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Abstract

The notion of efficient computation is usually identified in cryptography and complexity with
(strict) probabilistic polynomial time. However, until recently, in order to obtain constant-round
zero-knowledge proofs and proofs of knowledge, one had to allow simulators and knowledge-
extractors to run in time that is only polynomial on the average (i.e., expected polynomial
time). Recently Barak gave the first constant-round zero-knowledge argument with a strict (in
contrast to expected) polynomial-time simulator. The simulator in his protocol is a non-black-
box simulator (i.e., it makes inherent use of the description of the code of the verifier).

In this paper, we further address the question of strict polynomial-time in constant-round
zero-knowledge proofs and arguments of knowledge. First, we show that there exists a constant-
round zero-knowledge argument of knowledge with a strict polynomial-time knowledge extractor.
As in the simulator of Barak’s zero-knowledge protocol, the extractor for our argument of know-
ledge is not black-box and makes inherent use of the code of the prover. On the negative side,
we show that non-black-box techniques are essential for both strict polynomial-time simulation
and extraction. That is, we show that no (non-trivial) constant-round zero-knowledge proof or
argument can have a strict polynomial-time black-box simulator. Similarly, we show that no
(non-trivial) constant-round zero-knowledge proof or argument of knowledge can have a strict
polynomial-time black-box knowledge extractor.

Keywords: Zero-knowledge proof systems, proofs of knowledge, expected vs. strict polynomial-
time, black-box vs. non-black-box algorithms.
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1 Introduction

This paper deals with the issue of expected versus strict polynomial-time with respect to simulators
and extractors for zero-knowledge proofs and arguments and zero-knowledge proofs and arguments
of knowledge.1

1.1 Expected Polynomial-Time in Zero Knowledge

The principle behind the definition of (computational) zero-knowledge proofs, as introduced by
Goldwasser, Micali and Rackoff [29], is the following:

Anything that an efficient verifier can learn as a result of interacting with the prover,
can be learned without interaction by applying an efficient procedure (i.e., simulator) to
the public input.

Note that there are two occurrences of the word “efficient” in this sentence. When providing a formal
definition of zero knowledge, the issue of what is actually meant by “efficient computation” must
be addressed. The standard interpretation in cryptography and complexity is that of probabilistic
polynomial-time. However, in the context of zero knowledge, efficiency has also been taken to
mean polynomial on the average (a.k.a. expected polynomial-time). That is, if we fix the input,
and look at the running time of the machine in question as a random variable (depending on the
machine’s coins), then we only require that the expectation of this random variable is polynomial.
Three versions of the formal definition of zero knowledge appear in the literature, differing in their
interpretations of efficient computation:

1. Definition 1 – strict/strict: According to this definition both the verifier and simulator
run in strict polynomial-time. This is the definition adopted by Goldreich [22, Section 4.3]
and is natural in the sense that only the standard interpretation of efficiency is used.

2. Definition 2 – strict/expected: This more popular (and liberal) definition requires the
verifier to run in strict polynomial-time while allowing the simulator to run in expected
polynomial-time. This was actually the definition proposed in the original paper on zero
knowledge [29].

3. Definition 3 – expected/expected: In this definition, both the verifier and simulator are
allowed to run in expected polynomial-time. This definition is far less standard than the above
two, but is nevertheless a natural one to consider. As we describe below, this definition was
considered by [17], who show that (at least for one definition of expected polynomial-time) it
is problematic.

As we have mentioned, the standard interpretation of efficient computation is that of (strict)
polynomial-time. In light of this, Definition 1 (strict/strict) seems to be the most natural.
Despite this, expected polynomial-time was introduced in the context of zero knowledge because
a number of known protocols that could be proven zero-knowledge according to the more liberal
“strict/expected definition” were not known to satisfy the more severe “strict/strict defini-
tion”. In particular, until very recently no constant-round zero knowledge argument (or proof) for

1In a proof system, soundness holds unconditionally and with respect to all-powerful cheating provers. In contrast,
in an argument system, soundness is only guaranteed to hold with respect to polynomial-time bounded provers. We
note that lower bounds for proofs do not necessarily hold for arguments, because in arguments the soundness condition
is only computational. Likewise, lower bounds for arguments do not necessarily hold for proofs, because proofs are
allowed to have super-polynomial honest prover strategies, whereas arguments are not. See Section 2.1.
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NP was known to satisfy Definition 1 (strict/strict).2 It was therefore necessary to relax the
definition and allow expected polynomial-time simulation (as in Definition 2).

Proofs of Knowledge. An analogous situation arises in proofs of knowledge [29, 33, 18, 6].
There, the underlying principle is that:

If an efficient prover can convince the honest verifier with some probability that x ∈ L,
then this prover can apply an efficient procedure (i.e., extractor) to x and its private
inputs and obtain a witness for x with essentially the same probability.

Again, the word “efficient” occurs twice, and again three possible definitions can be used. In par-
ticular, the prover and extractor can be instantiated by strict polynomial-time machines, expected
polynomial-time machines or a combination of both.

The different definitions - discussion. As has been observed before (e.g., see [17, Sec. 3.2],
[22, Sec. 4.12.3]), the definitions that allow for expected polynomial-time computation are not fully
satisfactory for several reasons:
• Philosophical considerations: Equating “efficient computation” with expected polynomial-time

is more controversial than equating efficient computation with (strict) probabilistic polynomial-
time. For example, Levin ([30], see also [20], [22, Sec. 4.3.1.6]) has shown that when expected
polynomial-time is defined as above, the definition is too machine dependent, and is not closed
under reductions. He proposed a different definition for expected polynomial-time that is closed
under reductions and is less machine dependent. However, it is still unclear whether expected
polynomial-time, even under Levin’s definition, should be considered as efficient computation.

• Technical considerations: Expected polynomial-time is less understood than the more stan-
dard strict polynomial-time. This means that rigorous proofs of security of protocols that use
zero-knowledge arguments with expected polynomial-time simulators (or arguments of know-
ledge with expected polynomial-time extractors) as components, are typically more complicated
(see [31] for an example). Another technical problem that arises is that expected polynomial-
time simulation is not closed under composition. Consider, for example, a protocol that uses
zero-knowledge as a subprotocol. Furthermore, assume that the security of the larger protocol
is proved in two stages. First, the zero-knowledge subprotocol is simulated for the adversary
(using an expected polynomial-time simulator). This results in an expected polynomial-time
adversary that runs the protocol with the zero-knowledge executions removed. Then, in the
next stage, the rest of the protocol is simulated for this adversary. A problem arises because the
simulation of the second stage must now be carried out for an expected polynomial-time adver-
sary. However, simulation for an expected polynomial-time adversary can be highly problematic
(as the protocol of [24] demonstrates, see [31, Appendix A] for details).

• Practical considerations: A proof of security that uses expected polynomial-time simulation
does not always achieve the “expected” level of security. For example, assume that a protocol’s
security relies on a hard problem that would take 100 years to solve, using the best known
algorithm. Then, we would like to prove that the probability that an adversary can successfully
break the protocol is negligible, unless it runs for 100 years. However, when expected polynomial-
time simulation is used, we cannot rule out an adversary who runs for 1 year and succeeds with
probability 1/100. This is a weaker level of security and may not be acceptable. See Section 1.4
for a more detailed discussion of this issue.

2We note that throughout this paper we always refer to protocols with negligible soundness error.
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The liberal “strict/expected definition” also suffers from a conceptual drawback regarding the
notion of zero knowledge itself. Specifically, the idea behind the definition of zero knowledge is
that anything that a verifier can learn as a result of the interaction, it can learn by just looking at
its input. Therefore, it seems that the simulator should not be of a higher complexity class than
the verifier. Rather, both the verifier and simulator should be restricted to the same complexity
class (i.e., either strict or expected polynomial-time). The “expected/expected definition” has
the advantage of not having any discrepancy between the computational power of the verifier and
simulator. However, it still suffers from the above described drawbacks with any use of expected
polynomial-time. In addition, as Feige [17, Sec. 3.3] pointed out, in order to prove that known
protocols remain zero knowledge for expected polynomial-time verifiers, one needs to restrict the
verifiers to run in expected polynomial-time not only when interacting with the honest prover but
also when interacting with all other interactive machines. This restriction is somewhat controversial
because any efficient adversarial strategy should be allowed. In particular, there seems to be no
reason to disqualify an adversarial strategy that takes expected polynomial-time when attacking the
honest prover, but runs longer otherwise (notice that the adversary is only interested in attacking
the honest prover, and so its attack is efficient).

