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Abstract

The notion of efficient computation is usually identified in cryptography and complexity with
(strict) probabilistic polynomial time. However, until recently, in order to obtain constant-round
zero-knowledge proofs and proofs of knowledge, one had to allow simulators and knowledge-
extractors to run in time that is only polynomial on the average (i.e., expected polynomial
time). Recently Barak gave the first constant-round zero-knowledge argument with a strict (in
contrast to expected) polynomial-time simulator. The simulator in his protocol is a non-black-
box simulator (i.e., it makes inherent use of the description of the code of the verifier).

In this paper, we further address and completely resolve the question of expected polynomial-
time in constant-round zero-knowledge arguments and arguments of knowledge. First, we
show that there exists a constant-round zero-knowledge argument of knowledge with a strict
polynomial-time knowledge extractor. As in the simulator of Barak’s zero-knowledge protocol,
the extractor for our proof of knowledge is not black-box and makes inherent use of the code
of the prover. On the negative side, we show that non-black-box techniques are essential for
both strict polynomial-time simulation and extraction. That is, we show that no (non-trivial)
constant-round zero-knowledge argument (or proof) can have a strict polynomial-time black-box
simulator. Similarly, we show that no constant-round zero-knowledge argument of knowledge
(for NP) can have a strict polynomial-time black-box knowledge extractor.

Keywords: Zero-knowledge proof systems, proofs of knowledge, expected vs. strict polynomial-
time, black-box vs. non-black-box algorithms.

∗An extended abstract of this paper appeared in the 34th STOC, 2002.
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1 Introduction

This paper deals with the issue of expected versus strict polynomial-time with respect to simulators
and extractors for zero-knowledge proofs and arguments and zero-knowledge proofs and arguments
of knowledge.1

1.1 Expected Polynomial-Time in Zero-Knowledge

Zero-Knowledge. The principle behind the definition of (computational) zero-knowledge proofs,
as introduced by Goldwasser, Micali and Rackoff [24], is the following:

Anything that an efficient verifier can learn as a result of interacting with the prover,
can be learned without interaction by applying an efficient procedure (i.e., simulator) to
the public input.

Note that there are two occurrences of the word “efficient” in this sentence. When providing a formal
definition of zero-knowledge, the issue of what is actually meant by “efficient computation” must
be addressed. The standard interpretation in cryptography and complexity is that of probabilistic
polynomial-time. However, in the context of zero-knowledge, efficiency has also been taken to
mean polynomial on the average (a.k.a. expected polynomial-time). That is, if we fix the input,
and look at the running time of the machine in question as a random variable (depending on the
machine’s coins), then we only require that the expectation of this random variable is polynomial.
Three versions of the formal definition of zero-knowledge appear in the literature, differing in their
interpretations of efficient computation:

1. Definition 1 – strict/strict: According to this definition both the verifier and simulator
run in strict polynomial-time. This is the definition adopted by Goldreich [19] and is natural
in the sense that only the standard interpretation of efficiency is used.

2. Definition 2 – strict/expected: This more popular (and liberal) definition requires the
verifier to run in strict polynomial-time while allowing the simulator to run in expected
polynomial-time. This was actually the definition proposed in the original zero-knowledge
paper [24].

3. Definition 3 – expected/expected: In this definition, both the verifier and simulator are
allowed to run in expected polynomial-time. This definition is far less standard than the
above two, but is nevertheless a natural one to consider.

Given that the strict/strict definition seems to be the most natural, an immediate question to
ask is why was expected polynomial-time introduced at all? The answer is that several known pro-
tocols that were not known to satisfy the more severe strict/strict definition could be proven
zero-knowledge according to the more liberal strict/expected definition. In particular, until
very recently no constant-round zero knowledge argument (or proof) for NP was known to sat-
isfy the strict/strict definition,2 and so in many cases one had to settle for the less natural
strict/expected definition.

1Recall that in a proof system, the soundness holds unconditionally and with respect to all-powerful cheating
provers. In contrast, in an argument system, the soundness is only guaranteed to hold with respect to polynomial-
time bounded provers. See Section 2.1.

2We note that throughout this paper we always refer to protocols with negligible soundness error.
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Proofs of Knowledge. An analogous situation arises in proofs of knowledge [24, 30, 14]. There,
the underlying principle is that:

If an efficient prover can convince the honest verifier with some probability that x ∈ L,
then this prover can apply an efficient procedure (i.e., extractor) to x and its private
inputs and obtain a witness for x with essentially the same probability.

Again, the word “efficient” occurs twice, and again three possible definitions can be used. In par-
ticular, the prover and extractor can be instantiated by strict polynomial-time machines, expected
polynomial-time machines or a combination of both.

The different definitions - discussion. As has been observed before (e.g., see [13, Sec. 3.2],
[19, Sec. 4.12.3]), the definitions that allow for expected polynomial-time computation are less than
fully satisfactory for several reasons:
• Philosophical considerations: Equating “efficient computation” with expected polynomial-time

is more controversial than equating efficient computation with (strict) probabilistic polynomial-
time. For example, Levin ([25], see also [17], [19, Sec. 4.3.1.6]) has shown that when expected
polynomial-time is defined as above, the definition is too machine dependent, and is not closed
under reductions. He proposed a different definition for expected polynomial-time that is closed
under reductions and is less machine dependent. However, it is still unclear whether expected
polynomial-time, even under Levin’s definition, should be considered as efficient computation.

• Technical considerations: Expected polynomial-time is less understood than the more stan-
dard strict polynomial-time. This means that rigorous proofs of security of protocols that use
zero-knowledge arguments with expected polynomial-time simulators (or arguments of know-
ledge with expected polynomial-time extractors) as components, are typically more complicated
(see [26] for an example). Another technical problem that arises is that expected polynomial-
time simulation is not closed under composition. Consider, for example, a protocol that uses
zero-knowledge as a subprotocol. Furthermore, assume that the security of the larger protocol
is proved in two stages. First, the zero-knowledge subprotocol is simulated for the adversary
(using an expected polynomial-time simulator). This results in an expected polynomial-time
adversary that runs the protocol with the zero-knowledge executions removed. Then, in the
next stage, the rest of the protocol is simulated for this adversary. A problem arises because the
simulation of the second stage must now be carried out for an expected polynomial-time adver-
sary. However, simulation for an expected polynomial-time adversary can be highly problematic
(as the protocol of [21] demonstrates, see [26, Appendix A] for details).

The liberal strict/expected definition also suffers from a conceptual drawback regarding the
notion of zero-knowledge itself. Specifically, the idea behind the definition of zero-knowledge is
that anything that a verifier can learn as a result of the interaction, it can learn by just looking at
its input. Therefore, it seems that the simulator should not be of a higher complexity class than
the verifier. Rather, both the verifier and simulator should be restricted to the same complexity
class (i.e., either strict or expected polynomial-time). The expected/expected definition has
the advantage of not having any discrepancy between the computational power of the verifier and
simulator. However, it still suffers from the above described drawbacks with any use of expected
polynomial-time. In addition, as Feige [13, Sec. 3.3] pointed out, in order to prove that known
protocols remain zero-knowledge for expected polynomial-time verifiers, one needs to restrict the
verifiers to run in expected polynomial-time not only when interacting with the honest prover
but also when interacting with all other interactive machines. This restriction seems problematic
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because if we regard expected polynomial-time as efficient computation, then an efficient strategy
for an adversary would be to use a verifier algorithm that runs in expected polynomial-time only
when interacting with the honest prover, in order to gain some information.

In contrast, the strict/strict definition suffers from none of the above conceptual difficulties.
For this reason, it is arguably a preferred definition. However, as we have mentioned, it was not
known whether this definition can be satisfied by a protocol with a constant number of rounds.
Thus a natural open question (posed by [13, Sec. 3.4] and [19, Sec. 4.12.3]) was the following:

Is expected polynomial-time simulation and extraction necessary in order to obtain
constant-round zero-knowledge proofs and proofs of knowledge?

A first step in answering the above question was recently taken by Barak in [2]. Specifically, [2] pre-
sented a zero-knowledge argument system that is both constant-round and has a strict polynomial-
time simulator. Furthermore, the protocol of [2] is not black-box zero-knowledge. That is, the
simulator utilizes the description of the code of the verifier. (This is in contrast to black-box zero-
knowledge where the simulator is only given oracle access to the verifier.) This result therefore
reopens the above-mentioned open question in the following way:

1. Is it possible to obtain an analogous result to [2] regarding extraction for proofs of knowledge?

2. Is the fact that the protocol of [2] is not black-box zero-knowledge coincidental, or is this an
inherent property of any constant-round zero-knowledge protocol with strict polynomial-time
simulation?

1.2 Our Results

In this paper we resolve both the above questions. First, we show that it is possible to obtain
strict polynomial-time knowledge extraction in a constant-round protocol. In fact, we show that
it is possible to obtain strict polynomial-time simulation and extraction simultaneously in a zero-
knowledge protocol. That is, we prove the following theorem:

Theorem 1 Assume the existence of trapdoor permutations over {0, 1}n 3 and collision-resistant
hash functions. Then, there exists a constant-round zero-knowledge argument of knowledge for NP
with a strict polynomial-time knowledge extractor and a strict polynomial-time simulator.

We note that both our simulator and extractor are not black-box. In fact, we use the non-black-box
zero-knowledge protocol of [2] as a central tool in our construction. (The assumption relating to the
existence of collision-resistant hash functions is inherited from the construction of [3] that improved
upon the construction of [2]; see Section 1.4.)

Next, we show that it is impossible to obtain a (non-trivial) constant-round zero-knowledge
protocol that has a strict polynomial-time black-box simulator. Likewise, a strict polynomial-time
extractor for a constant-round zero-knowledge argument of knowledge (for NP) cannot be black-
box. That is, we prove the following two theorems:

Theorem 2 There do not exist constant-round zero-knowledge proofs or arguments with strict
polynomial-time black-box simulators for any language L 6∈ BPP.

3By this we mean that there exists a trapdoor permutation family {fs}s∈{0,1}∗ such that fs : {0, 1}|s| → {0, 1}|s|.
It actually suffices to assume the existence of an enhanced family of trapdoor permutations [20, Appendix C]. Such a
family can be constructed under either the RSA or factoring assumptions, see [1, Section 6.2] and [20, Appendix C].
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Theorem 3 Suppose that one-way functions exist. Then, there do not exist constant-round zero-
knowledge efficient-prover proofs or arguments of knowledge with strict polynomial-time black-box
knowledge extractors for any NP-complete language L.

We therefore conclude that the liberal definitions that allow the simulator (resp., extractor) to run
in expected polynomial-time is necessary for achieving constant-round black-box zero-knowledge
(resp., arguments of knowledge). We note that our lower bound for simulation (Theorem 2) holds
for both proofs (where the prover may be all powerful) and arguments (where the prover is limited
to polynomial-time), whereas our lower bound for extraction (Theorem 3) holds only for proofs or
arguments with an efficient strategy for the honest prover (this efficiency requirement is necessary
for cryptographic applications and is part of the definition for arguments). The lower bound for
extraction is weaker also in the respect that it only holds for NP-complete languages rather than
any language outside of BPP and also assumes the existence of one-way functions. In fact, a
slightly stronger (but more cumbersome) result can be proven (see Remark 5.4).

We note that Theorems 2 and 3 are tight in the sense that if any super-constant number of
rounds are allowed, then zero-knowledge proofs of knowledge with strict polynomial-time black-box
extraction and simulation can be obtained. This was shown by Goldreich in [19, Sec. 4.7.6]. (In
actuality, [19] constructs a protocol that requires a super-logarithmic number of rounds in order
to obtain negligible soundness. However, by running the [19] protocol log n times in parallel, a
protocol that obtains negligible soundness for any super-constant number of rounds is obtained.
Furthermore, the resulting protocol still has a strict polynomial-time simulator and extractor.)

Zero-knowledge versus ε-knowledge. Our impossibility result regarding constant-round black-
box zero-knowledge with strict polynomial-time simulation has an additional ramification to the
question of the relation between black-box ε-knowledge [11] and black-box zero-knowledge. Loosely
speaking, an interactive proof is called ε-knowledge if for every ε, there exists a simulator who runs
in time polynomial in the input and 1/ε, and outputs a distribution that can be distinguished
from a real proof transcript with probability at most ε. Despite the fact that this definition seems
to be a significant relaxation of zero-knowledge, no separation between ε-knowledge and zero-
knowledge was previously known. Our lower bound is the first proof that black-box ε-knowledge
is strictly weaker than black-box zero-knowledge. That is, on the one hand, constant-round black-
box ε-knowledge protocols with strict polynomial-time simulators do exist.4 On the other hand,
as we show, analogous protocols for black-box zero-knowledge, do not exist. Thus we separate
ε-knowledge and zero-knowledge as far as black-box simulators are concerned.

