
Secure Computation Without a Broadcast Channel

Shafi Goldwasser∗ Yehuda Lindell†

March 29, 2002

Abstract

It has recently been shown that executions of authenticated Byzantine Agreement protocols
in which more than a third of the parties are faulty, cannot be composed concurrently, in
parallel, or even sequentially (where the latter is true for deterministic protocols). This result
puts into question any usage of authenticated Byzantine agreement in a setting where many
executions take place. In particular, this is true for the whole body of work of secure multi-
party protocols in the case that 1/3 or more of the parties are faulty. Such protocols strongly
rely on the extensive use of a broadcast channel, which is in turn realized using authenticated
Byzantine Agreement. Essentially, this use of Byzantine Agreement cannot be eliminated, since
the standard definitions of secure multiparty computation actually imply Byzantine agreement.
Moreover, it is accepted folklore that the use of a broadcast channel is essential for achieving
any meaningful secure multiparty computation, when 1/3 or more of the parties are faulty.

In this paper we show that this folklore is false. We mildly relax the definition of secure
computation allowing abort, and show how this definition can be reached. In fact, we show
that any protocol that is secure when run using a broadcast channel, can be transformed into a
protocol that is secure under our relaxed definition and without a broadcast channel (or trusted
preprocessing phase). We stress that our transformation holds for secure computation in both
the information-theoretic and computational models. As a result we can securely compose
multiple concurrent executions of multiparty protocols. The transformation replaces the use
of Byzantine agreement by a weaker form of agreement which can be realized deterministically
with O(1) round complexity, and furthermore composes concurrently. The agreement provided
is mild indeed: each honest player is guaranteed to either abort or receive the value which was
broadcasted by an honest broadcaster. If the broadcaster is faulty all honest player which do
not abort, agree on the same value. Nevertheless, as we show, this is sufficient for achieving
significant secure computation.

1 Introduction

The general problem of multi-party protocols is as follows: A set of m users with private inputs
wish to perform a joint function of their inputs, so that each user receives its output, and none of
the users learn anything beyond that output. This encompasses computations as simple as coin
flipping and agreement, and as complex as electronic voting, electronic auctions, electronic cash
schemes, anonymous transactions, and private information retrieval schemes.

∗Department of Computer Science and Applied Math, The Weizmann Institute of Science, Rehovot 76100, Israel.
Email: shafi@wisdom.weizmann.ac.il

†Department of Computer Science and Applied Math, The Weizmann Institute of Science, Rehovot 76100, Israel.
Email: lindell@wisdom.weizmann.ac.il

1

1.1 Ground rules of the 80’s

This problem was initiated and heavily studied in the mid to late 80’s, during which time the
following ground rules were set.

Fault Model: The model of faults (in its stronger form) was accepted to be a coalition of t users
who can be adaptively corrupted by an adversary during the computation. Furthermore, once a
user is corrupted, it can deviate in an arbitrary manner from the prescribed protocol. A weaker
adversarial model considers a static adversary, in which the set of corrupted parties is fixed ahead
of time.

Broadcast: The ability to “broadcast” messages (if needed) was assumed as a primitive, where
broadcast takes on the meaning of the Byzantine Generals problem [20]. Namely, an honest user
can deliver the same message to all honest users at a given round, and a message “broadcast” by a
faulty user will result in all honest users agreeing on a single value for that message. From results
obtained largely by the distributed computing community, it was known that

1. For t < n/3, Byzantine agreement is possible by a deterministic protocol with round com-
plexity O(t) [23], and by a probabilistic protocol with expected round complexity O(1) [10];

2. For t ≥ n/3, agreement is achievable using a protocol for authenticated Byzantine agreement,
in which a public-key infrastructure for digital signatures is used [23, 20]. (This public-key
infrastructure is assumed to be setup in a trusted preprocessing phase.) We note that an
information theoretic analogue also exists [24]. The round complexity of the above protocols
is O(t).

Assuming broadcast as a primitive in a point-to-point network was seen as non-problematic.
This is firstly due to the fact that the standard definitions of secure multiparty computation for
t < n/3 imply Byzantine Agreement (and thus all the lower bounds of Byzantine Agreement
automatically apply). Secondly, Byzantine Agreement is anyway achievable for all values of
t (with the added requirement of a trusted preprocessing phase in the case of t ≥ n/3).

Fairness: In addition to the obvious goals of correctness, privacy, and independence of inputs,
fairness was also considered as a desirable goal. Fairness takes on different meanings for different
values of t. We will single out a few forms of fairness as follows: “optimal fairness” guarantees that
all honest users receive their correct outputs, and the adversary cannot disrupt the computation,
“fairness” guarantees that if a faulty user gets its output then all honest users get their output, and
“designated fairness” means that there is a designated party who is guaranteed to receive output
if any faulty user gets its output. (Actually, if this designated party is honest, then “fairness” in
the previous sense is guaranteed. On the other hand, if the party is faulty, then faulty parties may
receive output while honest users do not.) In the last two cases, the protocol may abort without
any outputs delivered.

1.2 What is possible and what is impossible

The 80’s also yielded a seemingly clear picture of what is possible and what is impossible, as follows:

1. For t < n/3, secure multi-party protocols with optimal fairness, can be achieved from scratch
in a point-to-point network [3, 9].

2

2. For t < n/2, secure multi-party protocols with optimal fairness can be achieved in a point
to point network assuming a broadcast primitive or alternatively assuming pre-processing in
which authenticated channels are set up for the purpose of achieving broadcast [25].

3. For t ≥ n/2, secure multi-party protocols with designated fairness can be achieved in a point
to point network assuming a broadcast protocol (as in case (2)), and in addition the existence
of an oblivious transfer protocol [16]. We note that a protocol realizing oblivious transfer
can be obtained if trapdoor functions exist. Some works attempting to provide fairness in
some partial form (e.g., ensuring that the faulty player will progress at the same rate toward
learning their output as the honest players) also appeared [26, 14, 17, 2].

For all of the above ranges of t, either one must assume perfectly secret pair-wise communication
channels or the existence of one-way functions (with a set-up phase to exchange secret keys). We
note that all of the above results consider a stand-alone execution of a multi-party protocol only.

1.3 Composing Executions of Protocols

Driven by the internet development, in the last few years the issue of multiple executions of cryp-
tographic protocols that take place independently of each other has taken center stage. On the one
hand, definitions of security for such settings have been developed. Most notably the “universal
composition” framework of Canetti [5] guarantees that if a protocol is universally composable, then
it can be safely run concurrently with executions of itself and other arbitrary protocols.

On the other hand, it was shown in several cases that protocols which were secure when consid-
ered in a stand alone setting, no longer remain secure when concurrent or parallel executions are
considered. Byzantine Agreement (BA) is one such example. Lindell et al. [21] consider the case
that the number of faulty parties exceeds a third of the total number of parties. Recall that this
is the range that authenticated BA was assumed to provide an answer. They prove that any such
protocol, with or without a pre-processing stage cannot be composed concurrently, or in parallel.
Moreover, when the protocol is deterministic, even sequential composition is impossible.

This result puts in question the whole body of work regarding running secure multi-party
protocols when more than a third of the parties are faulty, as such protocols rely heavily on the
extensive use of broadcast. As broadcast is in turn realized by running authenticated BA, the
impossibility of composing authenticated BA securely, stands in the way.

The use of Byzantine agreement cannot be eliminated, since the standard definitions of mul-
tiparty secure protocols actually imply Byzantine agreement. Thus, all lower bounds regarding
Byzantine agreement apply to generic secure multiparty protocols. Moreover, it is accepted folk-
lore that the use of broadcast is essential to achieve any meaningful secure multiparty computation,
when more than 1/3 of the parties are faulty. In this paper we show that this is false. We define a
relaxation of multi-party secure protocols which can be achieved, without the use of broadcast. In
a nutshell, the relaxation allows some of the honest players to abort.

1.4 Our Results

We present a mild relaxation of what is meant by secure multiparty computation which can be
achieved when the number of faults exceeds 1/3. Essentially the relaxation does not require all
honest players to exit the protocol with an output as specified by the original computation. Instead,
it allows an honest player to either receive its correct output or abort the protocol, but never to
compute an incorrect output. We achieve this definition for all t < n, and without using a broadcast
channel or trusted pre-processing stage. We stress that our result holds in both the information

3

theoretic and the computational models. For a slightly further relaxation of the definition, we also
show a round-efficient transformation of any secure protocol that uses a broadcast channel into one
that is secure under this more relaxed definition.

Note that in the range of t ≥ n/2, it is impossible to achieve fairness in the sense that the honest
players always receive output. Rather, abort by the honest parties (even if the corrupt parties do
receive output) must be allowed.

A corollary of our result is the ability to tranform any protocol that uses a broadcast channel
and composes concurrently or in parallel, into a protocol that can be run in the point-to-point
network. We note that by the result of [21], protocols that use authenticated Byzantine Agreement
in order to realize the broadcast channel do not compose in parallel. We also present a protocol
for universally composable broadcast [5], and show how this is combined with known results [8] in
order to obtain universally composable multiparty protocols for any t < n.

Protocols with Abort. For clarity and illustration of our result, as well as the ability to compare
it to other work, we define several varieties of protocols with abort. The formal definitions will
appear in Section 2.

1. Secure computation with fair abort: according to this definition, one of two cases can occur.
Either all parties receive output or no parties receive output. Thus, the adversary can conduct
a denial of service attack, but nothing else.

2. Secure computation with abort: this is the standard definition used when a half or less of the
parties are honest. As in the previous definition, the adversary may disrupt the computation
and cause the honest parties to output a special abort symbol ⊥ (rather than their prescribed
output). However, unlike above, the adversary may receive the faulty parties’ outputs, even if
the honest parties abort (and thus the abort is not “fair”). In particular, the protocol specifies
a single party such that the following holds: if this party is honest, then either all parties
abort or all parties receive correct output (i.e., computation with fair abort is achieved). On
the other hand, if the specified party is corrupt, then the adversary receives the corrupted
parties’ outputs and can decide whether or not the honest parties all receive their correct
output or all receive abort. We stress that in all cases, if one honest party aborts, then so do
all honest parties (and thus all are aware of the fact that the protocol was under attack).

3. Secure computation with designated abort: this is a new definition that mildly relaxes the
previous one. The only difference is that some honest parties may abort and some may
receive the output (rather than having all honest parties abort whenever one does). There
are actually two definitions here. In the first one, there is a specified party as above. The only
difference is that if this party is corrupt, then it may designate which honest parties receive
their output and which abort (in the case that the specified party is honest, computation with
fair abort is achieved as in the previous definition). In the second definition, the adversary
always receives the corrupted parties’ outputs, and always has the ability to designate which
honest parties output ⊥ and which receive their prescribed output. We call this definition
“secure computation with strong designated abort”, since the adversary’s ability to cause
aborts is stronger.