In contrast, the “strict/strict definition” suffers from none of the above conceptual difficul-
ties. For this reason, it is arguably a preferred definition. However, as we have mentioned, it was
not known whether this definition can be satisfied by a protocol with a constant number of rounds.
Thus a natural open question (posed by [17, Sec. 3.4] and [22, Sec. 4.12.3]) was the following:

Is expected polynomial-time simulation and extraction necessary in order to obtain
constant-round zero-knowledge proofs and proofs of knowledge?

A first step in answering the above question was recently taken by Barak in [3]. Specifically, [3] pre-
sented a zero-knowledge argument system that is both constant-round and has a strict polynomial-
time simulator. Interestingly, the protocol of [3] is not black-box zero knowledge. That is, the
simulator utilizes the description of the code of the verifier. (This is in contrast to black-box zero
knowledge where the simulator is only given oracle access to the verifier.) Given the existence of
non-black-box zero-knowledge arguments with a constant number of rounds and strict polynomial-
time simulation, it is natural to ask the following questions:

1. Is it possible to obtain constant-round zero-knowledge arguments of knowledge with strict
polynomial-time extraction?

2. Is the fact that the protocol of [3] is not black-box zero knowledge coincidental, or is this an
inherent property of any constant-round zero-knowledge protocol with strict polynomial-time
simulation?

1.2 Our Results

In this paper we resolve both the above questions. First, we show that it is possible to obtain
strict polynomial-time knowledge extraction in a constant-round protocol. In fact, we show that
it is possible to obtain strict polynomial-time simulation and extraction simultaneously in a zero-
knowledge protocol. That is, we prove the following theorem:
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Theorem 1 Assume the existence of collision-resistant hash functions and collections of trapdoor
permutations such that the domain of each permutation is the set of all strings of a certain length.3

Then, there exists a constant-round zero-knowledge argument of knowledge for NP with a strict
polynomial-time knowledge extractor and a strict polynomial-time simulator.

The definition of arguments of knowledge that we refer to in Theorem 1 differs from the standard
definition of [6] in an important way. In the definition of [6], the knowledge extractor is given
only black-box access to the prover. In contrast, in our definition, the knowledge extractor is given
the actual description of the prover (i.e., it has non black-box access). As we will see below, this
modification is actually necessary for obtaining constant-round arguments of knowledge with strict
polynomial-time extraction.

In addition to the above positive result, we show that it is impossible to obtain a (non-trivial)
constant-round zero-knowledge protocol that has a strict polynomial-time black-box simulator.
Likewise, a strict polynomial-time extractor for a constant-round zero-knowledge argument of know-
ledge cannot be black-box. That is, we prove the following two theorems:

Theorem 2 There do not exist constant-round zero-knowledge proofs or arguments with strict
polynomial-time black-box simulators for any language L 6∈ BPP.

Theorem 3 There do not exist constant-round zero-knowledge proofs or arguments of knowledge
with strict polynomial-time black-box knowledge extractors for any language L 6∈ BPP.

We therefore conclude that the liberal definitions that allow the simulator (resp., extractor) to run
in expected polynomial-time are necessary for achieving constant-round black-box zero knowledge
(resp., arguments of knowledge). Furthermore, our use of non-black-box techniques in order to
obtain Theorem 1 is essential.

We note that Theorems 2 and 3 are tight in the sense that if any super-constant number of
rounds are allowed, then zero-knowledge proofs of knowledge with strict polynomial-time black-
box extraction and simulation can be obtained. This was shown by Goldreich in [22, Sec. 4.7.6].
(Actually, [22] shows that a super-logarithmic number of sequential executions of the 3-round zero-
knowledge proof for Hamiltonicity [9] suffices. However, using the same ideas, it can be shown that
by running log n parallel executions of the proof of Hamiltonicity, any super-constant number of
sequential repetitions is actually enough.)

Zero knowledge versus ε-knowledge. Our impossibility result regarding constant-round black-
box zero knowledge with strict polynomial-time simulation has an additional ramification to the
question of the relation between black-box ε-knowledge [15] and black-box zero knowledge. Loosely
speaking, an interactive proof is called ε-knowledge if for every ε, there exists a simulator who runs
in time polynomial in the input and in 1/ε, and outputs a distribution that can be distinguished
from a real proof transcript with probability at most ε. Despite the fact that this definition seems
to be a significant relaxation of zero knowledge, no separation between ε-knowledge and zero know-
ledge was previously known. Our lower bound demonstrates a separation for the black-box versions:
that is, black-box ε-knowledge is strictly weaker than black-box zero-knowledge. Specifically, on the
one hand, constant-round black-box ε-knowledge protocols with strict polynomial-time simulators

3By this we mean that there exists a trapdoor permutation family {fs}s∈{0,1}∗ such that fs : {0, 1}|s| → {0, 1}|s|.
It actually suffices to assume the existence of a family of enhanced trapdoor permutations [23, Appendix C.1]. Such
a family can be constructed under the RSA and factoring assumptions, see [2, Section 6.2] and [23, Appendix C.1].
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do exist.4 On the other hand, as we show, analogous protocols for black-box zero-knowledge, do
not exist.

Witness-extended emulation. Zero-knowledge proofs of knowledge are often used as subproto-
cols within larger protocols. Typically, in this context the mere existence of a knowledge extractor
does not suffice for proving the security of the larger protocol. Loosely speaking, what is required
is the existence of a machine that not only outputs a witness with the required probability (as
is required from a knowledge extractor), but also outputs a corresponding simulated transcript of
the interaction between the prover and the verifier. Furthermore, whenever the transcript of the
interaction is such that the verifier accepts, then the witness that is obtained is valid. To explain
this further, consider a case that the prover convinces the verifier in a real interaction with prob-
ability p. Then, with probability negligibly close to p, the aforementioned machine should output
an accepting transcript and a valid witness. Furthermore, with probability negligibly close to 1−p,
the machine should output a rejecting transcript (and we don’t care about the witness).

This issue was addressed in [31], who called such a machine a “witness-extended emulator”. It
was proved there that there exists such a witness extended emulator for any proof of knowledge.
However, the extended emulator that is obtained runs in expected polynomial-time, even if the
original knowledge extractor runs in strict polynomial-time. Unfortunately, we do not know how
to prove an analogous result that, given any strict polynomial-time knowledge extractor, would
provide a strict polynomial-time emulator. Instead, we directly construct a strict polynomial-time
witness-extended emulator for our zero-knowledge proof of knowledge (under a slightly different
definition than [31]).

1.3 Strict Truncation of Expected Machines Does Not Suffice

A naive approach to solving the problem of expected polynomial-time in simulation and extraction,
would be to simply truncate the execution of the simulator or extractor after it exceeds its expected
running-time by “too much”. However, this does not necessarily work. The case of knowledge-
extractors is a good example. Let us fix a proof (or argument) of knowledge for some NP-language
L. Let x ∈ {0, 1}∗, and let P ∗ be a polynomial-time prover that for some ε, aborts with probability
1 − ε and convinces the honest verifier that x ∈ L with probability ε. For all previously known
constant-round proofs of knowledge, the expected polynomial-time knowledge-extractor works in
roughly the following way: it first verifies the proof from P ∗, and if P ∗ was not convincing (which
occurs in this case with probability 1− ε) then it aborts. On the other hand, if P ∗ was convincing
(which happens in this case with probability ε), then it does expected p(n) · 1

ε work (where p(·)
is some fixed polynomial), and outputs a witness for x. Clearly, the expected running time of the
extractor is polynomial (in particular, it is p(n) plus the time taken to honestly verify a proof).
However, if we halt this extractor before it completes 1

ε steps, then with high probability the
extractor will not output a witness. Note that 1

ε may be much larger than p(n), and therefore the
extractor may far exceed its expected running-time and yet still not output anything.

In contrast to the above, the knowledge extractor of the argument of knowledge presented in
this paper (in Section 4) runs in strict polynomial-time which is independent of the acceptance
probability (i.e., ε). For example, if there exists a cheating prover P ∗ that runs in time n2, but
convinces the verifier that x ∈ L with probability ε = n−10 then our extractor will run in time, say,

4Such a protocol can be constructed by taking any constant-round protocol with an expected polynomial-time
simulator and truncating the simulator’s run (outputting ⊥), if it runs for more than 1/ε times its expected running-
time. By Markov’s inequality, the probability of this bad event happening is at most ε.
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n4 and output a witness with probability at least (negligibly less than) n−10. On the other hand,
the extractors for previous protocols would do almost nothing with probability 1− n−10, and with
probability n−10 run for, say, n12 steps and output a witness.

