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Abstract

It has recently been shown that executions of authenticated Byzantine Agreement protocols
in which more than a third of the parties are corrupted, cannot be composed concurrently, in
parallel, or even sequentially (where the latter is true for deterministic protocols). This result
puts into question any usage of authenticated Byzantine agreement in a setting where many
executions take place. In particular, this is true for the whole body of work of secure multi-
party protocols in the case that 1/3 or more of the parties are corrupted. Such protocols strongly
rely on the extensive use of a broadcast channel, which is in turn realized using authenticated
Byzantine Agreement. Essentially, this use of Byzantine Agreement cannot be eliminated since
the standard definition of secure computation (for the case that less than 1/2 of the parties are
corrupted) actually implies Byzantine Agreement. Moreover, it is accepted folklore that the use
of a broadcast channel is essential for achieving secure multiparty computation, when 1/3 or
more of the parties are corrupted.

In this paper we show that this folklore is false. We mildly relax the definition of secure com-
putation allowing abort, and show how this definition can be reached. The difference between
our definition and previous ones is as follows. Previously, if one honest party aborted then it
was required that all other honest parties also abort. Thus, the parties agree on whether or
not the protocol execution terminated successfully or not. In our new definition, it is possible
that some parties abort while others receive output. Thus, there is no agreement regarding
the success of the protocol execution. We stress that in all other aspects, our definition re-
mains the same. In particular, if an output is received it is guaranteed to have been computed
correctly. The novelty of the new definition is in decoupling the issue of agreement from the
central security issues of privacy and correctness in secure computation. As a result the lower
bounds of Byzantine Agreement no longer apply to secure computation. Indeed, we prove that
secure multi-party computation can be achieved for any number of corrupted parties and with-
out a broadcast channel (or trusted preprocessing phase as required for running authenticated
Byzantine Agreement). An important corollary of our result is the ability to obtain multi-party
protocols that compose.

1 Introduction

In the setting of secure multi-party computation, a set of n parties with private inputs wish to
jointly and securely perform a joint function of their inputs. This computation should be such
that each party receives its correct output, and none of the parties learn anything beyond their
prescribed output. This encompasses computations as simple as coin-tossing and agreement, and as
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complex as electronic voting, electronic auctions, electronic cash schemes, anonymous transactions,
and private information retrieval schemes.

1.1 Ground rules of the 80’s

This problem was initiated and heavily studied in the mid to late 80’s, during which time the
following ground rules were set.

Security in multi-party computation. A number of different definitions were proposed for
secure multi-party computation. These definitions aimed to ensure a number of important security
properties. The most central of these are:
• Privacy: No party should learn anything more that its prescribed output.

• Correctness: Each party is guaranteed that the output that it receives is correct.

• Independence of Inputs: Corrupted parties’ inputs are committed to independently of honest
parties’ inputs.

• Guaranteed output delivery: Corrupted parties should not be able to prevent honest parties from
receiving their output. (This is not always possible and is therefore not always required.)

• Fairness: Corrupted parties should receive an output only if honest parties do. (As with the
previous item, this is not always achievable and is therefore is not always fully required .)

The standard definition today [19, 1, 25, 5] formalizes the above requirements in the following way.
Consider an ideal world in which an external trusted party is willing to help the parties carry out
their computation. An ideal computation takes place in the ideal world by having the parties simply
send their inputs to the trusted party. This trusted party then computes the desired function and
passes each party its prescribed output. Notice that all of the above security properties (and more)
are ensured in this ideal computation. A real protocol that is run by the parties (in a world where
no trusted party exists) is said to be secure, if no adversary controlling a coalition of corrupted
parties can do more harm in a real execution that in the above ideal computation.

Broadcast: In the construction of protocols, the ability to “broadcast” messages (if needed)
was assumed as a primitive, where broadcast takes on the meaning of the Byzantine Generals
problem [23]. Namely, an honest party can deliver a message of its choice to all honest parties in a
given round. Furthermore, all honest parties will receive the same message, even if the broadcasting
party is corrupt. Let t be the number of corrupted parties controlled by the adversary. Then, from
results obtained largely by the distributed computing community, it was known that:

1. For t < n/3, Byzantine agreement is possible by a deterministic protocol with round com-
plexity O(t) [26], and by a probabilistic protocol with expected round complexity O(1) [12];

2. For t ≥ n/3, broadcast is achievable using a protocol for authenticated Byzantine agreement,
in which a public-key infrastructure for digital signatures is used [26, 23]. (This public-key
infrastructure is assumed to be setup in a trusted preprocessing phase.) We note that an
information theoretic analogue also exists [27]. The round complexity of the above protocols
is O(t).

Assuming broadcast as a primitive in a point-to-point network was seen as non-problematic. This
is because Byzantine Agreement is achievable for all values of t (with the added requirement of a
trusted preprocessing phase in the case of t ≥ n/3).
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Fairness: As we have mentioned above, fairness is also considered as an important goal in secure
computation. Since the basic notion of fairness is not achievable for all values of t, it takes on
different meanings for different values of t. We will single out a few forms of fairness. On the one
extreme, we have “complete fairness” that guarantees that if a corrupt party gets its output then
all honest parties also get their output. On the other extreme, we have “no fairness” in which the
adversary always gets its output and has the power to decide whether or not the honest parties
also get output. An intermediate notion that we call “partial fairness” singles out a specified party
such that if this specified party is honest then complete fairness is achieved. On the other hand, if
the specified party is corrupt, then no fairness is achieved. Thus, fairness is partial.

1.2 Feasibility of secure computation

Wide-reaching results, demonstrating the feasibility of secure computation were also presented in
the late 80’s. The most central of these are as follows:

1. For t < n/3, secure multi-party protocols with complete fairness (and guaranteed output
delivery), can be achieved in a point-to-point network and without any setup assumptions.
This can be achieved both in the information theoretic setting assuming private channels
[4, 10], and in the computational setting (assuming the existence of trapdoor permutations).1

2. For t < n/2, secure multi-party protocols with complete fairness (and guaranteed output de-
livery) can be achieved assuming the existence of a broadcast channel. This can be achieved
in the infomation theoretic setting [28] and in the computational setting [18] with the same as-
sumptions as above. Alternatively, without assuming a broadcast channel, it can be achieved
in a point to point network assuming a trusted pre-processing phase for setting up a public-key
infrastructure (which is then used for running authenticated Byzantine Agreement).

3. For t ≥ n/2, secure multi-party protocols with partial fairness can be achieved assuming
a broadcast channel or a trusted pre-processing phase (as in case (2)), and in addition the
existence of oblivious transfer [18, 20, 21]. Some works attempting to provide higher levels
of fairness (e.g., ensuring that the corrupted parties progress at the same rate towards their
output as the honest parties) also appeared [29, 16, 19, 2].

We note that in this case (of t ≥ n/2) it is impossible to guarantee output delivery (even
given a broadcast channel). Therefore, this property is not required (and some parties may
not receive output at all).

We note that all of the above results consider a stand-alone execution of a multi-party protocol
only.

1.3 Byzantine agreement and secure computation

There is a close connection between Byzantine agreement and secure multi-party computation.
First, Byzantine agreement (or broadcast) is used as a basic and central tool in the construction of
secure protocols. In particular, all the feasibility results above assume a broadcast channel (and im-
plement it using Byzantine agreement or authenticated Byzantine agreement). Second, Byzantine
agreement is actually a special case of secure computation (this holds by the standard definition

1The protocol of [18] uses oblivious transfer which can in turn be constructed from trapdoor permutations. Alter-
natively, one can transform the protocol of [4] to the computational model by encrypting all messages sent between
players with public-key encryption. This transformation assumes the existence of public-key encryption only.
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taken for the case that t < n/2 where output delivery is guaranteed). Therefore, all the lower
bounds relating to Byzantine agreement immediately apply to secure multi-party computation. In
particular, the Byzantine agreement problem cannot be solved for any t ≥ n/3 [26]. Thus, it is
also impossible to achieve secure computation with guaranteed output delivery in a point-to-point
network for t ≥ n/3. On the other hand, for t < n/2 it is possible to obtain secure computation
with guaranteed output delivery assuming a broadcast channel. This means that in order to achieve
such secure computation for the range of n/3 ≤ t < n/2, either a physical broadcast channel or a
trusted pre-processing phase for running authenticated Byzantine agreement must be assumed.

More recently, it was shown that authenticated Byzantine agreement cannot be composed (con-
currently or even in parallel), unless t < n/3 [24]. This has the following ramifications. On the one
hand, in the range of n/3 ≤ t < n/2, it is impossible to obtain secure computation that composes
without using a physical broadcast channel. This is because such a protocol in the point-to-point
network model and with trusted pre-processing would imply authenticated Byzantine agreement
that composes. On the other hand, as we have mentioned, in the range of t ≥ n/2 the definitions of
secure computation do not imply Byzantine agreement. Nevertheless, all protocols for secure com-
putation in this range make extensive use of a broadcast primitive. The impossibility of composing
authenticated Byzantine agreement puts this whole body of work into question when composition is
required. Specifically without using a physical broadcast channel, none of these protocols compose
(even in parallel). In summary, the current state of affairs is that there are no protocols for secure
computation in a point-to-point network that compose in parallel or concurrently, for any t ≥ n/3.
Needless to say, the requirement of a physical broadcast channel is very undesirable (and often
unrealistic).

1.4 Our Results

We present a mild relaxation of the standard definition of secure multi-party computation that
decouples the issue of agreement from the issue of secure multi-party computation. In particular,
our definition focuses on the central issues of privacy and correctness. Loosely speaking, our
definition is different in the following way. As we have mentioned, for the case of t ≥ n/2, it is
impossible to guarantee output delivery and therefore some parties may conclude with a special
abort symbol ⊥, and not with their output. Previously [17], it was required that either all honest
parties receive their outputs or all honest parties output ⊥.2 Thus the parties all agree on whether
or not output was received. On the other hand, in our definition some honest parties may receive
output while some receive ⊥, and the requirement of agreement is removed. We stress that this is
the only difference between our definition and the previous ones.

We show that it is possible to achieve secure computation according to the new definition for
any t < n and without a broadcast channel or setup assumption (assuming the same computational
assumptions made, if any, by corresponding protocols that did use broadcast channels.) Thus, the
lower bounds for Byzantine agreement indeed do not imply lower bounds for secure multi-party
computation. We note that our result holds in both the information theoretic and the computational
models.

A hierarchy of definitions. In order to describe our results in more detail, we present a hier-
archy of definitions for secure computation. All the definition fulfill the properties of privacy and

2We note that in private communication, Goldreich stated that the requirement in [17] of having all parties abort
or all parties receive output was only made in order to simplify the definition.
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correctness. The hierarchy that we present here relates to the issues of abort (or failure to receive
output) and fairness.

1. Secure computation without abort: According to this definition, all parties are guaranteed to
receive their output. (This is what we previously called “guaranteed output delivery”.) This
is the standard definition for the case of honest majority (i.e., t < n/2). Since all honest
parties receive output, complete fairness is always obtained here.