Using this terminology, our result shows how to achieve secure computation with designated abort.
Note that in secure computation with abort and with designated abort, fairness is nevertheless
guaranteed in the case that a specific party (say, party P1) is honest. On the other hand, if P1 is
corrupt, then the adversary may receive its output without the honest party receiving theirs. This

4

definition is desirable over a definition in which fairness is never guaranteed because there may be
scenarios where one of the parties is “more trusted” than others. For example, the government (or
election committee) in an election protocol may not be trusted when it comes to biasing the result
or learning private inputs. However, this cannot be successfully carried out in a secure protocol
(even one allowing designated abort). On the other hand, the government has little to gain by
having only some of the participants receive output (except to completely disrupt the election).
Therefore, in such a scenario, security with designated abort may be reasonable.

We note that in a similar fashion one can define broadcast with abort in which all honest users
either abort or agree on the same value broadcasted (this is almost identical to weak Byzantine
Generals), and broadcast with designated abort in which all honest parties which do not abort receive
the same broadcasted value (and the adversary can designate which parties will receive abort and
which will receive output).

1.5 Related Work

We have recently learned of two independent and concurrent results [12, 13] studying a problem sim-
ilar to ours, although apparently for different motivation.1 (It seems that their focus is on removing
the preprocessing phase, while our concern is mainly with protocol composition. Nevertheless, both
our and their results achieve both goals.)

In [12], Fitzi et al. study the question of multiparty computation in the case that the number of
faults is t < n/2. They show that in this case, it is possible to achieve weak Byzantine agreement
(where loosely speaking, either all honest parties abort or all honest parties agree on the broadcasted
value). (We note that their protocol is probabilistic and “breaks” the t < n/3 lower-bound on
deterministic weak Byzantine Agreement protocols of Lamport [19].) They further show that
replacing the use of broadcast by Weak Byzantine agreement in secure computation protocols for
t < n/2 such as [25], yields secure computation with fair abort. Namely, all honest parties either
abort or all compute their correct output, and they agree on which output case occurred. Thus for
the range of t < n/2 their solution achieves fairness whereas ours does not.

In subsequent work [13], Fitzi et al. studied the question of Byzantine agreement for any t < n
and whether its relaxation to weak Byzantine Agreement can be achieved without preprocessing.
They show that it is indeed possible to achieve (randomized) weak Byzantine Agreement for any
t < n, in O(t) rounds. As above, this weak Byzantine Agreement protocol can be used instead of a
broadcast channel in secure computation protocols such as [16, 2, 17], yielding secure computation
with abort for any t < n.

In comparison, we achieve secure computation with designated abort for any t < n. The differ-
ence between our result and that of [13], is that in their work, either all parties abort or they all
receive their correct output (even if the specified party is corrupted). On the other hand, in our
case, if the specified party is faulty, then some honest parties may abort, while others receive the
correct output (without necessarily knowing that others have aborted).

We conclude by comparing the round complexity of the secure protocols of [12, 13] with our
results. They achieve secure computation by taking any secure protocol that uses a broadcast
channel and replacing this channel with their protocol for weak Byzantine Agreement. Since the
protocol for weak Byzantine Agreement requires O(t) rounds, the result is an O(t) multiplicative
blow-up in the round complexity of the underlying secure protocol. On the other hand, we replace
the broadcast channel with a simple 2-round protocol for broadcast with designated abort (to
be exact, we add an additional blank round after each such protocol and therefore the round

1We were informed of this work while presenting our work at a seminar at MIT, February 14 2002.

5

complexity is 3 times that of the original protocol). Our protocols are therefore significantly more
round efficient.2 Finally we note that we can use the weak Byzantine Agreement protocol of [13] in
order to take a generic r-round protocol for secure computation, and construct an O(t+r)-round
protocol for secure computation with abort (rather than with designated abort). We therefore
reduce the O(tr) round complexity of [13] to O(t+r), while achieving the same level of security.

2 Definitions

2.1 Secure Computation

In this section we present definitions for secure multiparty computation. The basic description and
definitions are based on [15], which in turn follows [17, 1, 22, 4]. We actually consider a number of
definitions here. In particular, we present formal definitions for secure computation with fair abort,
with abort, with designated abort, and with strong designated abort (see Section 1.4). In addition,
we refer to secure computation without abort. This is the standard definition used when more than
half the parties are honest. According to this definition, all parties receive the output and the
adversary cannot disrupt the computation. However, we will not formally present this definition
here.

Notation: We denote by Un the uniform distribution over {0, 1}n; for a set S we denote s ∈R S
when s is chosen uniformly from S; finally, computational indistinguishability is denoted by

c≡ and
statistical closeness by

s≡.

Multiparty computation. A multiparty protocol problem (for m parties P1, . . . , Pm) is cast by
specifying a random process that maps vectors of inputs to vectors of outputs (one for each party).
We refer to such a process as an m-ary functionality and denote it f : ({0, 1}∗)m → ({0, 1}∗)m,
where f = (f1, . . . , fm). That is, for vector of inputs x = (x1, . . . , xm), the output-vector is a
random variable (f1(x), . . . , fm(x)) ranging over vectors of strings. The ith party (with input xi)
wishes to obtain fi(x). We often denote such a functionality by (x1, . . . , xm) 7→ (f1(x), . . . , fm(x)).

Adversarial behavior. Loosely speaking, the aim of a secure multiparty protocol is to protect
the honest parties against dishonest behavior from the corrupted parties. This “dishonest behavior”
can manifest itself in a number of ways; in this paper we focus on malicious adversaries. Such
an adversary may arbitrarily deviate from the specified protocol. When considering malicious
adversaries, there are certain undesirable actions that cannot be prevented. Specifically, parties
may refuse to participate in the protocol, may substitute their local input (and enter with a different
input) and may cease participating in the protocol before it terminates.

Formally, the adversary is modeled by a non-uniform Turing machine: in the computational
model this machine is polynomial-time whereas in the information-theoretic model it is unbounded.
(We note that by standard arguments, we can assume that the adversary is deterministic.) For

2We note one subtle, yet important caveat. Given a generic protocol for secure computation that uses a broadcast
channel and runs for r rounds, we obtain a 3r-round protocol that is secure with designated abort (this is in contrast to
the O(tr) round complexity of [12, 13]). However, given a protocol that solves a specific secure computation problem,
our transformation only achieves security with strong designated abort (see Section 1.4). In order to achieve security
with designated abort, we must revert to a generic protocol. On the other hand, the transformation of [12, 13] works
for any protocol. Thus, given a very efficient protocol for a specific problem, it may be “cheaper” to use [12, 13]
rather than our results.

6

simplicity, in this work we consider a static corruption model. Therefore, at the beginning of the
execution, the adversary is given a set I of corrupted parties which it controls. Then, throughout
the computation, the adversary obtains the views of the corrupted parties, and provides them with
the messages that they are to send.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in the protocol to what it can do in an ideal scenario that is secure by definition.
This is formalized by considering an ideal computation involving an incorruptible trusted party to
whom the parties send their inputs. The trusted party computes the functionality on the inputs and
returns to each party its respective output. Loosely speaking, a protocol is secure if any adversary
interacting in the real protocol (where no trusted party exists) can do no more harm than if it
was involved in the above-described ideal computation. We begin by formally defining this ideal
computation.

2.1.1 Execution in the ideal model

The ideal model differs for each of the three definitions. We therefore present each one separately.

1. Secure computation with fair abort: Recall that a malicious party can always substitute
its input or refuse to participate. Therefore, the ideal model must reflect these capabilities. We
note that this definition is only achievable when the number of corrupted parties is less than m/2.
An ideal execution proceeds as follows:

Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xm).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified
x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the trusted
party by x′ = (x′1, . . . , x

′
m) (for honest parties, x′ = x always).

Trusted party answers the parties: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends fi(x′) to party Pi for every i. Otherwise (i.e., in case a corrupted party
aborted or sent a non-valid input), the trusted party replies to all parties with a special
symbol, ⊥.

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, λ). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {xi}i∈I and the messages the corrupted
parties obtained from the trusted party.

Definition 1 (ideal-model computation with fair abort): Let f : ({0, 1}∗)m → ({0, 1}∗)m be an
m-ary functionality, where f = (f1, . . . , fm), and let I ⊂ [m] be such that for every i ∈ I, the
adversary A controls Pi (this is the set of corrupted parties). Then, the joint execution of f under
(A, I) in the ideal model on input vector x = (x1, . . . , xm), denoted ideal(1)

f,(A,I)(x), is defined as the
output vector of P1, . . . , Pm and A resulting from the above described ideal process.

7

2. Secure computation with abort: As before, a malicious party can always substitute its
input or refuse to participate. However, when there are a half or less honest parties, it is not possible
to continue computing in the case that the adversary ceases prematurely (this definition is usually
used when the number of corrupted parties is not limited in any way). Thus, we cannot prevent the
“early abort” phenomenon in which the adversary receives its output, whereas the honest parties
do not receive theirs. This inherent limitation is therefore incorporated into the ideal execution.
An ideal execution proceeds as follows:

Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xm).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified
x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the trusted
party by x′ = (x′1, . . . , x

′
m) (for honest parties, x′ = x always).

Trusted party answers first party: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends f1(x′) to party P1. Otherwise (i.e., in case a corrupted party aborted or sent
a non-valid input), the trusted party replies to all parties with a special symbol, ⊥.

Trusted party answers remaining parties: If the first party is not corrupted (i.e., 1 6∈ I), then the
trusted party sends fj(x′) to party Pj , for every j.

In case the first party is corrupted, then for every i ∈ I, the trusted party sends fi(x) to
party Pi (i.e., the corrupted parties receive their output first). Then, P1, depending on the
view of all the corrupted parties, instructs the trusted party to either send fj(x′) to Pj for
every j 6∈ I, or to send ⊥ to Pj for every j 6∈ I.

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, λ). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {xi}i∈I and the messages the corrupted
parties obtained from the trusted party.

Definition 2 (ideal-model computation with abort): Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-ary
functionality, where f = (f1, . . . , fm), and let I ⊂ [m] be such that for every i ∈ I, the adversary
A controls Pi (this is the set of corrupted parties). Then, the joint execution of f under (A, I) in
the ideal model on input vector x = (x1, . . . , xm), denoted ideal(2)

f,(A,I)(x), is defined as the output
vector of P1, . . . , Pm and A resulting from the above described ideal process.

3. Secure computation with designated abort: The definition here is almost the same as
for secure computation with abort. The only difference is regarding the “trusted party answers
remaining parties” item. In the above definition, all honest parties either receive their output or
they receive ⊥. Here, some of these parties may receive their (correct) output and some may receive
⊥. In particular, if party P1 is corrupted, then it may designate who does and does not receive
output. We repeat only the relevant item:

Trusted party answers remaining parties: If the first party is not corrupted (i.e., 1 6∈ I), then the
trusted party sends fj(x′) to party Pj , for every j.

