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Abstract

In a distributed digital signature scheme, a set of participants shares a secret in-
formation that allows them to compute a valid signature for a given message. These
systems are said to be robust if they can tolerate the presence of some dishonest
players.

Up to now, all the proposed schemes consider only threshold structures: the
tolerated subsets of corrupted players as well as the subsets of players who can sign
a message are de�ned according to their cardinality.

We propose a framework that is more general than the threshold one, consid-
ering a general access structure of players allowed to sign and a general family of
dishonest players that the scheme can tolerate. If these general structures satisfy
some combinatorial conditions, we can design a distributed and secure RSA signa-
ture scheme for this setting. Our construction is based on the threshold scheme of
Shoup [30].

Keywords. Distributed digital signatures, RSA signatures, secret sharing schemes.

1 Introduction

The area of distributed cryptography, which is generally known as threshold cryptogra-
phy, has been very active since it was introduced in the works of Boyd [5], Okamoto [24]
and Desmedt [10]. The reason of this liveliness is the increasing number of situations in
which an operation has to be made or supervised by more than a single party: transac-
tions between companies, distributed certi�cation authorities, distributed key generation,
etc.

In particular, many distributed digital signature schemes have been proposed. In
these schemes, some participants share a secret information that enables some subsets
of them (those in the access structure) to compute a valid signature. The advantages of
collective digital signatures with respect to individual ones are several:

� security increase: in an individual digital signature, an adversary obtains all the
secret information if he can corrupt one party. In a distributed scheme, however,
an adversary must corrupt a determined group of players to obtain some useful
secret information.

� reliability increase: if the only player of an individual scheme is not able to compute
the signature, it is not computed in any way. In a collective scheme, although some
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participants have technical problems, for example, the rest of players can compute
a valid signature.

In order to formalize these aspects, the situation is modelized by an external adversary
who can corrupt some subsets of dishonest players (those in the adversary structure).
Participants can be dishonest in two di�erent ways: they can try to obtain the secret
information necessary to compute signatures without the consent of the honest players
but executing the protocol correctly; or they can also try to boycott the process forging
their shares of secret information.

In order to tolerate these situations, the scheme must have the properties of unforge-
ability and robustness. A scheme is said to be unforgeable if any subset of dishonest
players can not obtain any information that allows them to compute a signature without
the consent of some honest party. A scheme is said to be robust if it can detect lying
participants, and they can't avoid the honest players to generate a valid signature.

It is also desirable that the resulting signature is a standard one; that is, the receiver
of the signature can not distinguish if it has been generated in a distributed way or not.

Previous work. The proposals of distributed digital signature schemes made until
now can be divided in two groups, according to the individual signature scheme that
they use.

With respect to signature schemes based on the discrete logarithm problem, early
proposals were made by Desmedt and Frankel [11], but they were not robust and require
the presence of a trusted party. Pedersen [26] and Harn [21] avoid the need of a trusted
party, but neither do they consider the question of robustness. Langford [22] proposes a
robust scheme, but the number of corrupted players tolerated is not optimal (the scheme
has not \optimal-resilience"). Finally, Gennaro et al. [19] propose an optimal and robust
scheme which does not require a trusted party. Recently, Stinson and Strobl [35] propose
the threshold version of Schnorr's signature scheme.

With respect to schemes based on RSA signatures [28], �rst attempts were also made
by Frankel and Desmedt [13] and De Santis et al. [9]; they work in a concrete extension of
a polynomial ring, and this fact leads to a scheme that requires either interaction or very
large shares. Gennaro et al. [18] complete and make robust the proposal of De Santis et
al., but it is still ineÆcient. Frankel et al. [14], [15] and Rabin [27] propose robust schemes
that are besides proactive (they tolerate adaptative adversary structures), but with a high
computational complexity. Shoup [30] proposes a robust, non-interactive, eÆcient and
conceptually simple scheme. It requires a dealer to generate the keys and distribute the
shares among the players. Finally, Miyazaki et al. [23], Damg�ard and Koprowski [8] and
Fouque and Stern [12] propose robust schemes in which is not necessary the presence
of a dealer; this is possible thanks to the works of Boneh and Franklin [4], Catalano et
al. [7] and Frankel et al. [16] (this last work, revisited in [2]), who show how can a group
of players jointly generate the keys and distribute the shares of a RSA system.

Almost all the proposals we have mentioned have a characteristic in common: the
adversary structure is a threshold one, that is, the scheme tolerates the presence of up
to t corrupted players. The most logical solution then, in order to get unforgeability, is
to de�ne the access structure (those subsets of players who will be able to generate a
signature) as a threshold structure, too. In this case, it must contain subsets of at least
t+1 players. We must remark here that the threshold Schnorr's signature scheme in [35]
also works with more general access structures.