2. Secure computation with unanimous abort: In this definition, it is ensured that either all hon-
est parties receive their outputs or all honest parties abort. This definition can be considered
with different levels of fairness:

(a) Complete fairness: Recall that when complete fairness is achieved, the honest parties
are guaranteed to receive output if the adversary does. Thus, here one of two cases
can occur. Either all parties receive output or all parties abort. Thus, the adversary
can conduct a denial of service attack, but nothing else. (This definition can only be
achieved in the case of t < n/2.)

(b) Partial fairness: As in the case of complete fairness, the adversary may disrupt the
computation and cause the honest parties to abort without receiving their prescribed
output. However, unlike above, the adversary may receive the corrupted parties’ outputs,
even if the honest parties abort (and thus the abort is not always fair). In particular, the
protocol specifies a single party such that the following holds. If this party is honest, then
complete fairness is essentially achieved (i.e., either all parties abort or all parties receive
correct output). On the other hand, if the specified party is corrupt, then fairness may
be violated. That is, the adversary receives the corrupted parties’ outputs first, and then
decides whether or not the honest parties all receive their correct output or all receive
abort (and thus the adversary may receive output while the honest parties do not).
Although fairness is only guaranteed in the case that the specified party is not corrupted,
there are applications where this feature may be of importance. For example, in a sce-
nario where one of the parties may be “more trusted” than others (yet not too trusted),
it may be of advantage to make this party the specified party. Another setting where
this can be of advantage is one where all the participating parties are trusted. However,
the problem that may arise is that of an external party “hacking” into the machine of
one of the parties. In such a case, it may be possible to provide additional protection to
the specified party.

(c) No fairness: This is the same as in the case of partial fairness except that the adversary
always receives the corrupted parties’ outputs first (i.e., there is no specified party).

We stress that in all the above three definitions, if one honest party aborts then so do all honest
parties, and thus all are aware of the fact that the protocol did not successfully terminate.
This feature of having all parties succeed or fail together may be an important one in some
applications.

3. Secure computation with abort: The only difference between this definition and the one imme-
diately preceding it, is that some honest parties may receive output while others abort. That
is, the requirement of unanimity with respect to abort is removed. This yields two different
definitions, depending on whether partial fairness or no fairness is taken. (Complete fairness
is not considered here because it only makes sense in a setting where all the parties, including
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the corrupted parties, either all receive output or all abort. Therefore, it is not relevant in
the setting of secure computation with non-unanimous abort.)

Using the above terminology, the definition proposed by Goldreich [17] for the case of any t < n is
that of secure computation with unanimous abort and partial fairness. Our new definition is that
of secure computation with abort, and as we have mentioned, its key feature is a decoupling of the
issues of secure computation and agreement (or unanimity).

Achieving secure computation with abort. Using the terminology introduced above, our
results show that secure computation with abort and partial fairness can be achieved for any t < n,
and without a broadcast channel or a trusted pre-processing phase. We achieve this result in the
following way. First, we define a weak variant of the Byzantine Generals problem, called broadcast
with abort, in which not all parties are guaranteed to receive the broadcasted value. In particular,
there exists a single value x such that every party either outputs x or aborts. Furthermore, when
the broadcasting party is honest, the value x equals its input, similarly to the validity condition of
Byzantine Generals. (Notice that in this variant, the parties do not necessarily agree on the output
since some may output x while others abort.) We call this “broadcast with abort” because as
with secure computation with abort, some parties may output x while other honest parties abort.
We show how to achieve this type of broadcast with a simple deterministic protocol that runs in
2 rounds. Secure multi-party computation is then achieved by replacing the broadcast channel
in known protocols with a broadcast with abort protocol. Despite the weak nature of agreement
in this broadcast protocol, it is nevertheless enough for achieving secure multi-party computation
with abort. Since our broadcast with abort protocol runs in only 2 rounds, we also obtain a very
efficient transformation of protocols that work with a broadcast channel into protocols that require
only a point-to-point network. In summary, we obtain the following theorem:

Theorem 1.1 (efficient transformation): There exists an efficient protocol compiler that receives
any protocol Π for the broadcast model and outputs a protocol Π′ for the point-to-point model such
that the following holds: If Π securely computes a functionality f with unanimous abort and with
any level of fairness, then Π′ securely computes f with abort and with no fairness. Furthermore,
if Π tolerates up to t corruptions and runs for R rounds, then Π′ tolerates up to t corruptions and
runs for O(R) rounds.

Notice that in the transformation of Theorem 1.1, protocol Π′ does not achieve complete fairness
or partial fairness, even if Π did. Thus, fairness may be lost in the transformation. Nevertheless,
meaningful secure computation is still obtained and at virtually no additional cost.

When obtaining some level of fairness is important, Theorem 1.1 does not provide a solution.
We show that partial fairness can be obtained without a broadcast channel for the range of t ≥ n/2
(recall that complete fairness cannot be obtained in this range, even with broadcast). That is, we
prove the following theorem:

Theorem 1.2 (partial fairness): For any probabilistic polynomial-time n-party functionality f ,
there exists a protocol in the point-to-point model for computing f that is secure with abort, partially
fair and tolerates any t < n corruptions.

The theorem is proved by first showing that fairness can be boosted in the point-to-point model.
That is, given a generic protocol for secure multi-party computation that achieves no fairness, one
can construct a generic protocol for secure multi-party computation that achieves partial fairness.
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(Loosely speaking, a generic protocol is one that can be used to securely compute any efficient
functionality.) Applying Theorem 1.1 to known protocols for the broadcast model, we obtain secure
multi-party computation that achieves no fairness. Then, using the above “fairness boosting”, we
obtain Theorem 1.2. We note that the round complexity of the resulting protocol is of the same
order of the “best” generic protocol that works in the broadcast model. In particular, based on
the protocol of Beaver et al. [3], we obtain the first constant-round protocol in the point-to-point
network for the range of n/3 ≤ t < n/2.3 That is:

Corollary 1.3 (constant round protocols without broadcast for t < n/2): Assume that there exist
public-key encryption schemes (or, alternatively, assume the existence of one-way functions and a
model with private channels). Then, for every probabilistic polynomial-time functionality f , there
exists a constant round protocol in the point-to-point network for computing f that is secure with
abort, partially fair and tolerates t < n/2 corruptions.

Composition of secure multi-party protocols. An important corollary of our result is the
ability to obtain secure multi-party protocols for t > n/3 that compose in parallel or concurrently,
without a broadcast channel. Until now, it was not known how to achieve such composition. This
is because previously the broadcast channel in multi-party protocols was replaced by authenticated
Byzantine agreement, and by [24] authenticated Byzantine Agreement does not compose even in
parallel. (Authenticated Byzantine agreement was used because for t > n/3 standard Byzantine
agreement cannot be applied.) Since we do not need to use authenticated Byzantine agreement to
obtain secure computation, we succeed in bypassing this problem.

Recently, Canetti [6] proposed a new framework for multi-party computation that guarantees
security in a general setting where many arbitrary protocols are running concurrently. Protocols
that fulfill this new definition are called “universally composable”. Canetti also proposed studying
a communication model where the adversary can block messages sent by the honest parties. In this
model, universally composable multi-party computation for any t < n was demonstrated, using a
broadcast channel and a common reference string [9]. We show that the broadcast channel used
in [9] can be replaced by our “broadcast with abort” protocol. Therefore, universally composable
multi-party computation can be obtained in the point-to-point model for any t < n and only
assuming the existence of a common reference string. (We stress that this result does not hold in
the standard model where delivery of messages is guaranteed.)

Discussion. We propose that the basic definition of secure computation should focus on the issues
of privacy and correctness (and independence of inputs). In contrast, the property of agreement
should be treated as an additional, and not central, feature. The benefit of taking such a position
(irrespective of whether one is convinced conceptually) is that the feasibility of secure computation
is completely decoupled from the feasibility of Byzantine agreement. Thus, the lower bounds
relating to Byzantine agreement (and authenticated Byzantine agreement) do not imply anything
regarding secure computation. Indeed, as we show, “broadcast with abort” is sufficient for secure
computation. However, it lacks any flavor of agreement in the classical sense. This brings us
to an important observation. Usually, proving a lower bound for a special case casts light on the
difficulties in solving the general problem. However, in the case of secure computation this is not the
case. Rather, the fact that the lower bounds of Byzantine agreement apply to secure computation

3For the range of t < n/3, the broadcast channel in the protocol of [3] can be replaced by the expected constant-
round Byzantine agreement protocol of Feldman and Micali [12]. However, there is no known authenticated Byzantine
agreement protocol with analogous round complexity.
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is due to marginal issues relating to unanimity regarding the delivery of outputs, and not due to
the main issues of security.

1.5 Related Work

We have recently learned of two independent and concurrent results [14, 15] studying a problem
similar to ours, although apparently for different motivation.4 In [14], Fitzi et al. study the question
of multi-party computation in the case that the number of faults is t < n/2. They show that in
this case, it is possible to achieve weak Byzantine agreement (where loosely speaking, either all
honest parties abort or all honest parties agree on the broadcasted value). (We note that their
protocol is probabilistic and “breaks” the t < n/3 lower-bound on deterministic weak Byzantine
Agreement protocols of Lamport [22].) They further show how this can be used in order to obtain
secure computation with unanimous abort and complete fairness for the case of t < n/2. Thus for
the range of n/2 ≤ t < n/3 their solution achieves complete fairness whereas ours achieves only
partial fairness.

In subsequent work [15], Fitzi et al. studied the question of Byzantine agreement for any t < n
and whether its relaxation to weak Byzantine Agreement can be achieved without preprocessing.
They show that it is indeed possible to achieve (randomized) weak Byzantine Agreement for any
t < n, in O(t) rounds. They also show how their weak Byzantine Agreement protocol can be used
to obtain secure computation with unanimous abort and partial fairness for any t < n.

In comparison, we achieve secure computation with (non-unanimous) abort and partial fairness
for any t < n. However, our focus is different. In particular, our results emphasize the fact that the
issue of agreement is not central to the task of secure computation. Furthermore, removing this
requirement enables us to remove the broadcast channel with almost no cost. This also results in
our obtaining a round-preserving transformation of secure protocols in the broadcast model to those
in the point-to-point model. This is in contrast to [14, 15] who use their weak Byzantine agreement
protocol in order to setup a public-key infrastructure for authenticated Byzantine agreement. They
therefore incur the cost of setting up this infrastructure along with a cost of t + 1 rounds for
simulating every broadcast in the original protocol. Our protocols are therefore significantly more
round efficient.5 Finally we note that we can use the weak Byzantine Agreement protocol of [15]
to transform any generic r-round protocol for secure computation with abort into an (r+t)-round
protocol with unanimous abort (and the same level of fairness). This is achieved by having the
parties broadcast whether they received outputs or not after the protocol with abort concludes.
It is enough to use weak Byzantine agreement for this broadcast. We therefore reduce the O(tr)
round complexity of [15] to O(r+t), while achieving the same level of security.