In case the first party is corrupted, then for every i ∈ I, the trusted party sends fi(x′) to Pi
(i.e., the corrupted parties receive their output first). Then, P1, depending on the view of all
the corrupted parties, chooses a subset of the honest parties J ⊆ [m] \ I and sends J to the

8

trusted party. The trusted party then sends fj(x′) to Pj for every j ∈ J , and ⊥ to all other
parties.

Definition 3 (ideal-model computation with designated abort): Let f : ({0, 1}∗)m → ({0, 1}∗)m

be an m-ary functionality, where f = (f1, . . . , fm), and let I ⊂ [m] be such that for every i ∈ I, the
adversary A controls Pi (this is the set of corrupted parties). Then, the joint execution of f under
(A, I) in the ideal model on input vector x = (x1, . . . , xm), denoted ideal(3)

f,(A,I)(x), is defined as the
output vector of P1, . . . , Pm and A resulting from the above described ideal process.

According to the above definition, the adversary can pinpoint any subset of parties J who should
receive their output (with all others receiving ⊥). We present the definition in this way for the sake
of simplicity. However, it is possible to limit the adversary in the following way. The trusted party
will send the outputs to the parties one by one (say, in order of P1 to Pm). After each output has
been sent, P1 will tell the trusted party whether or not to send the next one. Once P1 instructs the
trusted party not to send an output, the trusted party sends all the remaining parties ⊥ and halts.
Thus, some honest parties may receive the output and some may receive ⊥, however the adversary
has very limited power in deciding who will receive what. Furthermore, consider a case where each
party receives a different output (i.e., where the fi’s are distinct), and where the adversary controls
Pi. Then, if the adversary wishes to receive fi(x), it must allow all parties Pi′ for i′ < i to also
receive their correct output.

4. Secure computation with strong designated abort: This definition is very similar to the
previous one, except that the first party P1 does not receive the output first. Rather, the adversary
first receives the output of the corrupted parties. Then, it designates which honest parties receive
their output and which receive ⊥. Formally,

Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xm).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified
x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the trusted
party by x′ = (x′1, . . . , x

′
m) (for honest parties, x′ = x always).

Trusted party answers adversary: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends fi(x′) to party Pi for every i ∈ I. Otherwise (i.e., in case a corrupted party
aborted or sent a non-valid input), the trusted party replies to all parties with a special
symbol, ⊥.

Trusted party answers remaining parties: The adversary, depending on the view of all the cor-
rupted parties, chooses a subset of the honest parties J ⊆ [m] \ I and sends J to the trusted
party. The trusted party then sends fj(x′) to Pj for every j ∈ J , and ⊥ to all other parties.

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, λ). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {xi}i∈I and the messages the corrupted
parties obtained from the trusted party.

Definition 4 (ideal-model computation with strong designated abort): Let f : ({0, 1}∗)m →
({0, 1}∗)m be an m-ary functionality, where f = (f1, . . . , fm), and let I ⊂ [m] be such that for

9

every i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then, the joint execu-
tion of f under (A, I) in the ideal model on input vector x = (x1, . . . , xm), denoted ideal(4)

f,(A,I)(x),
is defined as the output vector of P1, . . . , Pm and A resulting from the above described ideal process.

2.1.2 Execution in the real model

We now define a real model execution. In the real model, the parties execute the protocol in a
synchronous network with rushing. That is, the execution proceeds in rounds: each round consists
of a send phase (where parties send their message from this round) followed by a receive phase
(where they receive messages from other parties). We stress that the messages sent by an honest
party in a given round depend on the messages that it received in previous rounds only. On the
other hand, the adversary can compute its messages in a given round based on the messages that
it receives from the honest parties in the same round. The term rushing refers to this additional
adversarial capability.

In this work, we consider a scenario where the parties are connected via a fully connected point-
to-point network (and there is no broadcast channel). We refer to this model as the point-to-point
model (in contrast to the broadcast model where the parties communicate via a physical broadcast
channel). The communication lines between parties are assumed to be ideally authenticated and
private (and thus the adversary cannot modify or read messages sent between two honest parties).3

In the basic model, we assume that any message sent by an honest party to another honest party
is received immediately. However, we also consider a model in which the adversary has control
over the delivery of messages. That is, in every round, the adversary can decide to block (i.e., not
deliver) some or all of the messages sent between the honest parties.4 (We stress that since the
communication lines are authenticated and private, the only thing that the adversary can do is
prevent a message from being sent.) This model is of communication is the main model used by
Canetti [5] in his work on universally composable security. Finally, we note that no preprocessing
setup phase (such as a public-key infrastructure) is assumed.5

Throughout the execution, the honest parties all follow the instructions of the prescribed pro-
tocol, whereas the corrupted parties receive their instructions from the adversary. Likewise, at the
conclusion of the execution, the honest parties output their prescribed output from the protocol,
whereas the corrupted parties output nothing. On the other hand, the adversary outputs an arbi-
trary function of its view of the computation (which contains the views of all the corrupted parties).
Without loss of generality, we assume that the adversary always outputs its view (and not some
function of it). Formally,

3We note that when the parties are assumed to be computationally bounded, privacy can be achieved over
authenticated channels by using public-key encryption. Therefore, in such a setting, the requirement that the channels
be private is not essential. However, we include it for simplicity.

4This capability models the following network scenario. All parties communicate on an open network, while
encrypting and authenticating all messages sent. Therefore, the adversary cannot read or modify any message sent
between honest parties. However, assume that the adversary has control over routing servers in the network. Then,
it can always block communication (even if it cannot read or modify it).

5One can argue that achieving authenticated and private channels in practice essentially requires a preprocessing
setup phase. Therefore, there is no reason not to utilize this preprocessing phase in the secure multiparty computation
as well. In such a case, the preprocessing phase could be used in order to implement authenticated Byzantine
Agreement (and thereby achieve secure broadcast for any number of faulty parties). However, we claim that the issue
of achieving “secure communication channels” should be separated from the issue of secure multiparty computation.
An example of why this is important was demonstrated in [21], who showed that authenticated Byzantine Agreement
does not compose (in parallel or concurrently) when 2/3 or less of the parties are honest. On the other hand, secure
channels can be achieved without any limitation on the protocol using them [7].

10

Definition 5 (real-model execution): Let f be an m-ary functionality and let Π be a multiparty
protocol for computing f . Furthermore, let I ⊂ [m] be such that for every i ∈ I, the adversary
A controls Pi (this is the set of corrupted parties). Then, the joint execution of Π under (A, I) in
the real model on input vector x = (x1, . . . , xm), denoted realΠ,(A,I)(x), is defined as the output
vector of P1, . . . , Pm and A resulting from the protocol interaction, where for every i ∈ I, party
Pi computes its messages according to A, and for every j 6∈ I, party Pj computes its messages
according to Π.

2.1.3 Security as emulation of a real execution in the ideal model

Having defined the ideal and real models, we can now define security of protocols. Loosely speaking,
the definition asserts that a secure multiparty protocol (in the real model) emulates the ideal model
(in which a trusted party exists). This is formulated by saying that adversaries in the ideal model
are able to simulate adversaries in an execution of a secure real-model protocol. The definition
of security comes in two flavors. In the first, we consider polynomial-time bounded adversaries,
and require that the simulation be such that the real-model and ideal-model output distributions
are computationally indistinguishable. On the other hand, in the second, we consider unbounded
adversaries and require that the simulation be such that the output distributions of the two models
are statistically close.

Definition 6 (computational security): Let f and Π be as above. We say that protocol Π is a
protocol for computational t-secure computation with fair abort (resp., with abort, with designated
abort or with strong designated abort), if for every non-uniform polynomial-time adversary A for
the real model, there exists a non-uniform polynomial-time adversary S for the ideal model, such
that for every I ⊂ [m] with |I| < t,

{ideal(α)
f,(S,I)(x)}n∈N,x∈({0,1}n)m

c≡ {realΠ,(A,I)(x)}n∈N,x∈({0,1}n)m

where the value of α ∈ {1, 2, 3, 4} depends on whether secure computation with fair abort, with
abort, with designated abort or with strong designated abort is being considered.

Definition 7 (information-theoretic security): Let f and Π be as above. We say that protocol Π
is a protocol for information-theoretic t-secure computation with fair abort (resp., with abort, with
designated abort or with strong designated abort), if for every non-uniform adversary A for the
real model, there exists a non-uniform adversary S = {Sn} for the ideal model such that for every
I ⊂ [m] with |I| < t,

{ideal(α)
f,(S,I)(x)}n∈N,x∈({0,1}n)m

s≡ {realΠ,(A,I)(x)}n∈N,x∈({0,1}n)m

where the value of α ∈ {1, 2, 3, 4} depends on whether secure computation with fair abort, with
abort, with designated abort or with strong designated abort is being considered.

3 Broadcast with Designated Abort

Definition. In this section, we present a weak variant of the Byzantine Generals problem, that we
call “broadcast with designated abort”. The main idea is to weaken both the agreement and validity
requirements so that parties may output either the required value x or a special abort symbol ⊥.
However, there is no requirement regarding who should output x and who should output ⊥. In
particular, this means that the adversary can designate the parties who will output ⊥. Formally,

11

Definition 8 (broadcast with designated abort): Let P1, . . . , Pm, be m parties and let P1 be the
designated party (or dealer) with input x. In addition there is an adversary who controls up to t of
the parties (which may include P1). A protocol solves the broadcast with designated abort problem
if the following three properties hold:

1. Agreement: If an honest party outputs x′, then all honest parties output either x′ or ⊥.

2. Validity: If P1 is honest, then all honest parties output either x or ⊥.

3. Non-triviality: If all parties are honest, then all parties output x.

The non-triviality requirement is needed to rule out a protocol in which all parties simply output
⊥ and halt.

A protocol. We now present a simple protocol that solves the broadcast with designated abort
problem for any t. As we will see later, despite its simplicity, this is enough for obtaining secure
computation with designated abort.

Protocol 1 (broadcast with designated abort):

• Input: P1 has a value x to broadcast.

• The Protocol:

1. P1 sends x to all parties.

2. Denote by xi the value received by Pi in the previous round. Then, every party Pi (for
i > 1) sends its value xi to all other parties.

3. Denote the value received by Pi from Pj in the previous round by xi
j (recall that xi denotes

the value Pi received from P1 in the first round). Then, Pi outputs xi if this is the only
value that it saw (i.e., if xi = xi

2 = · · · = xi
n). Otherwise, it outputs ⊥.

We note that if Pi did not receive any value in the first round, then it always outputs ⊥.

We now prove that Protocol 1 is secure, for any number of corrupted parties. That is,

Proposition 3.1 Protocol 1 solves the broadcast with designated abort problem, for any number of
corrupted parties t.