1.4 Trading Success Probability for Running Time

The observation in Section 1.3 about how expected polynomial-time extractors typically work,
raises serious security issues with respect to the application of proofs of knowledge that have
such extractors. For example, suppose that we use a proof of knowledge for an identification
protocol based on factoring. Suppose furthermore, that we use numbers for which the fastest known
algorithms will take 100 years to factor. We claim that in this case, if we use a proof of knowledge
with an expected polynomial-time extractor then we cannot rule out the possible existence of an
adversary that will take 1 year of computation time and succeed in an impersonation attack with
probability 1/100.

In order to see this, notice that the proof of security of the identification protocol works by
constructing a factoring algorithm from any impersonator, using the extractor for the proof of
knowledge. Thus for known protocols, what will actually be proven is that given an algorithm that
is able to impersonate using T steps and with probability ε, we can construct an algorithm that
solves the factoring problem with probability ε and expected running time T . In particular, this
factoring algorithm may (and actually will) work in the following way: with probability 1− ε it will
do nothing and with probability ε it will run in T/ε steps and factor its input. Thus, the existence
of an impersonator that runs for one year and succeeds with probability 1/100, only implies the
existence of a factoring algorithm that runs for 100 years. Therefore, we cannot rule out such an
impersonator. We conclude that the standard proofs of knowledge potentially allow adversaries to
trade their success probability for running time. In the concrete example above, the impersonator
lowered its running time from 100 years to one year, at the expense of succeeding with probability
1/100 instead of 1. We stress that the fastest known algorithms for factoring do not allow such a
trade-off. That is, if the parameters are chosen so that 100 years are required to factor, then the
probability of successfully factoring after one year is extremely small, and not close to 1/100.

We stress that not only is it the case that the definition of expected polynomial-time extraction
does not allow us to rule out such an adversary, but also such adversaries cannot be ruled out by
the current proofs of security for known constant-round protocols (thus, the problem lies also with
the protocols and not just with the definition). In contrast, such a trade-off is not possible if the
extractor runs in strict polynomial-time. Rather, an impersonator that runs in time T and succeeds
with probability ε yields a factoring algorithm that runs in time (polynomially related) to T and
succeeds with probability ε. Thus, in the above concrete example, an analogous impersonator for
a protocol with a strict polynomial-time extractor would yield a factoring algorithm that runs for
one year and succeeds with probability 1/100. However, such an algorithm is conjectured not to
exist, and therefore such an impersonator also does not exist (unless the conjecture is wrong).

1.5 Further Discussion on Prior Work

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff [29], and were then
shown to exist for all NP by Goldreich, Micali and Wigderson [26]. Constant-round zero-knowledge
arguments and proofs were constructed by Feige and Shamir [19], Brassard, Crepeau and Yung [11]
and Goldreich and Kahan [24]. All these constant-round protocols utilize expected polynomial-time
simulators. Regarding zero-knowledge proofs of knowledge, following a discussion in [29], the first
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formal definitions were provided by Feige, Fiat and Shamir [18] and by Tompa and Woll [33]. These
definitions were later modified by Bellare and Goldreich [6].

The issue of expected polynomial-time is treated in Feige’s thesis [17] and Goldreich’s book
[22]. Goldreich [22, Sec. 4.7.6] also presents a construction for a proof of knowledge with strict
polynomial-time extraction (and simulation) that uses any super-logarithmic number of rounds
(as discussed above, a variant of this construction can be obtained that uses any super-constant
number of rounds).

As we have mentioned, until a short time ago, all known constant-round zero-knowledge pro-
tocols had expected polynomial-time simulators. However, recently this barrier was broken by
Barak [3], who provided the first constant-round zero-knowledge argument for NP with a strict
polynomial-time simulator, assuming the existence of collision-resistant hash functions with super-
polynomial hardness. Barak and Goldreich [4] later showed how to obtain the same result under the
weaker assumption of the existence of standard collision-resistant hash functions (with polynomial-
time hardness). The construction of [3] was also the first zero-knowledge argument to utilize a
non-black-box simulator. In a similar fashion, the constant-round argument of knowledge pre-
sented in this paper utilizes a non-black-box knowledge-extractor. We note that [5] also utilize a
non-black-box knowledge extractor. However, their extractor runs in expected polynomial-time,
and the non-black-box access is used there for a completely different reason (specifically, to achieve
a resettable zero-knowledge argument of knowledge).

1.6 Organization.

In Section 2 we describe the basic notations and definitions that we use. Then, in Section 3 we
define and construct a commit-with-extract commitment scheme, which is the main technical tool
used to construct our zero-knowledge argument of knowledge. The proof of Theorem 1 can be found
in Section 4 where we present the construction of a zero-knowledge argument of knowledge with
strict polynomial-time extraction. Finally, in Section 5 we prove Theorems 2 and 3. That is, we
prove that it is impossible to construct strict polynomial-time black-box simulators and extractors
for (non-trivial) constant-round protocols.

2 Definitions

Notation. For a binary relation R, we denote by R(x) the set of all “witnesses” for x. That is,
R(x) def= {y | (x, y) ∈ R}. Furthermore, we denote by LR the language induced by the relation R.
That is, LR

def= {x | R(x) 6= ∅}.
For a finite set S ⊆ {0, 1}∗, we write x ∈R S to say that x is distributed uniformly over the set

S. We denote by Un the uniform distribution over the set {0, 1}n.
A function µ(·) is negligible if for every positive polynomial p(·) and all sufficiently large n’s,

it holds that µ(n) < 1/p(n). We let µ(·) denote an arbitrary negligible function. That is, when
we say that f(n) < µ(n) for some function f(·), we mean that there exists a negligible function
µ(·) such that for every n, f(n) < µ(n). A function f(·) is noticeable if there exists a positive
polynomial p(·) such that for all sufficiently large n’s, it holds that f(n) > 1/p(n). We note that
“noticeable” is not the complement of “negligible”. For two probability ensembles (sequences of
random variables) X = {Xs}s∈S and Y = {Ys}s∈S (where S ⊆ {0, 1}∗ is a set of strings), we say
that X is computationally indistinguishable from Y , denoted X

c≡ Y , if for every polynomial-sized
circuit family {Dn}n∈N and every s ∈ S, it holds that |Pr[D|s|(Xs) = 1]−Pr[D|s|(Ys) = 1]| < µ(|s|).
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We will sometime drop the subscripts s when they can be inferred from the context. In all our
protocols, we will denote the security parameter by n.

Let A be a probabilistic polynomial-time machine. We denote by A(x, y, r) the output of the
machine A on input x, auxiliary-input y and random-tape r. We stress that the running-time of
A is polynomial in |x|.5 If M is a Turing machine, then we denote by descn(M) the description
of a circuit that computes M on inputs of size n. Note that a polynomial-time machine that
receives descn(M) for input runs in time that is polynomial in the running-time of M . Let A
and B be interactive machines. We denote by viewA(A(x, y, r), B(x, z, r′)) the view of party A in
an interactive execution with machine B, on public input x, where A has auxiliary-input y and
random-tape r, and B has auxiliary input z and random-tape r′. The view of party B is denoted
similarly. Recall that a party’s view of an execution includes the contents of its input, auxiliary-
input and random tape plus the transcript of messages that it receives during the execution. We will
sometimes drop r or r′ from this notation, which will mean that the random tape is not fixed but
rather chosen at random. For example we denote by viewA(A(x, y), B(x, z)) the random variable
viewA(A(x, y, Um), B(x, z, U ′

m′)) where m (resp., m′) is the number of random bits that A (resp.,
B) uses on input of size |x|.

2.1 Zero Knowledge

Loosely speaking, an interactive proof system for a language L involves a prover P and a verifier
V , where upon common input x, the prover P attempts to convince V that x ∈ L. We note that
the prover is often given some private auxiliary-input that “helps” it to prove the statement in
question to V . Such a proof system has the following two properties:

1. Completeness: this states that when honest P and V interact on common input x ∈ L, then
V is convinced of the correctness of the statement that x ∈ L (except with at most negligible
probability).

2. Soundness: this states that when V interacts with any (cheating) prover P ∗ on common input
x 6∈ L, then V will be convinced with at most negligible probability. (Thus V cannot be tricked
into accepting a false statement.)