Recall that Canetti in [6] introduced a communication model where the adversary has control
over the delivery of messages. Essentially, this definition also decouples secure computation from
agreement because parties are never guaranteed to get output. In particular, the adversary is
allowed to deliver output to whomever it wishes, and only these parties will ever receive output.
However, the motivation of [6] is different; it aims to decouple the issue of guaranteed output

4We were informed of this work while presenting our work at a seminar at MIT, February 14 2002.
5We note one subtle, yet important caveat. Given a generic protocol for secure computation that uses a broadcast

channel and runs for r rounds, we obtain an O(r)-round protocol that is secure with abort and partially fair (this
is in contrast to the O(tr) round complexity of [14, 15]). However, given a protocol that solves a specific secure
computation problem, our transformation does not achieve partial fairness. In order to achieve partial fairness, we
must revert to a generic protocol. On the other hand, the transformation of [14, 15] works for any protocol. Thus,
given a very efficient protocol for a specific problem that achieves partial fairness, it may be “cheaper” to use [14, 15]
rather than our results.
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delivery from the main issues of secure computation. On the other hand, we focus on the question
of agreement by the parties on whether or not output was delivered.

2 Definitions – Secure Computation

In this section we present definitions for secure multi-party computation. The basic description and
definitions are based on [17], which in turn follows [19, 1, 25, 5]. We actually consider a number of
definitions here. In particular, we present formal definitions for secure computation with unanimous
abort and with abort, with complete fairness, partial fairness, and no fairness. In addition, we refer
to secure computation without abort. This is the standard definition used when more than half the
parties are honest. According to this definition, all parties receive the output and the adversary
cannot disrupt the computation. However, we will not formally present this definition here.

Notation: We denote by Uk the uniform distribution over {0, 1}k; for a set S we denote s ∈R S

when s is chosen uniformly from S; finally, computational indistinguishability is denoted by
c≡ and

statistical closeness by
s≡. The security parameter is denoted by k.

Multi-party computation. A multi-party protocol problem (for n parties P1, . . . , Pn) is cast by
specifying a random process that maps vectors of inputs to vectors of outputs (one for each party).
We refer to such a process as an n-ary functionality and denote it f : ({0, 1}∗)n → ({0, 1}∗)n, where
f = (f1, . . . , fn). That is, for a vector of inputs x = (x1, . . . , xn), the output-vector is a random
variable (f1(x), . . . , fn(x)) ranging over vectors of strings. The output for the ith party (with input
xi) is defined to be fi(x).

Adversarial behavior. Loosely speaking, the aim of a secure multi-party protocol is to protect
the honest parties against dishonest behavior from the corrupted parties. This “dishonest behavior”
can manifest itself in a number of ways; in this paper we focus on malicious adversaries. Such
an adversary may arbitrarily deviate from the specified protocol. When considering malicious
adversaries, there are certain undesirable actions that cannot be prevented. Specifically, parties
may refuse to participate in the protocol, may substitute their local input (and enter with a different
input) and may cease participating in the protocol before it terminates.

Formally, the adversary is modeled by a non-uniform Turing machine: in the computational
model this machine is polynomial-time whereas in the information-theoretic model it is unbounded.
(We note that by standard arguments, we can assume that the adversary is deterministic.) For
simplicity, in this work we consider a static corruption model. Therefore, at the beginning of the
execution, the adversary is given a set I of corrupted parties which it controls. Then, throughout
the computation, the adversary obtains the views of the corrupted parties, and provides them with
the messages that they are to send.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in the protocol to what it can do in an ideal scenario that is secure by definition.
This is formalized by considering an ideal computation involving an incorruptible trusted party to
whom the parties send their inputs. The trusted party computes the functionality on the inputs and
returns to each party its respective output. Loosely speaking, a protocol is secure if any adversary
interacting in the real protocol (where no trusted party exists) can do no more harm than if it
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was involved in the above-described ideal computation. We begin by formally defining this ideal
computation.

2.1 Execution in the ideal model

The ideal model differs for each of the definitions. We therefore present each one separately (see
Section 1.4 for an outline of the different definitions).

1. Secure computation with unanimous abort and complete fairness: This definition
requires complete fairness. That is, either all parties (including the corrupted parties) receive output
or all parties abort. Therefore, the abort is also unanimous. We note that this definition is only
achievable when the number of corrupted parties is less than n/2 (i.e., |I| < n/2), even assuming
a broadcast channel. Recall that a malicious party can always substitute its input or refuse to
participate. Therefore, the ideal model takes these inherent adversarial behaviors into account; i.e.,
by giving the adversary the ability to do this also in the ideal model. An ideal execution proceeds
as follows:

Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xn).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified values
x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the trusted
party by x′ = (x′1, . . . , x′n) (for honest parties, x′ = x always).

Trusted party answers the parties: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends fi(x′) to party Pi for every i. Otherwise (i.e., in case a corrupted party
aborted or sent a non-valid input), the trusted party replies to all parties with a special abort
symbol ⊥.

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, λ). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {xi}i∈I and the messages the corrupted
parties received from the trusted party.

Definition 1 (ideal-model computation with unanimous abort and complete fairness): Let f :
({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such
that for every i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then,
the joint execution of f under (A, I) in the ideal model on input vector x = (x1, . . . , xn), denoted
ideal

(1)
f,(A,I)(x), is defined as the output vector of P1, . . . , Pn and A resulting from the above described

ideal process.

2. Secure computation with unanimous abort and partial fairness: As before, a malicious
party can always substitute its input or refuse to participate. However, when there are a half or
less honest parties, it is not possible to continue computing in the case that the adversary ceases
prematurely (this definition is usually used when the number of corrupted parties is not limited in
any way). Thus, we cannot prevent the “early abort” phenomenon in which the adversary receives
its output, whereas the honest parties do not receive theirs. Nevertheless, party P1 is specified
so that if it is honest, then complete fairness is achieved. In contrast, if it corrupted, then the
adversary receives the corrupted parties’ outputs first and then can decide whether or not the
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honest parties receive output or abort. We note that the abort is unanimous and thus if one honest
party aborts, then so do all honest parties. An ideal execution proceeds as follows:

Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xn).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified values
x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the trusted
party by x′ = (x′1, . . . , x′n) (for honest parties, x′ = x always).

Trusted party answers first party: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends f1(x′) to party P1. Otherwise (i.e., in case a corrupted party aborted or sent
a non-valid input), the trusted party replies to all parties with a special symbol, ⊥.

Trusted party answers remaining parties: If the first party is not corrupted (i.e., 1 6∈ I), then the
trusted party sends fj(x′) to party Pj , for every j.

In case the first party is corrupted, then for every i ∈ I, the trusted party sends fi(x) to
party Pi (i.e., the corrupted parties receive their outputs first). Then P1, depending on the
views of all the corrupted parties and controlled by the adversary, instructs the trusted party
to either send fj(x′) to Pj for every j 6∈ I, or to send ⊥ to Pj for every j 6∈ I.6

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, λ). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {xi}i∈I and the messages the corrupted
parties received from the trusted party.

Definition 2 (ideal-model computation with unanimous abort and partial fairness): Let f :
({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be
such that for every i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then,
the joint execution of f under (A, I) in the ideal model on input vector x = (x1, . . . , xn), denoted
ideal

(2)
f,(A,I)(x), is defined as the output vector of P1, . . . , Pn and A resulting from the above de-

scribed ideal process.

3. Secure computation with unanimous abort and no fairness: This definition is very
similar to the previous one, except that there is no specified party. Rather, the adversary first
receives the output of the corrupted parties. Then, it decides whether all the honest parties receive
output or they all abort. Formally,

Inputs: Each party obtains its respective input from the input vector x = (x1, . . . , xn).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {xi}i∈I , either abort or send modified values
x′i ∈ {0, 1}|xi| to the trusted party. Denote the sequence of inputs obtained by the trusted
party by x′ = (x′1, . . . , x′n) (for honest parties, x′ = x always).

6An equivalent definition to this one says that P1 always instructs the trusted party to send the outputs or ⊥.
However, an honest P1 always instructs the trusted party to provide all parties with outputs. In contrast, a corrupted
party can decide whatever it wishes.
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Trusted party answers adversary: In case x′ is a valid input sequence, the trusted party computes
f(x′) and sends fi(x′) to party Pi for every i ∈ I. Otherwise (i.e., in case a corrupted party
aborted or sent a non-valid input), the trusted party replies to all parties with a special
symbol, ⊥.

Trusted party answers remaining parties: The adversary, depending on the views of all the cor-
rupted parties, instructs the trusted party to either send fj(x′) to Pj for every j 6∈ I, or to
send ⊥ to Pj for every j 6∈ I.

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, λ). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {xi}i∈I and the messages the corrupted
parties received from the trusted party.

Definition 3 (ideal-model computation with unanimous abort and no fairness): Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such that for every
i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then, the joint execution

of f under (A, I) in the ideal model on input vector x = (x1, . . . , xn), denoted ideal
(3)
f,(A,I)(x), is

defined as the output vector of P1, . . . , Pn and A resulting from the above described ideal process.

The above three definitions all relate to the case of secure computation with unanimous abort. We
now present the analogous definitions for the case of secure computation with abort. The only
difference between the definitions is regarding the “trusted party answers remaining parties” item.
In the above definitions all honest parties either receive their output or they receive ⊥. However,
here some of these parties may receive their (correct) output and some may receive ⊥. We only
present definitions for partial and no fairness (complete fairness only makes sense if all parties,
including the adversary, either receive their outputs or ⊥).

4. Secure computation with abort and partial fairness: As we have mentioned, the only
difference between this definition and the analogous definition with unanimous abort is that if
party P1 is corrupted, then it may designate who does and does not receive output. We repeat
only the relevant item:

Trusted party answers remaining parties: If the first party is not corrupted (i.e., 1 6∈ I), then the
trusted party sends fj(x′) to party Pj , for every j.

In case the first party is corrupted, then for every i ∈ I, the trusted party sends fi(x′) to Pi

(i.e., the corrupted parties receive their output first). Then P1, depending on the views of all
the corrupted parties and controlled by the adversary, chooses a subset of the honest parties
J ⊆ [n] \ I and sends J to the trusted party. The trusted party then sends fj(x′) to Pj for
every j ∈ J , and ⊥ to all other honest parties.

Definition 4 (ideal-model computation with abort and partial fairness): Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such that for every
i ∈ I, the adversary A controls Pi (this is the set of corrupted parties). Then, the joint execution

of f under (A, I) in the ideal model on input vector x = (x1, . . . , xn), denoted ideal
(4)
f,(A,I)(x), is

defined as the output vector of P1, . . . , Pn and A resulting from the above described ideal process.
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5. Secure computation with abort and no fairness: This definition is very similar to the
previous one, except that the first party P1 does not receive its output first. Rather, the adversary
always receives the output of the corrupted parties first. Then, it designates which honest parties
receive their output and which receive ⊥. We repeat only the relevant item:

Trusted party answers remaining parties: The adversary, depending on the views of all the cor-
rupted parties, chooses a subset of the honest parties J ⊆ [n] \ I and sends J to the trusted
party. The trusted party then sends fj(x′) to Pj for every j ∈ J , and ⊥ to all other honest
parties.

Definition 5 (ideal-model computation with abort and no fairness): Let f : ({0, 1}∗)n → ({0, 1}∗)n

be an n-ary functionality, where f = (f1, . . . , fn), and let I ⊂ [n] be such that for every i ∈ I, the
adversary A controls Pi (this is the set of corrupted parties). Then, the joint execution of f under

(A, I) in the ideal model on input vector x = (x1, . . . , xn), denoted ideal
(5)
f,(A,I)(x), is defined as the

output vector of P1, . . . , Pn and A resulting from the above described ideal process.