Proof: The fact that the non-triviality condition is fulfilled is immediate. We now prove the other
two conditions:

1. Agreement: Let Pi be an honest party, such that Pi outputs a value x′. Then, it must be
that Pi received x′ from P1 in the first round (i.e., xi = x′). Therefore, Pi sent this value to
all other parties in the second round. Now, a party Pj will output xj if this is the only value
that it saw during the execution. However, as we have just seen, Pj definitely saw x′ in the
second round. Thus, Pj will only output xj if xj = x′. On the other hand, if Pj does not
output xj , then it outputs ⊥.

2. Validity: If P1 is honest, then all parties receive x in the first round. Therefore, they will
only output x or ⊥.

12

This completes the proof.

Notice that although the adversary is rather limited in that it can only cause parties to output a
correct value or ⊥, it does have the ability to choose exactly which honest parties will output the
correct value and which will output ⊥. Thus, it can indeed “designate” the set of honest parties
which output ⊥.

3.1 Strengthening Broadcast with Designated Abort

A natural question to ask is whether or not we can strengthen Definition 8 in one of the following
two ways (and still obtain a protocol for t ≥ m/3):

1. Strengthen the agreement requirement: If an honest party outputs a value x′, then all honest
parties output x′. (On the other hand, the validity requirement remains unchanged.)

2. Strengthen the validity requirement: If P1 is honest, then all honest parties output x. (On the
other hand, the agreement requirement remains unchanged.)

It is easy to see that the above strengthening of the agreement requirement results in the definition
of weak Byzantine Generals. (The validity and non-triviality requirements combined together are
equivalent to the validity requirement of weak Byzantine Generals.) Therefore, there exists no
deterministic protocol for the case of t ≥ m/3.

On the other hand, the strengthening of the validity requirement does not appear to imply
weak Byzantine Generals or Agreement. (The main reason being that agreement must always
hold for the weak Byzantine problems. Here, on the other hand, the agreement requirement does
not necessarily hold for corrupted dealers.) Nevertheless, we show that no protocol exists for this
problem for t ≥ m/3. For shorthand, we call this stronger version of the problem “strong broadcast
with designated abort”.

Proposition 3.2 There does not exist a protocol for the strong broadcast with designated abort
problem, for t ≥ m/3.

The proof of Proposition 3.2 can be found in Appendix B.
We note that this problem is quite natural and can be viewed as the flip-side of the weak

Byzantine Generals problem. (In that problem the validity condition is weakened and the agreement
condition remains as in the original problem. On the other hand, here the agreement condition is
slightly weakened and the validity condition is as in the original problem.) Such a protocol would
allow an honest dealer to always successfully broadcast its value. On the other hand, a dishonest
dealer can cause the honest parties to not fully agree. (This capability is however limited; the honest
parties never output different non-⊥ values.) We conclude by noting that if the agreement condition
is completely weakened so that it only holds when all parties are honest, then the resulting definition
is easily obtained by simply having the dealer send its input to all parties, who then output the
value that they receive.

3.2 Universally Composable Broadcast

In this section, we consider a different real model in which the adversary has control over the
delivery of messages. We note that because the network is synchronous, the adversary cannot
deliver a message late (i.e., in round r when it was sent in round r′ and r > r′). The only capability
that it is given is to block messages sent between honest parties.

13

In this section we show that it is possible to realize an ideal broadcast functionality in a univer-
sally composable way, within the above-described model. Essentially this means that any protocol
that uses a broadcast channel, can be implemented without a broadcast channel and the result is the
same. An important corollary of this result is the existence of universally composable multiparty
computation with t ≥ m/3, in a point-to-point network. This corollary is obtained by applying
our secure realization of broadcast with known universally composable multiparty protocols. See
Appendix A for an overview of the universal composition framework.

We begin by defining the ideal broadcast functionality which we wish to realize. This is defined
in Figure 1.

Functionality Fbc

Fbc proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

Upon receiving a message (broadcast, sid, x) from Pi, send (broadcast, sid, Pi, x) to all parties and to S.

Figure 1: The ideal broadcast functionality

We now restate Protocol 1 in a way that is suitable for the universally composable framework.

Protocol 2 (universally composable broadcast):

• Input: Pi has a value x to broadcast.

• The Protocol:

1. Pi sends x to all parties.

2. Denote by xj the value received by Pj in the previous round. Then, every party Pj (for
j 6= i) sends its value xj to all other parties.

3. Denote the value received by Pj from Pk in the previous round by xj
k (recall that xj denotes

the value Pj received from Pi in the first round). Then, Pj outputs (broadcast, sid, Pi, xj)
if this is the only value that it saw (i.e., if xj = xj

2 = · · · = xj
n). Otherwise, it outputs

nothing.
We note that if Pj did not receive any value in the first round, then it always outputs
nothing.

The result of this section is the following proposition:

Proposition 3.3 Protocol 2 securely realizes Fbc (in the universally composable framework).

Proof: Let A be a real-model adversary attacking Protocol 1. We construct an ideal-model
adversary S for Fbc as follows. We differentiate between two cases: in the first the dealer is
corrupted (and thus is controlled by A), and in the second it is honest. Let Pi be the party
broadcasting in this execution.

• Case 1 – Pi is corrupt: In the first round, A (controlling Pi) sends messages to ` of the honest
parties for some `; denote these by x1, . . . , x`. Simulator S receives all these messages and then
simulates the messages sent by the honest parties in the second round. Furthermore, S obtains
all the messages sent by A in the second round.

14

Now, if there exist j and k such that xj 6= xk, then S sends nothing to Fbc. Otherwise, let
x be the message sent by A. Then, S sends x to the ideal functionality Fbc. Next, S defines
the set of honest parties J who A had sent x to in the first round, and who did not receive
any message x′ 6= x in the second round from A. Then, S delivers the messages from the Fbc
functionality to the parties in J , and only these parties.

• Case 2 – Pi is honest: S receives (broadcast, sid, Pi, x) from Fbc and simulates Pi’s sending x to
all the parties controlled by A. Then, S receives back messages sent by A to the honest parties.
S defines a set J of parties who A sends only x to in the second round. Then, S delivers the
messages from the Fbc functionality to these and only these parties.

We claim that the global output of an ideal execution with S is identically distributed to the global
output of a real execution with A. We first deal with the case that Pi is corrupt. Now, if A sends
two different messages in round 1 (i.e., if there exist j and k such that xj 6= xk), then by the protocol
definition, all honest parties will see both xj and xk. Therefore, in a real execution all honest parties
will output nothing. This is identical to the case that S does not send anything to Fbc in an ideal
execution. On the other hand, if A sends the same message x to all honest parties in the first round,
then the outputs depend on what A sends in the second round. (In this case, the honest parties
all send x to each other in the second round and therefore these messages are of no consequence.)
However, S receives all these messages from A and can therefore see which parties would output
x and which parties would output nothing. Since S delivers the (broadcast, ...) messages from Fbc
only to the parties which would output x in the real model, the output is identical.

In the case that Pi is honest, A can cause honest parties to output nothing (rather than x)
by sending them messages x′ 6= x in the second round. As above, S receives all these messages
and therefore its delivery of (broadcast, ...) messages from Fbc accurately represents exactly what
happens in a real execution.

Our first corollary relates to the scenario where a majority of the parties are honest, but this
majority may be less than 2/3 (i.e., m/2 ≤ t ≤ 2m/3). In this scenario, Canetti [5] showed that
universally composable protocols exist for any functionality, assuming that the parties interact in a
synchronous network with a broadcast channel. Combining this with Proposition 3.3 we have the
following:

Corollary 9 Consider a synchronous point-to-point network and assume that trapdoor permuta-
tions exist. Then, for any multiparty ideal functionality F , there exists a protocol Π that securely
realizes F in the in the presence of malicious, static adversaries, and for t < m/2 corruptions.

The next corollary relates to a setting with an honest minority. In this setting, a common refer-
ence string is essential for achieving universal composability [6, 8]. Nevertheless, this is a weaker
setup assumption than that of a public-key infrastructure (as required for authenticated Byzantine
Agreement). Canetti et al. show in [8] that in a synchronous network with a broadcast channel, it is
possible to securely compute any functionality. Therefore, by combining this with Proposition 3.3,
we have that:

Corollary 10 Consider a synchronous point-to-point network and assume that trapdoor permuta-
tions exist. Then, for any multiparty ideal functionality F , there exists a protocol Π in the common
reference string model, that securely realizes F in the presence of malicious, static adversaries, and
for any number of corruptions.

The above corollaries are actually less dramatic than they initially seem. This is because the uni-
versally composable framework (in its current definition) assumes the existence of unique session-

15

identifiers for every execution. Therefore, it is possible to use authenticated Byzantine Agreement in
order to securely realize Fbc ([21] show that unique session identifiers suffice for composing authen-
ticated Byzantine Agreement). Thus, the above corollaries refer to the possibility of achieving this
without setup assumptions. They do not, however, enable us to achieve something that was pre-
viously unknown within the universally composability framework.6 Nevertheless, Proposition 3.3
can be used to transform any protocol that uses a broadcast channel and composes in parallel or
concurrently, into a protocol for the point-to-point model that still composes. This is not possible
using authenticated Byzantine Agreement, as this does not compose [21]. We therefore conclude
that in the model where the adversary controls message delivery, composition can be achieved that
previously was not known. In particular, the protocol of Rabin and Ben-Or [25] for m/2-secure
computation uses a broadcast channel and composes concurrently.7 We therefore have,

Corollary 11 Consider a synchronous point-to-point network where the adversary controls mes-
sage delivery (and no unique session identifiers are assumed). Then, for any probabilistic polynomial-
time m-ary functionality f , there exists a protocol for the information-theoretic m/2-secure com-
putation of f , that composes concurrently.

4 Secure Computation with Strong Designated Abort

In this section, we show that any protocol for secure computation (with abort or with fair abort)
that is designed using a broadcast channel can be “compiled” into a protocol for secure computation
with strong designated abort. Furthermore, the fault tolerance of the compiled protocol is the same
as the original one. Actually, we require that the protocol to be compiled has the following property:
the round in which a party sets its output is fixed in the protocol definition (and is not a random
variable depending on the execution). We say that a protocol with this property has fixed-round
outputs. The result of this section is formally stated in the following theorem:

Theorem 12 There exists a (polynomial-time) protocol compiler that receives any protocol Π (with
fixed-round outputs) for the broadcast model for input, and outputs a protocol Π′ for the point-to-
point model such that the following holds: If Π is a protocol for information-theoretic (resp., compu-
tational) t-secure computation (with abort or with fair abort), then Π′ is a protocol for information-
theoretic (resp., computational) t-secure computation with strong designated abort.

Combining Theorem 12 with known protocols (specifically, [25] and [16]8), we obtain the following
corollaries:

Corollary 13 (information-theoretic security – compilation of [25]): For any probabilistic polynomial-
time m-ary functionality f , there exists a protocol in the point-to-point model, for the information-
theoretic m/2-secure computation of f with strong designated abort.