Witness-extended emulation. Zero-knowledge proofs of knowledge are often used as subpro-
tocols within larger protocols. In this context, the mere existence of a knowledge extractor does not
always suffice for proving the security of the larger protocol. Loosely speaking, what is required
in many cases is the existence of a machine that not only outputs a witness with the required
probability (as is required from a knowledge extractor), but also outputs a simulated transcript of
the interaction between the prover and the verifier. Furthermore, the pair of transcript and witness
should be compatible. By this we mean that whenever the machine’s first output (the simulated
transcript) is an accepting transcript, the machine’s second output is a witness for the statement.
(Note that if the probability that the verifier accepts is p, then both the event that the machine

4Such a protocol can be constructed by taking a constant-round protocol with an expected polynomial-time
simulator and truncating the simulator’s run (outputting ⊥), if it runs for more than 1/ε times its expected running-
time. By Markov’s inequality, the probability of this bad event happening is at most ε.
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outputs a witness, and the event that the simulated transcript is accepting should happen with
probability negligibly close to p.)

This issue was addressed by Lindell in [26], who called such a machine a “witness-extended
emulator”. He proved that there exists such a witness extended emulator for any proof of knowledge.
However, the proof of [26] is such that this emulator runs in expected polynomial-time, even if the
original knowledge extractor runs in strict polynomial-time. Unfortunately, we do not know how to
prove an analogous result that, given a strict polynomial-time knowledge extractor, would provide
a strict polynomial-time emulator. Instead, we directly construct a strict polynomial-time witness-
extended emulator for our zero-knowledge proof of knowledge (under a slightly different definition
than [26]).

1.3 Failure of the naive approach and dependence on success probability

A naive approach to solving the problem of expected polynomial-time in simulation and extraction,
would be to simply truncate the execution of the simulator or extractor after it exceeds its expected
running-time by “too much”. However, this does not necessarily work. The case of knowledge-
extractors is a good example. Let us fix a proof (or argument) of knowledge for some NP-language
L. Let x ∈ {0, 1}∗, and let P ∗ be a polynomial-time prover that aborts with probability 1 − ε,
and convinces the honest verifier that x ∈ L with probability ε. For all previously known constant-
round proofs of knowledge, the expected polynomial-time knowledge-extractor works in roughly
the following way: it first verifies the proof from P ∗, and if P ∗ was not convincing (which occurs
in this case with probability 1− ε) then it aborts. On the other hand, if P ∗ was convincing (which
occurs in this case with probability ε), then it does expected p(n) · (1

ε ) work (where p(·) is some
polynomial), and outputs a witness for x. Clearly, the expected running time of the extractor is
polynomial (in particular, it is p(n)). However, if we halt this extractor before it completes 1

ε steps,
then with high probability the extractor will never output a witness. (Note that 1

ε may be much
larger than p(n), and therefore the extractor may far exceed its expected running-time and yet still
not output anything.)

In contrast to the above, the knowledge extractor of the argument of knowledge presented in
this paper (in Section 4) runs in strict polynomial-time which is independent of the acceptance
probability (i.e., ε). For example, if there exists a cheating prover P ∗ that runs in time n2, but
convinces the verifier that x ∈ L with probability n−10 then our extractor will run in time, say,
n4 and output a witness with probability at most negligibly less than n−10. On the other hand,
the extractors for previous protocols would do almost nothing with probability 1− n−10, and with
probability n−10 run for, say n12 steps and output a witness.

Trading success probability for running time. The observations above also raise a security
issue with respect to the use of proofs of knowledge with expected polynomial-time knowledge
extractors. For example, suppose that we use a proof of knowledge for an identification protocol
based on factoring. Suppose furthermore, that we use numbers that the fastest known algorithms
will take 100 years to factor. We claim that in this case, if we use a proof of knowledge with an
expected polynomial-time extractor then we cannot rule out the possible existence of an adversary
that will take 1 year of computation time and succeed in an impersonation attack with probability
1/100.

This is because the proof of security of the identification protocol works by constructing a
factoring algorithm from any impersonator, using the extractor for the proof of knowledge. Thus for
known protocols, what will actually be proven is that given an algorithm that is able to impersonate
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using T steps and with probability ε, we can construct an algorithm that solves the factoring
problem with probability ε and expected running time T . In particular, this factoring algorithm
may (and actually will) work in the following way: with probability 1−ε it will do nothing and with
probability ε it will run in T/ε steps and factor its input. Thus, the existence of an impersonator that
runs for one year and succeeds with probability 1/100, only implies the existence of a factoring
algorithm that runs for 100 years. Therefore, we cannot rule out such an impersonator. We
conclude that the standard proofs of knowledge potentially allow adversaries to trade their success
probability for running time. In contrast, the fastest known algorithms for factoring do not allow
such a trade-off, and so adversaries can gain from attacking the protocols.

We stress that not only is it the case that the definition of expected polynomial-time extraction
does not allow us to rule out such an adversary, but also such adversaries cannot be ruled out by
the current proofs of security for known constant-round protocols (thus, the problem lies also with
the protocols and not just with the definition).

1.4 Related work

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff [24], and were then
shown to exist for all NP by Goldreich, Micali and Wigderson [23]. Constant-round zero-knowledge
arguments and proofs were constructed by Feige and Shamir [15], Brassard, Crepeau and Yung [8]
and Goldreich and Kahan [21]. All these constant-round protocols utilize expected polynomial-time
simulators. Regarding zero-knowledge proofs of knowledge, following a discussion in [24], the first
formal definitions were provided by Feige, Fiat and Shamir [14] and by Tompa and Woll [30]. These
definitions were later modified by Bellare and Goldreich [5].

The issue of expected polynomial-time is treated in Feige’s thesis [13] and Goldreich’s book
[19]. Goldreich [19, Sec. 4.7.6] also presents a construction for a proof of knowledge with strict
polynomial-time extraction (and simulation) that uses any super-logarithmic number of rounds
(as discussed above, a variant of this construction can be obtained that uses any super-constant
number of rounds).

As we have mentioned, until a short time ago, all known constant-round zero-knowledge pro-
tocols had expected polynomial-time simulators. However, recently this barrier was broken by
Barak [2], who provided the first constant-round zero-knowledge argument for NP with a strict
polynomial-time simulator, assuming the existence of collision-resistant hash functions with (poly-
nomial-time computable) super-polynomial hardness. Barak and Goldreich [3] later showed how to
obtain the same result under the weaker assumption of the existence of standard collision-resistant
hash functions (with polynomial-time hardness). The construction of [2] was also the first zero-
knowledge argument to utilize a non-black-box simulator. In a similar fashion, the constant-round
argument of knowledge presented in this paper utilizes a non-black-box knowledge-extractor. We
note that [4] also utilize a non-black-box knowledge extractor. However, their extractor runs in
expected polynomial-time, and the non-black-box access is used there for a completely different
reason (specifically, to achieve a resettable zero-knowledge argument of knowledge).

1.5 Organization.

In Section 2 we describe the basic notations and definitions that we use. Then, in Section 3 we
construct a commit-with-extract commitment scheme, which is the main technical tool used to
construct our zero-knowledge argument of knowledge. The construction of the zero-knowledge ar-
gument of knowledge itself is described in Section 4. Finally, in Section 5 we prove Theorems 2
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and 3. That is, we prove that it is impossible to construct strict polynomial-time black-box simu-
lators and extractors for constant-round protocols.

2 Definitions

Notation. For a binary relation R, we denote by R(x) the set of all “witnesses” for x. That is,
R(x) def= {y | (x, y) ∈ R}. Furthermore, we denote by LR the language induced by the relation R.
That is, LR

def= {x | R(x) 6= ∅}.
For a finite set S ⊆ {0, 1}∗, we write x ∈R S to say that x is distributed uniformly over the set

S. We denote by Un the uniform distribution over the set {0, 1}n.
We let µ(·) denote an arbitrary negligible function (i.e., a function that grows slower than the

inverse of any polynomial). For two probability ensembles (sequences of random variables) X =
{Xs}s∈S and Y = {Ys}s∈S (where S ⊆ {0, 1}∗ is a set of strings), we say that X is computationally
indistinguishable from Y , denoted X

c≡ Y , if for every polynomial-sized circuit family {Dn}n∈N

and every s ∈ S, it holds that |Pr[D|s|(s,Xs) = 1]−Pr[D|s|(s, Ys) = 1]| < µ(|s|). We will sometime
drop the subscripts s when they can be inferred from the context. In all our protocols, we will
denote the security parameter by n.

Let A be a probabilistic polynomial-time machine. We denote by A(x, y, r) the output of the
machine A on input x, auxiliary-input y and random-tape r. We stress that the running-time of
A is polynomial in |x|. If M is a Turing machine, then we denote by desc(M) its description (or
code). Let A and B be interactive machines. We denote by viewA(A(x, y, r), B(x, z, r′)) a random
variable describing the view of party A in an interactive execution with machine B, on public input
x, where A has auxiliary-input y and random-tape r, and B has auxiliary input z and random-tape
r′. Recall that a party’s view of an execution includes the contents of its input, auxiliary-input
and random tapes plus the transcript of messages that it receives during the execution. We will
sometimes drop r or r′ from this notation, which will mean that the random tape is not fixed but
rather chosen at random. For example we denote by viewA(A(x, y), B(x, z)) the random variable
viewA(A(x, y, Um), B(x, z, U ′

m′)) where m (resp., m′) is the number of random bits that A (resp.,
B) uses on input of size |x|.

2.1 Zero-Knowledge

Loosely speaking, an interactive proof system for a language L involves a prover P and a verifier
V , where upon common input x, the prover P attempts to convince V that x ∈ L. Such a proof
system has the following two properties:

1. Completeness: this states that when honest P and V interact on common input x ∈ L, then
V is convinced of the correctness of the theorem (except with at most negligible probability).

2. Soundness: this states that when V interacts with any (cheating) prover P ∗ on common
input x 6∈ L, then V will be convinced with at most negligible probability. (Thus V cannot
be tricked into accepting a false statement.)

There are two flavors of soundness: unconditional (or statistical) soundness which must hold even for
an all-powerful prover, and computational soundness which needs only hold for a polynomial-time
prover. In proof systems, unconditional soundness is guaranteed; whereas in argument systems
only computational soundness must hold. Unless explicitly stated, when we mention proofs in
discussion, we mean both proofs and arguments.
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We now recall the definition of zero-knowledge proof systems [24]. Actually, we present (a
slightly strengthened form of) the definition of auxiliary-input zero-knowledge [19, Sec. 4.3.3].5

The main difference between our definition below and the standard definition is that we require
the simulator to run in strict, rather than expected, polynomial-time. We note that in this paper,
when we say zero-knowledge, our intention is always auxiliary-input zero-knowledge.

Definition 2.1 (auxiliary-input zero-knowledge): Let (P, V ) be an interactive proof (or argument)
system for a language L; denote by PL(x) the set of strings y satisfying the completeness condition
with respect to x ∈ L (e.g., in the case of proof systems for NP languages, PL(x) denotes the set of
witnesses for x). We say that (P, V ) is auxiliary-input zero-knowledge if there exists a probabilistic
polynomial-time algorithm S such that for every probabilistic polynomial-time machine V ∗, and
every yx ∈ PL(x) and polynomial l(·), the following two probability ensembles are computationally
indistinguishable:

1. {〈P (yx), V ∗(z)〉(x)}x∈L,z∈{0,1}l(|x|)

where 〈P (yx), V ∗(z)〉(x) denotes the output of V ∗ after interacting with P on common input
x, prover’s private input yx and verifier’s auxiliary input z.

2. {S(desc(V ∗), 1t, x, z)}x∈L,z∈{0,1}l(|x|)

where t is a bound on the running time of V ∗ on inputs of length |x|+ |z|.

Black-box zero-knowledge. A zero-knowledge proof system is called black-box zero-knowledge
if the simulator S only uses its input desc(V ∗) as a black-box subroutine. That is, S is an oracle algo-
rithm such that the ensembles {〈P (yx), V ∗(z)〉(x)}x∈L,z∈{0,1}l(|x|) and {SV ∗(x,z,·)(x)}x∈L,z∈{0,1}l(|x|)

are computationally indistinguishable, where V ∗(x, z, ·) denotes the next-message function of the
interactive machine V ∗ after the public input x and auxiliary input z are fixed (i.e, the next message
function of V ∗ receives a random-tape r and a message history h and outputs V ∗(x, z, r, h)). (We
note that the input 1t is no longer needed since S gets oracle access to V ∗ and can invoke it at the
cost of one step.)

2.2 Zero-Knowledge Arguments of Knowledge

Our definition of arguments of knowledge below differs from the standard definition of [5] in two
ways:

Strict polynomial-time extraction. Firstly, we require that the knowledge extractor run in
strict polynomial-time (rather than expected polynomial-time).

Non-black-box extraction. Secondly, the knowledge extractor is given access to the description
of the prover. This is a relaxation of the standard definition of proofs of knowledge (cf. [5]),
where the knowledge extractor is given only oracle (or black-box) access to the prover strategy.
The relaxed definition appeared originally in Feige and Shamir [15] (which differs from the
definition in [14]; see discussion in [5]), and suffices for all practical applications of arguments
of knowledge.