2.2 Execution in the real model

We now define a real model execution. In the real model, the parties execute the protocol in a
synchronous network with rushing. That is, the execution proceeds in rounds: each round consists
of a send phase (where parties send their message from this round) followed by a receive phase
(where they receive messages from other parties). We stress that the messages sent by an honest
party in a given round depend on the messages that it received in previous rounds only. On the
other hand, the adversary can compute its messages in a given round based on the messages that
it receives from the honest parties in the same round. The term rushing refers to this additional
adversarial capability.

In this work, we consider a scenario where the parties are connected via a fully connected point-
to-point network (and there is no broadcast channel). We refer to this model as the point-to-point
model (in contrast to the broadcast model where the parties are given access to a physical broadcast
channel in addition to the point-to-point network). The communication lines between parties are
assumed to be ideally authenticated and private (and thus the adversary cannot modify or read
messages sent between two honest parties).7 In the basic model, we assume that any message sent
by an honest party to another honest party is received immediately. However, we also consider a
model in which the adversary has control over the delivery of messages. That is, in every round, the
adversary can decide to block (i.e., not deliver) some or all of the messages sent between the honest
parties.8 (We stress that since the communication lines are authenticated and private, the only
thing that the adversary can do is prevent a message from being sent.) This model of communication
is the main model used by Canetti [6] in his work on universally composable security. Finally, we
note that we do not assume a preprocessing setup phase.9

7We note that when the parties are assumed to be computationally bounded, privacy can be achieved over
authenticated channels by using public-key encryption. Therefore, in such a setting, the requirement that the channels
be private is not essential. However, we include it for simplicity.

8This capability models the following network scenario. All parties communicate on an open network, while
encrypting and authenticating all messages sent. Therefore, the adversary cannot read or modify any message sent
between honest parties. However, assume that the adversary has control over routing servers in the network. Then,
even if it cannot read or modify communications, it can always block them.

9One can argue that achieving authenticated and private channels in practice essentially requires a trusted pre-
processing phase for setting up a public-key infrastructure. Therefore, there is no reason not to utilize this prepro-
cessing phase in the secure multi-party computation as well. In such a case, the preprocessing phase could be used
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Throughout the execution, the honest parties all follow the instructions of the prescribed pro-
tocol, whereas the corrupted parties receive their (arbitrary) instructions from the adversary. Like-
wise, at the conclusion of the execution, the honest parties output their prescribed output from the
protocol, whereas the corrupted parties output nothing. On the other hand, the adversary outputs
an arbitrary function of its view of the computation (which contains the views of all the corrupted
parties). Without loss of generality, we assume that the adversary always outputs its view (and
not some function of it). Formally,

Definition 6 (real-model execution): Let f be an n-ary functionality and let Π be a multi-party
protocol for computing f . Furthermore, let I ⊂ [n] be such that for every i ∈ I, the adversary A
controls Pi (this is the set of corrupted parties). Then, the joint execution of Π under (A, I) in the
real model on input vector x = (x1, . . . , xn), denoted realΠ,(A,I)(x), is defined as the output vector
of P1, . . . , Pn and A resulting from the protocol interaction, where for every i ∈ I, party Pi computes
its messages according to A, and for every j 6∈ I, party Pj computes its messages according to Π.

2.3 Security as emulation of a real execution in the ideal model

Having defined the ideal and real models, we can now define security of protocols. Loosely speaking,
the definition asserts that the adversary can do no more harm in a real protocol execution that in
the ideal model (where security trivially holds). This is formulated by saying that adversaries in
the ideal model are able to simulate adversaries in an execution of a secure real-model protocol.
The definition of security comes in two flavors. In the first, we consider polynomial-time bounded
adversaries, and require that the simulation be such that the real-model and ideal-model output
distributions are computationally indistinguishable. On the other hand, in the second, we consider
unbounded adversaries and require that the simulation be such that the output distributions of the
two models are statistically close.

Definition 7 (computational security): Let f and Π be as above. We say that protocol Π is
a protocol for computational t-secure computation with unanimous abort (resp., with abort) and
with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniform
polynomial-time adversary A for the real model, there exists a non-uniform polynomial-time adver-
sary S for the ideal model, such that for every I ⊂ [n] with |I| < t,

{ideal
(α)
f,(S,I)(x)}k∈N,x∈({0,1}k)n

c≡ {realΠ,(A,I)(x)}k∈N,x∈({0,1}k)n

where the value of α ∈ {1, 2, 3, 4, 5} depends on whether secure computation with unanimous abort
or with abort is being considered, and whether complete fairness, partial fairness or no fairness is
required.

Definition 8 (information-theoretic security): Let f and Π be as above. We say that protocol Π
is a protocol for information-theoretic t-secure computation with unanimous abort (resp., with abort)
and with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniform

in order to implement authenticated Byzantine Agreement (and thereby achieve secure broadcast for any number
of corrupted parties). However, we claim that the issue of achieving “secure communication channels” should be
separated from the issue of achieving “secure broadcast”. An example of why this is important was demonstrated
in [24], who showed that authenticated Byzantine Agreement does not compose (in parallel or concurrently) when
2/3 or less of the parties are honest. On the other hand, secure channels can be achieved without any limitation on
the protocol using them [8]; in particular, without restrictions on composability and the number of faults.
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adversary A for the real model, there exists a non-uniform adversary S for the ideal model such
that for every I ⊂ [n] with |I| < t,

{ideal
(α)
f,(S,I)(x)}k∈N,x∈({0,1}k)n

s≡ {realΠ,(A,I)(x)}k∈N,x∈({0,1}k)n

where the value of α ∈ {1, 2, 3, 4, 5} depends on whether secure computation with unanimous abort
or with abort is being considered, and whether complete fairness, partial fairness or no fairness is
required.

3 Broadcast with Abort

In this section, we present a weak variant of the Byzantine Generals problem, that we call “broadcast
with abort”. The main idea is to weaken both the agreement and validity requirements so that some
parties may output the broadcast value x while others output ⊥. Formally,

Definition 9 (broadcast with abort): Let P1, . . . , Pn, be n parties and let P1 be the dealer with
input x. In addition, let A be an adversary who controls up to t of the parties (which may include
P1). A protocol solves the broadcast with abort problem, tolerating t corruptions, if for any adversary
A the following three properties hold:

1. Agreement: If an honest party outputs x′, then all honest parties output either x′ or ⊥.

2. Validity: If P1 is honest, then all honest parties output either x or ⊥.

3. Non-triviality: If all parties are honest, then all parties output x.

(The non-triviality requirement is needed to rule out a protocol in which all parties simply output ⊥
and halt.) We now present a simple protocol that solves the broadcast with abort problem for any
t. As we will see later, despite its simplicity, this protocol suffices for obtaining secure computation
with abort.

Protocol 1 (broadcast with abort):
• Input: P1 has a value x to broadcast.

• The Protocol:

1. P1 sends x to all parties.

2. Denote by xi the value received by Pi from P1 in the previous round. Then, every party Pi

(for i > 1) sends its value xi to all other parties.

3. Denote the value received by Pi from Pj in the previous round by xi
j (recall that xi denotes

the value Pi received from P1 in the first round). Then, Pi outputs xi if this is the only
value that it saw (i.e., if xi = xi

2 = · · · = xi
n). Otherwise, it outputs ⊥.

We note that if Pi did not receive any value in the first round, then it always outputs ⊥.

We now prove that Protocol 1 is secure, for any number of corrupted parties. That is,

Proposition 3.1 Protocol 1 solves the broadcast with abort problem, and tolerates any t < n
corruptions.
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Proof: The fact that the non-triviality condition is fulfilled is immediate. We now prove the other
two conditions:

1. Agreement: Let Pi be an honest party, such that Pi outputs a value x′. Then, it must be
that Pi received x′ from P1 in the first round (i.e., xi = x′). Therefore, Pi sent this value to
all other parties in the second round. Now, a party Pj will output xj if this is the only value
that it saw during the execution. However, as we have just seen, Pj definitely saw x′ in the
second round. Thus, Pj will only output xj if xj = x′. On the other hand, if Pj does not
output xj , then it outputs ⊥.

2. Validity: If P1 is honest, then all parties receive x in the first round. Therefore, they will
only output x or ⊥.

This completes the proof.

3.1 Strengthening Broadcast with Abort

A natural question to ask is whether or not we can strengthen Definition 9 in one of the following
two ways (and still obtain a protocol for t ≥ n/3):

1. Strengthen the agreement requirement: If an honest party outputs a value x′, then all honest
parties output x′. (On the other hand, the validity requirement remains unchanged.)

2. Strengthen the validity requirement: If P1 is honest, then all honest parties output x. (On the
other hand, the agreement requirement remains unchanged.)

It is easy to see that the above strengthening of the agreement requirement results in the definition
of weak Byzantine Generals. (The validity and non-triviality requirements combined together are
equivalent to the validity requirement of weak Byzantine Generals.) Therefore, there exists no
deterministic protocol for the case of t ≥ n/3. For what can be done if one utilizes probabilistic
protocols, see the section on recent related work in the introduction. Regarding the strengthening
of the validity requirement, the resulting definition implies a problem known as “Crusader Agree-
ment”. This was shown to be unachievable for any t ≥ n/3 by Dolev in [11]. We therefore conclude
that the “broadcast with abort” requirements cannot be strengthened in either of the above two
ways (for deterministic protocols), without incurring a t < n/3 lower bound.

3.2 Universally Composable Broadcast

In this section, we consider a different real model in which the adversary has control over the
delivery of messages. We note that because the network is synchronous, the adversary cannot
deliver a message late (i.e., no round r message can be sent in round r′ for r′ > r). The only
additional capability that it is given is to block messages sent between honest parties.

In this section we show that it is possible to realize an ideal broadcast functionality in a uni-
versally composable way within the above-described model, for any t < n. Essentially this means
that any protocol that uses a broadcast channel can be implemented in the point-to-point model
while achieving the same result. An important corollary of this result is the existence of universally
composable multi-party computation with t ≥ n/3, in a point-to-point network. This corollary
is obtained by applying our secure realization of broadcast with known universally composable
multi-party protocols. See Appendix A for an overview of the universal composition framework.

The ideal broadcast functionality is defined in Figure 1.
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Functionality Fbc

Fbc proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

• Upon receiving a message (broadcast, x) from Pi, send (broadcast, Pi, x) to all parties and to S.

Figure 1: The ideal broadcast functionality

We now present our protocol for securely realizing universally composable broadcast. This protocol
is a slightly modified version of Protocol 1:

Protocol 2 (universally composable broadcast):
• Input: Pi has input (broadcast, sid, x).10

• The Protocol:

1. Pi sends (sid, x) to all parties.

2. Denote by xj the value received by Pj in the previous round. Then, every party Pj (for
j 6= i) sends its value (sid, xj) to all other parties.

3. Denote the value received by Pj from Pk in the previous round by xj
k (recall that xj denotes

the value Pj received from Pi in the first round). Then, Pj outputs (broadcast, sid, Pi, x
j)

if it received all the messages xj
k and this is the only value that it saw (i.e., if it received xj

k

from every Pk and it holds that xj = xj
2 = · · · = xj

n). Otherwise, it outputs nothing.
We note that if Pj did not receive any value in the first round, then it does not output
anything.