There are two flavors of soundness: unconditional (or statistical) soundness that must hold even for
an all-powerful cheating prover, and computational soundness that needs only hold for polynomial-
time cheating provers. In proof systems [29], unconditional soundness is guaranteed; whereas in
argument systems [10] only computational soundness must hold. We remark that a proof system
is not necessarily an argument system, because the honest prover strategy in a proof system is not
required to be polynomial-time (in contrast to arguments where even cheating provers must be
polynomial-time). Unless explicitly stated, when we mention “protocols” in discussion, we mean
both proofs and arguments.

Throughout this paper, we will always assume that the soundness error is at most negligible.
However, we will not always require this of completeness. Specifically, our lower bounds in Section 5
hold even if the completeness error is 1− 1/p(n) for some polynomial p(·); in this case, we will call
p(n) the completeness bound.

We now recall the definition of zero knowledge [29]. Actually, we present (a slightly strengthened
form of) the definition of auxiliary-input zero knowledge [22, Sec. 4.3.3].6 The main difference

5We assume that y and r are on different tapes. Therefore, even if y is very long (e.g., |y| > poly(|x|)), it is still
possible for A to read r.

6We deviate from the definition of auxiliary-input zero knowledge of [22, Sec. 4.3.3] by making the slightly stronger
requirement that there exists a single universal simulator for all verifiers, rather than a different simulator for each
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between our definition below and the standard definition is that we require the simulator to run
in strict, rather than expected, polynomial-time. We note that in this paper, when we say zero
knowledge, our intention is always auxiliary-input zero knowledge.

Definition 2.1 (auxiliary-input zero knowledge): Let (P, V ) be an interactive proof (or argument)
system for a language L. Denote by PL(x) the set of strings y satisfying the completeness condition
with respect to x ∈ L (i.e., when the completeness bound is p(·), then PL(x) is the set of strings
y for which the probability that viewV (P (x, y), V (x)) is accepting is at least p(|x|)). We say that
(P, V ) is auxiliary-input zero knowledge if there exists a strict probabilistic polynomial-time algorithm
S such that for every strict probabilistic polynomial-time machine V ∗ it holds that

{
viewV ∗(P (x, y), V ∗(x, z))

}
x∈L,y∈PL(x),z∈{0,1}∗

c≡ {
S(desc|x|(V ∗), x, z)

}
x∈L,y∈PL(x),z∈{0,1}∗

7

Black-box zero knowledge. A zero-knowledge proof system is called black-box zero know-
ledge [27] if the simulator S only uses its input desc(V ∗) as a black-box subroutine. That is,
S is an oracle algorithm such that:

{
viewV ∗(P (x, y), V ∗(x, z))

}
x∈L,y∈PL(x),z∈{0,1}∗

c≡
{

SV ∗(x,z,·,·)(x)
}

x∈L,y∈PL(x),z∈{0,1}∗

where V ∗(x, z, ·, ·) denotes the next-message function of the interactive machine V ∗ when the com-
mon input x and auxiliary input z are fixed (i.e., the next message function of V ∗ receives a
random-tape r and a message history h and outputs V ∗(x, z, r, h)).

2.2 Zero-Knowledge Arguments of Knowledge

Our definition of proofs and arguments of knowledge below differs from the standard definition
of [6] in two ways:

Strict polynomial-time extraction. We require that the knowledge extractor run in strict
polynomial-time (rather than in expected polynomial-time).

Non-black-box extraction. The knowledge extractor is given access to the description of the
prover. This is a relaxation of the standard definition of proofs of knowledge (cf. [6, 22]), where
the knowledge extractor is given only oracle (or black-box) access to the prover strategy. The
relaxed definition appeared originally in Feige and Shamir [19] (which differs from the definition
in [18]; see discussion in [6]), and suffices for all practical applications of arguments of knowledge.
Until recently, all known proofs of knowledge (including [19]) were coupled with an extractor
that used the prover algorithm only as a black-box. The extra power of non-black-box extraction
(where the knowledge extractor is given the actual description of the prover) was first used in
an essential way by [5] in order to obtain resettable zero-knowledge arguments of knowledge for

verifier as in [22, Sec. 4.3.3]. Note however, that the definition of [22, Sec. 4.3.3] already implies that for any c > 0
there exists a universal simulator for all Time(nc) verifiers.

7Recall that descn(M) is the description of a circuit that computes M on inputs of size n. An equivalent formulation
provides the simulator S with the description of the actual Turing machine M . However, in this case, it is also
necessary to provide S with 1t, where t is a bound on the running time of V ∗ on inputs of length |x|. This additional
input is provided in order to allow S to run in time which is (some fixed) polynomial in the running time of V ∗.
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NP.8 We show in Section 5 that our use of non-black-box extraction is also essential, as there do
not exist constant round proofs of knowledge with black-box strict polynomial-time extractors.

We are now ready to present the definition:

Definition 2.2 (system of proofs/arguments of knowledge): Let R be a binary relation. We say
that a probabilistic, polynomial-time interactive machine V is a knowledge verifier for the relation R
with negligible knowledge error if the following two conditions hold:
• Non-triviality: There exists a probabilistic polynomial-time9 interactive machine P such that

for every (x, y) ∈ R, all possible interactions of V with P on common input x, where P has
auxiliary input y, are accepting.

• Validity (or knowledge soundness) with negligible error: There exists a strict probabilistic
polynomial-time machine K, such that for every strict probabilistic polynomial-time machine
P ∗, and every x, y, r ∈ {0, 1}∗, machine K satisfies the following condition:

Denote by p(x, y, r) the probability (over the random tape of V ) that V accepts upon
input x, when interacting with the prover P ∗ who has input x, auxiliary-input y and
random-tape r. Then, machine K, upon input (desc|x|(P ∗), x, y, r), outputs a solution
s ∈ R(x) with probability at least p(x, y, r)− µ(|x|).

An interactive pair (P, V ) such that V is a knowledge verifier for a relation R and P is a machine
satisfying the non-triviality condition (with respect to V and R) is called an argument of knowledge
for the relation R. If the validity condition holds with respect to any (not necessarily polynomial-
time) machine P ∗, then (P, V ) is called a proof of knowledge for R.

If an argument (resp., proof) of knowledge (P, V ) is zero knowledge for the language LR induced
by R, then we say that (P, V ) constitutes a system of zero-knowledge arguments (resp., proofs) of
knowledge for R.

2.3 Witness-Extended Emulation

In this section, we present an extension of the notion of proofs of knowledge, called witness-extended
emulation. This extension is of importance when zero-knowledge proofs or arguments of knowledge
are used as subprotocols within larger protocols, as is often the case. Typically in this context,
the extractor for the proof of knowledge supplies the simulator for the larger protocol with some
secret information. This information is then used in the proof of security of the rest of the larger
protocol.

The final output of the simulator for the larger protocol is usually a transcript of the entire
simulated protocol execution (where this transcript is indistinguishable from a real execution).
Thus, the extractor needs to not only extract a witness from the proof of knowledge, but must
also obtain a matching transcript of the execution of the proof of knowledge itself. However, by
definition, the extractor only outputs a witness and does not provide the simulator with such a
transcript. This issue was addressed in [31] where, loosely speaking, it was shown that for any
zero-knowledge proof of knowledge, there exists a machine who outputs both the witness (with
the appropriate probability) and a matching transcript of messages sent in the execution. Such

8The use there is critical as it can be shown that if the knowledge extractor is restricted to only black-box access to
the prover, then resettable zero-knowledge arguments of knowledge are possible for languages in BPP only, see [12].

9The requirement that P be polynomial-time is inherent for arguments, but not for proofs. A proof system with
such a prover is called an efficient-prover proof.
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a machine was termed a “witness-extended emulator”, because its role is to emulate a protocol
execution while also providing a witness (see [31] for a more detailed discussion). We proceed
by presenting a slightly different definition of witness-extended emulation, and then discuss its
relevance to our work. We begin with some notation and terminology:
• Recall that viewP ∗(P ∗(x, y, r), V (x)) denotes a random variable describing the view of P ∗ in

a protocol execution with the honest verifier V , where P ∗ has input x, auxiliary-input y and
random-tape r, and the honest verifier V has input x. (This random variable depends only on
the coins of V .)

• We say that a zero-knowledge protocol (P, V ) is publicly verifiable if given the transcript of
messages between any P ∗ and V , it is possible to efficiently determine whether or not V accepted
the proof. (For example, any protocol can be made publicly verifiably by having the verifier sends
the contents of its random tape at the end of the protocol execution. Note, however, that this
can affect other properties of the protocol. Indeed, our proof of knowledge, Protocol 4.1, cannot
be made publicly verifiable in this way while still preserving the witness-extended emulation
property.)