Our contribution. We propose a framework which is more general than the thresh-
old one; we consider a general access structure of players that are allowed to sign a
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message, and a general family of subsets of dishonest players that the system can toler-
ate (that is, a general adversary structure). We �nd the necessary combinatorial condi-
tions for these structures in order to reach robustness and unforgeability in a distributed
signature scheme.

We design a scheme that runs in this scenario, generalizing the threshold scheme of
Shoup [30]. Our scheme is a �rst approach to the goal of designing distributed protocols
(in this case, for RSA signatures) that run with access structures which are more general
than the threshold ones.

We modify standard linear secret sharing schemes, de�ned over a �nite �eld, and
consider them de�ned in Z. The eÆciency of the resulting distributed RSA signature
scheme will depend on the access structure. We also give some examples of interesting
access structures that are not threshold and for which our scheme provides an eÆcient
distributed signature scheme.

Organization of the paper. In Section 2, we explain some of the tools which are
basic to construct and understand our system, as secret sharing schemes (in particular,
vector space ones), or the proposal of threshold signature scheme by Shoup [30]. In
Section 3, we set a more general framework for the adversary and access structures, we
explain our proposal of distributed signature scheme, we prove its security, we discuss its
eÆciency and we present some examples in which the resulting scheme is very eÆcient.
Finally, in Section 4 we sum up the contribution of our work and the problems which
remain open in the area of distributed signature schemes.

2 Preliminaries

2.1 Secret Sharing Schemes

Secret sharing schemes are an important component of distributed cryptography. In
these schemes, a secret value is shared among the participants in a set P in such a way
that only quali�ed subsets of P can reconstruct the secret from their shares. A secret
sharing scheme is said to be perfect if the subsets that are not quali�ed to reconstruct
the secret have absolutely no information on it. That is, the security of a perfect secret
sharing scheme is unconditional. A comprehensive introduction to secret sharing schemes
can be found in [33, 34, 31].

An access structure � on a �nite set P of participants is the family of subsets of P
that are authorized to reconstruct the secret. The access structure has to be monotone,
that is, if A1 2 � and A1 � A2 � P , then A2 2 �. Therefore, an access structure can
be determined by the family of minimal authorized subsets, �0 � �, which is called the
basis of �.

A secret sharing scheme is said to be ideal if the length of the secret is equal to
the length of the shares of the participants. There are access structures that can not
be realized by an ideal secret sharing scheme; however, there are interesting families of
structures which can always be realized by such an ideal scheme.

2.1.1 Linear Secret Sharing Schemes

The vector space construction is a useful method to construct ideal schemes that was
introduced by Brickell in [6]. Let P be a set of n participants. Let � be an access
structure on P and D =2 P a special participant called the dealer. � is said to be a vector
space access structure if, for some vector space E = Kr over a �nite �eld K, there exists
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a function
 : P [ fDg �! E

such that A 2 � if and only if the vector  (D) can be expressed as a linear combination
of the vectors in the set  (A) = f (i)ji 2 Ag. If � is a vector space access structure, we
can construct an ideal secret sharing scheme for � with set of secrets K: given a secret
value k 2 K, the dealer takes a random element w 2 E, such that w � (D) = k and the
share of a participant i 2 P is si = w �  (i) 2 K. A scheme constructed in this way is
called a vector space secret sharing scheme. Let A 2 � be an authorized subset, ; then,
 (D) =

P
i2A c

A
i  (i), for some cAi 2 K. In order to recover the secret, the players of A

compute

X

i2A

cAi si =
X

i2A

cAi w �  (i) = w �
X

i2A

cAi  (i) = w �  (D) = k

Vector space secret sharing schemes are a particular ideal case of linear secret sharing
schemes, which are essentially equal to vector space ones we have explained, but now
every participant can be associated with more than one vector. These schemes have been
considered under other names such as geometric secret sharing schemes or monotone span
programs. Linear secret sharing schemes realize obviously more access structures than
vector space ones. In fact, Simmons, Jackson and Martin [32] proved in a constructive
way that any access structure � can be realized by a linear secret sharing scheme. In
general, this construction gives schemes that are ineÆcient in the sense that the length
of the shares is quite larger than the length of the secret.

2.1.2 Shamir's Secret Sharing Schemes

Shamir's secret sharing scheme was introduced in [29] and it realizes threshold access
structures, that is � = fA � P : jAj � tg, for some threshold t. To share a secret k in a
�nite �eld K, the dealer chooses a random polynomial f(z) = k+a1z+ � � �+at�1zt�1 2
K[z] of degree t� 1. The share of participant pi is si = f(i), for i = 1; : : : ; n.

Let A = fi1; : : : ; itg be a subset of t participants. They have t di�erent values of the
polynomial f(z), of degree t � 1, so they can interpolate the value k = f(0). From the
Lagrange interpolation formula, we have

k = f(0) =
X

j2A

�A0;jf(j)

where �A0;j =

Q

i2Anfjg

�i

Q

i2Anfjg

j�i .