We note that this result is optimal in the following sense. Ben-Or, Goldwasser and Wigderson [3]
showed that there are functions for which there do not exist information-theoretically private pro-
tocols when t ≥ m/2. The definition of a “private” (rather than “secure”) protocol, is regarding the

6In private communication with Ran Canetti, he agreed that unique session identifiers can be removed from the
universal composability definition. In such a case, universally composable broadcast could not be achieved using
authenticated Byzantine Agreement.

7We note that the fact that [25] composes concurrently has not been formally proved anywhere. Nevertheless, it
is claimed in [5].

8We note that both the protocols of [25] and [16] have fixed-round outputs

16

behavior of corrupted parties. In a private protocol, corrupted parties follow the protocol specifica-
tion, but attempt to learn more information than intended (such adversarial behavior is known as
passive or semi-honest). Therefore, security with strong designated abort implies privacy (with fair
abort), and this means that for information-theoretic security, resilience of t ≥ m/2 is not possible.

Corollary 14 (computational security – compilation of [16]): For any probabilistic polynomial-
time m-ary functionality f , there exists a protocol in the point-to-point model, for the computational
t-secure computation of f with strong designated abort, for any t.

We now proceed to prove Theorem 12.

Proof of Theorem 12: Intuitively, we construct a protocol for the point-to-point model from
a protocol for the broadcast model, by having the parties in the point-to-point network simulate
the broadcast channel. When considering “pure” broadcast (i.e., Byzantine Generals), this is not
possible for t ≥ m/3. However, it is enough for us to simulate the broadcast channel using a
protocol for “broadcast with designated abort”. Recall that in such a protocol, either the correct
value is delivered to all parties, or some parties output ⊥. The idea is to halt the computation
in the case that any honest party receives ⊥ from a broadcast execution. The point at which the
computation halts dictates which parties (if any) receive output. The key point is that if no honest
party receives ⊥, then the broadcast with designated abort protocol perfectly simulates a broadcast
channel. Therefore, the result is that the original protocol (for the broadcast channel) is simulated
perfectly until the point that it may prematurely halt.

Construction 3 (protocol compiler): Given a protocol Π, the compiler produces a protocol Π′.
The specification of the protocol Π′ is as follows:

• The parties use Protocol 1 in order to emulate each broadcast message of protocol Π. Each round
of Π is expanded into 3 rounds in Π′: Protocol 1 is run in the first 2 rounds, and the third round
is a blank round (the purpose of this third round will become clear later). The parties emulate
Π according to the following instructions:

1. Broadcasting messages: Let Pi be a party who is supposed to send a message m in the jth

round of Π. Then, in the jth broadcast simulation of Π′, all parties run an execution of
Protocol 1 in which Pi plays the dealer role and sends m.

2. Receiving messages: For each message that party Pi is supposed to receive from a broadcast
in Π, party Pi participates in an execution of Protocol 1 as a receiver. If its output from
this execution is a message m, then it appends m to its view (to be used for determining
its later steps according to Π).
If it receives ⊥ from this execution, then it sends ⊥ to all parties in the next round (this
round is the blank round following the execution of Protocol 1), and halts immediately.

3. Blank rounds: If a party Pi receives ⊥ in a blank round, then it sends ⊥ to all parties in
the next blank round and halts, outputting ⊥. Party Pi does not participate in the broadcast
that precedes the next blank round. (We note that if this is the last round of the execution,
then Pi simply halts.)

4. Output: Let party Pi be such that it just received a non-⊥ value from a broadcast execution
of Protocol 1. Furthermore, according to Π, at this point it is supposed to output its value

17

(denote this value y). Then, Pi waits for the next round (which is blank): if it receives ⊥
in this blank round, then it outputs ⊥; otherwise, it outputs y.9

In order to prove that Π′ is t-secure with designated abort, we first define a different transformation
of Π to Π̃ which is a hybrid protocol between Π and Π′. In particular, Π̃ is still run in the broadcast
model. However, it provides corrupted parties with the additional ability of prematurely halting
honest parties. We now define this hybrid protocol Π̃ and show that it is t-secure with designated
abort:

Lemma 4.1 Let Π be a protocol in the broadcast model that is computational (resp., information-
theoretic) t-secure with abort or with fair abort. Then, define protocol Π̃ (also for the broadcast
model) as follows:

1. Following each round of broadcast of Π, add a blank round.

2. If in a blank round, the message (Pi,⊥) is broadcast, then Pi broadcasts (Pj ,⊥) for all j 6= i in
the next blank round and halts. Pi also does not broadcast any message in the next broadcast
round (that precedes the next blank round).

3. Apart from the above, the parties follow the instructions of Π.

4. Output: Let party Pi be such that it sets its output in round r of Π. Then, if it receives
(Pi,⊥) in the sth blank round of Π̃ for any s ≤ r, then it outputs ⊥. Otherwise, it outputs its
prescribed output.

Then, Π̃ is computational (resp., information-theoretic) t-secure with designated abort.

Proof: We prove this theorem for the case that Π is computationally t-secure with abort. The
other cases (information theoretic security and security with fair abort) are proved in the same way.
Let Ã be a real-model adversary attacking Π̃. We begin by constructing a real-model adversary A
attacking Π who causes the output distribution in Π to be very similar to that of Π̃ when under
attack by Ã. We do this because A is guaranteed to have a simulator S (by the security of Π),
and we can therefore use S in order to construct a simulator S̃ for Ã. Adversary A receives the
input sequence {xi}i∈I and a series of random-tapes {ri}i∈I (where ri is the random-tape of Pi) and
works as follows: A invokes Ã upon input {xi}i∈I and random-tapes {ri}i∈I , and broadcasts all of
its broadcast messages. Likewise, all messages received by A are internally forwarded to Ã. Now,
if Ã broadcasts (Pi,⊥) for some honest Pi in any blank round (preceding the last blank round),
then in the next broadcast round of Π, adversary A receives the broadcast messages from all the
honest parties. A forwards to Ã only the messages from honest parties Pj for which (Pj ,⊥) was
not sent by Ã in the previous blank round, and broadcasts whatever Ã does. Finally, A simulates
for Ã the blank-round messages as sent by the honest parties in such a case, and halts. When A
halts, it outputs whatever Ã does (which by assumption equals Ã’s view of the execution). This
completes the description of A.

Before proceeding, we show that the only difference between an execution of Π with A, and Π̃
with Ã, is that some additional honest parties may output ⊥ in the execution of Π̃. That is, we

9The motivation behind this seemingly strange output procedure is as follows. If any honest party received ⊥ from
an execution of Protocol 1, then we would like all honest parties to disregard any messages received in this execution.
Now, if an honest party receives ⊥ from a broadcast, then it announces this to all parties in the next blank round.
Thus, if an honest party receives ⊥ in a blank round, it disregards the messages it received in the previous broadcast.

18

claim that the joint distribution of the outputs of all parties not outputting ⊥ and the adversary,
is identical in Π and Π̃. Formally, denote by realΠ,(A,I)(x, r), the output of an execution of Π
with adversary A, inputs x, and random-tapes r (i.e., r = (r1, . . . , rm) where Pi receives random-
tape ri). (Thus, realΠ,(A,I)(x) = {realΠ,(A,I)(x,U|r|)}.) Furthermore, for some set J ⊆ [m] \ I,
denote by realJ

Π,(A,I)(x, r), the output of parties {Pj}j∈J in an execution of Π with A, inputs x
and random-tapes r. Similarly, denote by realAΠ,(A,I)(x), the output of adversary A. Now, in any

execution of Π̃, it is possible to divide the parties into those who output ⊥ and those who do not
output ⊥. Let Jreal = Jreal(x,U|r|) be a random variable that takes values over subsets of parties
in an execution of Π̃ with adversary Ã, where for every j ∈ Jreal, party Pj does not output ⊥.
(We stress that for every fixed x and r, the set Jreal is a fixed subset of [m] \ I. Furthermore, for
every adversary Ã there is a different random variable Jreal.)

Then, we claim that for any adversary Ã and set of corrupted parties I, and for any set of
inputs and random-tapes x and r,

(

realAΠ,(A,I)(x, r), realJreal(x,r)
Π,(A,I) (x, r)

)

=
(

realÃΠ̃,(Ã,I)(x, r), realJreal(x,r)
Π̃,(Ã,I)

(x, r)
)

(1)

where A is as defined above. Eq. (1) is shown as follows: Fix the input vector x and series of
random tapes r (below, when we refer to an execution of Π or Π̃, we mean with respect to these
fixed inputs and random-tapes). Now, let ρ be the blank-round number in which Ã first sends a
(Pi,⊥) message. Then, the messages sent and received by A, Ã and all the honest parties in the
first ρ broadcast rounds are identical in the executions of Π and Π̃ (recall that the blank rounds
follow the broadcast rounds). Therefore, if an honest party sets its output by round ρ and does
not output ⊥, then its output is identical in Π and Π̃.10 On the other hand, any honest party
Pi in Π̃ who sets its output in round ρ+1 or later, outputs ⊥ in Π̃ and therefore is not relevant
to Eq. (1) (i.e., i 6∈ Jreal). It remains to show that the outputs of Ã and A are also identical.
However, this follows because A forwards to Ã exactly the messages that it expects to see. That is,
for any party Pi for which (Pi,⊥) was sent in round ρ, adversary Ã does not receive any message
from Pi in broadcast round ρ+1. On the other hand, Ã receives the exact messages sent by the
other parties (who only receive a (P,⊥) message in blank-round ρ+1 from Pi). Finally, all parties
halt after blank round ρ+1 in an execution of Π̃ and this is what Ã sees in A’s execution of Π.
This completes the proof of Eq. (1). We stress that the parties who output ⊥ in Ã may have very
different outputs in A (and in particular may output their prescribed outputs). Nevertheless, at
this stage we are only interested in those parties not outputting ⊥.

As we mentioned above, the reason that we defined A as above is that we can use the simulator
guaranteed to exist for A in order to simulate Ã. We now proceed to construct the simulator S̃
for Ã.

Simulator S̃: The simulator S̃ invokes S on A and sends the trusted party the corrupted parties’
inputs exactly as sent by S. Once S̃ has forwarded these inputs to the trusted party, it receives
all the corrupted parties’ outputs (by the definition of security with strong designated abort).
Therefore, S provides S̃ with these outputs. Now, in the case that P1 is not corrupted, S concludes
at this point outputting some string. On the other hand, if P1 is corrupted, then S first instructs
the trusted party to send the honest parties ⊥ or their prescribed outputs before concluding. S̃
records this message and fixes its output to be whatever S outputs.

10We note that a party Pj who sets its output in round ρ may or may not output ⊥, depending on the execution.
In particular, if (Pj ,⊥) was sent in the rth blank round by Ã, then Pj outputs ⊥. On the other hand, if it was only
sent in the r+1th round, then Pj will output its prescribed output.