We note the difference between Protocol 2 and Protocol 1. Here, in Step 3 of the protocol, the
parties check that they received messages from all the other parties. This forces the adversary to
deliver all messages. This is needed because without this modification, honest parties receiving
different x values may be unable to notify each other (the adversary can simply not deliver any of
the messages sent between them). The main result of this section is the following proposition:

Proposition 3.2 Protocol 2 securely realizes Fbc (in the universally composable framework).

Proof: Let A be a real-model adversary attacking Protocol 2. We construct an ideal model
adversary S for A that interacts with Fbc. We differentiate between two cases: in the first the
dealer is corrupted (and thus is controlled by A), and in the second it is honest. Let Pi be the
dealer in this execution.
• Case 1 – Pi is corrupt: In the first round, A (controlling Pi) sends messages to ` of the honest

parties for some `; denote these messages by xi1 , . . . , xi` . Simulator S receives all these messages
and then simulates the messages sent by the honest parties in the second round. Furthermore,
S obtains all the messages sent by A in the second round.

Now, if there exist j and k (1 ≤ j, k ≤ `) such that xij 6= xik , then S sends nothing to Fbc.
Otherwise, let x be the message sent by A. Then, S sends x to the ideal functionality Fbc.
Next, S defines the set of honest parties to whom to deliver the output (broadcast, sid, Pi, x)

10We note that by the current formalization of universal composability, all participating parties hold a unique
and common session identifier sid. We remark that this is included for convenience and is not actually needed for
achieving universal composability.
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from Fbc. This set of parties is defined to be those to whom A delivers all the second round
messages and whose messages all contain the same x. S concludes by delivering the messages
from the Fbc functionality to these parties, and only to these parties.

• Case 2 – Pi is honest: S receives (broadcast, sid, Pi, x) from Fbc and simulates Pi’s sending x to
all the parties controlled by A. Then, S receives back messages sent by A to the honest parties.
S defines the set of parties to whom to deliver output as those who receive all the second round
messages and who only see x. Then, S delivers the messages from the Fbc functionality to these
and only to these parties.

We claim that the global output of an ideal execution with S is identically distributed to the global
output of a real execution with A. We first deal with the case that Pi is corrupt. If A sends
two different messages in round 1 (i.e., if there exist j and k such that xj 6= xk), then by the
protocol definition, all honest parties will see both xj and xk. (Here it is important that parties do
not output x unless seeing the round 2 messages of all parties.) Therefore, in a real execution all
honest parties will output nothing. This is identical to the case that S does not send anything to
Fbc in an ideal execution. In contrast, if A sends the same message x to all honest parties in the
first round, then the outputs depend on what A sends in the second round. Since S receives all
these messages from A, it can see which parties would output x and which parties would output
nothing. S thus delivers the (broadcast, ...) messages from Fbc only to the parties which would
output x in the real model. We conclude that the output is identical.

In the case that Pi is honest, A can cause honest parties to output nothing (rather than x) by
sending them messages x′ 6= x in the second round or by not delivering messages. As above, S
receives all these messages and therefore its delivery of (broadcast, ...) messages from Fbc accurately
represents exactly what happens in a real execution.

We now apply Proposition 3.2 in order to obtain universally composable secure computation without
a broadcast channel. Our first corollary relates to the scenario where a majority of the parties are
honest, but this majority may be less than 2/3 (i.e., n/3 ≤ t < n/2). In this scenario, Canetti [6]
showed that universally composable protocols exist for any functionality, assuming that the parties
interact in a synchronous network with a broadcast channel. Combining this with Proposition 3.2
we have the following:

Corollary 1 Consider a synchronous point-to-point network where the adversary controls message
delivery. Then, for any multi-party ideal functionality F , there exists a universally composable
protocol Π that securely realizes F in the presence of malicious, static adversaries, and for t < n/2
corruptions.

The next corollary relates to a setting with an honest minority. In this setting, universal compos-
ability cannot be achieved without somehow augmenting the model [7, 6]. One augmentation that
is used is that of a common reference string [7, 9]. Canetti et al. [9] show that in a synchronous
network with a broadcast channel and a common reference string, it is possible to securely compute
any functionality. Therefore, by combining this with Proposition 3.2, we have that:

Corollary 2 Consider a synchronous point-to-point network where the adversary controls message
delivery, and assume that trapdoor permutations exist. Then, for any multi-party ideal function-
ality F , there exists a universally composable protocol Π in the common reference string model,
that securely realizes F in the presence of malicious, static adversaries, and for any number of
corruptions.
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4 Secure Computation with Abort and No Fairness

In this section, we show that any protocol for secure computation (with unanimous abort and any
level of fairness) that uses a broadcast channel can be “compiled” into a protocol for the point-
to-point network that achieves secure computation with abort and no fairness. Furthermore, the
fault tolerance of the compiled protocol is the same as the original one. Actually, we assume that
the protocol is such that all parties terminate in the same round. We say that such a protocol has
simultaneous termination. Without loss of generality, we also assume that all parties generate their
output in the last round. The result of this section is formally stated in the following theorem:

Theorem 3 There exists a (polynomial-time) protocol compiler that takes any protocol Π (with
simultaneous termination) for the broadcast model, and outputs a protocol Π′ for the point-to-
point model such that the following holds: If Π is a protocol for information-theoretic (resp.,
computational) t-secure computation with unanimous abort and any level of fairness, then Π′ is
a protocol for information-theoretic (resp., computational) t-secure computation with abort and no
fairness.

Combining Theorem 3 with known protocols (specifically, [28] and [18]11), we obtain the following
corollaries:

Corollary 4 (information-theoretic security – compilation of [28]): For any probabilistic polynomial-
time n-ary functionality f , there exists a protocol in the point-to-point model, for the information-
theoretic n/2-secure computation of f with abort and no fairness.

We note that this result is optimal in the following sense. Ben-Or et al. [4] showed that there are
functions for which there do not exist information-theoretically private protocols when t ≥ n/2.
The definition of a “private” (rather than “secure”) protocol, is regarding the behavior of corrupted
parties. In a private protocol, corrupted parties follow the protocol specification, but attempt to
learn more information than intended (such adversarial behavior is known as passive or semi-
honest). Therefore, security with abort implies privacy, and this means that for information-
theoretic security, resilience of t ≥ n/2 is not possible. On the other hand, the result is not
optimal regarding fairness. (In particular, the recent [14] achieve an analogous result with complete
fairness.)

Corollary 5 (computational security – compilation of [18]): For any probabilistic polynomial-time
n-ary functionality f , there exists a protocol in the point-to-point model, for the computational
t-secure computation of f with abort and no fairness, for any t.

We now proceed to prove Theorem 3.

Proof of Theorem 3: Intuitively, we construct a protocol for the point-to-point model from
a protocol for the broadcast model, by having the parties in the point-to-point network simulate
the broadcast channel. When considering “pure” broadcast (i.e., Byzantine Generals), this is not
possible for t ≥ n/3. However, it suffices to simulate the broadcast channel using a protocol for
“broadcast with abort”. Recall that in such a protocol, either the correct value is delivered to all
parties, or some parties output ⊥. The idea is to halt the computation in the case that any honest
party receives ⊥ from a broadcast execution. The point at which the computation halts dictates

11Both the [28] and [18] protocols have simultaneous termination
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which parties (if any) receive output. The key point is that if no honest party receives ⊥, then
the broadcast with abort protocol perfectly simulates a broadcast channel. Therefore, the result is
that the original protocol (for the broadcast channel) is simulated perfectly until the point that it
may prematurely halt.

Components of the compiler:

1. Broadcast with abort executions: Each broadcast of the original protocol (using the assumed
broadcast channel) is replaced with an execution of the broadcast with abort protocol.

2. Blank rounds: Following each broadcast with abort execution, a blank round is added in
which no protocol messages are sent. Rather, these blank rounds are used by parties to notify
each other that they have received ⊥. Specifically, if a party receives ⊥ in a broadcast with
abort execution, then it sends ⊥ to all parties in the blank round that immediately follows.
Likewise, if a party receives ⊥ in a blank round, then it sends ⊥ to all parties in the next
blank round (it also does not participate in the next broadcast).

Thus each round of the original protocol is transformed into 3 rounds in the compiled protocol
(2 rounds for broadcast with abort and an additional blank round). We now proceed to formally
define the protocol compiler:

Construction 3 (protocol compiler): Given a protocol Π, the compiler produces a protocol Π′.
The specification of protocol Π′ is as follows:
• The parties use broadcast with abort in order to emulate each broadcast message of protocol Π.

Each round of Π is expanded into 3 rounds in Π′: broadcast with abort is run in the first 2
rounds, and the third round is a blank round. Point-to-point messages of Π are sent unmodified
in Π′. The parties emulate Π according to the following instructions:

1. Broadcasting messages: Let Pi be a party who is supposed to broadcast a message m in the
jth round of Π. Then, in the jth broadcast simulation of Π′ (i.e., in rounds 3j and 3j + 1
of Π′), all parties run an execution of broadcast with abort in which Pi plays the dealer
role and sends m.

2. Sending point-to-point messages: Any message that Pi is supposed to send to Pj over the
point-to-point network in the jth round of Π is sent by Pi to Pj over the point-to-point
network in round 3j of Π′.

3. Receiving messages: For each message that party Pi is supposed to receive from a broadcast
in Π, party Pi participates in an execution of broadcast with abort as a receiver. If its
output from this execution is a message m, then it appends m to its view (to be used for
determining its later steps according to Π).
If it receives ⊥ from this execution, then it sends ⊥ to all parties in the next round (i.e., in
the blank round following the execution of broadcast with abort), and halts immediately.

4. Blank rounds: If a party Pi receives ⊥ in a blank round, then it sends ⊥ to all parties in
the next blank round and halts. In the 2 rounds preceding the next blank round, Party Pi

does not send any point-to-point messages or messages belonging to a broadcast execution.
(We note that if this blank round is the last round of the execution, then Pi simply halts.)

5. Output: If a party Pi received ⊥ at any point in the execution (in an execution of broadcast
with abort or in a blank round), then it outputs ⊥. Otherwise, it outputs the value specified
by Π.
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In order to prove that Π′ is t-secure with abort and no fairness, we first define a different trans-
formation of Π to Π̃ which is a hybrid protocol between Π and Π′. In particular, Π̃ is still run in
the broadcast model. However, it provides the adversary with the additional ability of prematurely
halting honest parties. We now define the hybrid protocol Π̃ and show that it is t-secure with abort
and no fairness:

Lemma 4.1 Let Π be a protocol in the broadcast model that is computational (resp., information-
theoretic) t-secure with unanimous abort and any level of fairness. Then, define protocol Π̃ (also
for the broadcast model) as follows:

1. Following each round of Π, add a blank round.

2. If in a blank round, Pi receives a ⊥ message, then Pi sends ⊥ to Pj for all j 6= i in the next
blank round and halts. Pi also does not broadcast any message or send any point-to-point
messages in the next round of Π (before the blank round where it sends all the ⊥ messages).

3. Apart from the above, the parties follow the instructions of Π.

4. Output: If a party Pi received ⊥ in any blank round, then it outputs ⊥. Otherwise, it outputs
the value specified by Π.

Then, Π̃ is computational (resp., information-theoretic) t-secure with abort and no fairness.

