquent because VKi = VK, then, with all
but negligible probability over Ω∗, the probability that instance i succeeds is negligible. If
not, the security of the one-time signature scheme is violated with non-negligible probability
during Expt1 (details omitted). If an instance is declared conditionally delinquent for failing
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too many trials, then, if di > τ/4t3, the probability that none of the t4/τ trials succeeded
is at most

(

1−
τ

4t3

)t4/τ
≤ e−t/4,

which is negligible.
Assuming that all instances declared conditionally delinquent are in fact delinquent, the

probability of a classification failure during a given instance is at most τ/4t3, and hence the
probability of a classification failure occurring is at most t · τ/4t3 ≤ τ/4.

Claim 6 With all but negligible probability over Ω∗, the probability of a failure to extract is
negligible.

A failure to extract occurs for one of two reasons: (1) the extraction algorithm cannot
generate two different accepting transcripts or (2) the extraction algorithm generates two
different accepting transcripts but cannot extract a witness to the decryption of the relevant
ciphertext. Say extraction is attempted at instance i because the ith instance succeeded
(and no exceptional events occurred) when interacting with A using 〈~q, ω, b〉. Let pi denote
(as in Claim 4) the probability, over choice of q ′i, that the ith instance succeeds and no
exceptional events occur when interacting with A using 〈q1, . . . , qi−1, q

′
i, qi+1, . . . , qt, ω, b〉. If

case (1) occurs, this implies that pi = 1/e. But in this case, extraction at this instance and
with these values of ~q, ω, b is performed only with probability at most (4t4/τ) · (1/e), which
is negligible. Furthermore, since VKi 6= VK (otherwise instance i is declared conditionally
delinquent), the techniques of the proof of Theorem 1 imply that, with all but negligible
probability over Ω∗, case (2) occurs with only negligible probability. (If not, an RSA root
may be extracted in expected polynomial time with non-negligible probability.)

Claim 7 With all but negligible probability over Ω∗, the probability of abort due to an excep-
tion at j during simulation of i (for any i, j) is at most τ/2 + ε5(k), where ε5(·) is negligible.

Fix i and j with i > j. Define d′i,j as the probability (over variables not defined before i)
that instance j succeeds (conditioned on the values defined before i). An exception at j
during simulation of i means that, during simulation of i, conditionally delinquent instance
j succeeded at least 3t3/τ times out of at most 4t4/τ trials. We claim that if this happens,
then, with all but negligible probability, d′

i,j is at least 1/2t. If this were not the case, letting

X be a random variable denoting the number of successes in 4t4/τ trials and µ denote the
actual value of d′i,j , the Chernoff bound shows that:

Pr[X >
3

2
· µ4t4/τ ] < Pr[X > 3t3/τ ]

< (e/(3/2)3)t
3/τ ,

and since e/(3/2)3 < 1, this expression is negligible. Assuming instance j is in fact delin-
quent (which is true with all but negligible probability; see the proof of Claim 5), the
probability (over variables not defined before j) that d′

i,j ≥ 1/2t is at most τ/2t2. Summing

over all t2 possible choices of i and j yields the desired result.
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Assume the advantage of A in Expt1 is not negligible. This implies the existence of some
constant c such that, for infinitely many values of k,

∣

∣

∣

∣

Pr1[Succ]−
1

2

∣

∣

∣

∣

> 1/kc.

Set τ(k) = 1/2kc. The probability of a correct simulation is then at least 1− 1/2kc − µ(k)
for some negligible function µ(·). Let Sim denote the event that a successful simulation
occurs. Then:

AdvA′(k) =
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∣

∣

∣
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−
3

2
· (

1
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+ µ(k)),

and then for infinitely many values of k we have AdvA′(k) ≥ 1/8kc so that this quantity is
not negligible.

This completes the proof of the Theorem.
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