Shamir's secret sharing scheme is a particular case of vector space secret sharing
schemes, takingE = Kt and  de�ned by  (D) = (1; 0; : : : ; 0) and  (pi) = (1; i; i2; : : : ; it�1).

As we have said in the introduction, all distributed signature schemes proposed until
now consider only threshold structures. They use Shamir's secret sharing scheme or some
variant of it. If we want to consider more general structures, we should use more general
secret sharing schemes, as vector space or linear ones.

2.2 The proposal of Shoup

The distributed digital signature scheme proposed by Shoup [30] is based on the RSA
cryptosystem [28]. Let n = pq be the product of two large primes, e an integer 1 < e � n
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with gcd(e; �(n)) = 1 and d = e�1mod�(n). The values n and e are public, while the
values p, q and d are kept secret.

The signature for a certain message x (which results from applying a hash function
h to a text M , x = h(M)) is y = xdmodn. The receiver veri�es ye = xmodn.

In the threshold proposal of Shoup, a dealer distributes shares of the value d among a
set of participants P = f1; : : : ; `g in such a way that subsets of up to t dishonest players
are tolerated, and any subset of k participants can generate a valid signature. In order
to achieve unforgeability, it is necessary k � t+ 1; to achieve robustness, it is necessary
`� t � k. Both inequalities imply ` � 2t+ 1.

The scheme proposed by Shoup requires some restrictions in the generation of the
RSA keys:

� the two primes p and q must be safe primes; that is, p = 2p0 + 1 and q = 2q0 + 1,
with p0 and q0 themselves primes. Then, if we de�ne m = p0q0, we have �(n) = 4m.

� the public exponent e must be a prime e > ` (remember that ` is the number of
participants), such that gcd(e;m) = 1.

All this work is done by the dealer, who also computes d = e�1modm (and not
mod�(n), as in standard RSA). He chooses at random a polynomial f(z) = d + a1z +
� � � + ak�1z

k�1, of degree k � 1, with ai 2 f0; : : : ;m � 1g. For 1 � i � `, the dealer
computes si = f(i)modm (note that m is unknown to the participants). He sends each
player his share si. The dealer also chooses a random v 2 Qn, where Qn is the subgroup
of squares in Z�n, and computes vi = vsi , for 1 � i � `. He makes public the veri�cation
keys v and fvig1�i�`.

Let x 2 Z�n be the message which is wanted to be signed. Each player i broadcasts
his signature share xi = x2�si 2 Qn, where � = `!, along with a \proof of correctness",
which is basically a non-interactive proof of knowledge that the discrete logarithm of x2i
to the base x4� is the same as the discrete logarithm of vi to the base v (see [30] for the
details). Therefore, the rest of participants can detect if the share xi is inconsistent with
the veri�cation keys, and can reject player i if he has lied. Once all dishonest players
have been rejected, and because of the restriction ` � t � k, there are at least k valid
signature shares. We will suppose, without loss of generality, they are corresponding to
players in A = f1; : : : ; kg. Note that the secret value d has been shared with a variant
of Shamir's secret sharing scheme, so the idea is to interpolate the value of d. But the
operations must be done in Zm, and m is unknown for the participants. In particular,
they can't calculate inverses in Zm, so they will not be able to compute the interpolation
coeÆcients

�A0;j =

Q
i2Anfjg

�i

Q
i2Anfjg

j � i
modm

To solve this situation, and since these denominators all divide j!(` � j)! which in
turn divides � = `!, we will consider ��A0;j , which are clearly integers. Then, we have

�d =
kX

j=1

��A0;jsj modm

Now the players in A compute

! = x
2�A

0;1

1 � � �x
2�A

0;k

k = x
4�

kP

j=1

��A
0;jsj

= x4�
2d modn
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(because x�(n) = x4m = 1modn, as Fermat's little theorem says). The same property

implies that !e = x4�
2

modn.
Since e > ` is prime, we have gcd(e; 4�2) = 1, and the players can obtain from the

extended Euclidean algorithm integers a and b such that 4�2a+ eb = 1.
Then, the signature for the message x is y = !axb. In e�ect, ye = !eaxbe =

x4�
2a+eb = xmodn. Note that the receiver can not distinguish if the signature has

been generated by a set of participants or by a single one.
A RSA signature for the message x has been distributely generated, but the value of

the secret key, d, has not been recovered anytime. This is convenient, because we do not
want to change the value of d each time we make a signature.

We also note that the dealer uses a variation of Shamir's scheme to share a secret
over the ring Zm (not over a �eld).