5We deviate from the definition of auxiliary-input zero-knowledge of [19, Sec. 4.3.3] by making the slightly stronger
requirement that there exists a single universal simulator for all verifiers, rather than a different simulator for each
verifier as in [19, Sec. 4.3.3]. Note however, that the definition of [19, Sec. 4.3.3] already implies that for any c > 0
there exists a universal simulator for all Time(nc) verifiers.
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Until recently, all known proofs of knowledge (including [15]) used the prover algorithm only as
a black-box. The extra power awarded a knowledge extractor who is given the actual description
of the prover was first used in an essential way by [4] in order to obtain resettable zero-knowledge
arguments of knowledge for NP.6 We show in Section 5 that our use of non-black-box extraction
is also essential, as there do not exist constant round proofs of knowledge with black-box strict
polynomial-time extractors.

We are now ready to present the definition:

Definition 2.2 (system of arguments of knowledge): Let R be a binary relation. We say that a
probabilistic, polynomial-time interactive machine V is a knowledge verifier for the relation R with
negligible knowledge error if the following two conditions hold:
• Non-triviality: There exists a probabilistic polynomial-time interactive machine P such that for

every (x, y) ∈ R, all possible interactions of V with P (with auxiliary input y) on common input
x are accepting.

• Validity (or knowledge soundness) with negligible error: There exists a probabilistic polynomial-
time machine K, such that for every probabilistic polynomial-time machine P ∗, and every
x, y, r ∈ {0, 1}∗, machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x,
when interacting with the prover P ∗ upon input x, auxiliary-input y and random-tape
r. Let t denote a bound on the maximum running time of P ∗ when its first input is x.
Then, machine K, upon input (desc(P ∗), 1t, x, y, r), outputs a solution s ∈ R(x) with
probability at least p(x, y, r)− µ(|x|).

An interactive pair (P, V ) so that V is a knowledge verifier for a relation R and P is a machine
satisfying the non-triviality condition (with respect to V and R) is called an argument of knowledge
for the relation R.

The input 1t is provided to allow K to run in time which is (some fixed) polynomial in the
running time of P ∗. It may be redundant, depending on the representation chosen for desc(P ∗)
(for example it is redundant if P ∗ is represented as a boolean circuit).

If an argument of knowledge (P, V ) is zero-knowledge for the language LR induced by R, then
we say that (P, V ) constitutes a system of zero-knowledge arguments of knowledge for R.

2.3 Witness-Extended Emulation

Zero-knowledge proofs of knowledge are often used as subprotocols within larger protocols. Typi-
cally in this context, the extractor for the proof of knowledge supplies the simulator for the larger
protocol with some secret information. This information then enables the simulation of the rest of
the larger protocol.

The final output of the simulator for the larger protocol is usually a transcript of the entire
simulated protocol execution (where this transcript is indistinguishable from a real execution).
Thus, the simulator needs to not only extract a witness from the proof of knowledge, but must also
obtain a transcript of the execution of the proof of knowledge itself. Unfortunately, by definition,
the extractor only outputs a witness and does not provide the simulator with such a transcript.
This issue was addressed in [26] where, loosely speaking, it was shown that for any zero-knowledge

6The use there is critical as it can be shown that if the knowledge extractor is restricted to only black-box access to
the prover, then resettable zero-knowledge arguments of knowledge are possible for languages in BPP only, see [29].
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proof of knowledge, there exists a machine who outputs both the witness (with the appropriate
probability) and the protocol transcript of messages sent in the execution. Such a machine was
termed a “witness-extended emulator”, because its role is to emulate a protocol execution while
also providing a witness (see [26] for a more detailed discussion). We proceed by presenting the
formal definition of a witness-extended emulator, and then discuss its relevance to our work here.
We begin with some notation and terminology:
• Recall that viewP ∗(P ∗(x, y, r), V (x)) denotes a random variable describing the view of P ∗ in

a protocol execution with the honest verifier V , where P ∗ has input x, auxiliary-input y and
random-tape r, and the honest verifier V has input x. (This random variable depends only on
the coins of V .)

• We say that a zero-knowledge proof (P, V ) is publicly verifiable if given the transcript of messages
between any P ∗ and V , it is possible to efficiently determine whether or not V accepted the
proof.

• Let acceptV (·) be a deterministic function that takes a specific view of the prover in a protocol
execution, and outputs whether or not V accepts in this execution. Note that if the protocol is
publicly verifiable, then this function can be efficiently computed from the prover’s view.

We are now ready to present the definition:

Definition 2.3 (witness-extended emulator): Let R be a binary relation and let (P, V ) be an
interactive proof system that is publicly verifiable. Consider a probabilistic (strict) polynomial-time
machine E that is given the description of a probabilistic polynomial-time prover desc(P ∗), the
contents of P ∗’s input, auxiliary-input and random-tapes, x, y and r respectively, and 1t, where t
is a bound on P ∗’s running-time when its first input is x. We denote by E1(desc(P ∗), 1t, x, y, r)
and E2(desc(P ∗), 1t, x, y, r) the random variables representing the first and second elements of the
output of E, respectively. We say that E is a witness-extended emulator for (P, V ) and R if for every
probabilistic polynomial-time interactive machine P ∗, every x, y, r ∈ {0, 1}∗, every polynomial p(·)
and all sufficiently large x’s,

1. E1’s output distribution is indistinguishable from the distribution of the view of P ∗ in a real
execution with the honest verifier V . That is,

{
E1 = E1(desc(P ∗), 1t, x, y, r)

}
x,y,r

c≡ {viewP ∗(P ∗(x, y, r), V (x))}x,y,r

2. The probability that V would accept when P ∗’s view is as output by E1, and yet E2 does not
output a correct witness, is negligible. That is,

Pr[acceptV (E1) = 1 & (x,E2(desc(P ∗), 1t, x, y, r)) 6∈ R] < µ(|x|)

There are a number of differences between Definition 2.3 and the definition provided in [26].

1. First and foremost, we require that the witness-extended emulator be strict polynomial-time,
whereas in [26] it was allowed to run in expected polynomial-time.

2. In [26], the view that is output by the emulator must be distributed exactly as in a real
execution. On the other hand, we only require that the view output be indistinguishable from
in a real execution. Enabling computational indistinguishability is a natural relaxation of the
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requirement and is enough for most applications. We note that we make this modification
because we do not know how to achieve the result otherwise. (If E is allowed to run in
expected polynomial-time, then it is easy to achieve the stronger requirement of equivalent
distributions. However, given that we limit E to strict polynomial-time, we do not know how
to do this.)

3. In the definition of [26], the emulator outputs the verifier’s view of the execution. This view
is output in order to enable a simulator who runs the witness-extended emulator to construct
the proof transcript, and also to know whether or not the proof was accepting. We were
unable to construct a witness-extended emulator who can output a witness along with a
string that is indistinguishable from the verifier’s view (the reason being that our extractor
works very differently from a real verifier). Therefore, we output the prover’s view instead and
require, for simplicity, that the proof be publicly verifiable. Despite this significant technical
difference in the definition, the same effect is obtained (this is because the proof transcript
can be constructed from either party’s view).7

We now discuss the relevance of witness-extended emulation to our work. Clearly, in order to use
our zero-knowledge proof of knowledge as a subprotocol, we also need witness-extended emulation
and not just extraction. However, [26] already proved that the existence of an extractor implies
the existence of a witness-extended emulator.

Unfortunately, however, this is not enough. This is because [26] only requires that the emulator
be expected polynomial-time, and not strict polynomial-time as we require here. Furthermore,
the fact that the emulator of [26] runs in expected polynomial-time is not due to the fact that
the underlying extractor runs in expected polynomial-time. That is, even if the starting point is
a strict polynomial-time extractor (as is the case for our protocol), the methodology of [26] still
results in an expected polynomial-time emulator. This is due to the design of the emulator which,
loosely speaking, works in the following way. First, it verifies the proof from P ∗. Then, if the
proof was convincing, the emulator runs the extractor many times, until a witness is extracted
(recall that the probability that the extractor obtains a witness in each “run” is at most negligibly
smaller than the probability that P ∗ was convincing in the first stage).8 We will not go into the
analysis of the emulator here. However, it is clear that such a strategy inherently yields an expected
polynomial-time machine, and not a strict polynomial-time one.

For the above reason, we are unable to provide an analogous lemma to that provided in [26] (i.e.,
that the existence of a strict polynomial-time extractor implies the existence of a strict polynomial-
time witness-extended emulator). Rather, we directly show the existence of a (strict polynomial-
time) witness-extended emulator for our proof of knowledge. Therefore, our zero-knowledge proof
of knowledge can be used as a subprotocol in a larger protocol, and the simulator using it will
remain strict polynomial-time.

7In fact, the definitions could be united by having the emulator output a witness and a transcript of the messages
sent between P ∗ and V . This definition was not used in [26] in order to not require that the proof of knowledge be
publicly verifiable. This can also be overcome, but the result is a more cumbersome definition.

8The exact emulator of [26] works slightly differently since they base themselves on a different definition of proofs
of knowledge (that is equivalent in their setting). Here we restate the methodology to suit the definition used here.
Note also that the emulation is actually more complicated because such a naive strategy may yield a super-polynomial
execution; see [26] for details.
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2.4 Commit with Extraction

Commitment schemes. A commitment scheme is a two-party protocol that enables a party,
known as the sender, to commit itself to a value while keeping it secret from the receiver (this prop-
erty is called hiding). Furthermore, the commitment is binding, and thus in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined
in the committing phase. In a perfectly binding commitment scheme, the transcripts resulting from
a commitment to 0 and a commitment to 1 are disjoint (with overwhelming probability). Thus, for
every such transcript, there is a unique value that the sender can decommit to.9 See [19, Sec. 4.4.1]
for a formal definition of commitment schemes.

A central tool in our construction of zero-knowledge arguments of knowledge is a (constant-
round) commitment scheme with the following additional property: there exists a (strict polynomial-
time) commitment extractor who is given the description of the sender and extracts the value being
committed to during the commit stage of the protocol. In addition to outputting the committed
value, we also require the extractor to output the sender’s view of an execution. Of course, the
committed value and sender’s view output by the extractor must be compatible. In order to en-
force this compatibility, we denote by commit-value(·) a function that takes a sender’s view and
outputs the unique committed value implicit in this view (or ⊥ if no such value exists).10 Now,
let x and v be the committed value and sender’s view respectively, as output by the extractor.
Then, we require that x = commit-value(v). We note that the additional output of the view can
be important in cases that a commit-with-extract protocol is to be used as a subprotocol. Indeed,
this is the case in our application where we use this scheme in order to construct a zero-knowledge
argument of knowledge. This is also needed for the broader notion of witness-extended emulation,
see Section 2.3. We now present the formal definition:

Definition 2.4 (commit with extract): A perfectly binding commitment scheme C (with sender
A and receiver B) is a commit-with-extract commitment scheme if the following holds: there ex-
ists a probabilistic polynomial-time commitment extractor CK such that for every probabilistic
polynomial-time committing party A∗ and for every x, y, r ∈ {0, 1}∗, upon input (desc(A∗), 1t, x, y, r),
where t is a bound on the running time of A∗(x, y, r), machine CK outputs a pair, denoted
(CK1, CK2) = (CK1(desc(A∗), 1t, x, y, r), CK2(desc(A∗), 1t, x, y, r)), satisfying the following con-
ditions:

1.
{
CK1 = CK1(desc(A∗), 1t, x, y, r)

}
x,y,r∈{0,1}∗

c≡ {viewA∗(A∗(x, y, r), B)}x,y,r∈{0,1}∗

2. Pr[CK2(desc(A∗), 1t, x, y, r) = commit-value(CK1)] > 1− µ(|x|)

Public Decommitment. We say that a commitment scheme satisfies public decommitment if in
the decommitment (or reveal) phase, the receiver does not need to access its random tape from
the commitment phase. In other words, the transcript from the commit phase and the sender’s
decommitment message are enough to efficiently obtain the commitment value. We note that this
additional feature is needed for our zero-knowledge argument of knowledge.

9We require that the binding property holds with respect to a polynomial-time sender only. We note that perfect
binding is usually stated so that it holds even for an all powerful sender.

10This function may not necessarily be efficiently computable. However, since the commitment scheme is perfectly
binding, the function is well-defined. We note that actually the commitment scheme that we construct is only perfectly
binding with overwhelming probability (like the scheme of Naor [27]). Therefore, in the negligible event that there is
more than one possible committed value, we define the output of the function to be ⊥.
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Commit-with-extract using proofs of knowledge. We note that it is possible to achieve a
variant of a commit-with-extract scheme in the following straightforward way. First, the sender
sends a standard perfectly-binding commitment to the receiver. Then, the sender proves knowledge
of the committed value using a zero-knowledge proof (or argument) of knowledge.11 A commitment
extractor can easily be constructed for this scheme by having it run the knowledge extractor from
the proof of knowledge and obtain the committed value. However, as mentioned above, using known
constructions of proofs of knowledge, one would have to settle for either a non-constant number
of rounds, or extraction within expected polynomial-time. On the other hand, we require that the
commit-with-extract scheme be both constant-round and have a strict polynomial-time extractor.