When a protocol is publicly verifiable, then V ’s accept/reject bit can be deduced efficiently
(and deterministically) from the prover’s view. We denote by acceptV (·) the deterministic func-
tion that takes a specific view of the prover in a protocol execution, and outputs whether or not
V accepts in this execution.

We are now ready to present the definition:

Definition 2.3 (witness-extended emulator): Let R be a binary relation and let (P, V ) be an
interactive proof system that is publicly verifiable. Consider a probabilistic machine E that is given
the description of a probabilistic polynomial-time prover desc|x|(P ∗), and the contents of P ∗’s input,
auxiliary-input and random-tapes, x, y and r respectively. We denote by E1(desc|x|(P ∗), x, y, r)
and E2(desc|x|(P ∗), x, y, r) the random variables representing the first and second elements of the
output of E, respectively. We say that E is a witness-extended emulator for (P, V ) and R if it runs in
strict polynomial-time and if for every probabilistic polynomial-time interactive machine P ∗, every
y, r ∈ {0, 1}∗ and all sufficiently large x’s,

1. E1’s output distribution is indistinguishable from the distribution of the view of P ∗ in a real
execution with the honest verifier V . That is,

{
E1(desc|x|(P ∗), x, y, r)

}
x,y,r

c≡ {viewP ∗(P ∗(x, y, r), V (x))}x,y,r

2. The probability that V accepts in the view of P ∗ that is output by E1, and yet E2 does not
output a correct witness, is negligible. That is,

Pr
[
acceptV (E1(desc|x|(P ∗), x, y, r)) = 1 & E2(desc|x|(P ∗), x, y, r) 6∈ RL(x)

]
< µ(|x|)

Definition 2.3 differs from the definition of [31] in a number of ways. Most notably, we provide
the witness-extended emulator with the description of P ∗ (rather than just black-box access) and
also require it to run in strict polynomial-time (rather than expected polynomial-time). The other
differences are technical and are mainly due to the need to achieve strict polynomial-time emulation.
Despite the differences, the definitions are the same in spirit and both achieve the desired goal of
enabling a proof of knowledge to be used as a subprotocol in some other, larger protocol.
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Recall that [31] proved the existence of a witness-extended emulator for any proof of knowledge.
However, the emulator that is obtained runs in expected polynomial-time and thus does not achieve
our goal of strict polynomial-time emulation. We will therefore directly prove the existence of a
witness-extended emulator for our zero-knowledge argument of knowledge.

3 Commitment with Extraction

In order to construct a constant-round zero-knowledge argument of knowledge with strict polynomial-
time extraction, we first construct a new primitive that we call commit-with-extract. Loosely speak-
ing, a commit-with-extract scheme is a commitment scheme with the additional property that the
committed value can be extracted from the sender. More precisely, there exists a (strict polynomial-
time) commitment extractor who is given the description of the sender (along with the contents
of its input, auxiliary input and random tapes) and extracts the value being committed to during
the commit stage of the protocol. This idea of “extractable commitments” is not new. It has been
used in the context of secure multi-party computation (e.g., [21, Construction 2.3.8]) and has been
called both commit-with-knowledge [14] and non-oblivious commitment [22, Def. 4.9.3]. The main
technical difference between our primitive and previous ones is the requirement that the extractor
run in strict polynomial-time. At the end of this section we describe another significant difference
that is related to the question of “knowledge” versus “extraction”.

We remark that in a standard commitment scheme, the committer may not “know” the value
that it committed to. This is the case, for example, in the case that the range of the commitment
scheme is {0, 1}∗, and so any value is a valid commitment. Clearly, such a commitment scheme
does not have the property that the committed value can be extracted from the committer.

3.1 Definition

We begin by informally defining perfectly binding commitment schemes.

Commitment schemes. A commitment scheme is a two-party protocol that enables a party,
known as the sender, to commit itself to a value while keeping it secret from the receiver. A
commitment scheme must be both hiding and binding. The hiding property of a commitment
scheme says that the receiver’s view in the case that the sender commits to 0 is computationally
indistinguishable from its view in the case that the sender commits to 1. (Thus, the committed
value is unknown to the receiver.) The binding property of a commitment scheme states that in a
later stage when the commitment is opened, the “opening” can yield only a single value that was
determined in the committing phase. (Thus, the sender cannot modify its committed value.) In a
perfectly binding commitment scheme, the binding property states that transcripts resulting from
a commitment to 0 and a commitment to 1 must be disjoint. Thus, for any given transcript, there
is at most one commitment value that can yield that transcript. See [22, Sec. 4.4.1] for a formal
definition of commitment schemes.

Commit with extract. As we have mentioned, a commit-with-extract scheme is a commitment
scheme with the following additional property: there exists a (strict polynomial-time) commitment
extractor who is given the description of the sender and extracts the value being committed to
during the commit stage of the protocol. In addition to outputting the committed value, we also
require the extractor to output the sender’s view of an execution (this is similar in spirit to witness-
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extended emulation and is needed when the commit-with-extract is used as a subprotocol).10 Of
course, the committed value and sender’s view output by the extractor must be compatible. In
order to enforce this compatibility, we denote by commit-value(·) a function that takes a sender’s
view and outputs the unique committed value implicit in this view, or ⊥ if no such value exists.
(This function is well defined for perfectly-binding commitments because in such a case every
transcript can define at most one value.) Then, compatibility between the view and committed
value is obtained by requiring that x = commit-value(v), where x and v be the committed value
and sender’s view respectively, as output by the extractor. We now present the formal definition:

Definition 3.1 (commit with extract): A perfectly binding commitment scheme C (with sender
A and receiver B) is a commit-with-extract commitment scheme if the following holds: there exists
a strict probabilistic polynomial-time commitment extractor CK such that for every probabilistic
polynomial-time committing party A∗ and for every x, y, r ∈ {0, 1}∗, upon input (desc|x|(A∗), x, y, r),
machine CK outputs a pair, denoted (CK1(desc|x|(A∗), x, y, r), CK2(desc|x|(A∗), x, y, r)), satisfying
the following conditions:

1.
{
CK1(desc|x|(A∗), x, y, r)

}
x,y,r∈{0,1}∗

c≡ {viewA∗(A∗(x, y, r), B)}x,y,r∈{0,1}∗

2. Pr[CK2(desc|x|(A∗), x, y, r) = commit-value(CK1(desc|x|(A∗), x, y, r))] > 1− µ(|x|)

We note that the requirements on the extractor CK can be relaxed such that in the case that there
is no committed value (i.e., where the view v is such that commit-value(v) = ⊥), then CK can
output any arbitrary value, and not just ⊥. This relaxation suffices for our applications.

Commit-with-extract using proofs of knowledge. We note that it is possible to achieve
a commit-with-extract scheme in the following straightforward way. First, the sender sends a
standard perfectly-binding commitment to the receiver. Then, the sender proves knowledge of the
committed value using a zero-knowledge proof or argument of knowledge. A commitment extractor
can easily be constructed for this scheme by having it run the knowledge extractor from the proof of
knowledge and obtain the committed value. However, as mentioned above, known constructions of
proofs of knowledge with strict polynomial-time extraction have a non-constant number of rounds.
In contrast, our aim is to construct a commit-with-extract scheme that has a constant number of
rounds.

Public Decommitment. We say that a commitment scheme satisfies public decommitment if
the validity of a decommitment can be ascertained by any party who holds the transcript of the
messages between the sender and receiver from the commitment stage. In particular, this party
need not know the random coins used by the receiver during the commitment. More formally, the
specification of a commitment scheme consists of two sender algorithms and two receiver algorithms:
one algorithm each for the commit phase and one each for the reveal phase. In general, the input
of an algorithm in the reveal phase is the entire view of the corresponding algorithm in the commit
phase. In contrast, we say that a commitment scheme satisfies public decommitment if the input of
the receiver algorithm in the reveal phase is part or all of the transcript of messages sent by the
parties in the commit phase, and nothing else. This is analogous to “publicly verifiable” protocols,

10The extractor outputs the view of the sender (and not the receiver) because the extraction procedure is used in
the simulation of a corrupted sender (not receiver).
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as described in Section 2.3. (Again, as described in Section 2.3, any perfectly binding commitment
scheme can be modified into one that provides public decommitment by having the receiver send its
random coins at the conclusion of the commitment phase. However, this may affect other properties
of the commitment scheme. Indeed, the extractor for our commit-with-extract scheme would fail
to generate a view that is indistinguishable from the sender’s view, as required in Definition 3.1, if
the receiver was required to send all of its random coins when the commitment phase concludes.)
We use the additional feature of public decommitment for constructing a zero-knowledge argument
of knowledge from a commit-with-extract scheme.