3 A Secure Scheme for General Structures

3.1 General Structures

Now we will explain our proposal for the case of more general structures, not only thresh-
old ones. Let P = f1; : : : ; `g be a set of participants. For any family B � 2P of subsets
of P , we denote B = 2PnB and Bc = fPnB : B 2 Bg.

Now the tolerated subsets of dishonest players are not necessarily de�ned according
to their cardinality. We have a general adversary structure, A � 2P , which must be
obviously monotone decreasing: if B1 2 A is a tolerated subset of dishonest players, then
B2 2 A for all B2 � B1. Analogously to the case of monotone increasing structures, we
can de�ne the basis A0 of the adversary structure as the maximal subsets of A, that is,
A0 = fB 2 A j B0 =2 A, for all B0 � Bg.

On the other hand, we have the monotone increasing access structure �, that is, the
collection of subsets of participants that will be able to generate a valid signature. If we
want to achieve unforgeability, any subset in A can not be in �, that is

A \ � = ; (1)

This condition is the same as � � A, or equivalently, A � �, where � is the set of non-
authorized subsets. Since � is monotone decreasing, we can consider the family (�)0 � �
of maximal non-authorized subsets.

To achieve robustness, for any B 2 A, the subset B formed by the rest of players of
P must be in �. In other words

Ac � � (2)

From these two conditions (1) and (2), it must be Ac \ A = ;. We recall that a
monotone decreasing structure A � 2P is said to be Q2 in P if Ac � A or equivalently,
if there are not two subsets in A that cover all the set P . In the threshold case, Q2

condition is ` � 2t+ 1.
In conclusion, the adversary structure A must be Q2 in P and both structures A and

� must verify
Ac � � � A

We now explain how to construct, if all these conditions hold, an unforgeable and
robust distributed signature scheme.
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3.2 Our Proposal

Let P = f1; : : : ; `g be the set of participants, and A � 2P an adversary structure such
that it is Q2 in P . We also consider an access structure � verifying Ac � � � A.

In our distributed signature scheme, the secret to be shared will belong to a ring Zm

(instead of a �eld Zp, as usually happens in standard secret sharing schemes), that must
also remain secret to the participants. The solution that we propose is to de�ne the secret
sharing scheme over the integers. So we must modify the de�nition of standard linear
secret sharing schemes (in particular, the vector space ones), which are de�ned over a
�nite �eld, in order to adapt them to our needs. This variation is quite straightforward.

We will have a monotone increasing structure �. We say that a function  : P [
fDg �! Zr realizes � when A 2 � if and only if there exists fcAi gi2A, with cAi 2 Q,
such that  (D) =

P
i2A c

A
i  (i).

Then we construct a sort of vector space secret sharing scheme over the integers as
follows:

1. if the dealer D wants to share a secret k 2 Zm, he chooses a random vector
w 2 (Zm)

r such that w �  (D) = k modm

2. he sends to the participant i his share si = w �  (i) 2 Z (without reducing it
modulus m)

3. let A be an authorized subset, A 2 �; then,  (D) =
P

i2A c
A
i  (i), for some cAi 2 Q.

In order to \recover" the secret, the players of A compute
X

i2A

cAi si =
X

i2A

cAi w �  (i) = w �
X

i2A

cAi  (i) = w �  (D) = k + gm

This scheme is not a standard perfect secret sharing scheme: non-authorized subsets
have not any information about the secret, as desired; however, authorized subsets do not
recover exactly the secret k, but this value plus a multiple gm of the unknown modulus
m. This additional value will not a�ect the functioning of our protocol, if the modulus
m is taken properly by the dealer.

It is interesting to note that the constructive method of Simmons, Jackson and Mar-
tin [32] can also be applied in this scenario, and so any access structure � can be realized
by a linear secret sharing scheme over Z. In general, this scheme will not be ideal, that
is, each participant will have associated more than one vector. For simplicity, we will
consider the case in which this secret sharing scheme is ideal. But the scheme can be
easily adapted to the general linear case.

By de�nition of maximal subset, we have that B [ fig 2 �, for each maximal non-
authorized subset B 2 (�)0 and all i =2 B; that is,  (D) 2 h (i); f (j)gj2Bi, in Q. We

can deduce from this condition that there exist rational numbers fB;i0 ; ffB;ij gj2B such
that

 (i) = fB;i0  (D) +
X

j2B0

fB;ij  (j)

In our distributed signature scheme, we are going to need an integer value � = �( )
such that the following two conditions hold (using the notation introduced above):

(i) �cAi 2 Z, for all A 2 �0 and i 2 A, and all possible values of cAi .

(ii) �fB;i0 2 Z and �fB;ij 2 Z, for all B 2 (�)0, j 2 B and i =2 B, and all possible

values of fB;i0 and fB;ij .
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We explain here a method to obtain such a value � that can be applied to any access
structure. We will see in Section 3.4 some examples of access structures in which an
appropriate � can be found in a more eÆcient way.