19

It remains to define the set Jideal that S̃ sends to the trusted party in the “trusted party answers
remaining parties” stage of the ideal execution (recall that all honest parties in Jideal receive their
output and all others receive ⊥). First notice that the string output by S is computationally
indistinguishable to A’s output from a real execution. However, by the definition of A, this output
contains Ã’s view of an execution of Π̃. Furthermore, Ã’s view fully defines which honest parties in
an execution of Π̃ output ⊥ and which receive their output. Therefore, S̃ examines this view and
defines the set Jideal accordingly. We first introduce some notation. Let ρ be the first blank round
in which a (Pi,⊥) message is sent in the view output by S. Furthermore, denote by Pρ the set of
parties Pi who received (Pi,⊥) in round ρ. Notice that by the definition of Π̃, all honest parties
are included in the set Pρ∪Pρ+1. (In the case that ρ is the last round of the execution, then Pρ+1
is defined to be empty. This is because in this case, only the parties in Pρ ever receive ⊥.)

We begin with the case that ρ is undefined: that is, when Ã does not send any (Pi,⊥) messages
during the execution. In such a case, S̃ defines Jideal in the following way: if S instructs the trusted
party to send ⊥ to all the honest parties, then S̃ defines Jideal = φ. Otherwise, all honest parties
receive their correct outputs, and therefore S̃ defines Jideal = [m] \ I. We now proceed to the case
that a (Pi,⊥) message is sent during the execution. In this case, S̃ defines Jideal to equal all the
parties in Pρ whose outputs are set prior to broadcast round ρ along with all the parties in Pρ+1
whose outputs are set prior to broadcast round ρ+1.11 Once Jideal is defined, S̃ sends it to the
trusted party and halts. This completes the description of S̃.

We now wish to show that the output of an ideal execution with designated abort with S̃ is
computationally indistinguishable to the output of a real execution of Π̃ with Ã. We begin by
showing an analog to Eq. (1). That is, we show that the outputs of parties not outputting ⊥ are
the same in an ideal execution of Π and an ideal execution of Π̃. Formally, we claim the following:
For every set I, every set of inputs x and every random-tape r (for S or S̃),

(

ideal(4) S̃
f,(S̃,I)

(x, r), ideal(4) Jideal(x,r)
f,(S̃,I)

(x, r)
)

=
(

ideal(2) S
f,(S,I)(x, r), ideal(2) Jideal(x,r)

f,(S,I) (x, r)
)

(2)

where S and S̃ are invoked with inputs x and random-tape r, and where Jideal(x, r) equals the
set of parties in the ideal execution with S̃ who do not output ⊥. (I.e., Jideal(x, r) equals the set
Jideal sent by S̃ to the trusted party when the input vector equals x and its random-tape equals
r.) In order to see that Eq. (2) holds, notice the following. Firstly, S̃ (upon input {xi}i∈I and
random-tape r) sends exactly the same inputs to the trusted party as S does (upon input {xi}i∈I
and random-tape r). Now, the outputs of all honest parties not outputting ⊥ are fixed by x and
the inputs sent to the trusted party by the simulators S or S̃. Therefore, if S and S̃ send the
same inputs, it follows that all parties not outputting ⊥ have exactly the same output. Secondly,
S̃ outputs exactly the same string that S outputs. Eq. (2) follows.

Now, Π is computationally t-secure with abort. It therefore holds that for every set I ⊂ [m] such
that |I| < t, and for every set J ⊆ [m]

{

ideal(2) S
f,(S,I)(x), ideal(2) J

f,(S,I)(x)
} c≡

{

realAΠ,(A,I)(x), realJ
Π,(A,I)(x)

}

However, notice that the sets Jreal and Jideal are fully defined given Ã and S̃’s outputs respectively.
By the definitions of A and S, it follows that their outputs also fully define Jreal and Jideal.

11It is for this point of the proof that we require the protocol Π to be such that the round in which a party sets its
output is fixed in the protocol definition. Otherwise, the adversary’s view may not be enough to determine when an
honest party sets its output.

20

Therefore, it holds that,
{

ideal(2) S
f,(S,I)(x), ideal(2) Jideal(x)

f,(S,I) (x)
} c≡

{

realAΠ,(A,I)(x), realJreal(x)
Π,(A,I) (x)

}

(3)

Combining Eq. (3) with Equations (1) and (2), we have that
{

ideal(4) S̃
f,(S̃,I)

(x), ideal(4) Jideal(x)
f,(S̃,I)

(x)
}

c≡
{

realÃΠ̃,(Ã,I)(x), realJreal(x)
Π̃,(Ã,I)

(x)
}

(4)

It remains to show that the entire output distributions (including the honest parties not in J) are
computationally indistinguishable. However, this is immediate, because for every party Pi for which
i 6∈ J , it holds that Pi outputs ⊥ (this is true for both the real and ideal executions). Therefore,

{

ideal(4)
f,(S̃,I)

(x)
} c≡

{

realΠ̃,(Ã,I)(x)
}

completing the proof of Lemma 4.1.

Recall that our aim is to show the security of the compiled protocol Π′ (and not Π̃). However,
intuitively, there is no difference between Π̃ and Π′. The reason is as follows: in Π̃, the adversary
can instruct any honest party Pi to ignore a broadcast by sending it (Pi,⊥) in the following blank
round. On the other hand, in Π′, the same effect can be achieved by having the “broadcast with
designated abort” terminate with Pi receiving ⊥. Therefore, whatever an adversary attacking Π′

can achieve, an adversary attacking Π̃ can also achieve. Formally:

Lemma 4.2 Let Π be a protocol in the broadcast model that is information-theoretic or compu-
tational t-secure with abort or with fair abort, and let Π̃ be the transformation of Π as described
in Lemma 4.1. Then, for every real-model adversary A′ for Π′ of Construction 3, there exists a
real-model adversary Ã for Π̃, such that for every I ⊂ [m] with |I| < t,

{

realΠ̃,(Ã,I)(x)
}

n∈N,x∈({0,1}n)m
≡

{

realΠ′,(A′,I)(x)
}

n∈N,x∈({0,1}n)m

Proof: We begin by describing the adversary Ã. Adversary Ã invokes A′ and in every round of
the execution of Π̃ works as follows:

• Broadcast round r:

1. Receive the broadcast messages from the honest parties. For every message broadcast by an
honest party, simulate a “broadcast with designated abort” execution, playing the honest
parties’ roles (where A′ plays the corrupted parties’ roles).

2. Play the honest parties’ roles in “broadcast with designated abort” executions, in which A′
sends messages to the honest parties. Consider a particular execution in which a corrupted
party P plays the dealer. If all the honest parties receive ⊥ in this execution, then Ã
broadcasts nothing. On the other hand, if at least one honest party outputs a message m,
then Ã broadcasts m.

• Blank round r: Let B denote the set of honest parties receiving ⊥ in any of the above simulated
“broadcast with designated abort” executions (i.e., for broadcast round r). Then, for every
Pi ∈ B, adversary Ã broadcasts (Pi,⊥) in this blank round.

21

At the conclusion of the execution, Ã outputs whatever A′ does. This completes the description
of Ã. The fact that Ã perfectly simulates an execution of Π′ with A′ follows directly from the
definition of Π′. That is, the only difference between Π̃ and Π′ is that in Π′ the broadcast channel
is replaced by Protocol 1. This means that some parties may receive ⊥ instead of the broadcasted
message. However, in this case, Ã knows exactly who these parties are and can send them ⊥ in
the following blank round. Furthermore, the simulation of the executions of Protocol 1 itself by Ã
is perfect. Therefore, the outputs of all the honest parties and Ã in Π̃, are identically distributed
to the outputs of the honest parties and A′ in an execution of Π′.

Now, let A′ be an adversary attacking Π′. By Lemma 4.2, we have that there exists an adversary Ã
attacking Π̃ such that the output distributions of Π′ with A′, and Π̃ with Ã are identical. Then, by
Lemma 4.1, we have that for real-model adversary Ã for Π̃, there exists an ideal-model simulator S̃
such that the output distributions of a real execution with Ã and an ideal execution with designated
abort with S̃ are computationally indistinguishable (or statistically close). We conclude that the
output distribution of a real execution of Π′ with adversary A′ is computationally indistinguishable
(or statistically close) to an ideal execution with designated abort with S̃. That is, Π′ is t-secure
with designated abort, as required.

The complexity of protocol Π̃: We remark that the transformation of Π to Π̃ preserves the
round complexity of Π. In particular, the number of rounds in Π̃ equals exactly 3 times the number
of rounds in Π. On the other hand, the bandwidth of Π̃ is the same as that of Π except for the
cost incurred in simulating the broadcast channel. Notice that in the “broadcast with designated
abort” protocol, if a dealer sends an n-bit message, then the total bandwidth equals m · n. (If the
dealer cheats and sends different messages, then the bandwidth is upper-bound by the length of the
longest message times m.) Therefore, the number of bits sent in an execution of Π̃ is only m times
that sent in an execution of Π. (However, a subtle point to notice here is that the adversary can
cause honest parties to send very long messages. This is because in Π, only the adversary sends its
messages on the broadcast channel. On the other hand, in Π̃, every message sent by the adversary
is repeated by all honest parties.)

5 Secure Computation with Designated Abort

In this section, we present the main results of this paper. That is, we show that there for any
functionality f , there exists a protocol for computational t-secure computation of f with designated
abort, for any t. (This construction assumes the existence of trapdoor permutations.) Furthermore,
for any functionality f , there exists a protocol for information-theoretic m/2-secure computation
of f with designated abort (and without any assumptions).

Outline: We begin by motivating why the strategy used to obtain secure computation with
strong designated abort is not enough here. The problem lies in the fact that due to the use of
a “broadcast with designated abort” protocol (and not a real broadcast channel), the adversary
can disrupt communication between honest parties. That is, of course, unless this communication
need not be broadcast. Now, in the definition of security with designated abort, once an honest P1
receives its output, it must be able to give this output to all honest parties. That is, the adversary
must not be allowed to disrupt the communication, following the time that an honest P1 receives its
output. This means that using a broadcast channel in the final stage where the remaining parties
receive their outputs is problematic.

22

We solve this problem here by having the parties compute a different functionality. This func-
tionality is such that when P1 gets its output, it can supply all the other parties with their output di-
rectly and without broadcast. On the other hand, P1 itself should learn nothing of the other parties’
outputs. As a first attempt, consider the following. Instead of computing x 7→ (f1(x), . . . , fm(x)),
the parties first compute the following:

x = (x1, . . . , xm) 7→ ((f1(x), r2, . . . , rm), f2(x)⊕ r2, . . . , fm(x)⊕ rm)

Then, the parties use a protocol that is secure with strong designated abort in order to compute the
new functionality. Once they have finished, all parties announce whether or not they have received
their output. If any of them announces ⊥, then P1 sends all parties ⊥ and halts. Otherwise, P1
individually sends ri to Pi for every i, allowing all parties to reconstruct their correct output.