Proof: We prove this theorem for the case that Π is computationally t-secure with unanimous abort
and partial fairness. The other cases (information theoretic security and security with complete
fairness or no fairness) are proved in a similar way. Let Ã be a real-model adversary attacking
Π̃. Our aim is to construct an ideal-model simulator S̃ for Ã. In order to do this, we must use
the fact that for any adversary A attacking protocol Π, there exists an ideal-model simulator S.
Unfortunately we cannot apply S to Ã because S is a simulator for protocol Π and Ã participates
in protocol Π̃. We therefore first construct an adversary A that attacks Π from the adversary Ã
that attacks Π̃. The construction of A is such that the output distribution of an execution of Π
with A is very similar to the output distribution of an execution of Π̃ with Ã. Having constructed
A, it is then possible to apply the simulator S that we know is guaranteed to exist. We therefore
obtain a simulator S̃ for Ã by first “transforming” Ã into A and then applying S. As we will show,
the resulting simulator S̃ is as required for Π̃. Details follow.

As we have mentioned, we first define the adversary A who attacks Π. Adversary A internally
invokes Ã and therefore has internal communication with Ã and external communication with the
honest parties executing Π.

Adversary A for Π:

• Input: A receives an input sequence {xi}i∈I and a series of random-tapes {ri}i∈I . (Recall that
Ã controls all parties in the set I. Thus, corrupted party Pi’s input and random-tape equal xi

and ri, respectively.)

• Execution:

1. Invoke Ã: A begins by invoking Ã upon input sequence {xi}i∈I and random-tapes {ri}i∈I .
2. Emulation before Ã sends any ⊥ messages: A internally passes to Ã all the messages

that it externally receives from the honest parties (through broadcast or point-to-point
communication). Likewise, A externally broadcasts in Π any message that Ã broadcasts
in Π̃, and A externally sends Pj in Π any message that Ã sends Pj in Π̃.
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3. Emulation after Ã sends a ⊥ message: Once Ã sends a ⊥ message in an execution of Π̃,
the honest parties in Π and Π̃ may behave differently (in particular, a party receiving ⊥
may continue to send messages in Π, whereas it would halt in Π̃). Therefore, A filters
messages sent by honest parties in Π so that Ã’s view equals what it would in an execution
of Π̃. That is:
In the round of Π following the first ⊥ message sent by Ã, adversary A forwards to Ã only
the point-to-point and broadcast messages sent by a party Pj who did not receive ⊥ from Ã
in the previous (simulated) blank round of Π̃. Furthermore, A simulates for Ã the sending
of all the ⊥ messages that would be sent in the next blank round of Π̃ (if one exists), and
halts.

4. Output: A outputs whatever Ã does.

Before proceeding, we show that the only difference between an execution of Π with A, and Π̃
with Ã, is that some additional honest parties may output ⊥ in the execution of Π̃. That is, we
claim that the joint distribution of the outputs of all parties not outputting ⊥ and the adversary,
is identical in Π and Π̃. We begin with some notation:
• Let realΠ,(A,I)(x, r) be the global output of an execution of Π with adversary A, inputs

x, and random-tapes r (i.e., r = (r1, . . . , rn) where Pi receives random-tape ri). (Thus,
realΠ,(A,I)(x) = {realΠ,(A,I)(x, U|r|)}.)

• For any subset J ⊆ [n], denote by realΠ,(A,I)(x, r) |J , the restriction of realΠ,(A,I)(x, r) to
the outputs of A and all parties Pj for j ∈ J . We stress that A’s output is included in this
restriction.

• In any execution of Π̃, it is possible to divide the parties into those who output ⊥ and those
who do not output ⊥. We note that the set of parties outputting ⊥ is chosen by the adversary
Ã and is dependent on the parties’ inputs x and random-tapes r. We denote by J = JÃ(x, r)
the set of parties who do not output ⊥ in an execution of Π̃ with adversary Ã (and where the
inputs and random-tapes are x and r). (Notice that JÃ is a fixed function depending only on
x and r.) We also denote by JÃ(x) a random variable taking values over JÃ(x, r) for uniformly
distributed r.

We now consider the joint distribution of the outputs of the adversary and the parties in JÃ(x, r)
(i.e., those not outputting ⊥). We claim that these distributions are identical in Π with A and in
Π̃ with Ã. Using the above notation, we claim that for every adversary Ã and set of corrupted
parties I, and for all input and random-tape sequences x and r,

realΠ,(A,I)(x, r)|JÃ(x,r)= realΠ̃,(Ã,I)(x, r)|JÃ(x,r) (1)

where A is as defined above. We now prove Eq. (1). First, it is clear that Ã’s view in a real
execution of Π̃ is identical to its view in the simulation by A. Therefore, A’s output in Π equals
Ã’s output in Π̃. Next, notice that if there exists an honest party that does not output ⊥ in Π̃,
then it must be that ⊥ messages were sent in the last blank round only. However, this means that
any honest party not receiving such a message has an identical view in Π and Π̃. Therefore, the
outputs of all such parties are identical in Π and Π̃. Eq. (1) follows. We stress that the parties who
output ⊥ in Ã may have very different outputs in A (and in particular may output their prescribed
outputs). Nevertheless, at this stage we are only interested in those parties not outputting ⊥.

We now proceed to construct a simulator S̃ for Ã. Intuitively, S̃ works by using the simulator
S for A, where A is derived from Ã as above. Recall that A is an adversary for the secure protocol
Π, and thus a simulator S is guaranteed to exist for A.
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Simulator S̃: First consider an adversary A for Π constructed from the adversary Ã as described
above. By the security requirements of Π, for every adversary A there exists an ideal-model
simulator S for A. Simulator S̃ for Ã works by emulating an ideal execution for S. Recall that S̃
works in an ideal model for secure computation with abort and no fairness, whereas S works in an
ideal model for secure computation with unanimous abort and partial fairness. Further recall that
where partial fairness holds, there are two cases depending on whether or not P1 is corrupted. If
P1 is not corrupted, then essentially all parties receive output at the same time. If P1 is corrupted,
then the adversary receives the corrupted parties’ outputs first and then decides whether the honest
parties all receive output or all abort.

We now describe the simulator: S̃ receives input series {xi}i∈I and internally invokes S upon
the same inputs {xi}i∈I . Then, S̃ works as an intermediary between S and the trusted party. That
is, S̃ obtains the input values {x′i}i∈I sent by S and externally sends these same values to the
trusted party. Once S̃ forwards these inputs to the trusted party, it receives back all the corrupted
parties’ outputs (recall that S̃ interacts in an ideal model with no fairness). S̃ then forwards these
outputs to S. We distinguish two cases:

1. P1 is not corrupted: in this case, S concludes at this point, outputting some value.

2. P1 is corrupted: in this case, S first instructs the trusted party to either send all the honest
parties their outputs or send them all ⊥. S then concludes, outputting some value.

S̃ ignores the instruction sent to the trusted party in the second case, and sets its output to be
whatever S output.

It remains to define the set J that S̃ sends to the trusted party in the “trusted party answers
remaining parties” stage of its ideal execution (recall that all honest parties in J receive their
output and all others receive ⊥). First notice that the string output by S is computationally
indistinguishable to A’s output from a real execution. However, by the definition of A, this output
contains Ã’s view of an execution of Π̃. Furthermore, Ã’s view fully defines which honest parties
in an execution of Π̃ output ⊥ and which receive their output. In particular, if Ã sent a ⊥ message
before the last blank round, then all honest parties abort (and J = φ). Otherwise, all parties receive
output except for those receiving ⊥ messages in the last blank round. Therefore, S̃ examines this
view and defines the set J accordingly. Once J is defined, S̃ sends it to the trusted party and halts.
This completes the description of S̃.

We now wish to show that the output of an ideal execution with abort and no fairness with adversary
S̃ is computationally indistinguishable to the output of a real execution of Π̃ with Ã. We begin by
showing an analog to Eq. (1) in the ideal model. That is, we show that the outputs of parties not
outputting ⊥ in an execution of Π̃ are the same in an ideal execution (by Def. 2) with S and in an
ideal execution (by Def. 5) with S̃. Formally, we claim the following: For every set I, every set of
inputs x and every random-tape r (for S or S̃),

ideal
(5)

f,(S̃,I)
(x, r)|JS̃(x,r)= ideal

(2)
f,(S,I)(x, r)|JS̃(x,r) (2)

where S and S̃ are invoked with random-tape r, and where JS̃(x, r) equals the set of parties in
the ideal execution with S̃ who do not output ⊥. (I.e., JS̃(x, r) equals the set J sent by S̃ to the
trusted party when the input vector equals x and its random-tape equals r.) In order to see that
Eq. (2) holds, notice the following. First, S̃ (upon input {xi}i∈I and random-tape r) sends exactly
the same inputs to the trusted party as S does (upon input {xi}i∈I and random-tape r). Now, the
outputs of all honest parties not outputting ⊥ are fixed by x and the inputs sent to the trusted
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party by the simulators S or S̃. Therefore, if S and S̃ send the same inputs, it follows that all
parties not outputting ⊥ have exactly the same output. In addition, S̃ outputs exactly the same
string that S outputs. Eq. (2) therefore follows.

By assumption, Π is computationally t-secure with unanimous abort and partial fairness. It
therefore holds that for every set I ⊂ [n] such that |I| < t, and for every set J ⊆ [n]

{
ideal

(2)
f,(S,I)(x)|J

}
c≡

{
realΠ,(A,I)(x)|J

}

Next, notice that the sets JS̃ and JÃ are fully defined given Ã and S̃’s outputs respectively. (Recall
that JS̃ equals the set of parties not outputting ⊥ in an ideal execution with S̃, and JÃ equals the
set of parties not outputting ⊥ in a real execution of Π̃ with Ã.) Furthermore, by the definitions
of A and S, it follows that their outputs also fully define JS̃ and JÃ. Therefore, JS̃ (resp., JÃ) is
part of the global output of ideal (resp., real). This implies that,

{
ideal

(2)
f,(S,I)(x)|JS̃(x)

}
c≡

{
realΠ,(A,I)(x)|JÃ(x)

}
(3)

(Otherwise, we could distinguish ideal
(2)
f,(S,I)(x) from realΠ,(A,I)(x) by comparing the restriction

to JS̃ or to JÃ, respectively.) Combining Eq. (3) with Equations (1) and (2), we have that
{
ideal

(5)

f,(S̃,I)
(x)|JS̃(x)

}
c≡

{
realΠ̃,(Ã,I)(x)|JÃ(x)

}

It remains to show that the entire output distributions (including the honest parties not in J) are
computationally indistinguishable. However, this is immediate, because for every party Pi for which
i 6∈ J , it holds that Pi outputs ⊥ (this is true for both the real and ideal executions). Therefore,

{
ideal

(5)

f,(S̃,I)
(x)

}
c≡

{
realΠ̃,(Ã,I)(x)

}

completing the proof of Lemma 4.1.