For each minimal authorized subset A 2 �0, there will be a factor MA such that
~cAi = MAc

A
i is an integer, for all i 2 A. This factor MA is the determinant of some

non-zero minor, with maximal order, of the matrix GA whose columns are the vectors
f (i)gi2A. We de�ne MinorsA = fnon-zero minors of matrix GA, with maximal orderg.
Then we de�ne the value MA in the following way:

MA = lcm
gA2MinorsA

fj det gAjg

It is clear that this factorMA cancels all the denominators in all the possible solutions
fcAi gi2A. But we are looking for a factor that cancels all the denominators, for all the
minimal authorized subsets A 2 �0. We de�ne

�1 = lcm
A2�0

fMAg

With respect to the second condition that must satisfy the value �, we must consider
systems of equations with the following characteristic: the columns of the matrix of this
system are the vectors  (D) and f (j)gj2B , where B 2 (�)0 is a maximal non-authorized
subset. We note this matrix GD;B . As before, we de�ne MinorsD;B = fnon-zero minors
of matrix GD;B , with maximal orderg, the value

MD;B = lcm
gD;B2MinorsD;B

fj det gD;B jg

and the value
�2 = lcm

B2(�)0

fMD;Bg

Finally, the factor � is
� = lcmf�1;�2g

Key generation.

Suppose we have an appropriate function  : P [ fDg �! Zr de�ning a linear
secret sharing scheme over the integers that realizes the access structure �. The access
structure �, the function  and the value � (that depends only on  ) are public. The
dealer chooses p = 2p0 + 1 and q = 2q0 + 1 in such a way that p, q, p0 and q0 are primes
large enough; we de�ne m = p0q0. The value n = pq is public (�(n) = 4m remains secret
to the participants). The dealer chooses the public exponent e as a positive integer such
that gcd(e;m�) = 1. He also computes d = e�1modm.

Again, the problem is the same as in the threshold case: to generate the signature,
the participants in A must do some operations in the exponent, that is, in Zm, but they
do not know the value of m. Therefore, they will not be able to calculate inverses in Zm,
so they will have to multiply some rational values by a certain constant that cancels the
denominators. This fact is the reason for which we need the value �.

Once this initialization (or key generation) phase is performed, the protocol of the
distributed signature scheme is the following.

Generation of the shares.

1. The dealer chooses a random vector w 2 (Zm)
r, such that w �  (D) = dmodm.
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2. He sends each player his secret share si = w �  (i), for 1 � i � `.

3. The dealer also chooses a random v 2 Qn, where Qn is the subgroup of squares in
Z�n, and computes vi = vsi , for 1 � i � `. He makes public the veri�cation keys v
and fvig1�i�`.

Distributed generation of a RSA signature.

If the players want to sign a message x = h(M) 2 Z�n, where M is a plaintext and h
is a hash function, the process is the following:

1. Each player i, for 1 � i � `, computes and broadcasts his signature share as
xi = x2�si modn. He also makes public a \proof of correctness" of this share,
that is, a non-interactive proof of knowledge of a value � such that the discrete
logarithm of x2i to the base x4� is the same as the discrete logarithm of vi to the
base v and is equal to �. This proof must not give any information about the value
�, that is, the secret share si (see [30] for the details).

2. Each player j, for 1 � j � `, veri�es the proof of correctness of player i, using the
veri�cation keys v and fvig1�i�`, and publicly complains if the proof is not correct.

3. Players who receive complains from an authorized subset A 2 � are rejected.

4. Once the dishonest players have been rejected, and because of the restriction Ac �
�, there is at least one authorized subset A 2 � in which all the signature shares
are valid. We can consider, for simplicity, that A is a minimal authorized subset,
that is, A 2 �0.

5. Each player inA can obtain rational numbers fcAi gi2A such that  (D) =
P

i2A c
A
i  (i);

multiplying this values by factor �, he obtains integer values ~cAi = �cAi , and then

he computes the value ! =
Q

i2A x
2~cAi
i = : : : = x4�

2d modn.

6. Since gcd(e;�) = 1, each player in A can obtain integers a and b such that 4�2a+
eb = 1.

7. The signature for the message x is y = !axb. In e�ect, ye = !eaxbe = x4�
2a+eb =

x modn.

Some remarks.

� The resulting signature is a standard RSA signature, so the veri�er can not dis-
tinguish if the signature has been generated by a single person or by a group of
participants.