However, this strategy is flawed. The problem is that a cheating P1 can send the honest parties
wrong values and thus cause them to conclude with incorrect outputs. This is in contradiction to
what is required of all secure protocols. Therefore, the functionality we use is one in which a corrupt
P1 cannot cheat. In particular, we require a scheme with the following properties. The scheme
has a setup phase in which an honest dealer provides two parties P1 and Pi with strings r1 and r2.
The strings are uniformly distributed when viewed independently. However, given them both, it is
possible to extract some predetermined value (in this case, it will be Pi’s output). Finally, P1 has
no choice but to provide Pi with r1 itself; any modification to r1 will result in detection by Pi with
overwhelming probability. We note that the trusted dealer will be replaced by a protocol that is
secure with strong designated abort. We now describe such a scheme:

Construction 4 (binded sharing of a bit between A and B):

• Trusted dealer’s input: A bit b.

• Setup Phase:

1. The dealer chooses n triplets (r1
i , r

2
i , r

3
i), where each rj

i ∈R {0, 1} is uniform under the
constraint that r1

i ⊕ r2
i ⊕ r3

i = b.

2. The dealer gives A the pair (r1
i , r

2
i) for every i.

3. The dealer gives B the pair (rj
i , r

3
i) and the index j, where j ∈R {1, 2}. That is, in every

triple, B receives the 3rd bit and another bit which is randomly chosen as the first or second.

• Reveal Phase:

1. A sends B its pairs (r1
i , r

2
i) for every i.

2. For every pair received, B checks that rj
i as it received, equals the bit sent by A (B received

the index j in the setup phase so can check this). If this holds, then B checks that for every
i, r1

i ⊕ r2
i ⊕ r3

i equals the same bit b′ ∈ {0, 1}. If this holds, then B outputs b′. Otherwise
it outputs ⊥.

We note that binded sharing of a string can be achieved by separately sharing each bit. Now, it
is immediate that neither A or B learn anything about b from the setup phase (i.e., privacy after
the setup phase is information theoretic). On the other hand, assume that A attempts to have B
output b′ 6= b. This requires A to flip one bit in every triple (otherwise, if there is one triple which
A does not touch, then B will receive b from that triple and will never output b′ 6= b). Now, the
probability that B will not detect A’s bit flip in a single triple equals 1/2. Therefore, the probability
that B will not detect A’s bit flip in every triple equals 2−n, which is negligible.

23

Finally, we note that if A were to know which bits B received in the setup phase, then it could
easily have B output any bit in the reveal phase. Thus, the scheme has a trapdoor-type property.
We need this for our protocol. We note that the above construction is reminiscent of those found
in [18].

Theorem 15 For any probabilistic polynomial-time m-ary functionality f , there exists a protocol
for the computational t-secure computation of f with designated abort, for any t. Furthermore,
there exists a protocol for the information-theoretic m/2-secure computation of f with designated
abort.

Proof: We begin by describing the protocol for computing f .

Protocol 5 (protocol for secure computation with designated abort of any functionality f):

1. Stage 1 – computation: The parties use any protocol for secure (computational or information-
theoretic) computation with strong designated abort in order to compute the following functionality:12

x = (x1, . . . , xm) 7→ ((y1 = f1(x), s1
2, . . . , s

1
m), s2

2, . . . , s
2
m)

where for every i, s1
i and s2

i are binding shares of yi = fi(x), as by Construction 4.

2. Stage 2 – blank round: After the above protocol concludes, a blank-round is added as follows.
If any party receives ⊥ as output from Stage 1, then it sends ⊥ to P1 and halts outputting ⊥.

3. Stage 3 – outputs: If P1 received any ⊥ in the blank round, then it sends ⊥ to all parties and
halts outputting ⊥. Otherwise, for every i, it sends s1

i to Pi and halts, outputting y1.

Party Pi outputs ⊥ if it receives ⊥ from P1 (it ignores any ⊥ it may receive from other
parties). Otherwise, it checks that it received the correct reveal information from P1. If yes,
it outputs its value yi and halts. Otherwise, it outputs ⊥.

The security of Protocol 5 with abort, is derived from the fact that Stage 1 is run using a protocol
that is secure with strong designated abort. Specifically, there are two possible cases following
Stage 1: either some honest party received ⊥ or all parties received their output. In case an honest
party received ⊥ and P1 is honest, by Stage 2 no party will receive output. On the other hand, if
no honest parties received ⊥ and P1 is honest, then all parties clearly receive their output (and no
adversary can influence this). Finally, if P1 is corrupted, then it can designate who should receive
output and who should not. However, this is allowed by the definition and so is fine.

In order to formally prove the security of the protocol, we use the sequential composition
theorem of Canetti [4]. This theorem states that we can consider a hybrid model in which an ideal
call is used for Stage 1 of the protocol, whereas the other stages are as described above. It then
suffices to construct a ideal-model simulator for the hybrid model in order to prove that the real
and ideal models are computationally indistinguishable or statistically close (depending on whether
computational or information-theoretic security is being considered). The proof of [4] is for secure
computation with fair abort; however it holds also for secure computation with strong designated
abort.

Let A be an adversary attacking Protocol 5 in the above-described hybrid model. We construct
an ideal-model adversary S as follows, differentiating between the cases that P1 is corrupt and P1
is honest:

12We note that by Section 4, such protocols exist for any t assuming the existence of trapdoor permutations.
Furthermore, for the case of t > m/2, no assumptions are required.

24

1. P1 is corrupt: S invokes A and receives the inputs that A intends to send to the trusted
party (of the hybrid model). Then, S forwards these to the trusted party of the ideal model
unmodified. If the inputs are not valid, then in the hybrid model, all parties receive ⊥ as
output. Therefore, S hands ⊥ to A as its output from Stage 1 and simulates all honest parties
sending ⊥ in Stage 2. S then halts, outputting whatever A does. Otherwise, if the inputs are
valid, S receives all the corrupted parties outputs (this is the case because S controls P1). S
prepares A’s outputs by giving it f1(x) and computing a binded sharing of each of the outputs
it receives and giving them to A. Furthermore, it gives A random pairs of bits for s1

j (for
every j 6∈ I). Following this, S obtains the set J ′ from A instructing the hybrid-model trusted
party which parties to give output to (recall A has strong designated abort capabilities in
Stage 1 in the hybrid model); S records J ′.

S continues by simulating Pi sending ⊥ to P1 in the blank round, for every honest party Pi
such that i 6∈ J ′. Then, in the last stage, A (controlling P1) sends to each honest party Pj a
string s′1j . S receives these strings and defines the set of parties J to receive outputs to equal
those parties in J ′ to whom A sends the same s1

j that S gave A in Stage 1. S concludes by
sending J to the ideal-model trusted party and outputting whatever A does.

2. P1 is honest: In this case, S begins in the same way. That is, S invokes A and receives the
inputs that A intends to send the trusted party of the hybrid model. However, unlike in the
previous case, S does not forward these inputs to the trusted party; rather it just records
them. (If any of these inputs are invalid, then S internally sends ⊥ to all corrupted parties,
externally sends invalid inputs to the trusted party and halts. In the sequel, we assume
that all inputs sent by A are valid.) Now, A expects to receive outputs from Stage 1 of the
protocol, before it sends J ′ to the trusted party, designating which honest parties receive
output from Stage 1. However, S does not have these outputs. Fortunately, S can perfectly
simulate the corrupted parties outputs by providing them with random shares corresponding
to Construction 4. That is, for each corrupted party Pi, simulator S generates n random
triples (rj

i , r
3
i , j) where j ∈R {1, 2} and rj

i , r
3
i ∈R {0, 1}, for each bit of the output. Denote

the share for party Pi by s1
i . (We note that the output length is public and therefore, S knows

how long these shares should be.) Following this, S obtains a set J ′ from A (this set instructs
the trusted party which parties should receive output in the strong designated abort setting).

S continues by simulating the rest of the protocol. Notice that honest parties only send
messages to P1 in Stage 2; since P1 is honest, these messages need not be simulated. Thus,
in this step, S obtains any messages sent by A. If A sends ⊥ to P1 in Stage 2 of the protocol,
then S sends ⊥ to all corrupted parties (simulating messages from P1), sends invalid inputs to
the trusted party and halts. Likewise, if J ′ does not contain all the honest parties, S sends ⊥
to all the corrupted parties and invalid inputs to the trusted party. (These cases correspond
to the case that no parties receive their prescribed output.)

On the other hand, if J ′ contains all the honest parties (i.e., no honest party received ⊥
from Stage 1), then S sends the inputs that it recorded from A above and receives all of
the corrupted parties outputs {fi(x)}i∈I . Then, for each corrupted party’s output fi(x), S
generates a share s2

i so that the reconstruction of s1
i and s2

i results in fi(x) (recall that this
is easily achieved by Construction 4), and gives the shares to A. Finally, S outputs whatever
A does and halts.

The fact that the global output in the hybrid execution with S is identically distributed to the
global output in a real execution with A is derived from the following observations. Firstly, A’s

25

outputs from Stage 1 can be perfectly simulated, in both when P1 is corrupt and when P1 is honest.
Secondly, the honest parties’ messages in Stage 2 can be perfectly simulated given only the set J ′

sent by A to the hybrid-model trusted party in the ideal execution of Stage 1. Therefore, A’s view
in the hybrid-model execution is identical to its view in a real execution. It remains to show that
the honest parties’ outputs are also correctly distributed.

First, consider the case that P1 is corrupt. In this case, the set of honest parties receiving
output in the real model are exactly those parties Pj for whom P1 (controlled by A) sends the
exact string sj

1 that S gave it in Stage 1 (and who did not receive ⊥ from Stage 1). This is because,
by the properties of Construction 4, if A changes any bit then it will be detected cheating except
with probability 2−n. Therefore, the set J sent by S to the trusted party contains exactly those
parties who would receive output in a real execution.

Next, consider the case that P1 is honest. In this case, all parties receive output unless P1 sees
⊥ in Stage 2. This can happen if A sends P1 such a value, or if any honest party received ⊥ from
Stage 1. Both of these cases are detected by S in the hybrid-model simulation, and therefore the
case that all parties receive output in the hybrid model corresponds to this case in the real model
(and likewise for the case that all parties receive ⊥).

References

[1] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377–391, 1991.

[2] D. Beaver and S. Goldwasser. Multiparty Computation with Fault Majority. In
CRYPTO’89, Springer-Verlag (LNCS 435), 1989.

[3] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.

[4] R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal
of Cryptology, Vol. 13 (1), pages 143–202, 2000.

[5] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. In 42nd FOCS, 2001.

[6] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO, 2001.

[7] R. Canetti and H. Krawczyk. Universally Composable Notions of Key-Exchange and
Secure Channels. In EUROCRYPT, 2002.

[8] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party
and Multiparty Secure Computation. In 34th STOC, 2002.

[9] D. Chaum, C. Crepeau and I. Damgard. Multi-party Unconditionally Secure Protocols.
In 20th STOC, pages 11–19, 1988.

[10] P. Feldman and S. Micali. An Optimal Algorithm for Synchronous Byzantine Agreement.
SIAM. J. Computing, 26(2):873–933, 1997.