Recall that our aim is to show the security of the compiled protocol Π′ (and not Π̃). However,
intuitively, there is no difference between Π̃ and Π′. The reason is as follows: in Π̃, the adversary
can instruct any honest party Pi to halt by sending it ⊥ in a blank round. On the other hand,
in Π′, the same effect can be achieved by having the “broadcast with abort” terminate with Pi

receiving ⊥. Therefore, whatever an adversary attacking Π′ can achieve, an adversary attacking Π̃
can also achieve. Formally:

Lemma 4.2 Let Π be a protocol in the broadcast model that is information-theoretic or computa-
tional t-secure with unanimous abort and with any level of fairness, and let Π̃ be the transformation
of Π as described in Lemma 4.1. Then, for every real-model adversary A′ for Π′ of Construction 3,
there exists a real-model adversary Ã for Π̃, such that for every I ⊂ [n] with |I| < t,

{
realΠ̃,(Ã,I)(x)

}
≡

{
realΠ′,(A′,I)(x)

}

Proof: We begin by describing the adversary Ã. Intuitively, Ã works by simulating the executions
of broadcast with abort for A′. If a party receives ⊥ in Π′ (in a broadcast with abort execution
or in a blank round), then Ã sends the appropriate ⊥ messages in a blank round of Π̃. This
strategy works because in Π′, there is no difference if a party receives ⊥ in a broadcast with abort
execution or in the following blank round. Formally, adversary Ã invokes A′ and in every round of
the execution of Π̃ works as follows:
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1. Receiving messages in rounds r, r + 1: Ã receives the broadcast and point-to-point messages
from the honest parties in Π̃. For every message broadcast by an honest party, Ã simulates
a “broadcast with abort” execution, playing the honest parties’ roles (where A′ plays the
corrupted parties’ roles). In addition, Ã forwards any point-to-point messages unchanged to
A′.

2. Sending messages in round r, r+1: Ã plays the honest parties’ roles in “broadcast with abort”
executions, in which A′ broadcasts messages to the honest parties. Consider a particular
execution in which a corrupted party P plays the dealer. If all the honest parties receive ⊥
in this execution, then Ã broadcasts nothing in Π̃. On the other hand, if at least one honest
party outputs a message m, then Ã broadcasts m. As before, point-to-point messages are
forwarded unchanged.

3. Blank round following round r + 1: Let P denote the set of honest parties receiving ⊥ in any
of the above simulated “broadcast with abort” executions (i.e., for the broadcast of rounds r
and r + 1). Then, for every Pi ∈ P, adversary Ã sends ⊥ to Pi in this blank round.

At the conclusion of the execution, Ã outputs whatever A′ does. This completes the description
of Ã. The fact that Ã perfectly simulates an execution of Π′ with A′ follows directly from the
definition of Π′. That is, the only difference between Π̃ and Π′ is that in Π′ the broadcast channel
is replaced by broadcast with abort. This means that some parties may receive ⊥ instead of the
broadcasted message. However, in this case, Ã knows exactly who these parties are and can send
them ⊥ in the following blank round. The key point is that in Π′ it makes no difference if ⊥ is
received in a broadcast with abort execution or in the following blank round. We conclude that
the outputs of all the honest parties and Ã in Π̃, are identically distributed to the outputs of the
honest parties and A′ in Π′.

Concluding the proof of Theorem 3: Let A′ be an adversary attacking Π′. By Lemma 4.2, we
have that there exists an adversary Ã attacking Π̃ such that the output distributions of Π′ with A′,
and Π̃ with Ã are identical. Then, by Lemma 4.1, we have that for real-model adversary Ã for Π̃,
there exists an ideal-model simulator S̃ such that the output distributions of a real execution with Ã
and an ideal execution (with abort and no fairness) with S̃ are computationally indistinguishable
(or statistically close). We conclude that the output distribution of a real execution of Π′ with
adversary A′ is computationally indistinguishable (or statistically close) to an ideal execution (with
abort and no fairness) with S̃. That is, Π′ is t-secure with abort and no fairness, as required.

The complexity of protocol Π′: We remark that the transformation of Π to Π′ preserves the
round complexity of Π. In particular, the number of rounds in Π′ equals exactly 3 times the number
of rounds in Π. On the other hand, the bandwidth of Π′ is the same as that of Π except for the cost
incurred in simulating the broadcast channel. Notice that in the “broadcast with abort” protocol,
if a dealer sends a k-bit message, then the total bandwidth equals n · k. (If the dealer cheats and
sends different messages, then the bandwidth is upper-bound by the length of the longest message
times n.) Therefore, the number of bits sent in an execution of Π′ is only n times that sent in an
execution of Π.
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5 Secure Computation with Abort and Partial Fairness

In this section we show that for any functionality f , there exists a protocol for the computational
t-secure computation of f with abort and partial fairness, for any t. (This construction assumes the
existence of trapdoor permutations.) Furthermore, for any functionality f , there exists a protocol
for information-theoretic n/2-secure computation of f with abort and partial fairness (and without
any complexity assumptions).

Outline: We begin by motivating why the strategy used to obtain secure computation with abort
and no fairness is not enough here. The problem lies in the fact that due to the use of a “broadcast
with abort” protocol (and not a real broadcast channel), the adversary can disrupt communication
between honest parties. That is, of course, unless this communication need not be broadcast. Now,
in the definition of security with abort and partial fairness, once an honest P1 receives its output,
it must be able to give this output to all honest parties. That is, the adversary must not be allowed
to disrupt the communication, following the time that an honest P1 receives its output. This means
that using a “broadcast with abort” protocol in the final stage where the remaining parties receive
their outputs is problematic.

We solve this problem here by having the parties compute a different functionality. This func-
tionality is such that when P1 gets its output, it can supply all the other parties with their output
directly and without broadcast. On the other hand, P1 itself should learn nothing of the other
parties’ outputs. As a first attempt, consider what happens if instead of computing the original
functionality f , the parties first compute the following:

First attempt:

Inputs: x = (x1, . . . , xn)

Outputs:

• Party P1 receives its own output f1(x). In addition, for every i > 1, it receives
ci = fi(x)⊕ ri for a uniformly distributed ri.

• For every i > 1, party Pi receives the string ri.

That is, for each i > 1, party Pi receives a random pad ri and P1 receives an encryption of fi(x)
with that random pad. Now, assume that the parties use a protocol that is secure with abort and no
fairness in order to compute this new functionality. Then, there are two possible outcomes to such
a protocol execution: either all parties receive their prescribed output, or at least one honest party
receives ⊥. In the case that at least one honest party receives ⊥, this party can notify P1 who can
then immediately halt. The result is that no parties, including the corrupted ones, receive output
(if P1 does not send the ci values, then the parties only obtain ri which contains no information
on fi(x)). In contrast, if all parties received their prescribed output, then party P1 can send each
party Pi its encryption ci, allowing it to reconstruct its output fi(x). The key point is that the
adversary is unable to prevent P1 from sending these ci values and no broadcast is needed in this
last step. Of course, if P1 is corrupted, then it will learn all the corrupted parties’ outputs first.
However, under the definition of partial fairness, this is allowed.

The flaw in the above strategy arises in the case that P1 is corrupted. Specifically, a corrupted
P1 can send the honest parties modified values, causing them to conclude with incorrect outputs.
This is in contradiction to what is required of all secure protocols. Therefore, we modify the
functionality that is computed so that a corrupted P1 is unable to cheat. In particular, the aim is

26



to prevent the adversary from modifying ci = fi(x)⊕ ri without Pi detecting this modification. If
the adversary can be restrained in this way, then it can choose not to deliver an output; however,
any output delivered is guaranteed to be correct. The above-described aim can be achieved using
standard (information-theoretic) authentication techniques, based on pairwise independent hash
functions. That is, let H be a family of pairwise independent hash functions h : {0, 1}k → {0, 1}k.
Then, the functionality that the parties compute is as follows:

Functionality F :

Inputs: x = (x1, . . . , xn)

Outputs:

• Party P1 receives its own output f1(x). In addition, for every i > 1, it receives
ci = fi(x)⊕ ri for a uniformly distributed ri, and ai = hi(ci) for hi ∈R H.

• For every i > 1, party Pi receives the string ri and the description of the hash
function hi.

Notice that as in the first attempt, P1 learns nothing of the output of any honest Pi (since fi(x)
is encrypted with a random pad). Furthermore, if P1 attempts to modify ci to c′i in any way, then
the probability that it will generate the correct authentication value a′i = hi(c′i) is at most 2−k (by
the pairwise independent properties of hi). Thus, the only thing a corrupt P1 can do is refuse to
deliver the output. We now formally prove the above:

Theorem 6 For any probabilistic polynomial-time n-ary functionality f , there exists a protocol
in the point-to-point model for the computational t-secure computation of f with abort and par-
tial fairness, for any t. Furthermore, there exists a protocol in the point-to-point model for the
information-theoretic n/2-secure computation of f with abort and partial fairness.

Proof: We begin by describing the protocol for computing f , as motivated above.

Protocol 4 (protocol for secure computation with abort and partial fairness for any f):

1. Stage 1 – computation: The parties use any protocol for secure (computational or information-
theoretic) computation with abort and no fairness in order to compute the functionality F
defined above.12 Thus, P1 receives f1(x) and a pair (ci, ai) for every i > 1, and each Pi

(i > 1) receives (ri, hi) such that ci = fi(x)⊕ ri and ai = hi(ci).

2. Stage 2 – blank round: After the above protocol concludes, a blank-round is added so that if
any party receives ⊥ for its output from Stage 1, then it sends ⊥ to P1 in this blank round.

3. Stage 3 – outputs: If P1 received any ⊥-messages in the blank round, then it sends ⊥ to
all parties and halts outputting ⊥. Otherwise, for every i, it sends (ci, ai) to Pi and halts,
outputting f1(x).

Party Pi outputs ⊥ if it received ⊥ from P1 (it ignores any ⊥ it may receive from other
parties). If it received (ci, ai) from P1 (and not ⊥), then it checks that ai = hi(ci). If yes, it
outputs fi(x) = ci ⊕ ri. Otherwise, it outputs ⊥.

12By Corollaries 4 and 5 in Section 4, such protocols exist for any t assuming the existence of trapdoor permutations.
Furthermore, for the case of t > n/2, no assumptions are required.
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Intuitively, the security of Protocol 4 with abort and partial fairness is derived from the fact that
Stage 1 is run using a protocol that is secure with abort (even though it has no fairness property).
Consider the two cases regarding whether or not P1 is corrupted:

1. P1 is corrupt: in this case, A receives all the outputs of the corrupted parties first. Fur-
thermore, A can decide exactly which parties to give output to and which not. However,
this is allowed in the setting of secure computation with abort and partial fairness, and so is
fine. We stress that A cannot cause an honest party to output any value apart from ⊥ or its
correct output. This is because the authentication properties of pairwise independent hash
functions guarantee that A does not modify ci, and the correctness of the protocol of Stage 1
guarantees that ci ⊕ ri equals the correct output fi(x).

2. P1 is honest: there are two possible cases here; either some honest party received ⊥ in the
computation of Stage 1 or all honest parties received their correct outputs. If some honest
party received ⊥, then this party sends ⊥ to P1 in Stage 2 and thus no parties (including the
corrupted parties) receive output. (Similarly, if A sends ⊥ to P1 in Stage 2 then no parties
receive output.) On the other hand, if all honest parties received their outputs and A does
not send ⊥ to P1 in Stage 2, then all parties receive outputs and the adversary cannot cause
any honest party to abort. We therefore have that in this case complete fairness is achieved,
as required.