� The secret shares of the participants, fsigi2P , are not reduced modm, unlike the
threshold scheme by Shoup [30]. Suppose that they have si = w � (i) modm, and
suppose there exists a dishonest subset B 2 A such that f (j)gj2B are not linearly
independent over Q (note that this fact never occurs in the threshold case). Then,
players in B could obtain a linear rational combination of their vectors equal to
zero; thus, the same combination applied to the shares fsjgj2B will be equal to
zero, in Zm, that is, players in B could obtain a multiple of m, and so break the
system.
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� Although these shares si are not reduced modulus m, they can be bounded by
rmL, where L = max

i2P;1�j�r
fj (i)j jg is the maximum value of the components of

public vectors  (i). This detail is necessary in order to prove the simulability or
our scheme.

3.3 Security Analysis

The security proof of our scheme is similar to the security proof of the threshold scheme
by Shoup [30]. The idea is to prove that the distributed scheme is simulatable, and then
use this fact to reduce the security of the distributed scheme to the security of standard
RSA signature scheme [28].

De�nition 3.1. A distributed signature scheme is said to be simulatable if, for any eÆ-
cient (polynomial time) adversary, there exists an eÆcient algorithm Sim = (Sim1; Sim2)
such that:

1. Sim1 takes as input the public key of the scheme and simulates the view of the
adversary on the execution of this key generation phase.

2. Sim2 takes as input the public key of the scheme, the transcript of Sim1, a message
and its signature, and simulates the view of the adversary on the execution of the
distributed generation of this signature.

This de�nition has been taken from [18], although it is quite standard. The algorithms
Sim1 and Sim2 know and can use the public information related to the access structure;
for example, the threshold t in a threshold scheme, or the function  and the value � in
a more general case. We can see this information as a part of the public key.

Now we prove that our scheme is simulatable, and how this fact leads to the unforge-
ability of it.

Proposition 3.1. The distributed signature scheme proposed in Section 3.2 is simulat-
able.

Proof. We show how to construct an algorithm that simulates the view of an adversary
during a real execution of the protocol.

1. We �rst construct Sim1. The input of this algorithm is a public key (n; e), along
with the publicly known access structure �, the function  : P [ fDg �! Zr

de�ning the linear secret sharing scheme over the integers that realizes �, and the
value �.

Let B 2 A the set of players corrupted by the adversary. Because of the necessary
combinatorial condition A � �, there exists a maximal non-authorized subset B0 2
(�)0 such that B � B0. The real share of a player j in B is sj = w �  (j), where
w is a random vector in (Zm)

r. To simulate these shares, Sim1 chooses a random
vector ~w in (Z ~m)

r, where ~m = bn=4c � 1. Then, it computes ~sj = ~w �  (j), for all
j 2 B0.

The values f~sjgj2B are the output of Sim1; since the statistical distance between
the uniform distribution on f0; : : : ;mg and the uniform distribution on f0; : : : ; ~mg
is O(n�1=2), we can deduce that the distribution of the real values fsjgj2B and the
distribution of the simulated values f~sjgj2B are computationally indistinguishable,
as desired. It is in this last point where we need the shares (the real as well as the
simulated ones) to be bounded.
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2. Now we describe Sim2. The input of this algorithm will be the public key (n; e)
of the scheme, the transcript of Sim1 (in particular, f~sjgj2B0), a message x =
h(M) and its signature y. Sim2 computes ~xj = x2�~sj , for all j 2 B0. Given
that B0 2 (�)0, we know that B0 [ fig 2 �, for all i 2 PnB0; this condition
is equivalent, in Q, to  (i) 2 h (D); f (j)gj2B0 i. That is, there exist rational

numbers fB
0;i

0 ; ffB
0;i

j gj2B0 such that

 (i) = fB
0;i

0  (D) +
X

j2B0

fB
0;i

j  (j)

Due to the second condition of Lemma 3.1, we have that the values �fB
0;i

0 and

f�fB
0;i

j gj2B0 are all integers. Therefore, the algorithm Sim2 can compute the
simulated signature shares

~xi = y
2(�fB

0;i
0

+ e
P

j2B0
�fB

0;i
j

~sj )

modn

for all i 2 PnB0.

Using the same technique, Sim2 can also generate the values ~v; ~v1; : : : ; ~v`, compu-
tationally indistinguishable from the veri�cation keys that the adversary would see
on a real execution of the protocol.

Zero-knowledge simulability of the \proofs of correctness" can be achieved exactly
in the same way as in Shoup's scheme (see [30] for the details).

Theorem 3.1. In the random oracle model [3], the distributed signature scheme proposed
in the Section 3.2 is secure (robust and unforgeable under a chosen message attack),
assuming that the standard RSA signature scheme is secure.

Proof. The scheme is obviously robust, due to the requirements on the structures � and
A.

The proof of soundness for the \proofs of correctness", in the random oracle model, is
the same as in the threshold case (see [30]), because this part of the protocol is identical.