Extractable commitment schemes. The notion of a commitment scheme with the additional
property that the committed value can be extracted from the sender is not new. It has been used
in the context of secure multi-party computation (e.g., [18, Consruction 2.3.8]) and has been called
both commit-with-knowledge [10] and non-oblivious commitment [19, Def. 4.9.3]. The implemen-
tation of these schemes has always involved proofs of knowledge, with the method described above.
In contrast, our protocol (presented in Section 3) works in a completely different way: it does not
consist of two distinct “commit” and “knowledge/extract” phases; rather the commitment and ex-
traction are intertwined. Interestingly, this results in a subtle, yet important difference. In previous
schemes, the committed value is determined before the extraction begins. Therefore, the intuition
that the sender “knows” the committed value is justified because the sender can apply the extractor
to itself and thereby obtain the committed value. However, in our protocol, the committed value is
only determined at the conclusion of the protocol. Furthermore, there is no extractor that can be
later applied to obtain the committed value. Thus, on one hand, it seems that the intuition that the
sender knows the committed value cannot be justified here. On the other hand, for all intents and
purposes, extraction of the committed value suffices whether or not the value is predetermined. At
the end of Section 3, we describe a particular sender who participates in our commit-with-extract
protocol and does not know the committed value (even though the extractor does).

3 A Commit-with-Extract Scheme

In this section we show how to construct a constant-round commit-with-extract commitment
scheme. That is, we prove the following theorem:

Theorem 3.1 Assume the existence of trapdoor permutations over {0, 1}n 12 and collision-resistant
hash functions. Then, there exist constant-round commit-with-extract string commitment schemes
satisfying public decommitment.

To simplify the presentation, we will start by showing a commit-with-extract bit commitment
scheme and then show how to generalize our construction to a string commitment scheme. Our
protocol is based on the following well-known non-interactive commitment scheme that uses one-way
permutations [6]: Let f be a one-way permutation over {0, 1}n and let b be a hard-core predicate
of f . Then, in order to commit to a bit σ, the sender chooses r ∈R {0, 1}n, lets y = f(r) and
sends 〈y, b(r) ⊕ σ〉 to the receiver. Loosely speaking, our commitment scheme is defined in the
same way except that the value y = f(r) is chosen jointly by the sender and the receiver using a

11Actually, it would be enough to use a strong witness indistinguishable proof of knowledge [19, Sec. 4.6], rather
than a zero-knowledge proof of knowledge.

12See Footnote 3.
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coin-tossing protocol (based on [26]). Since y is chosen uniformly, the hiding property remains as
in the original scheme. Likewise, because f is a permutation, y defines a unique value b(f−1(y))
and thus the scheme remains perfectly binding. The novelty of our scheme is that for every sender,
there exists an extractor that can bias the coin-tossing protocol so that it concludes with a value
y for which the extractor knows the preimage f−1(y). In this case, the extractor can easily obtain
the commitment value σ, as desired.

In order to allow the sender to be implementable by an efficient algorithm, we choose f to be a
trapdoor one-way permutation. Thus, the sender is able to efficiently compute r = f−1(y), where y
is the output of the coin-tossing protocol (this is similar to the NIZK system constructed in [12]).
Formally, the protocol is parameterized by a family of trapdoor permutations over {0, 1}n, with
(function) sampling algorithm I. We denote a permutation from the family by f and its associated
trapdoor by t. Furthermore, we denote by b a hard-core of f .

One of the components of the protocol is a constant-round zero-knowledge argument with a
strict polynomial-time simulator. We note that such an argument exists if collision-resistant hash
functions exist [3].

Protocol 3.2 (commit-with-extract bit commitment scheme):
• Input: The sender has a bit σ to be committed to.

• Commit phase:

1. A chooses a trapdoor permutation:

(a) The sender A chooses a trapdoor permutation f along with its trapdoor t (by running
the sampling algorithm I on a uniformly chosen string sI ∈R {0, 1}n), and sends f to
the receiver B.

(b) A proves to B that f is indeed a permutation, using a constant-round zero-knowledge
argument (with a strict polynomial-time simulator).13 Formally, A proves that there
exists a string sI such that f is the permutation output from I(sI). If B does not
accept the proof, then it aborts.

2. A and B run a coin-tossing protocol:

(a) B chooses a random string r1 ∈R {0, 1}n and sends c = Commit(r1; s) to A (using any
perfectly-binding commitment scheme and a random string s).

(b) A chooses a random string r2 ∈R {0, 1}n and sends r2 to B.
(c) B sends r1 to A (without decommitting).
(d) B proves that the string r1 sent in Step 2c is indeed the value that it committed to in

Step 2a, using a constant-round zero-knowledge argument (with a strict polynomial-
time simulator).14 Formally, B proves that there exists a string s such that c =
Commit(r1; s).

(e) The output of the coin-tossing phase is r1 ⊕ r2.

3. A sends the actual commitment:
A computes r = f−1(r1 ⊕ r2) and sends B the value v = b(r)⊕ σ.

• Reveal phase:
13The use of zero-knowledge with strict polynomial-time simulation is not essential here. Rather, it simplifies our

analysis. Additionally, this proof can be eliminated entirely if we use certified permutations [12]. We note that by
replacing this argument with a proof, we also obtain perfect binding against an all-powerful prover.

14In contrast to step 1b, the property of strict polynomial-time simulation here is essential.
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1. A sends B the string r.
2. B checks that f(r) = r1 ⊕ r2. If this is the case, then B computes b(r) ⊕ v obtaining σ.

Otherwise, B outputs ⊥.

(By convention, if the commit phase of the protocol is not completed, then the committed value
is defined to equal 0.) We now prove that Protocol 3.2 is indeed a secure commit-with-extract
scheme:

Proposition 3.3 Protocol 3.2 constitutes a commit-with-extract bit commitment scheme, that sat-
isfies public decommitment.

Proof: It is easy to see that the protocol satisfies public decommitment. We proceed by first
showing that Protocol 3.2 is a secure commitment scheme. This involves demonstrating both the
binding and hiding properties. Intuitively, these properties hold because the only difference between
the above protocol and the basic commitment scheme defined by Cn(σ; r) def= 〈f(r), b(r) ⊕ σ〉 for
r ∈R {0, 1}n, is that the random string r is chosen via a coin-tossing protocol (rather than being
determined by the sender).

Perfect binding. We begin with the (almost) perfect binding property. That is, we show that
except with negligible property, for any transcript of messages t generated by an execution between
an arbitrary probabilistic polynomial-time sender A∗ and the honest receiver B, there exists a
unique value σ ∈ {0, 1} such that commit-value(t) = σ.

First, note that if B does not accept the proof provided by A∗ in step 1b, then B will abort
and then, by convention, σ equals 0. Likewise, if A∗ does not complete the entire commit phase, σ
also equals 0. Therefore, the binding property trivially holds in these cases. We continue to show
that it holds when B does not abort and the commit phase is completed.

Now, assume that the function f sent by A∗ is indeed a permutation. In this case, any pair of
strings r1 and r2 appearing in the transcript define a single preimage r = f−1(r1 ⊕ r2). Therefore,
any bit v sent by A∗ in step 3 defines a single value σ = v⊕b(r). However, if f is not a permutation,
then there may be more than one possible preimage to r1⊕r2. Nevertheless, this possibility is ruled
out (except with negligible probability) by the soundness of the proof provided by A∗ in step 1b
(where A∗ proves that f is indeed a permutation).

Computational hiding. Intuitively, the hiding property follows from the hiding property of
the non-interactive commitment scheme of [6], and the security of the coin-tossing protocol. In
particular, if r1 ⊕ r2 is uniform (or pseudorandom), then distinguishing between a commitment
to 0 and a commitment to 1 is essentially equivalent to distinguishing between 〈f(Un), b(Un)〉 and
〈f(Un), b(Un) ⊕ 1〉. The hiding property therefore follows from the security of the coin-tossing
protocol that ensures that r1 ⊕ r2 is pseudorandom.

Formally, for a polynomial-size receiver B∗, denote by vB∗
n (σ) the distribution over B∗’s view,

when the honest sender A commits to the value σ (the distribution is over the uniform choice
of random coins for A). Then, the hiding property is stated as follows: for any polynomial-size
receiver B∗, it holds that

{vB∗
n (0)}n∈N

c≡ {vB∗
n (1)}n∈N

As we have mentioned, the hiding property is derived from the hiding property of the non-interactive
commitment scheme defined by

Cn(σ) def= 〈f(Un), b(Un)⊕ σ〉 (1)
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Loosely speaking, the only difference between Protocol 3.2 and the commitment scheme Cn, is that
in Protocol 3.2 the value f(Un) is chosen jointly by both parties (and is not determined solely by
the sender). We therefore reduce the hiding property of Protocol 3.2 to the hiding property of
Cn. Assume by contradiction, that there exists a polynomial-size receiver B∗, a polynomial-time
distinguisher D and a polynomial p(·) such that for infinitely many n’s

advD
n

def=
∣∣∣Pr[D(vB∗

n (0)) = 1]− Pr[D(vB∗
n (1)) = 1]

∣∣∣ ≥ 1
p(n)

(2)

(Without loss of generality, we assume that B∗ always outputs its view.) We will use D and
B∗ to construct a distinguisher D′ that contradicts the security of the commitment scheme Cn

defined in Eq. (1). Intuitively, D′ receives a commitment Cn(σ) = 〈f(r), b(r)⊕σ〉 for input (where
r ∈R {0, 1}n) and works by invoking B∗ and obtaining an execution of Protocol 3.2 in which
r1⊕ r2 = f(r). Then, since D has an advantage in guessing the value of σ given r1, r2 and b(r)⊕σ,
this translates to D′ having an advantage in guessing σ given Cn(σ). Formally, distinguisher D′

works as follows (the step numbers are as in Protocol 3.2):

0. D′ receives for input a permutation f and a commitment c̃ = Cn(σ) = 〈f(r), v = b(r)⊕ σ〉,
where r ∈R {0, 1}n.

D′ simulates an execution of A with B∗. Apart from where D′ is explicitly instructed to
output fail, if at any point A would abort (due to detecting malicious behavior from B∗),
then D′ also aborts and jumps to step 4 of its instructions below.

1. Simulation of A choosing a trapdoor permutation:

(a) D′ passes B∗ the permutation f .

(b) D′ runs the zero-knowledge simulator (for the proof that f is a permutation) using the
residual B∗ as the verifier.

2. First simulation of the coin-tossing protocol (information gathering):

(a) D′ receives a commitment c = Commit(r1) from B∗.

(b) D′ passes B∗ a random string r′2 ∈R {0, 1}n.

(c) D′ obtains some string r′1 from B∗.

(d) D′ verifies the zero-knowledge proof given by B∗.

If B∗ does not send any of the messages that it is supposed to send during the above steps of
the coin-tossing protocol, or if the verification of the proof fails, then D′ outputs fail.

Otherwise, except with negligible probability, D′ has obtained r1 where c = Commit(r1).

2′. Second simulation of the coin-tossing protocol (actual simulation):

D′ rewinds B∗ to the beginning of the coin-tossing protocol and runs it again.

(a) D′ receives a commitment c = Commit(r1) from B∗.

(b) D′ passes B∗ the string r2 = r1⊕ f(r) (recall that D′ has already obtained the string r1

from the first simulation).

(c) D′ receives some string r′′1 from B∗.
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(d) D′ verifies the zero-knowledge proof given by B∗.
If r′′1 6= r′1 and the proof from B∗ was accepting, then D′ outputs fail. (We stress that if
the verification of the proof with B∗ failed, then D′ does not output fail, even if r′′ 6= r′.
This is because, in this case, B∗ has aborted and so D′ jumps to step 4.)

3. Simulation of actual commitment:

D′ passes the bit v (from its input commitment c̃) to B∗.

4. Output: D′ passes the view output by B∗ to D, and outputs whatever D does. (We stress that
this view as passed by D′ to D may not be complete, as is the case if B∗ fails to successfully
complete the proof of step 2′d.)

First, notice that D′ runs in strict polynomial-time (as we have mentioned, this is not essential
but rather simplifies the proof since the security of the commitment scheme Cn is with respect
to strict polynomial-time distinguishers). We now analyze D′’s distinguishing probability for the
commitment scheme Cn. Note that the output of D′ is either 0, 1 or fail. To make a standard
distinguisher (with output in {0, 1}) we can always replace the output fail with any output that is
independent of the input (e.g. with 0). Now, we proceed by proving two claims. First, we show that
if D′ does not output fail, then it successfully distinguishes commitments to 0 from commitments
to 1. Formally,

Claim 3.3.1 If D′ does not output fail then D′ distinguishes Cn(0) from Cn(1) with non-negligible
advantage. That is,

∣∣Pry∈RCn(0)[D
′(y) = 1|D′(y) 6= fail]− Pry∈RCn(1)[D

′(y) = 1|D′(y) 6= fail]
∣∣ >

1
p(n)

for some polynomial p(·) and infinitely many n’s.