In order to formally prove the security of the protocol, we use the sequential composition theorem of
Canetti [5]. This theorem states that we can consider a hybrid model in which an ideal call is used
for Stage 1 of the protocol, whereas the other stages are as described above. That is, the parties
all interact with a trusted party for the computation of Stage 1 (where the ideal model for this
computation is that of secure computation with abort and no fairness). Then, Stages 2 and 3 take
place as in a real execution. The result is a protocol that is a hybrid of real and ideal executions. In
order to prove the security of the (real) protocol, it suffices to construct an ideal-model simulator
for the hybrid protocol. Thus, the description of the parties and adversary below relate to this
hybrid model (the parties send messages to each other, as in a real execution, and to a trusted
party, as in an ideal execution). The proof of [5] is stated for secure computation without abort
(and complete fairness); however it holds also for secure computation with abort and no fairness.

Let A be an adversary attacking Protocol 4 in the above-described hybrid model. Notice that
in the ideal call of Stage 1, A receives all the corrupted parties’ outputs first and then decides which
honest parties receive output (this is because there is no fairness in the computation of Stage 1).
We now construct an ideal-model adversary S who works in an ideal model with abort and partial
fairness. We stress that A works in a hybrid model in which the “ideal model” part has no fairness;
whereas, S works in an ideal model with partial fairness. S has external communication with the
trusted party of its ideal model and internal, simulated communication with the adversary A. In
our description of S, we differentiate between the cases that P1 is corrupt and P1 is honest:

1. P1 is corrupt: S invokes A and receives the inputs that A intends to send to the trusted party
of the hybrid model. Then, S externally sends these inputs unmodified to the trusted party
of its ideal model for computing f . If the inputs are not valid, then in the hybrid model all
parties receive ⊥ as output. Therefore, S internally hands ⊥ to A as its output from Stage 1
and simulates all honest parties sending ⊥ in Stage 2 (as would occur in a hybrid execution).
S then halts, outputting whatever A does. Otherwise, if the inputs are valid, S receives all
the corrupted parties outputs {fi(x)}i∈I (this is the case because S controls P1 and by partial
fairness, when P1 is corrupt the adversary receives the corrupted parties’ outputs first). S

28



then constructs the corrupted parties’ outputs from Stage 1 that A expects to see in the
hybrid execution. S defines P1’s output as follows: First, P1’s personal output is f1(x). Next,
for every corrupted party Pi, party P1’s output contains the pair (ci = fi(x) ⊕ ri, hi(ci)) for
ri ∈R {0, 1}k and hi ∈R H. Finally, for every honest party Pj , party P1’s output contains
a pair (cj , aj) where cj , aj ∈R {0, 1}k. This defines P1’s output. We now define how S
constructs the other corrupted parties’ outputs: for every corrupted Pi, simulator S defines
Pi’s output to equal (ri, hi) where these are the values used in preparing the corresponding
pair (ci, hi(ci)) in P1’s output. (We note that S can prepare these values because it knows
fi(x) for every corrupted party Pi.) S then internally passes A all of these outputs. In the
hybrid model, after receiving the outputs from Stage 1, A sends a set J ′ to the trusted party
instructing it to give outputs to the parties specified in this set (all other parties receive ⊥).
S obtains this set J ′ from A and records it.

S continues by simulating Pl sending ⊥ to P1 in the blank round, for every honest party Pl for
which l 6∈ J ′ (as would occur in a hybrid execution). Then, in the last stage, A (controlling
P1) sends to each honest party Pj a pair (c′j , a

′
j) or ⊥. S receives these strings and defines

the set of parties J to receive outputs to equal those parties in J ′ to whom A sends the same
(cj , aj) that S gave A in Stage 1. (These are the parties who do not see ⊥ in the execution
and whose checks of Stage 3 succeed; they therefore do not abort.) S concludes by externally
sending J to the ideal-model trusted party and outputting whatever A does.

2. P1 is honest: In this case, S begins in the same way. That is, S invokes A and receives the
inputs that A intends to send the trusted party of the hybrid model. However, unlike in the
previous case, S does not forward these inputs to its trusted party; rather it just records
them.13 (If any of these inputs are invalid, then S internally sends ⊥ to all corrupted parties,
externally sends invalid inputs to the trusted party and halts. In the sequel, we assume that
all inputs sent by A are valid.) Now, A expects to receive outputs from Stage 1 before it
sends the trusted party the set J ′ of honest parties receive output from Stage 1. However,
S does not have the corrupted parties’ outputs yet. Fortunately, when P1 is honest, S can
perfectly simulate the corrupted parties outputs from Stage 1 by merely providing them with
(ri, hi) where ri ∈R {0, 1}k and hi ∈R H. After internally passing A the simulated corrupted
parties’ outputs, S obtains a set J ′ from A, instructing the trusted party of the hybrid model
which parties should receive output.

S continues by simulating Stages 2 and 3 of the protocol. As above, S simulates every honest
party Pl for which l 6∈ J ′ sending ⊥ to P1 in Stage 2. Furthermore, S obtains any messages
sent by A in this stage. If A sends ⊥ to P1 in Stage 2, then S simulates P1 sending ⊥ to all
parties, sends invalid inputs to the trusted party and halts. Likewise, if J ′ does not contain
all the honest parties, then S internally simulates P1 sending ⊥ to all the corrupted parties,
and externally sends invalid inputs to the trusted party. (These cases correspond to the case
that no parties receive their prescribed output.)

In contrast, if J ′ contains all the honest parties (i.e., no honest party received ⊥ from Stage 1)
and A did not send ⊥ to P1 in Stage 2 of the simulation, then S externally sends the trusted
party the inputs that it recorded from A above, receiving back all of the corrupted parties
outputs {fi(x)}i∈I . Then, for each corrupted party’s output fi(x), simulator S generates
the pair that corrupted Pi would see in a hybrid execution. In particular, previously in the

13S cannot forward the inputs to the trusted party yet, because in the model of partial fairness as soon as it does
this all parties receive output. However, in the execution of Protocol 4, A can cause the execution to abort at a later
stage.
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simulation S provided Pi with a pair (ri, hi) where ri ∈R {0, 1}k and hi ∈R H. Now, S
simulates P1 sending corrupted party Pi the pair (ci, ai) where ci = fi(x)⊕ ri and ai = hi(ci).
(S can do this because it knows the random-pad ri and the hash function hi.) Finally, S
outputs whatever A does and halts.

The fact that the global output in the hybrid execution with S is identically distributed to the
global output in a real execution with A is derived from the following observations. First, A’s
outputs from Stage 1 can be perfectly simulated, both when P1 is corrupt and when P1 is honest.
Second, the honest parties’ messages in Stage 2 can be perfectly simulated given only the set J ′

sent by A to the hybrid-model trusted party in the ideal execution of Stage 1. Therefore, A’s view
in the hybrid-model execution is identical to its view in a real execution. It remains to show that
the honest parties’ outputs are also correctly distributed.

First, consider the case that P1 is corrupt. In this case, with overwhelming probability, the
set of honest parties receiving output in the real model are exactly those parties Pj for whom
P1 (controlled by A) sends the exact pair (cj , aj) that it received as output from Stage 1 (and
who did not see ⊥ at any time in the execution). This is due to the authentication properties of
pairwise independent hash functions. Likewise, in the ideal-model simulation, S designates these
same parties to be the ones receiving output. Therefore, except with negligible probability, the set
J sent by S to the trusted party contains exactly those parties who would receive output in a real
execution.

Next, consider the case that P1 is honest. In this case, all parties receive output unless P1 sees
⊥ in Stage 2. This can happen if A sends P1 such a value, or if any honest party received ⊥ from
Stage 1. Both of these cases are detected by S in the hybrid-model simulation, and therefore the
case that all parties abort in the hybrid model corresponds to this case in the real model (and
likewise for the case that all parties receive output). This completes the proof of Theorem 6
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A An Overview of the Universal Composition Framework

In this appendix, we provide a brief overview of the framework of [6]; for more details, see [6]. The
framework provides a formal method for defining the security of cryptographic tasks, while ensuring
that security is maintained under a general composition operation in which a secure protocol for
the task in question is run in a system concurrently with an unbounded number of other arbitrary
protocols. This composition operation is called universal composition, and tasks that fulfill the
definitions of security in this framework are called universally composable (UC).

As in other general definitions (e.g., [19, 25, 1, 5]), the security requirements of a given task
(i.e., the functionality expected from a protocol that carries out the task) are captured via a set
of instructions for a “trusted party” that obtains the inputs of the participants and provides them
with the desired outputs (in one or more iterations). We call the algorithm run by the trusted
party an ideal functionality. Informally, a protocol securely carries out a given task if an adversary
can gain no more in an attack on a real execution of the protocol, than from an attack on an
ideal process where the parties merely hand their inputs to a trusted party with the appropriate
functionality and obtain their outputs from it, without any other interaction. The fact that the
adversary gains no more from its attack on a real execution is formalized by saying that the result
of a real execution can be emulated in the above ideal process. We stress that in a real execution
of the protocol, no trusted party exists and the parties interact amongst themselves only.

In order to prove the universal composition theorem, the notion of emulation in this framework
is considerably stronger than in previous ones. Traditionally, the model of computation includes
the parties running the protocol and an adversary A, that controls the communication channels
and potentially corrupts parties. Then, security is formulated by requiring that for any adversary
A attacking a real protocol execution, there should exist an “ideal process adversary” or simulator
S, that causes the outputs of the parties in the ideal process to be essentially the same as the
outputs of the parties in a real execution. However, in the universally composable framework, an
additional adversarial entity called the environment Z is introduced. This environment generates
the inputs to all parties, reads all outputs, and in addition interacts with the adversary in an
arbitrary way throughout the computation. (As is hinted by its name, Z represents the external
environment that consists of arbitrary protocol executions that may be running concurrently with
the given protocol.) A protocol is said to securely realize a given ideal functionality F if for any
“real-life” adversary A that interacts with the protocol there exists an “ideal-process adversary”
S, such that no environment Z can tell whether it is interacting with A and parties running the
protocol, or with S and parties that interact with F in the ideal process. (In a sense, here Z
serves as an “interactive distinguisher” between a run of the protocol and the ideal process with
access to F . See [6] for more motivating discussion on the role of the environment.) Note that the
definition requires the “ideal-process adversary” (or simulator) S to interact with Z throughout
the computation. Furthermore, Z cannot be “rewound”.

The following universal composition theorem is proven in [6]: Consider a protocol π that operates
in a hybrid model of computation where parties can communicate as usual, and in addition have
ideal access to (an unbounded number of copies of) some ideal functionality F . (This model is
called the F-hybrid model.) Furthermore, let ρ be a protocol that securely realizes F as sketched
above, and let πρ be the “composed protocol”. That is, πρ is identical to π with the exception
that each interaction with the ideal functionality F is replaced with a call to (or an invocation of)
an appropriate instance of the protocol ρ. Similarly, ρ-outputs are treated as values provided by
the functionality F . The theorem states that in such a case, π and πρ have essentially the same
input/output behavior. Thus, ρ behaves just like the ideal functionality F , even when composed
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with an arbitrary protocol π. A special case of this theorem states that if π securely realizes some
ideal functionality G in the F-hybrid model, then πρ securely realizes G from scratch.
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