Suppose now the distributed scheme to be forgeable under chosen message attacks.
That is, there exists an eÆcient adversary ADist that chooses some messages, executes
the distributed signature protocol for them (obtaining their signatures, all the broadcast
information and all the secret information of players corrupted by the adversary), and
then is able to compute a valid signature for a message that has not been signed before.
In this case, we could use this algorithm to construct a successful chosen message attack
ARSA against standard RSA signature scheme:

1. ARSA runs Sim1 with input the same public key used by ADist, to obtain the view
of ADist on an execution of the key generation phase.

2. For each message chosen by ADist to be signed during its attack, ARSA executes
the standard RSA signature scheme and obtains its signature (ARSA is allowed to
do this, by de�nition of chosen message attack [20]); then ARSA executes Sim2

with input the public key, the chosen message and its signature, and the transcript
of Sim1, and thus obtains the view of ADist on the executions of the distributed
signature protocol.
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3. ARSA can use this view to run ADist and get a valid signature for a message non
signed before.

But such an attack against standard RSA signatures is assumed to be computationally
infeasible, in the random oracle model, so we conclude that our �rst assumption was
wrong; that is, the distributed signature scheme is unforgeable under chosen message
attacks.

3.4 EÆciency and Examples

Our scheme runs with any access structure, so it is logical that its eÆciency can be good
or worse depending on the case. In some cases, the computation of the value � will
require a high computational work. But this computation must be done only once, and
can be o�-line, before the running of the protocol. In other cases, there will exist an
eÆcient method to obtain a value � satisfying the requirements of our scheme; we will
see some examples of this case.

Depending on the access structure � and the function  de�ning the corresponding
linear secret sharing scheme, the size of � can be very large. This fact also happens in
the threshold case, where the presence of the value � = `! can make the system quite
ineÆcient, if the total number of players ` is very large.

Now we present some examples of structures which are di�erent from the threshold
ones, and in which our distributed signature scheme can be implemented in an eÆcient
way; that is, a factor � canceling all the inverses in the coeÆcients of the linear combi-
nations can be computed without calculating all the corresponding minors.

We are going to consider bipartite structures [25], in which there are two classes of
participants and all participants in the same class play an equivalent role in the structure.
This structures have interesting practical applications, and they can not be realized by
a threshold secret sharing scheme, so the threshold proposal of Shoup could not be used
in these cases.

Example 1 Let us consider a group of players divided in two sets X = fP1; : : : ; Pr1g
and Y = fQ1; : : : ; Qr2g, with r1 � 2 or r2 � 3, such that all players in the same set
play an equivalent role in the access structure. Suppose that any two players in the set
X have enough power to sign a message, while any subset of the set Y can not sign a
message without the participation of at least one player of the set X ; furthermore, if only
one player of the set X participates, at least two players of the set Y are also needed in
order to generate a signature. This structure can tolerate dishonest behaviors of some
subsets of players, for example any subset of set Y , or any subset formed by a player of
X and a player of Y . The access structure is de�ned by �0 = ffPi1 ; Pi2g : 1 � i1 < i2 �
r1g[ ffPi; Qk1 ; Qk2g : 1 � i � r1 and 1 � k1 < k2 � r2g; and we can tolerate corruption
of any subset that is not authorized, that is, A0 = (�)0 = ffPi; Qkg : 1 � i � r1 and
1 � k � r2g [ fY g. Note that these structures are not threshold ones, and that they
verify the necessary combinatorial conditions of Section 3.1.

Now we must �nd a secret sharing scheme over the integers realizing the access
structure � de�ned above. An appropriate assignment is  (D) = (1; 0; 0),  (Pi) =
(1; i; 0), for 1 � i � r1, and  (Qk) = (0; k; 1), for 1 � k � r2.

It is easy to see that this function  : fDg [ X [ Y �! Z3 de�nes the desired
access structure �. The factor � could be calculated following the method explained
in Section 3.2. In this case, the minimal authorized subsets are of one of these forms:
(i) A = fPi1 ; Pi2g, with 1 � i1 < i2 � r1, or (ii) A = fPi; Qk1 ; Qk2g, with 1 � i � r1
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and 1 � k1 < k2 � r2. The minors obtained from the corresponding matrix have the
form i2 � i1 in the case (i) and k2 � k1 in the case (ii). With respect to the maximal
non-authorized subsets, they have one of the following forms: (iii) B = fPi; Qkg with
1 � i � r1 and 1 � k � r2, or (iv) B = fQ1; : : : ; Qr2g = Y . The minors of the
corresponding matrices MD;B have the form i, with 1 � i � r1 for the case (iii) and
k2 � k1, with 1 � k1 < k2 � r2 for the case (iv). In conclusion, it is easy to see that a
multiple of all these minors is the value � = R!, where R = maxfr1; r2g, which can be
computed without calculating explicitly any minor, and which is smaller than the factor
� = (r1+r2)! corresponding to an hypothetic threshold structure with the same number
of participants. Moreover, the dealer can choose the public exponent e as a random
prime greater than R. The rest of the signature protocol can be performed as described
in Section 3.2.