Next, we show that with non-negligible probability, D′ does not output fail. That is,

Claim 3.3.2 The probability that D′ does not output fail is noticeable. Furthermore, this probability
is independent of whether the input of D′ was Cn(0) or Cn(1). That is,

Pry∈RCn(0)[D
′(y) 6= fail] = Pry∈RCn(1)[D

′(y) 6= fail] >
1

q(n)

for some polynomial q(·) and infinitely many n’s.

Putting the above claims together, we have that D′ distinguishes Cn(0) and Cn(1) with non-
negligible probability (in particular, for infinitely many n’s it distinguishes between them with
probability 1

p(n)q(n)).

Proof of Claim 3.3.1: Recall that in this claim, we consider the case in which B∗ behaves
in such a way that D′ never outputs fail. Therefore, the simulation always concludes and in the
case that r1 and r2 appear in B∗’s output view, it holds that r1 ⊕ r2 = f(r). Furthermore, the
distribution of B∗’s view as output from the simulation with D′ when D′ receives Cn(σ) as input,
is indistinguishable from vB∗

n (σ). The only difference between the distributions is regarding the
simulated zero-knowledge proof that f is a permutation. (Notice that since f(r) ∈R {0, 1}n we
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have that the string r2 sent by D′ in the second simulation phase is uniformly distributed as in a
real execution.)15 Therefore, for σ ∈ {0, 1},

∣∣∣Pr[D′(Cn(σ)) = 1]− Pr[D(vB∗
n (σ)) = 1]

∣∣∣ < µ(n)

and by the assumption stated in Eq. (2), we have that for infinitely many n’s

∣∣Pr[D′(Cn(0)) = 1]− Pr[D′(Cn(1)) = 1]
∣∣ >

1
p(n)

− 2µ(n)

This completes the proof of the claim.

Proof of Claim 3.3.2: First of all, observe that the only step in which the honest sender A
uses its input value σ is the last step. Therefore, in any execution where B∗ aborts, B∗ obtains
no information about σ. This implies that the probability that B∗ aborts is independent of A’s
input (and is the same if A is committing to 0 or 1). This also implies, as we required, that the
probability that D′ outputs fail is independent of whether its input came from Cn(0) or from Cn(1).

Now, denote by εn the probability that B∗ aborts in a real execution with A, when A has 0
for input (this is equal to the probability of abort when A has 1 as input). Note that when B∗

aborts, the distinguisher D also gets no information about the input bit. Therefore, it must hold
that advD

n ≤ 1− εn, or in other words , εn ≤ 1− advD
n .

We proceed by showing that the probability that D′ outputs fail in the above simulation is at
most negligibly greater than εn. By the observation above, this will finish the proof, since it would
imply that D′ has a non-negligible probability (advD

n − µ(n)) of not outputting fail (recall that by
the assumption, advD

n is non-negligible). By D′’s instructions, it outputs fail in one of two cases:

1. If B∗ aborts in the first simulation of the coin-tossing protocol (i.e., by refusing to send a
message or failing to prove the proof of the first simulation): we claim that the probability
that D′ outputs fail due to this event is at most εn + µ(n). This can be seen due to the
following. Assume for a moment that the zero-knowledge proof provided by D′ in step 1b is
real and not simulated. Then, B∗’s view up until the end of the first simulation phase with
D′ is identical to its view in a real execution with A. By replacing the zero-knowledge proof
of step 1b with a simulated one, we have that B∗’s view until the end of the first simulation
phase is indistinguishable from in a real execution. Therefore, B∗’s abort probability until
this point in the simulation with D′ can only be negligibly far from its abort probability in a
real execution.

2. If r′′ 6= r′ (see step 2′d): this can only happen if B∗ successfully proved that c = Commit(r′)
and c = Commit(r′′). However, the commitment scheme used is perfectly binding and there-
fore one of the above statements is false. Therefore, by the soundness of the zero-knowledge
argument system, this event can happen with at most negligible probability µ(n).

We conclude that

Pr[D′(Cn(0)) = fail] = Pr[D′(Cn(1)) = fail] < εn + 2µ(n) ≤ 1− advn + 2µ(n)

which is what we wanted to prove.

15There’s also a difference because of the test D′ makes in Step 2d. However, we will see in the proof of Claim 3.3.2
that the probability that D′ outputs fail in this step is negligible.
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The extraction property. Having established that Protocol 3.2 is a secure commitment scheme,
we now show the existence of a strict polynomial-time extractor. The extractor CK works by biasing
the outcome r1 ⊕ r2 of the coin-tossing protocol, so that it knows the preimage under f . More
specifically, CK chooses a random string r, computes f(r) and then makes the output r1⊕r2 equal
f(r). This is clearly not possible for a real receiver to do (as the coin-tossing protocol ensures that
f(r) is pseudorandom). However, recall that CK has the description of the sender A∗, and therefore
has more power than a real receiver. In particular, this gives CK the capability of running the
simulator for the proof that B provides in step 2d of the protocol. As we will see, this is enough.

Recall that CK should output a view indistinguishable from the one seen by A∗ in a real
interaction, as well as the unique commitment value defined by this view. Extractor CK receives
the description of an arbitrary polynomial-time sender A∗ and a triple (x, y, r), and works as follows:

1. A∗ chooses a trapdoor permutation:

(a) CK invokes A∗(x, y, r) and receives the description of a permutation f from A∗.

(b) Then, CK verifies the zero-knowledge proof from A∗ attesting to the fact that f is a
permutation. If the verification fails, then CK outputs A∗’s view until this point and
0, and halts. (CK outputs 0 because, by our convention, in such an aborted execution
this is the committed value.)

2. CK biases the outcome of the coin-tossing protocol:

(a) CK passes c = Commit(0n) to A∗ (this is a commitment to “garbage”).

(b) CK obtains a string r2 from A∗.

(c) CK chooses r ∈R {0, 1}n, computes f(r) and passes A∗ the string r1 = f(r)⊕r2. (Notice
that r1 is chosen irrespective of the initial commitment c, and that f−1(r1 ⊕ r2) = r.)

(d) CK invokes the zero-knowledge simulator, with the residual A∗ as the verifier, for the
appropriate (false) statement that there exists a string s such that c = Commit(r1; s).

3. A∗ sends the actual commitment:

CK receives a bit v from A∗.

4. Output: CK outputs A∗’s view of the above execution along with σ = b(r)⊕ v.

We first claim that CK extracts the bit committed to in the execution (we focus on the case
that A∗ does not abort; otherwise the claim trivially holds). This is immediate since CK knows
the preimage to f(r) = f(r1 ⊕ r2). Therefore, b(r) ⊕ v is exactly the unique value committed to
by A∗. (The above assumes that f is indeed a permutation. However, by the soundness of the
zero-knowledge argument of step 1b, it can only occur that f is not a permutation with negligible
probability.)

Next, we show that the view output by CK is computationally indistinguishable to A∗’s view
in a real execution. In actuality, there are two differences: firstly the commitment received by A∗ in
step 2a is to 0n rather than to r1. Secondly, the zero-knowledge argument verified by A∗ in step 2d is
simulated rather than real. Using a standard hybrid argument, computational indistinguishability
can be shown. Specifically, define a hybrid experiment whereby A∗ receives a commitment to r1

(instead of to 0n), and yet the zero-knowledge proof that it verifies is simulated. Then, by the hiding
property of commitment schemes, A∗’s view in the hybrid experiment is indistinguishable from its
view output by CK. On the other hand, by the indistinguishability of zero-knowledge simulation,
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A∗’s view in the hybrid experiment is indistinguishable from its view in a real execution. Combining
the above together, we obtain that CK outputs a view that is indistinguishable from A∗’s view in
a real execution.

It remains to show that CK runs in strict polynomial-time. However, this immediately follows
from the above description and from the fact that the zero-knowledge simulator used by CK runs
in strict polynomial-time. This completes the proof.

We note that any constant-round zero-knowledge argument system with a strict polynomial-time
simulator suffices for Step 2d. However, the only known such argument system is that of [2] (or
its modified version in [3]) and this system utilizes a non-black-box simulator. Since the extractor
must run this simulator, it follows that it is also non-black-box. As we will see in Section 5, this is
in fact necessary for obtaining a constant-round protocol with strict polynomial-time extraction.

Extending Protocol 3.2 to strings: To prove Theorem 3.1 we need to generalize Protocol 3.2
to allow commitments to strings of length m (where m is polynomial in the security parameter n),
instead of just allowing commitments to single bits. This extension can be obtained in two ways.
Firstly, one can simply run Protocol 3.2 in parallel m times (taking care that the zero-knowledge
arguments used are closed under the parallel composition of m executions, as is the case with
the bounded-concurrent zero-knowledge protocol of [2, 3]). Alternatively, one can directly modify
Protocol 3.2, and have A and B run m copies of the coin-tossing protocol in parallel, and then use
only a single zero-knowledge argument to prove a compound statement relating to all copies.

On the sender’s knowledge of the commitment value. We note that although the extractor
always obtains the value being committed to, there is no guarantee that the sender itself actually
knows it. In fact, one can construct a sender A∗ who is oblivious to this value, as follows. Let
A∗ be such that it chooses a one-way permutation without obtaining the corresponding trapdoor.
Furthermore, in Step 3 of Protocol 3.2, A∗ sends a random bit b ∈ {0, 1} to B. Then, since r1 ⊕ r2

is uniformly distributed, A∗ cannot guess the value of the bit that it committed to with probability
non-negligibly greater than 1/2.

Despite this, since the commitment scheme used in step 2a of the protocol is perfectly binding,
the transcript of a protocol execution defines a unique committed-to value. Thus, the commitment
extractor is able to obtain this value (even if the sender itself does not know it).

Sufficient assumptions. Our construction of a commit-with-extract scheme requires trapdoor
permutations (for finding the preimage to r1 ⊕ r2), and collision-resistant hash functions (for the
constant-round zero-knowledge argument with strict polynomial-time simulation [2]). It is inter-
esting to note that when the commitment extractor may run in expected polynomial-time or when
a non-constant number of rounds may be tolerated, such a scheme can be constructed based on
one-way functions only. (As we have mentioned, such a commit-with-extract may be constructed
by running the perfectly-binding commitment scheme of [27], followed by either a constant-round
zero-knowledge proof of knowledge [15] or a non-constant round strong zero-knowledge proof of
knowledge, such as the one in [19].
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4 A Zero-Knowledge Argument of Knowledge

Given a commit-with-extract commitment scheme, it is not hard to prove Theorem 1 by constructing
a zero-knowledge argument of knowledge, with strict polynomial-time extraction. The basic idea
is that the prover commits to a witness using the commit-with-extract scheme, and then proves
that it committed to a valid witness using a zero-knowledge proof of membership. (Recall that
by zero-knowledge here, we mean auxiliary-input zero-knowledge.) Intuitively, soundness follows
from the soundness of the zero-knowledge proof of membership and from the fact that the commit-
with-extract scheme is perfectly binding. On the other hand, a knowledge extractor is immediately
obtained from the extractor of the commit-with-extract scheme.

Let R be an NP-relation. Without loss of generality, we assume that all witnesses for R are of
the same length. We construct a zero knowledge argument of knowledge for R as follows:

Protocol 4.1 (zero-knowledge argument of knowledge for R):
• Common Input: x

• Auxiliary input to prover: w such that (x,w) ∈ R.

• Phase 1: P and V run a commit-with-extract protocol (with public decommitment) in which P
commits to the witness w.

• Phase 2: P proves to V , using a constant-round zero-knowledge proof (or argument) of mem-
bership (with a strict polynomial-time simulator) that it committed to a valid witness w in the
previous step.

Formally, let trans be the transcript of the commit-with-extract execution of Phase 1, and let
d be the decommitment message that P would send to V in the decommit phase of the commit-
with-extract scheme. Then, P proves the NP-statement that there exists a value d such that
(trans, d) defines the value w, and (x,w) ∈ R.16

In Phase 2, we use a zero-knowledge argument system with a strict polynomial-time simulator,
so that the resulting protocol will be a zero-knowledge argument of knowledge with both a strict
polynomial-time extractor and a strict polynomial-time simulator. If the system used in Phase 2 has
an expected polynomial-time simulator, then the resulting protocol will have a strict polynomial-
time knowledge-extractor but an expected polynomial-time simulator.

Theorem 1 is obtained by combining the following proposition with Theorem 3.1.

Proposition 4.2 Assume that the commitment scheme of Phase 1 is a commit-with-extract string
commitment scheme. Then, Protocol 4.1 is a zero-knowledge argument of knowledge, as defined in
Definition 2.2 (i.e., it has a strict polynomial-time simulator and knowledge-extractor). Further-
more, there exists a witness-extended emulator for Protocol 4.1, as defined in Definition 2.3.