3.2 Constant-Round Commit-with-Extract

In this section we show how to construct a constant-round commit-with-extract commitment
scheme. That is, we prove the following theorem:

Theorem 3.2 Assume the existence of collision-resistant hash functions and collections of trapdoor
permutations such that the domain of each permutation is the set of all strings of a certain length.11

Then, there exist constant-round commit-with-extract string commitment schemes satisfying public
decommitment.

Before presenting our scheme, we note that it suffices to present a scheme that is perfectly binding,
except with negligible probability (where the probability is taken over the coins of the receiver). A
perfectly binding scheme (with no error) can then be obtained by augmenting the commitment
phase with an additional perfectly binding commitment. Specifically, the sender will commit to
the same value twice; once using a perfectly binding scheme (that does not enable extraction but
is perfectly binding with no error), and once using a commit-with-extract scheme (that enables
extraction but has a negligible error with respect to binding). The decommitment phase is then
also modified so that both commitments must be opened. The result is a commit-with-extract
scheme that is perfectly binding with no error. (We note that perfect binding with negligible error
usually suffices, and so no such augmentation is really necessary.)

We now present our construction. In order to simplify the presentation, we start by showing a
commit-with-extract bit commitment scheme and then show how to generalize our construction to
a string commitment scheme. Our protocol is based on the following well-known non-interactive
commitment scheme that uses one-way permutations [8]: Let f be a one-way permutation over
{0, 1}n and let b be a hard-core predicate of f . Then, in order to commit to a bit σ, the sender
chooses r ∈R {0, 1}n, lets y = f(r) and sends 〈y, b(r) ⊕ σ〉 to the receiver. Loosely speaking,
our commitment scheme is similar except that the value y is chosen jointly by the sender and the
receiver using a coin-tossing protocol (which is based on the coin tossing protocol of [31]). Since y
is uniformly distributed, the hiding property remains as in the original scheme. Likewise, because f
is a permutation, y defines a unique value b(f−1(y)) and thus the scheme remains perfectly binding.
The novelty of our scheme is that for every sender, there exists an extractor that can bias the coin-
tossing protocol such that it concludes with a value y for which the extractor knows the preimage
r = f−1(y). In this case, the extractor can easily obtain the commitment value σ, as desired.

In order to allow the sender to be implementable by an efficient algorithm, we choose f to be a
trapdoor one-way permutation. Thus, the sender is able to efficiently compute r = f−1(y), where y
is the output of the coin-tossing protocol (this is similar to the NIZK system constructed in [16]).
Formally, the protocol is parameterized by a family of trapdoor permutations over {0, 1}n, with a

11See Footnote 3.
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function sampling algorithm I. We denote a permutation from the family by f and its associated
trapdoor by t. Furthermore, we denote by b a hard-core of f .

One of the components of the protocol is a constant-round zero-knowledge argument with a
strict polynomial-time simulator. We note that such an argument exists if collision-resistant hash
functions exist [3, 4]. As we have mentioned above, another component of our commit-with-extract
protocol is a coin-tossing subprotocol that is based on the protocol of [31]. We do not plug in
the exact protocol of [31] (while replacing the zero-knowledge proofs with those that run in strict
polynomial-time) because its proof of security uses extraction from a proof of knowledge, and no
proof of knowledge with strict polynomial-time extraction exists (indeed this is the aim of our
construction).

Protocol 3.3 (commit-with-extract bit commitment scheme):
• Input: The sender has a bit σ to be committed to.

• Commit phase:

1. A chooses a trapdoor permutation:

(a) The sender A chooses a trapdoor permutation f along with its trapdoor t (by running
the sampling algorithm I on a uniformly chosen string sI ∈R {0, 1}n), and sends f to
the receiver B.

(b) A proves to B that f is a permutation, using any constant-round zero-knowledge proof
or argument (even one with an expected polynomial-time simulator). For example, if I
is such that it outputs a permutation with probability 1, then A may prove that there
exists a string sI such that f is the permutation output from I(sI).12 If B does not
accept the proof, then it aborts.

2. A and B run a coin-tossing protocol:

(a) B chooses a random string r1 ∈R {0, 1}n and sends c = Commit(r1; s) to A (where
Commit(·) denotes any perfectly-binding commitment scheme, and Commit(r1; s) de-
notes a commitment to value r1 using random coins s).

(b) A chooses a random string r2 ∈R {0, 1}n and sends r2 to B.
(c) B sends r1 to A (without decommitting).
(d) B proves that the string r1 sent in Step 2c is indeed the value that it committed to in

Step 2a, using a constant-round zero-knowledge argument with a strict polynomial-time
simulator. Formally, B proves that there exists a string s such that c = Commit(r1; s).

(e) The output of the coin-tossing phase is r1 ⊕ r2.

3. A sends the actual commitment:
A computes r = f−1(r1 ⊕ r2) and sends B the value v = b(r)⊕ σ.

• Reveal phase:

1. A sends B the string r.

2. B checks that f(r) = r1 ⊕ r2. If this is the case, then B computes b(r) ⊕ v obtaining σ.
Otherwise, B outputs ⊥.

12We note that by using the primality testers of [28] or [1], for example, the sampling algorithms for both the RSA
and Rabin families of trapdoor permutations can be made to output a permutation with probability 1. In the case
that the sampling algorithm does not output a permutation with probability 1, a different method of proving that f
is a permutation is needed. General methods for achieving this can be found in [7].
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(By convention, if the commit phase of the protocol is not completed, then the committed value is
defined to equal 0.) We now prove that Protocol 3.3 is a secure commit-with-extract commitment
scheme. We first show that it is a secure commitment scheme. This involves demonstrating both
the binding and hiding properties. Intuitively, these properties hold because the only difference
between the above protocol and the basic commitment scheme defined by Cn(σ; r) def= 〈f(r), b(r)⊕σ〉
for r ∈R {0, 1}n, is that the random string r is chosen via a coin-tossing protocol (rather than being
determined by the sender).

Proposition 3.4 Protocol 3.3 is a secure bit commitment scheme with public decommitment.

Proof: We first claim that Protocol 3.3 satisfies public decommitment. This is due to the fact
that the only information needed by B to verify A’s decommitment is the pair of strings r1 and r2,
that appear in the transcript between A and B from the commit phase.

Next, we prove the (almost) perfect binding property. That is, we show that except with
negligible probability, for any transcript of messages trans generated by an execution between an
arbitrary probabilistic polynomial-time sender A∗ and the honest receiver B, there exists a unique
value σ ∈ {0, 1} such that commit-value(trans) = σ. Intuitively, the perfect binding property holds
as long as the function f sent by A∗ is a permutation. This is the case because when f is a
permutation, the values r1 and r2 in the transcript define a unique value r = f−1(r1 ⊕ r2), which
in turn uniquely defines the value σ = v ⊕ b(r). The formal argument follows.

First, note that if B does not accept the proof provided by A∗ in Step 1b, then B will abort
and then, by convention, σ equals 0. Likewise, if A∗ does not complete the entire commit phase, σ
also equals 0. Therefore, the binding property trivially holds in these cases. We continue to show
that it holds when B does not abort and the commit phase is completed.

Now, assume that the function f sent by A∗ is a permutation. In this case, any pair of strings
r1 and r2 appearing in the transcript define a single preimage r = f−1(r1 ⊕ r2). Therefore, any
bit v sent by A∗ in Step 3 defines a single value σ = v ⊕ b(r). That is, the values r1, r2 and v in
the transcript define a single committed value σ, as required. This, however, only holds as long
as f is a permutation (otherwise, there may be more than one possible preimage to r1 ⊕ r2). By
the soundness of the proof (or argument) of Step 1b, we have that the probability that f is not a
permutation is at most negligible. We therefore conclude that, except with negligible probability,
the transcripts defines a single committed value.

We now turn to the computational hiding property. Intuitively, the hiding property follows
from the hiding property of the non-interactive commitment scheme of [8], and the security of the
coin-tossing protocol. In particular, if r1 ⊕ r2 is uniform (or pseudorandom), then distinguishing
between a commitment to 0 and a commitment to 1 is essentially equivalent to distinguishing
between {f(Un), b(Un)} and {f(Un), b(Un) ⊕ 1}. Since b is a hard-core of f , it is infeasible to
distinguish between these distributions in polynomial time. The hiding property therefore follows
from the security of the coin-tossing protocol that ensures that r1 ⊕ r2 is pseudorandom.