Example 2 Suppose now that we have again two sets X = fP1; : : : ; Pr1g and Y =
fQr1+1; : : : ; Qr1+r2g of r1 and r2 players, respectively, such that r1 � 3 and r2 � 4 (other
alternative restrictions can be imposed, in fact). We denote the total number of players
as N = r1 + r2. Now a valid signature can only be generated by any subset of at least
three players of the set X , or by any set including two players of set X and two players
of set Y , or by any set including one player of set X and three players of set Y ; but any
subset formed only by players of set Y can not sign a message. This is also a bipartite
access structure that is not threshold.

The access structure is de�ned by �0 = ffPi1 ; Pi2 ; Pi3g : 1 � i1 < i2 < i3 � r1g [
ffPi1 ; Pi2 ; Qk1 ; Qk2g : 1 � i1 < i2 � r1 and r1+1 � k1 < k2 � Ng[ffPi; Qk1 ; Qk2 ; Qk3g :
1 � i � r1 and r1 + 1 � k1 < k2 < k3 � Ng; and we can tolerate corruption of any
subset that is not authorized, that is, A0 = (�)0 = ffPi1 ; Pi2 ; Qkg : 1 � i1 < i2 � r1 and
r1 + 1 � k � Ng [ ffPi; Qk1 ; Qk2g : 1 � i � r1 and r1 + 1 � k1 < k2 � Ng [ fY g.

These structures again verify the conditions of Section 3.1, in order to provide our
distributed signature scheme with the properties of unforgeability and robustness.

Now we must construct a secret sharing scheme over the integers realizing this access
structure. We assign to the dealer the vector  (D) = (1; 0; 0; 0). We assign to each
participant Pi 2 X , for 1 � i � r1, the vector  (Pi) = (1; i; i2; 0). We assign to each
participant Qk 2 Y , for r1 + 1 � k � N , the vector  (Qk) = (0; k; k2; 1).

This function  de�nes the desired access structure. And it is not diÆcult to see that
the factor � = (2N)! cancels all the denominators that appear in the coeÆcients obtained
considering minimal authorized subsets as well as maximal non-authorized subsets of
players. In this case, the public exponent e can be a prime greater than 2N , where N is
the total number of participants.

This value of � can be very large (as in the threshold case), but the necessary work
in order to calculate it is not expensive. This is a sore point: maybe it can be more
interesting to spend more time in the initialization phase (only performed once), calcu-
lating all the corresponding minors, and obtain therefore a smaller value for the factor
�, which will be used in every execution of the distributed signature protocol.

4 Conclusion and open problems

We present a distributed RSA digital signature scheme, generalizing the threshold scheme
of Shoup in [30]. The scheme proposed by Shoup considers only threshold structures,
meaning that subsets which can generate a signature as well as tolerated subsets of
corrupted participants are de�ned according to their cardinality.
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We consider more general access and adversary structures, and state the combinatorial
conditions that they must satisfy in order to design a robust and unforgeable distributed
signature scheme. Depending on the structures, the eÆciency of the scheme will be better
or will not. An interesting open problem is how to design other distributed signature
schemes running for general structures and being more eÆcient than this proposal, if it
is possible.

As the scheme of Shoup, our scheme need the presence of a trusted dealer. In the
case of schemes considering only threshold structures, some proposals of schemes which
do not need a dealer have been made ([23], [8] and [12]). They are based on distributed
generation of RSA keys ([4] and [16]). Both the proposal in [8] and the one in [12] adapt
the scheme of Shoup in order to avoid the necessity of safe primes; thus they can use
distributed generation of RSA keys to avoid the presence of a trusted dealer. Our scheme
can be adapted in the same way, that is, avoiding the necessity of safe primes. But the
presence of the dealer is still necessary, because the proposals of distributed generation
of RSA keys run only with threshold structures, so we can't use them.

A recent work [1] shows how can a group of players jointly generate shared RSA keys,
where the modulus is the product of two safe primes; this work can be added to the
scheme of Shoup in order to obtain a fully distributed RSA signature scheme with no
dealer. Again, this proposal is valid considering only threshold structures.

How to �nd the way of jointly generating and distributing RSA keys among a group
of players, without a trusted dealer, in such a way that only those subsets in the (general)
access structure can generate a valid signature remains also as an open problem.

Another problem is to �nd relations between the complexity of a standard linear
secret sharing schemes (de�ned over a �eld) and linear secret sharing schemes that we
consider in this paper, de�ned over Z. For example, can we transform a linear secret
sharing scheme de�ned over Zp into a linear secret sharing scheme de�ned over Z realizing
exactly the same access structure than the original scheme?
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