Proof: In order to prove that Protocol 4.1 is a zero-knowledge argument of knowledge, one
must prove three properties: completeness, knowledge soundness (which implies computational
soundness), and zero-knowledge. The proof of completeness is immediate. We proceed to prove
knowledge soundness and zero-knowledge.

16We note that here we require that the commit-with-extract scheme satisfies public decommitment. Otherwise,
the statement that P needs to prove is not guaranteed to be in NP.
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Knowledge soundness. Let P ∗ be a (possibly cheating) prover that convinces the honest verifier
that x ∈ L with probability ε. The extractor for the zero-knowledge argument simply uses the
extractor CK of the commit-with-extract scheme in order to obtain P ∗’s view of the first phase,
along with a string w that is the unique value that is committed to in this phase. We then argue
that since the view output by CK is computationally indistinguishable from P ∗’s view in a real
execution, and since the proof (or argument) system used in Phase 2 is sound, the probability that
w will be a witness for x is at least ε− µ(n) (for some negligible function µ(·)).

To prove that Protocol 4.1 satisfies knowledge soundness, we need to show a knowledge extractor
algorithm K. We now describe such an algorithm:

Algorithm 4.3 (knowledge extractor K):
• Input: (desc(P ∗), 1t, x, y, r)

1. Let CK be the extractor for the commit-with-extract scheme. Then, invoke CK on input
(desc(P ∗), 1t, x, y, r), and obtain the view of P ∗ in Phase 1, denoted v, along with a string w
that is the committed value corresponding to that view (i.e., w = commit-value(v)).

2. Output w.

Let p(x, y, r) be the probability that P ∗(x, y, r) convinces the honest verifier on input x in a real
execution. We claim that the probability that the witness output by K is valid is at least p(x, y, r)−
µ(|x|), for some negligible function µ(·). First, recall that by the definition of a commit-with-extract
scheme, it holds that {

viewCK
P ∗ (x, y, r)

} c≡ {
viewP ∗(P ∗(x, y, r), V )

}

where viewCK
P ∗ (x, y, r) is the random-variable describing the view of P ∗ as output by CK, and

viewP ∗(P ∗(x, y, r), V ) is the random-variable describing the view of P ∗ in a real execution with V .
Now, the proof of Phase 2 of Protocol 4.1 is provided by the residual prover to the commit-with-
extract scheme. Therefore, the probability that this residual prover provides a convincing proof
when its view of the first phase is as generated by CK is negligibly close to the probability that
it provides a convincing proof in a real execution. Otherwise, this residual prover (along with a
procedure that outputs 1 if and only if the residual prover provides a convincing proof) constitutes
a distinguisher for the above views. We therefore have that the probability that P ∗ provides a
convincing proof in Phase 2, when its view of Phase 1 is distributed according to viewCK

P ∗ (x, y, r),
is at least p(x, y, r)− µ(|x|).

Now, assume that with probability non-negligibly less than p(x, y, r), the value w as output by
CK is not a valid witness for x. That is, there exists a polynomial q(·) such that for infinitely
many x’s, the probability that CK outputs a valid witness is less than p(x, y, r) − 1

p(|x|) . We now
contradict the soundness of the proof (or argument) system of Phase 2. As we have shown, on
the one hand, for all sufficiently large x’s, the residual prover provides a convincing proof with
probability at least p(x, y, r) − µ(|x|). On the other hand, for infinitely many x’s, the statement
being proved is true with probability less than p(x, y, r) − 1

q(|x|) . We conclude that the residual
prover succeeds in proving false statements with non-negligible probability. This contradicts the
soundness of the proof (or argument) system. Therefore, it must be that K outputs a valid witness
with probability at least p(x, y, r) − µ(|x|), as required. This completes the proof of knowledge
soundness.
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Zero Knowledge. The simulator S that we build to demonstrate the zero knowledge property
works as follows. In Phase 1 of the protocol, S follows the honest sender strategy of the commit-
with-extract scheme, but instead of committing to a real witness w (which it does not have),
it commits to garbage (e.g., to all zeros). Next, in Phase 2, simulator S cannot prove that it
committed to a correct witness (because it indeed did not). Rather, S runs the simulator for the
zero-knowledge proof of Phase 2. Due to the hiding property of the commit-with-extract scheme and
the zero-knowledge property of the zero-knowledge proof, it holds that the output of the simulator is
indistinguishable from the verifier’s view in a real execution. This is shown below using a standard
hybrid argument. Let V ∗ be a verifier algorithm for Protocol 4.1. Then the simulator S works as
follows:

Algorithm 4.4 (simulator S):
• Input: x ∈ L

1. S plays the honest sender for the commit-with-extract scheme with V ∗ as the receiver, and
commits to 0p(|x|) (where p(n) is the length of all witnesses for statements of length n).

2. Let trans be the series of messages sent to V ∗ in the previous step, and denote by V ∗(trans)
the residual machine who verifies the proof in Phase 2.17 Then, S runs the simulator for the
zero-knowledge proof of Phase 2, with V ∗(trans) as the verifier.18

3. Output whatever V ∗ outputs (without loss of generality, we assume that V ∗ always outputs
its view).

We need to prove that:

{S(x)}x∈L

c≡ {viewV ∗(P (x, y), V ∗(x))}x∈L for any y s.t. (x, y) ∈ R

(where P is the honest prover algorithm). We will prove this using a standard hybrid argument.
We define an intermediate distribution Hx,y in the following way: Hx,y is produced by an algorithm
S′ that follows the honest prover’s strategy in the first phase, and the simulator’s strategy in the
second phase. That is, on input (x, y) ∈ R, algorithm S′ runs the commit-with-extract algorithm
and commits to the value y as the honest prover does (instead of to 0p(|x|) as the simulator S
would). However, in Phase 2, algorithm S′ runs the zero-knowledge simulator on V ∗(trans) as S
does (instead of really proving the statement as the honest prover would).

The fact that {S(x)} c≡ {Hx,y} follows directly from the hiding (secrecy) property of the commit-
with-extract scheme. The fact that {Hx,y} c≡ {viewV ∗(P (x, y), V ∗(x))} follows directly from the
(auxiliary-input) zero-knowledge property of the proof of membership used in Phase 2. These two
facts together imply that {S(x)} c≡ {viewV ∗(P (x, y), V ∗)}, as required.

We note that the simulator S inherits the properties of the underlying simulator for the proof
of Phase 2. Thus, if the underlying simulator is strict polynomial-time and non-black-box, then
so too is S. On the other hand, if the underlying simulator is black-box or runs in expected
polynomial-time, then the same is true for S.

17We note that technically, there is a difference here regarding whether the simulator has black-box or non-black-
box access to V ∗. If S has non-black-box access, then the definition of the residual machine is trivial. On the other
hand, if the access is only black-box, then this residual machine is defined by concatenating any oracle query to the
verifier with trans (i.e., instead of querying m, the string (trans, m) is queried).

18We note that it is for this point in the proof that we need the proof of Phase 2 to be auxiliary-input zero-knowledge.
Formally, trans is given to V ∗ as auxiliary-input and then the requirement is that for every such transcript, the proof
remains zero-knowledge.
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Witness-extended emulation. We conclude by providing a proof sketch of the existence of a
witness-extended emulator E for Protocol 4.1. Recall that E, upon input (desc(P ∗), 1t, x, y, r), must
output a view that is indistinguishable from P ∗(x, y, r)’s view in a real execution. Furthermore, if
this view contains a transcript in which the honest verifier V accepts the proof, then E must also
output a valid witness. This is easily accomplished as follows:

Emulator E invokes the commit-with-extract extractor CK with input (desc(P ∗), 1t, x, y, r)
and obtains the output. This output contains a view that is indistinguishable from P ∗’s view in a
real execution of commit-with-extract. Furthermore, if this view defines a committed value, then
CK also outputs this value (with overwhelming probability). Next, E plays the honest verifier in
Phase 2, where the residual machine P ∗ after Phase 1 plays the prover (the residual machine is
defined from the view output by CK). In this proof, E obtains the residual P ∗’s view of Phase 2.
Then, E concatenates the view output by CK in Phase 1 with P ∗’s view in Phase 2, and outputs
them both as P ∗’s view of the entire execution. Furthermore, if E accepted the proof of Phase 2,
then it outputs the witness obtained from CK in Phase 1.

It is easy to see that the view output by E is indistinguishable from P ∗’s view in a real execution
(P ∗’s view from Phase 1 is indistinguishable from its view in a real execution and the view from
Phase 2 is identical). Furthermore, if E accepts the proof of Phase 2, then with overwhelming
probability the transcript of Phase 1 defines a valid witness. As we have mentioned above, by the
properties of CK, it follows that with overwhelming probability it also outputs this witness. This
concludes the proof.

5 Black-Box Lower Bound

In this section we prove Theorems 2 and 3. That is, we show that there does not exist a constant-
round zero-knowledge argument (resp., argument of knowledge), with a black-box simulator (resp.,
extractor) that runs in strict polynomial-time. We first present a lemma that connects between
strict polynomial-time simulation and extraction:

Lemma 5.1 Suppose that there exist one-way functions and a constant-round zero-knowledge efficient-
prover proof or argument of knowledge for NP with a strict polynomial-time black-box extractor.19

Then, there exists a constant-round zero-knowledge argument for NP with a strict polynomial-time
black-box simulator.

Proof Sketch: We prove this lemma by showing how to construct a constant-round zero-
knowledge argument system with a strict polynomial-time black-box simulator using the primitives
assumed in the lemma (i.e., one-way functions and a zero-knowledge argument of knowledge with
a strict polynomial-time black-box extractor). Our construction is based on the constant-round
zero-knowledge arguments of knowledge of Feige and Shamir [15] (see Appendix A for a detailed
description).

In the first phase of the Feige-Shamir argument system, a subprotocol is performed where the
verifier proves to the prover that it knows an NP-witness for some hard problem (based on one-way
functions) that it had generated previously. This proof is executed using a zero-knowledge (or even
witness-hiding) argument of knowledge. In the second phase of the protocol, the prover proves that
it knows either a witness to the statement being proved or a witness to the above-mentioned hard

19Actually the protocol need not be zero-knowledge and it suffices for it to be only witness hiding [16]; see Ap-
pendix A.
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problem. This second proof is executed using a constant-round witness-indistinguishable proof of
knowledge.

Soundness of the Feige-Shamir protocol is derived from the fact that a polynomial-time bounded
prover cannot solve the hard problem (even having seen the first proof), and therefore must use
a witness to the statement being proved. On the other hand, zero-knowledge is demonstrated as
follows. The proof of the first phase is a proof of knowledge. Therefore, the simulator begins
by running the knowledge extractor for this proof of knowledge and obtaining the witness to the
hard problem. In the second phase, the simulator can then prove the proof by using this witness
(rather than the witness to the statement being proved). Since the proof of the second phase is
witness-indistinguishable, the resulting proof is indistinguishable from one provided by the honest
prover (who uses a witness to the real statement).

Notice that the second phase of the proof can be run by a black-box simulator in strict
polynomial-time. This is because it merely runs the honest prover strategy for the witness-
indistinguishable proof, while using an alternative witness. Therefore, if the proof of knowledge of
the first phase has a strict polynomial-time black-box extractor, it follows that the entire simulation
is black-box and runs in strict polynomial-time. This completes the proof sketch.

Thus, assuming the existence of one-way functions, it is enough to rule out the existence of constant-
round zero-knowledge protocols with strict polynomial-time black-box simulators, in order to also
rule out the existence of analogous protocols with strict polynomial-time black-box extractors. That
is, Theorem 3 is obtained by proving Theorem 2 and applying Lemma 5.1. We now restate and
prove Theorem 2.

Theorem 5.2 (Theorem 2 – restated) Let L be a language. If there exists a constant-round
zero-knowledge argument or proof system for L with a strict polynomial-time black-box simulator,
then L ∈ BPP.

Before presenting the proof, we motivate why it is not possible to obtain strict polynomial-time
black-box simulation for constant-round protocols. First, consider a very simple (cheating) ver-
ifier V ∗ who at every step either aborts or sends the honest verifier message. Furthermore, the
probability that it does not abort at any given step is ε = ε(n). Then, black-box simulators for
constant-round protocols would typically simulate V ∗’s view using the following strategy: Invoke
an execution with V ∗ and if V ∗ aborts, then also abort. However, if V ∗ does not abort (and thus
sends a verifier message), then continually rewind V ∗ until another verifier message is obtained.
This second case (where V ∗ does not abort) occurs with probability only ε, but then the expected
number of rewind attempts by the simulator equals 1/ε. Therefore, the overall expected amount
of work is bounded. However, since ε can be any non-negligible function, we cannot provide any
strict polynomial upper-bound on the running time of the simulator.

Now, let S be a strict polynomial-time black-box simulator that runs in time t = t(n), and
(supposedly) simulates a zero-knowledge protocol in which the verifier sends c messages, for some
constant c. By carefully choosing the non-abort probability ε for the verifier V ∗ described above,
we show that S cannot succeed in simulating such a verifier. Specifically, we choose ε so that the
following two properties hold:

1. The number εc, which is the probability that V ∗ sends all c verifier messages in a real execu-
tion, is at least 1/p(n), for some polynomial p(·).