[11] M. Fischer, N. Lynch, and M. Merritt. Easy Impossibility Proofs for Distributed Con-
sensus Problems. Distributed Computing, 1(1):26–39, 1986.

26

[12] M. Fitzi, N. Gisin, U. Maurer and O. Von Rotz. Unconditional Byzantine Agreement and
Multi-Party Computation Secure Against Dishonest Minorities from Scratch. To appear
in Eurocrypt 2002.

[13] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein and A. Smith. Byzantine Agreement
Secure Against Faulty Majorities From Scratch. Manuscript 2002.

[14] Z. Galil, S. Haber and M. Yung. Cryptographic Computation: Secure Fault Tolerant
Protocols and the Public Key Model. In CRYPTO 1987.

[15] O. Goldreich. Secure Multi-Party Computation. Manuscript. Preliminary version, 1998.
Available from http://www.wisdom.weizmann.ac.il/∼oded/pp.html.

[16] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Complete-
ness Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987.
For details see [15].

[17] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Im-
moral Majority. In CRYPTO’90, Spring-Verlag (LNCS 537), pages 77–93, 1990.

[18] J. Kilian. Founding Cryptography on Oblivious Transfer. In 20th STOC, pages 20–31,
1988.

[19] L. Lamport. The weak byzantine generals problem. In JACM, Vol. 30, pages 668–676,
1983.

[20] L. Lamport, R. Shostack, and M. Pease. The Byzantine generals problem. ACM Trans.
Prog. Lang. and Systems, 4(3):382–401, 1982.

[21] Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authenticated Byzantine
Agreement. In 34th STOC, 2002.

[22] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Prelimi-
nary version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[23] M. Pease, R. Shostak and L. Lamport. Reaching agreement in the presence of faults. In
JACM, Vol. 27, pages 228–234, 1980.

[24] B. Pfitzmann and M. Waidner. Information-Theoretic Pseudosignatures and Byzantine
Agreement for t >= n/3. Technical Report RZ 2882 (#90830), IBM Research, 1996.

[25] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest
Majority. In 21st STOC, pages 73–85, 1989.

[26] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

27

A An Overview of the Universal Composition Framework

In this appendix, we provide a brief overview of the framework of [5]; for more details, see [5]. The
framework provides a formal method for defining the security of cryptographic tasks, while ensuring
that security is maintained under a general composition operation in which a secure protocol for
the task in question is run in a system concurrently with an unbounded number of other arbitrary
protocols. This composition operation is called universal composition, and tasks that fulfill the
definitions of security in this framework are called universally composable (UC).

As in other general definitions (e.g., [17, 22, 1, 4]), the security requirements of a given task
(i.e., the functionality expected from a protocol that carries out the task) are captured via a set
of instructions for a “trusted party” that obtains the inputs of the participants and provides them
with the desired outputs (in one or more iterations). We call the algorithm run by the trusted
party an ideal functionality. Informally, a protocol securely carries out a given task if an adversary
can gain no more in an attack on a real execution of the protocol, than from an attack on an
ideal process where the parties merely hand their inputs to a trusted party with the appropriate
functionality and obtain their outputs from it, without any other interaction. The fact that the
adversary gains no more from its attack on a real execution is formalized by saying that the result
of a real execution can be emulated in the above ideal process. We stress that in a real execution
of the protocol, no trusted party exists and the parties interact amongst themselves only.

In order to prove the universal composition theorem, the notion of emulation in this framework
is considerably stronger than in previous ones. Traditionally, the model of computation includes
the parties running the protocol and an adversary A, that controls the communication channels
and potentially corrupts parties. Then, security is formulated by requiring that for any adversary
A attacking a real protocol execution, there should exist an “ideal process adversary” or simulator
S, that causes the outputs of the parties in the ideal process to be essentially the same as the
outputs of the parties in a real execution. However, in the universally composable framework, an
additional adversarial entity called the environment Z is introduced. This environment generates
the inputs to all parties, reads all outputs, and in addition interacts with the adversary in an
arbitrary way throughout the computation. (As is hinted by its name, Z represents the external
environment that consists of arbitrary protocol executions that may be running concurrently with
the given protocol.) A protocol is said to securely realize a given ideal functionality F if for any
“real-life” adversary A that interacts with the protocol there exists an “ideal-process adversary”
S, such that no environment Z can tell whether it is interacting with A and parties running the
protocol, or with S and parties that interact with F in the ideal process. (In a sense, here Z
serves as an “interactive distinguisher” between a run of the protocol and the ideal process with
access to F . See [5] for more motivating discussion on the role of the environment.) Note that the
definition requires the “ideal-process adversary” (or simulator) S to interact with Z throughout
the computation. Furthermore, Z cannot be “rewound”.

The following universal composition theorem is proven in [5]: Consider a protocol π that operates
in a hybrid model of computation where parties can communicate as usual, and in addition have
ideal access to (an unbounded number of copies of) some ideal functionality F . (This model is
called the F-hybrid model.) Furthermore, let ρ be a protocol that securely realizes F as sketched
above, and let πρ be the “composed protocol”. That is, πρ is identical to π with the exception
that each interaction with the ideal functionality F is replaced with a call to (or an invocation of)
an appropriate instance of the protocol ρ. Similarly, ρ-outputs are treated as values provided by
the functionality F . The theorem states that in such a case, π and πρ have essentially the same
input/output behavior. Thus, ρ behaves just like the ideal functionality F , even when composed

28

with an arbitrary protocol π. A special case of this theorem states that if π securely realizes some
ideal functionality G in the F-hybrid model, then πρ securely realizes G from scratch.

B Strong Broadcast with Designated Abort

In this appendix, we prove that the broadcast with designated abort problem with the stronger
validity condition, cannot be solved for t ≥ m/3. That is,

Proposition B.1 (Proposition 3.2 – restated): There does not exist a protocol for the strong
broadcast with designated abort problem, for t ≥ m/3.

Proof: The proof of this proposition is based on the proof of Fischer et al. [11] that no Byzantine
Agreement protocol can tolerate m/3 or more faulty parties. We prove the theorem for the special
case of 3 parties; the generalization to m parties (for any m) is standard.

Assume, by contradiction, that there exists a protocol Π that solves the strong broadcast with
designated abort problem for three parties A, B and C, where one may be corrupted. We designate
the dealer to be B (for broadcaster). Exactly as in the proof of Fischer et al. [11], we define a
hexagonal system S that intertwines two independent copies of Π. That is, let A1, B1, C1 and A2,
B2 and C2 be independent copies of the three parties participating in Π. By independent copies,
we mean that A1 and A2 are two instantiation of the same party A. The system S is defined by
connecting party A1 to C2 and B1 (rather than to C1 and B1); party B1 to A1 and C1; party C1
to B1 and A2; and so on, as in Figure 2.

Figure 2: Combining two copies of Π in a hexagonal system S.

In the system S, party B1 has input 0 (that it is trying to broadcast); while party B2 has input 1
(that it is trying to broadcast). Note that within S, all parties follow the instructions of Π exactly.
We stress that S is not a “strong broadcast with designated abort” setting (where the parties are
joined in a complete graph on three nodes), and therefore the definition tells us nothing directly of
what the parties’ outputs should be. However, S is a well-defined system and this implies that the
parties have well-defined output distributions. The proof proceeds by showing that if Π is a correct
protocol, then we arrive at a contradiction regarding the output distribution in S. We begin by
showing that A1 always outputs 0 (and not ⊥) in S.

Claim B.2 Party A1 always halts and outputs 0 in the system S.

29

Proof: We prove this claim by showing that there exists a corrupted party C who participates in
an execution of Π and simulates the system S, with respect to A1 and B1’s view. That is, honest
parties A and B participate in an execution of “strong broadcast with designated abort”, where B
has input 0. In this execution, party C is corrupt and works so that A and B’s views are identical
to the views of A1 and B1 in S. The parties A, B and C work within a correct setting where there
are well-defined requirements on their output distribution. Therefore, by analyzing their output in
this setting, we are able to make claims regarding their output in the system S.

We begin by describing the strategy of the corrupted party C. Party C works by internally
simulating some of the parties in the system S, while externally interacting with A and B. There-
fore, we talk of both “internal” communication and “external” communication in our description
of C. Specifically, C works by internally simulating the 〈C1 − A2 − B2 − C2〉 part of S. That is,
C internally invokes two copies of its code (C1 and C2) and one copy of each of A and B (for A2
and B2). Furthermore, the internal copy of B is given input 1 to be broadcast. Then, C begins
an execution of Π with A and B, working as follows. When C externally receives a message from
B, it internally forwards it to C1. Similarly, any external messages received from A are internally
forwarded to C2. On the other hand, any message sent by internal C1 and intended for B1, is ex-
ternally sent by C to B. Likewise, messages from C2 to A1 are externally sent by C to B. Finally,
all messages sent between the internal (virtual) parties C1, A2, B2 and C2 are internally forwarded.

We now claim that A and B’s view in the execution of Π is identical to the view of parties A1
and B1 in S. This can be seen as follows. First, recall that all parties in S follow the instruction of
Π exactly. The only difference between an execution of S and a real execution of Π is the hexagonal
form in which the parties are connected. Now, notice that C simulates this hexagonal form exactly.
In particular, C simulates the 〈C1 − A2 − B2 − C2〉 part of S perfectly. On the other hand, the
〈A1, B1〉 part of S is perfectly simulated by the real parties A and B themselves ((A1, B1) and
(A,B) have exactly the same code and input). Therefore, the views of A and B in Π, are identical
to the views of A1 and B1 in S.

By the assumption that Π is a correct protocol for strong broadcast with designated abort, we
have that in Π party A must output 0 (as this is the value broadcast by the honest dealer B). This
holds with respect to any corrupt party C, and in particular this holds with respect to the specific
party C described above. Since the views of A and B in S are identical to their views in Π, we
conclude that in the system S, party A also outputs 0. This completes the proof of the claim.

Using analogous arguments, we obtain the following two claims:

Claim B.3 Party C2 always halts and outputs 1 in the system S.

In order to prove this claim, the corrupted party is A and it works in a similar way to C in the
proof of Claim B.2 above (here C2 receives the value 1 as broadcast by B2).

Claim B.4 If party A1 outputs b ∈ {0, 1} in S, then C2 outputs either b or ⊥.

Similarly, this claim is proven by taking the faulty party as B who follows a similar strategy to C
in the proof of Claim B.2 above. However, this time the dealer is not honest. Nevertheless, the
agreement property ensures that A1 and C2 will not output different non-⊥ values.

Combining Claims B.2, B.3 and B.4 we obtain a contradiction. This is because, on the one
hand A1 must output 0 in S (Claim B.2), and C2 must output 1 in S (Claim B.3). On the other
hand, by Claim B.4, if neither of parties A2 and C1 output ⊥, then they must both output the
same value. However, neither of them output ⊥. This concludes the proof of the proposition.

30