In the above intuition, the security of the coin-tossing protocol is reduced to a single instance of
a commitment. However, in the actual proof, we reduce the indistinguishability of our commitment
scheme to the indistinguishability of multiple samples of the basic commitment scheme relative to
a single permutation f . That is, we show that distinguishing between a commitment to 0 and
a commitment to 1 is equivalent to distinguishing between the random variables Xm

0 and Xm
1

where Xm
σ = 〈f, f(U (1)

n ), b(U (1)
n ) ⊕ σ, . . . , f(U (m)

n ), b(U (m)
n ) ⊕ σ〉, where f is a trapdoor one-way

permutation, b is a hard-core bit for f and m = poly(n). One can use a standard hybrid argument
to show that Xm

0 and Xm
1 are computationally indistinguishable.
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Formally, for any polynomial-size receiver B∗, denote by vB∗
n (σ) the distribution over B∗’s view,

when the honest sender A commits to the value σ (the distribution is over the uniform choice of
random coins for A). Then, the hiding property is stated as follows: for any polynomial-size receiver
B∗, it holds that {

vB∗
n (0)

}
n∈N

c≡
{

vB∗
n (1)

}
n∈N

Assume by contradiction, that there exists a polynomial-size receiver B∗, a polynomial-time dis-
tinguisher D and a polynomial p(·) such that for infinitely many n’s

advD
n

def=
∣∣∣Pr[D(vB∗

n (0)) = 1]− Pr[D(vB∗
n (1)) = 1]

∣∣∣ ≥ 1
p(n)

(1)

We will use D and B∗ to construct a distinguisher D′ that will distinguish between the random
variables Xm

0 and Xm
1 mentioned above, for m = 5p(n). To get an intuition for the operation of D′,

consider the case in which B∗ doesn’t behave in an ostensibly faulty way (i.e., B∗ does not “abort”
the computation). If this is the case, we can actually construct a distinguisher D′ for the basic
commitment scheme (i.e., a distinguisher between X1

0 and X1
1 ). The distinguisher D′ receives a

commitment Cn(σ) = 〈f(r), b(r)⊕σ〉 for input (where r ∈R {0, 1}n) and works by invoking B∗ and
runs an execution of Protocol 3.3 with B∗, until B∗ sends a commitment c = Commit(r1; s) as part
of the coin tossing protocol. At this point, D′ then learns r1 by running the continuation of the coin
tossing protocol with B∗. After learning r1, algorithm D′ rewinds B∗ back to the point after B∗

sent the commitment to r1, and then D′ feeds B∗ with the message r2 = f(r)⊕r1, where f(r) is the
first part of its input commitment Cn(σ) = 〈f(r), b(r)⊕ σ〉. The result of the coin-tossing protocol
is thus r1⊕ r2 = f(r), which means that as the final message D′ can send B∗ its input b(r)⊕σ. We
see that if D distinguishes between the result of this experiment when σ = 0 and when σ = 1, then
D′ breaks the basic commitment scheme Cn and distinguishes between X1

0 and X1
1 . Unfortunately,

the fact that B∗ may ostensibly misbehave makes the formal proof somewhat more complicated
than this description. We are now ready for the formal description of the distinguisher D′.

Distinguisher D′ receives for input a trapdoor one-way permutation f and a sequence

〈f, f(r(1)), b(r(1))⊕ σ, . . . , f(r(m)), b(r(m))⊕ σ〉

where r(1), . . . , r(m) are independently and randomly distributed in {0, 1}n. Algorithm D′ then
simulates an execution of A with B∗ as follows:

1. Simulation of A choosing a trapdoor permutation:

(a) D′ passes B∗ the permutation f that it was given as part of its input.

(b) D′ runs the zero-knowledge simulator (for the proof that f is a permutation) using the
residual B∗ as the verifier.13

2. Sample an execution of the coin-tossing protocol:

(a) D′ receives a commitment c from B∗ (c is supposed to equal Commit(r1) for some r1).

(b) D′ chooses a random string r2 ∈R {0, 1}n and passes it to B∗.
13Note that any constant-round zero-knowledge proof or argument may be used for this step in the protocol.

Therefore, the simulation of this argument by D′ may require expected (rather than strict) polynomial-time. We
therefore obtain a distinguisher that runs in expected polynomial-time. This suffices here because in the context of
distinguishing commitments (or solving a hard problem), it is possible to truncate D′’s execution without lowering
its success below what is needed for deriving a contradiction.
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(c) D′ obtains some string r1 from B∗.

(d) D′ verifies the zero knowledge argument given by B∗. If D′ accepts the argument from
B∗, then it continues. Otherwise, D′ sets Z to be the partial transcript until the point
that the execution aborted and jumps to Step 5.

3. Iterate until successful simulation: D′ does the following for i = 1, 2, . . . ,m

(a) D′ rewinds B∗ to the point after B∗ sent the commitment c (i.e., Step 2a) and sends B∗

the string r2 = f(r(i))⊕ r1, where r1 is the value obtained in Step 2c, and f(r(i)) comes
from D′’s input sequence.

(b) D′ obtains some string r′1 from B∗ and verifies the zero knowledge argument given by
B∗. There are three possibilities at this point:

i. If D′ does not accept the argument from B∗, then it lets i ← i + 1 and continues
on to the next iteration (i.e., it returns to Step 3a). If the maximum number of
attempts have elapsed (i.e., if i = m) then D′ halts and outputs fail.

ii. If D′ does accept the argument from B∗ but r′1 6= r1, then D′ halts and outputs fail.
iii. If D′ accepts the argument from B∗ and r′1 = r1, then D′ proceeds to Step 4 below.

4. Simulation of the actual commitment: D′ passes the bit vi = b(U (i)
n ) ⊕ σ (from its input

sequence) to B∗. Algorithm D′ lets Z denote the transcript of the simulated execution, and
proceeds to Step 5.

5. Output: D′ passes the transcript Z of the simulated execution to D, and outputs whatever
D does.

(We stress that this transcript (as passed by D′ to D) may not be complete, as in the case
that D′ does not accept the argument from B∗ in Step 2d.)

To prove that D′ distinguishes between Xm
0 and Xm

1 with non-negligible probability, it suffices to
prove the following claim:

Claim 3.4.1 Let Zσ be the random variable that denotes the simulated transcript that D′ feeds
to D in Step 5, when D gets Xm

σ as input. Let Yσ be the random variable that denotes the view
of B∗ in an interaction with the sender A when the sender commits to σ. Then Z and Y are
2
m -computationally indistinguishable. That is, for every polynomial-sized circuit C,

∣∣∣Pr[C(Zσ) = 1]− Pr[C(Yσ) = 1]
∣∣∣ <

2
m

Claim 3.4.1 is sufficient to show that D′ distinguishes between Xm
0 and Xm

1 because we already
know that (for infinitely many n’s) the distinguisher D distinguishes between Y0 and Y1 with bias

1
p(n) = 5

m . Thus the claim implies that D will also distinguish between Z0 and Z1 with bias at least
1
m and hence D′ will distinguish between Xm

0 and Xm
1 with this bias. We now prove the claim.

To prove Claim 3.4.1, we will use a hybrid argument with two intermediate random variables
Z̃σ and Ẑσ that are computationally indistinguishable from Zσ and Yσ, respectively. We then show
that Z̃σ and Ẑσ are 1/m-indistinguishable.

The random variable Z̃σ. The random variable Z̃σ is defined to be the result of the following process:
Let D̃ be an algorithm that behaves exactly like D′ except for the following two differences. First,
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instead of using a simulated zero-knowledge proof in Step 1b, it uses the honest prover algorithm
(we assume that D̃ is given the trapdoor information for the one-way permutation). Second, if D̃
accepts the argument from B∗ but r′1 6= r1, as in Step 3(b)ii, then it does not output fail. Rather,
it proceeds to Step 4 and uses its knowledge of the trapdoor in order to complete the commitment
like an honest committer (note that D̃ can derive the value of σ from its input sequence because it
knows the trapdoor). We define Z̃σ to be the corresponding value computed by D̃ on input Xm

σ in
Step 5.