2. The probability that S sees more than c verifier messages from V ∗ within t steps, is noticeably
less than 1/p(n).
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(As we will see in the proof, when c is a constant, it is possible to choose ε in such a way.) Then,
the above implies that with noticeable probability, S must successfully simulate for V ∗ while seeing
only c (or less) verifier messages. However, this is the number of messages that are sent by the
honest verifier in a real execution. Therefore, this means that with noticeable probability, S can
also successfully convince the honest verifier. Intuitively, this is not possible for languages outside
of BPP (as S does not have a witness to the statement being proved).

In summary, the impossibility result is due to the following two facts: (1) Intuitively, in order to
successfully simulate, the simulator must see more than c verifier messages during the simulation.
(2) For any strict polynomial-time simulator S, there exist verifiers for which the time needed to
view more than c verifier messages is beyond the scope of S’s running-time. We now proceed to
present the formal proof.

Proof of Theorem 5.2: The general outline of our proof follows the outline of previous proofs
that showed limitations on black-box simulation (e.g., [22, 9]). This outline is as follows:

1. Assume, for the sake of contradiction, that there exists a zero-knowledge protocol with a
black-box simulator that satisfies the desired properties. In our case, the properties are
having both a constant number of rounds and a strict polynomial-time simulator.

2. Construct a family of verifiers that will be “hard” to simulate. Typically, any verifier in the
family will be deterministic, but will obtain coin tosses from an internally hardwired t(n)-
wise independent hash function, where t(n) is the running time of the simulator. Thus, when
this hash function is chosen uniformly, these coin-tosses will look completely random to the
simulator. (This prevents the simulator from utilizing the fact that the verifier’s random-tape
is fixed for the entire simulation.)

3. Argue about the behavior of the simulator when given oracle access to a verifier that is chosen
randomly from the verifier family.

4. Use the simulator to construct a “cheating prover” – an interactive algorithm P ∗ that on
input x ∈ L manages to cause the honest verifier to accept with probability that is larger
than the inverse of some polynomial. Note that, unlike the honest prover, algorithm P ∗ does
not receive a witness for x as additional input.

5. The soundness of the proof system ensures us that if x 6∈ L, then any P ∗ will only succeed
in causing the honest verifier to accept with negligible probability. On the other hand, as we
have mentioned, if x ∈ L, then the above P ∗ convinces the honest verifier with polynomial
probability. Therefore, we can use P ∗ and the honest verifier to obtain a decision procedure
for the language L, thus proving that L ∈ BPP. (Notice that both P ∗ and the honest verifier
can be run in probabilistic polynomial-time given only the input x.)

Notation and Conventions: We identify an interactive program A with its next message func-
tion (or process, if it is randomized). That is, we consider A as a non-interactive algorithm that
gets as input the history of the interaction (i.e., the sequence of messages that A received until this
point), and outputs the next message that A would send in a protocol execution in which it sees
this history.

We say that an algorithm B has oracle access to an interactive algorithm A, if B has oracle
access to A’s next message function. That is, B can query its oracle with any sequence of messages
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of the form (α1, . . . , αi) and it will receive back the next message that A would send in an interaction
in which it received this sequence of messages.

Let (P, V ) be the assumed zero-knowledge protocol that has a constant number of rounds
(with negligible soundness-error), and let S be the probabilistic strict polynomial-time black-box
simulator for this protocol. We introduce the following notation:
• Let t = t(n) be the strict polynomial-time bound on the running-time of the simulator, when

the length of the statement is n. We stress that S runs in time t(n) regardless of the running
time of the verifier it simulates.20

• Let l = l(n) be the number of random bits that the honest verifier V uses when the length of
the statement is n.

• We denote by c the (constant) number of prover messages in the protocol (P, V ), and by m =
m(n) the length of the longest prover message in the protocol. (Thus we have that the total
number of bits sent by the prover in a protocol execution is at most c ·m.) We assume, without
loss of generality, that all prover messages in the protocol are of the same length (this can be
obtained by padding messages with zeros and is only used to ensure the unique parsing of any
sequence of prover messages).

Assumptions regarding the simulator S: Recall that a black-box simulator has oracle access
to the verifier it simulates. Thus it can query this oracle on sequences of messages of the form
(α1, . . . , αi). For the sake of simplicity, we can assume without loss of generality that the simulator
S always behaves in the following way:

1. It never asks the same query twice.

2. If S queries the oracle with q, then prior to this query, it has queried the oracle with all the
proper prefixes of q. (If q = (α1, . . . , αi) is a sequence of messages, then the prefixes of q are
all the sequences of the form (α1, . . . , αj) for j ≤ i.)

3. Recall that at the end of the simulation, the simulator should output a simulated view of the
verifier. That is, S should output a transcript that contains all the prover messages in this
simulated view. Let trans = (α1, . . . , αc) be the transcript that the simulator outputs. Then,
we assume that S has queried its oracle on all the prefixes of trans.

We can assume all of the above because any simulator can be easily modified so that it behaves
in the above way, without affecting its output distribution. Furthermore, the running-time of the
modified simulator is at most c times the running-time of the original one.

The family of verifiers. We are now ready to define the family of verifiers as described in
the proof outline. Let ε = ε(n) be some function that will be determined later (it will be of the
form 1/p(n) for some polynomial p(·)). Furthermore, let H = {Hn}n∈N be a family of t(n)-wise
independent hash functions, so that for h ∈ Hn, h :{0, 1}≤c·m → {0, 1}log(1/ε), where {0, 1}≤c·m

denotes the set of all strings of length at most c ·m.
For every h ∈ H and r ∈ {0, 1}l, we define a deterministic verifier Vh,r. The desired behavior

of this verifier is as follows. In every round, the verifier aborts with probability 1 − ε. On the
other hand, if it does not abort, then it sends an honest verifier message. Loosely speaking, this

20As in most black-box lower-bounds, this assumption may be relaxed if we use a pseudorandom function instead
of a t-wise independent hash function.
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is achieved using h and r in the following way. For every message of the form q = (α1, . . . , αi)
received by Vh,r, it computes h(q) and continues if and only if h(q) = 0log(1/ε). (Since at most t
queries are asked, and h is a t-wise independent hash function, this means that for every message,
the probability that Vh,r continues is ε (and is independent of other messages).) Then, if Vh,r does
continue, it replies by running the honest verifier, with random-tape r, on the message q.

We now formally define the verifier (note that we define the interactive verifier in the form of
its next message function):

Algorithm 5.2.1 (verifier Vh,r):

• Input: series of prover messages q = (α1, . . . , αi)

1. Step 1 – decide whether or not to abort:

(a) Compute h(q′) for every prefix q′ of q. That is, for every j (1 ≤ j ≤ i), compute
h(α1, . . . , αj).

(b) Abort (outputting a special symbol ⊥), unless for every j, h(α1, . . . , αj) = 0log(1/ε). (That
is, abort unless h(α1) = h(α1, α2) = · · · = h(α1, . . . , αi) = 0log(1/ε).)

(Notice that since the definition of Vh,r is by its next message function, we have to ensure that
it replies to q only if it would not have aborted on messages sent prior to q in an interactive
setting. This is carried out by checking that it would not have aborted on all prefixes of q.)

2. Step 2 – if we decide not to abort, then follow the honest verifier strategy:

(a) Run the honest verifier on input (α1, . . . , αi) and with random-tape r, and obtain its
response β.

(b) Return β.

The above defines a specific verifier, for a given h and r. We define a family of verifiers by
V = {Vh,r}h∈H,r∈{0,1}l .

Analysis of the behavior of Vh,r. We begin by analyzing the behavior of a verifier Vh,r chosen
randomly from V, upon interacting with the honest prover P . (Notice that a verifier can be
randomly chosen from the family by simply choosing h uniformly in Hn and r ∈R {0, 1}l.)

Let x ∈ L, and let P interact with Vh,r on public-input x. Then, Vh,r behaves exactly like the
honest verifier V , except that in every round Vh,r throws independent coins and continues only with
probability ε. Therefore, for h ∈R Hn and r ∈R {0, 1}l, the probability that Vh,r does not abort
and is convinced by the prover is εc.21 In other words, if we denote by ph,r the probability that
Vh,r does not abort when interacting with P on input x (this probability is over P ’s coins), then
we have that

E[ph,r] = εc

where the expectation is taken over h ∈ Hn and r ∈ {0, 1}l.
We now proceed to analyze the analogous behavior of Vh,r, in a simulation by S. For every

h ∈ Hn and r ∈ {0, 1}l, denote by p̃h,r the probability that the simulator, on input x and with
oracle access to Vh,r, outputs a convincing transcript that is not aborting. That is, p̃h,r equals the
probability that S outputs a transcript (α1, . . . , αc), such that

21This assumes that if Vh,r does not abort, then it is always convinced. This holds assuming that the interactive
proof being used has perfect completeness. Throughout, we indeed do assume perfect completeness. However, our
proof can be extended to hold for any noticeable completeness bound.
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1. The honest verifier would accept the transcript when its random-tape equals r, and

2. For every 1 ≤ i ≤ c, h(α1 . . . αi) = 0log(1/ε).

By the zero-knowledge property, for every h ∈ Hn and r ∈ {0, 1}l, it must hold that |p̃h,r − ph,r| <
µ(n) (otherwise, we could distinguish between the output of the simulator and the view of Vh,r’s
interaction with the honest prover22). In particular, as ε will be set to be the inverse of some
polynomial, it follows that for every h ∈ Hn and r ∈ {0, 1}l, p̃h,r > ph,r − εc/2. Therefore,

E[p̃h,r] ≥ εc/2

where the expectation is taken over h ∈ Hn and r ∈ {0, 1}l.
We conclude that for h ∈R Hn and r ∈R {0, 1}l, if we run the simulator S with oracle access to

Vh,r, then with probability at least εc/2, simulator S will output a transcript trans = (α1, . . . , αc)
such that Vh,r returns non-⊥ answers on all c prefixes of trans, and such that the honest verifier
accepts trans when its random-tape equals r. In the case that this happens we say that S is
successful.

We now proceed to show that with noticeable probability, when simulator S is successful, it
obtains at most c messages from Vh,r. Loosely speaking, if this is the case, then S could also
convince an honest verifier with this same probability. As we will see, this will later serve as the
basis for the construction of the cheating prover (as described in the outline).

Claim 5.2.2 Let good denote the following event: the simulator S with oracle access to Vh,r and
input x, outputs a transcript trans = (α1, . . . , αc) such that:

1. S is successful. That is, the honest verifier accepts trans when its random-tape equals r, and
Vh,r returns non-⊥ answers for all prefixes of trans.

2. S obtained exactly c non-⊥ answers from its oracle during the simulation.

Then, the probability that the event good occurs is at least ρ
def= εc/2− (

t
c+1

)
εc+1, where this proba-

bility is taken over h ∈ Hn, r ∈ {0, 1}l, and the random-coins of S.

Proof: Recall that the simulator S always queries its oracle on all the prefixes of the transcript it
outputs (see the assumptions regarding S above). Therefore, from item (1) of the claim, it follows
that a successful S must obtain at least c non-⊥ answers during the simulation. Item (2) then
limits the number of non-⊥ answers to be exactly c. The probability that good occurs is therefore
equal to the probability that S is successful and S did not receive more than c non-⊥ replies (and
this is greater than or equal to the probability that S is successful minus the probability that S
does receive more than c non-⊥ replies).

Now, by the above analysis, we have that the probability that S is successful is at least εc/2.
On the other hand, we claim that the probability that S obtains more than c non-⊥ answers is
at most

(
t

c+1

)
εc+1. This holds because S queries the oracle at most t times, and each query is

answered with non-⊥ with probability exactly ε (this immediately follows from the fact that Hn is
a t-wise independent hash family). Therefore, the probability that among the t queries, c + 1 or
more non-⊥ replies are obtained, is at most

(
t

c+1

)
εc+1.23

22Note that as is standard in such arguments, the distinguisher would receive the hash function h and random-coins
r as auxiliary input.

23This follows from the formula stating that for n Bernoulli trials where each trial succeeds with probability p, the
probability of having k or more successes is at most

�
n
k

�
pk.

29



We conclude that the probability that the event good occurs is at least εc/2 − (
t

c+1

)
εc+1, as

required.

Intuitively, if the event good happens then the simulator succeeds in generating an accepting tran-
script even though it sees only c messages from the verifier. As we have mentioned, this implies
that the simulator could convince the honest verifier with the same probability as the event good
occurring. Before proceeding to prove this, we “modify” S into a different simulator S′ for which it
is easier to formally show the above-stated intuition. In order to be able to use S′, we ensure that
the modification is such that Claim 5.2.2 still holds with respect to S′ (and thus S′ could also be
used to convince the honest verifier). Loosely speaking, the modified S′ runs the simulator S and
ensures that the only non-⊥ replies that S receives belong to a single transcript (α1, . . . , αi). That
is, if S asks two queries for which neither one is a prefix of the other, and both of these are answered
with non-⊥, then S′ aborts the execution. Although this seems like a significant restriction of S,
the point is that when the event good occurs, S anyway only receives non-⊥ replies for the prefixes
of its output transcript. Therefore, in such a case, S′ would not abort. The simulator S′ is formally
defined in the following way:

Algorithm 5.2.3 (simulator S′):

• Input: x ∈ {0, 1}∗.
• Oracle access to oracle: O (in our case O will be Vh,r for some h ∈ Hn, r ∈ {0, 1}l).

1. Invoke simulator S on input x.

2. Whenever S(x) makes a query q = (α1, . . . , αi) to its oracle, do the following:

(a) Query the oracle O with q; denote its response by β (i.e., β ← O(q)).

(b) If β 6= ⊥, then abort if the following holds: there exists a previous query q′ for which
O(q′) 6= ⊥ and q′ is not a prefix of q.
(Note that S′ aborts if the above holds, regardless of the value of β, and when it aborts
it outputs nothing.)

(c) Pass the oracle reply β to S.

3. Output the result of the execution of S.

We now claim that the probability that the event good happens for S′ (with oracle access to Vh,r

where h ∈R Hn and r ∈R {0, 1}l), is at least the probability that it happens for S. First, notice
that the only change in the behavior of S′ compared to S is that S′ may sometimes abort. Yet
if S′ aborts in an execution in which S would have been successful, then it must be that in this
execution S receives more than c non-⊥ replies (because one of the non-⊥ replies is not a prefix
of the output transcript and S asks all of the c prefixes of its output), implying that good did not
occur. Thus, S′ does not abort in any execution in which the event good can occur. This implies
that the probability that good happens with respect to S′ is no less than the probability that it
happens with respect to S.

Fixing the parameter ε. From the above analysis, we have that by Claim 5.2.2, the probability
that the event good occurs for S′ is at least ρ = εc/2− (

t
c+1

)
εc+1. We now fix the value of ε so that

ρ equals the inverse of some polynomial (and thus the event good happens “often”).
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Let ε = (4
(

t
c+1

)
)−1. First, notice that there exists a polynomial p(·) such that ε(n) = 1/p(n)

(recall that t is a polynomial, and c a constant). Furthermore, for such an ε, it holds that ρ = εc/4.
We therefore have that ρ is also the inverse of some polynomial, as required. We are now ready to
construct the cheating prover. (We note that it is only possible to choose ε in such a way since the
protocol is constant-round. Thus, our lower bound holds only for constant-round zero-knowledge,
and as we have mentioned, this is tight.)

Constructing the “cheating” prover. We now construct an interactive machine (prover) P ∗

that on input x ∈ L (and no witness), can cause the honest verifier to accept with probability at
least ρ. The prover P ∗ works as follows:

Algorithm 5.2.4 (prover P ∗):
• Input: x

1. Choose h ∈R Hn.

2. Run the simulator S′ with input x.

3. When S′ asks its jth query q = (α1, . . . , αi) do the following:

(a) Decide whether to return ⊥ in the same way as Vh,r. That is, return ⊥ to S′ unless
h(α1) = h(α1, α2) = · · · = h(α1, . . . , αi) = 0log(1/ε).

(b) If ⊥ is not returned to S′ and the previous messages that were sent to the verifier were
α1, . . . , αi−1, then send αi to the verifier and return its reply β to S′.

(c) Otherwise, choose an arbitrary non-⊥ answer β and return it. (Note that it doesn’t
matter what string we choose as we know that in this case S′ will abort.)

We now claim that P ∗ convinces the honest verifier with probability at least ρ. That is,

Claim 5.2.5 For any x ∈ L, the probability that P ∗(x) succeeds in convincing the honest verifier
V that x ∈ L, is at least ρ.

Proof: First, denote by r, the random-tape of the honest verifier in an execution with P ∗. Then,
we claim that P ∗ perfectly emulates an execution of S′ with Vh,r (when h and r are uniformly
chosen). However, this follows immediately from the definition of P ∗ and Vh,r. (The only difference
is regarding the final answer that S′ receives from P ∗ in the case that step 3c is executed. In the
emulation by P ∗, S′ receives garbage (and not a real reply). However, this makes no difference,
because in such a case S′ aborts with no output.)

Therefore, the probability that the event good happens in an execution between P ∗ and the
honest verifier V is at least ρ. However, recall that when the event good happens, the transcript of
messages output by S′, and thus received by V in its execution with P ∗, is convincing for V with
random-tape r. Thus, the probability that V accepts the proof from P ∗ is at least ρ.

On the other hand, by the computational soundness of the argument system (P, V ), we have the
following claim:

Claim 5.2.6 For any x 6∈ L, the probability that P ∗(x) succeeds in convincing the verifier that
x ∈ L is negligible.
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The decision procedure. Combining Claims 5.2.5 and 5.2.6 we obtain the following decision
procedure for L. Upon input x, invoke P ∗(x) and play the honest verifier. If the proof provided
by P ∗ is accepted by the honest verifier, then output that x ∈ L. Otherwise, output that x 6∈ L.
Now, by Claim 5.2.5, we have that the decision procedure accepts x ∈ L with probability at least
ρ (where ρ = 1/q(|x|) for some polynomial q(·)). On the other hand, by Claim 5.2.6, we have that
the procedure accepts x 6∈ L with only negligible probability (and in particular, with probability
less than ρ/2). Thus, we have constructed a probabilistic, polynomial-time decision procedure for
the language L, and so L ∈ BPP. This completes the proof of Theorem 5.2.

As noted above, by combining Lemma 5.1 and Theorem 5.2, we obtain Theorem 3 as a corollary.

Corollary 5.3 (Theorem 3 – restated) Suppose that one-way functions exist. Then, there do
not exist constant-round efficient-prover proofs or arguments of knowledge with strict polynomial-
time extractors for any NP-complete language L.

Remark 5.4 We note that our impossibility result regarding strict polynomial-time simulation
holds for any language L 6∈ BPP, and for both arguments and proofs. Furthermore, we make
no complexity assumptions in proving this result. On the other hand, our impossibility result
for extraction is significantly weaker. Firstly, we assume the existence of one-way functions.24

Secondly, the lower bound holds only for arguments (or proofs where the prover has an efficient
implementation). Finally, due to the reduction via the Feige-Shamir protocol, we only rule out
the existence of protocols with strict polynomial-time extraction for NP-complete languages. We
note that in actuality, the proof of Lemma 5.1 gives a stronger (but more cumbersome) result,
and rules out the existence of such protocols for any language with an invulnerable generator (see
Appendix A). Thus, we do rule out such proofs of knowledge in many natural cryptographic
settings. Nevertheless, a stronger lower-bound would be preferrable.
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A The Feige-Shamir Constant-Round Zero-Knowledge Argument
System for NP

In this appendix we outline the construction of the constant-round zero-knowledge arguments of
knowledge of Feige and Shamir [15] (the exact construction shown here is actually according to [13]).
This construction is used in Lemma 5.1 in order to show that the existence of a zero-knowledge
proof (or argument) of knowledge for NP with strict polynomial-time knowledge extraction, implies
the existence of a zero-knowledge argument of membership with strict polynomial-time simulation.

A.1 Preliminaries

In order to present the protocol we first introduce the following concepts:
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Witness-indistinguishability and witness-hiding. Loosely speaking, witness indistinguisha-
bility refers to a setting in which the prover may use two (or more) different witnesses in order to
prove a statement. We say that a proof is witness-indistinguishable if the verifier cannot deduce
which witness the prover used in order to prove the statement. On the other hand, a witness-hiding
proof is one in which the verifier is unable to reconstruct the witness from seeing the proof (i.e., the
proof keeps the witness “hidden”). This is formalized by saying that if the verifier can output the
(entire) witness with some probability after participating in the proof, then it could have output
it with almost the same probability by itself. Notice that this does not prevent the verifier from
learning part of the witness from the interaction itself, it just guarantees that it does not learn all
of it.

More formally, let R be an NP-relation, and let (P, V ) be a proof (or argument) system for R.
We say that (P, V ) is witness indistinguishable if for any verifier V ∗, for any x ∈ L and for any two
witness w1 and w2 such that (x,w1), (x,w2) ∈ R, verifier V ∗’s view when interacting with P (x,w1)
is indistinguishable from its view when interacting with P (x, w2). We say that (P, V ) is witness
hiding if for every verifier V ∗ there exists a machine M∗ such that for every x, the probability
that V ∗ outputs w after interacting with P (x,w) is negligibly close to the probability that M∗(x)
outputs w.25

Witness-indistinguishability and witness-hiding are weaker properties than zero-knowledge (in
particular, every zero-knowledge protocol is also witness-indistinguishable and witness-hiding; how-
ever the other direction is not true).

Feige and Shamir show how to construct constant-round witness-indistinguishable proofs of
knowledge for any NP-relation, assuming the existence of one-way functions [16]. They also show,
under the same assumption, how to obtain witness-hiding proofs of knowledge for some specific
relations (which suffice for their construction of a constant-round zero-knowledge protocol).

Invulnerable Generators. Loosely speaking, an invulnerable generator is an efficient machine
that outputs a pair (t, s), with the property that given t, it is hard to find s. Thus, an invulnerable
generator is a machine that enables us to efficiently generate “hard problems” (the hard problem
being to find s given t). Formally, Let T be an NP-relation. Then, an invulnerable generator for T
is a probabilistic polynomial-time algorithm GT that on input 1n outputs a pair (t, s) that satisfies:

1. (t, s) ∈ T

2. Given t, it is hard to find a witness for t. That is, for any polynomial-size circuit A, the
probability that A(t) outputs s such that (t, s) ∈ T is negligible (the probability being over
the choice of (t, s) by GT ). (That is, Pr(t,s)∈RGT (1n)[A(t) ∈ T (t)] = µ(n).)

An example for a relation T and an invulnerable generator for it is the following. Let f be a one-way
function. Then, define T = {(t, s) | t = f(s)}. An invulnerable generator for this relation chooses
a random s ∈R {0, 1}n and outputs (f(s), s). Clearly, by the properties of one-way functions, given
t = f(s), it is hard to find s.

A.2 The construction

We are now ready to describe the protocol of [13]. The basic idea is that the verifier V first generates
a hard problem and then proves to P (using a witness-hiding proof of knowledge) that it knows the

25We note that in the formal definition of witness-hiding, machine M∗ is allowed to run in expected polynomial-time.
However, this does not affect the running-time of the simulator (and in particular is used only to prove soundness).
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solution to this problem. Following this, P proves to V (using a witness-indistinguishable proof of
knowledge) that either it knows a witness to the statement being proved, or that it knows a solution
to the hard problem generated by V . Intuitively, soundness follows from the fact that P cannot
know a solution to this hard problem (notice that the proof provided by V is witness-hiding and
therefore it cannot help P obtain a solution to the problem). On the other hand, the zero-knowledge
simulator works by first extracting the solution to the hard problem from the witness-hiding proof
of knowledge provided by V . Then, in the next stage, it uses this solution to prove the witness-
indistinguishable proof that P is supposed to provide. (Notice that since the proof provided by the
prover is witness-indistinguishable, V cannot distinguish the case that a real witness is used to the
case that a solution to the hard problem is used.) Of course, the hard problem is generated by V
with an invulnerable generator.

Let R be an NP-relation. The zero-knowledge argument system for R is constructed as follows
(let T be an NP-relation for which we have a constant-round witness-hiding proof of knowledge,
and let GT be an invulnerable generator for T ):

Protocol A.1 (zero-knowledge argument for R):

• Common input: x

• Auxiliary input to prover: w such that (x,w) ∈ R

1. Phase 1 – V generates a “hard problem”:

(a) V chooses (t, s) ∈R GT (1n) and sends t to the prover.

(b) V proves that it knows s such that (t, s) ∈ T , using a witness-hiding proof of knowledge.

2. Phase 2 – P proves that either x ∈ L or that it knows a solution to the hard problem:

P proves that it either knows a witness w such that (x,w) ∈ R or that it knows a witness s
such that (t, s) ∈ T , using a witness-indistinguishable proof of knowledge.

As we have mentioned above, soundness follows from the fact that GT is an invulnerable generator
and the fact that the witness-hiding proof of Phase 1 does not help P obtain the witness s. There-
fore, with overwhelming probability, P is unable to prove the proof of Phase 2 without knowledge
of w. On the other hand, the simulator for the protocol works by first extracting a witness for t
in Phase 1 (using the knowledge extractor for the witness-hiding proof of knowledge). Then, given
this witness, the simulator is able to prove the proof of Phase 2 (without knowing w).

Notice that if the extractor for the proof of knowledge of Phase 1 is black-box and runs in
strict polynomial-time, then the simulator inherits both these properties. Therefore, if there exists
a witness-hiding proof of knowledge with a strict polynomial-time black-box extractor for any
language with an invulnerable generator (and in particular, for all NP), then there exists a black-
box zero-knowledge argument of knowledge for NP with strict polynomial-time simulation.
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