Assuming that D̃ does not accept the argument from B∗ when r′1 6= r1 (i.e., the case in
Step 3(b)ii does not happen), the random variable Z̃σ is computationally indistinguishable from
Zσ because the only difference is whether the zero-knowledge protocol of Step 1b is simulated or
real. It therefore suffices to show that the probability that D̃ accepts an argument from B∗ when
r′1 6= r1 is at most negligible (i.e., the case in Step 3(b)ii happens with at most negligible proba-
bility). In order to see this, notice that the case in Step 3(b)ii happens if r1 6= r′1 and in addition,
D̃ accepted an argument from B∗ that c = Commit(r1) (in Step 2d) and also an argument from
B∗ that c = Commit(r′1) (in Step 3b). However, the commitment c that D̃ receives from B∗ in
Step 2a is perfectly binding. Therefore, c defines a single decommitment value; in particular, it
cannot be a commitment to both r1 and r′1. This means that one of the statements c = Commit(r1)
and c = Commit(r′1) is false. Therefore, by the soundness of the zero-knowledge argument, D̃
will accept both arguments from B∗ (in Steps 2d and 3b) with at most negligible probability. We
conclude that for large enough n, no polynomial-sized circuit can distinguish between Z̃σ and Zσ

with non-negligible probability.

The random variable Ẑσ. The random variable Ẑσ is defined by considering the output of the
algorithm D̂. This algorithm behaves like D̃ except that it does not halt after m iterations. Rather,
it continues until it accepts the argument from B∗ in Step 3b (irrespective of whether or not r1 = r′1).
According to the above description, in the ith iteration, algorithm D̃ sends r2 = f(r(i))⊕ r1 to B∗.
Thus, for the first i ≤ m iterations D̂ works in the same way and also sends r2 = f(r(i))⊕ r1 to B∗.
However, if D̂ exceeds m iterations, it cannot compute r2 in this way (because its input includes
only m commitments of the form 〈f(r(i)), b(r(i))⊕ σ〉). Rather, it chooses r2 uniformly at random
(like the honest committer). Then, if it accepts the argument from B∗, algorithm D̂ proceeds to
Step 4, computes f−1(r1 ⊕ r2) and commits to σ like the honest committer. (Recall that, like D̃,
machine D̂ knows the trapdoor and so it can compute f−1 and can also obtain the value σ from
its input sequence of commitments.) We stress that D̂ uses fresh random choices for r2 in every
iteration i > m.

We claim that the statistical distance between Ẑσ and Z̃σ is at most 1
m . Indeed, one can see that

the expected number of iterations that algorithm D̂ runs is at most 1: let π be the partial execution
of the protocol obtained by D̂ until the point that B∗ sends the commitment to r1, and let pπ be the
probability that B∗ does not abort (i.e., successfully proves the argument) when continuing from
the partial execution π. Then, the probability that D̂ enters Step 3 equals pπ (because if B∗ aborts
in Step 2c then D̂ does not enter Step 3). Now, within the iterations of Step 3, the probability that
B∗ does not abort is exactly pπ. Therefore, given that D̂ enters Step 3, the expected number of
iterations is 1

pπ
. We conclude that the overall expected number of iterations made by D̂ in Step 3

conditioned on the initial partial execution being π equals pπ · 1
pπ

= 1. Averaging over all partial
executions we obtain that the overall expected number of repetitions is also 1 and thus by Markov’s
inequality, we have that the probability that D̂ will require more than m iterations is less than 1

m .
Notice finally that if D̂ does not require more than m iterations, then it generates exactly the same
distribution as D̃. Therefore, the probability that Z̃σ and Ẑσ differ is at most 1

m .
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Comparing Ẑσ with Yσ. Finally, we claim that the random variable Ẑσ is identical to the variable
Yσ, which denotes the transcript of a real execution. In order to see this, observe that D̂ essentially
does the following. It first samples a partial execution until the point that B∗ sends its commitment
to r1 (this sample is identical to a real execution). Next, it samples the remainder of the execution.
If B∗ aborts in this sample, then D̂ outputs the transcripts and halts. In contrast, if B∗ does not
abort in this sample, then D̂ continues until it obtains another sample in which B∗ does not abort
(all of this sampling is identical to a real execution). Assuming that D̂ eventually halts, we have
that the result is identical to Yσ. The fact that D̂ eventually halts follows from the fact that it only
enters Step 3 if there is a non-zero probability of B∗ not aborting.

Combining the above, we have that the random variables Zσ and Yσ can be distinguished with
advantage at most 1

m + µ(n) < 2
m . With this the proof of Claim 3.4.1, and hence the proof of the

computational hiding property, is completed.

Having proven that Protocol 3.3 is a secure commitment scheme, we proceed to show that it is also a
commit-with-extract scheme, by demonstrating the existence of a strict polynomial-time extractor.

Proposition 3.5 Protocol 3.3 constitutes a commit-with-extract commitment scheme.

Proof: Intuitively, the extractor CK works by biasing the outcome r1 ⊕ r2 of the coin-tossing
protocol such that it knows the preimage under f . More specifically, CK chooses a random string
r, computes f(r) and then makes the output r1 ⊕ r2 equal f(r). This is clearly not possible for
a real receiver (as the coin-tossing protocol ensures that f(r) is pseudorandom). However, recall
that CK has the description of the sender A∗, and therefore has more power than a real receiver.
In particular, this gives CK the capability of running the simulator for the proof that B provides
in Step 2d of the protocol. As we will see, this is enough.

Recall that CK should output a view indistinguishable from the one seen by A∗ in a real
interaction, as well as the unique commitment value defined by this view. Extractor CK receives
the description of an arbitrary polynomial-time sender A∗ and a triple (x, y, r), and works as follows:

1. A∗ chooses a trapdoor permutation:

(a) CK invokes A∗(x, y, r) and receives the description of a permutation f from A∗.

(b) Next, CK verifies the zero-knowledge proof from A∗ attesting to the fact that f is a
permutation. If the verification fails, then CK outputs A∗’s view until this point along
with the value 0, and halts. (CK outputs 0 because, by our convention, in an aborted
execution this is the default committed value.)

2. CK biases the outcome of the coin-tossing protocol:

(a) CK passes c = Commit(0n) to A∗ (this is a commitment to “garbage”).

(b) CK obtains a string r2 from A∗.

(c) CK chooses r ∈R {0, 1}n, computes f(r) and passes A∗ the string r1 = f(r)⊕r2. (Notice
that r1 is distributed uniformly and independently of the initial commitment c, and that
f−1(r1 ⊕ r2) = r.)

(d) CK invokes the zero-knowledge simulator, with the residual A∗ as the verifier, for the
appropriate (false) statement that there exists a string s such that c = Commit(r1; s).

3. A∗ sends the actual commitment:

CK receives a bit v from A∗.
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4. Output: CK outputs A∗’s view of the above execution along with σ = b(r)⊕ v.

We first claim that CK extracts the bit committed to in the execution (we focus on the case that
A∗ does not abort; otherwise the claim trivially holds). This is immediate because CK knows the
preimage under f of f(r1 ⊕ r2) = f(r). Therefore, b(r)⊕ v is exactly the unique value committed
to by A∗. (The above assumes that f is indeed a permutation. However, by the soundness of the
zero-knowledge argument of Step 1b, it can only occur that f is not a permutation with negligible
probability.)

Next, we show that the view output by CK is computationally indistinguishable from A∗’s view
in a real execution. These two distributions differ in two aspects: first, the commitment received
by A∗ in Step 2a is to 0n rather than to r1. Second, the zero-knowledge argument verified by
A∗ in Step 2d is simulated rather than real. Using a standard hybrid argument, computational
indistinguishability can be shown. Specifically, define a hybrid experiment whereby A∗ receives a
commitment to r1 (instead of to 0n), and yet the zero-knowledge proof that it verifies is simulated.
Then, by the hiding property of commitment schemes, A∗’s view in the hybrid experiment is
indistinguishable from its view output by CK. On the other hand, by the indistinguishability of
zero-knowledge simulation, A∗’s view in the hybrid experiment is indistinguishable from its view
in a real execution. Combining the above together, we obtain that CK outputs a view that is
indistinguishable from A∗’s view in a real execution.

It remains to show that CK runs in strict polynomial-time. However, this immediately follows
from the above description and from the fact that the zero-knowledge simulator used by CK runs
in strict polynomial-time. This completes the proof.

We note that any constant-round zero-knowledge argument system with a strict polynomial-time
simulator suffices for Step 2d. However, the only known such argument system is that of [3] (or
its modified version in [4]) and this system utilizes a non-black-box simulator. Since the extractor
must run this simulator, it follows that it is also non-black-box. As we will see in Section 5, this is
in fact necessary for obtaining a constant-round protocol with strict polynomial-time extraction.

Extending Protocol 3.3 to strings: To prove Theorem 3.2 we need to generalize Protocol 3.3
to allow commitments to strings of length m (where m is polynomial in the security parameter n),
instead of just allowing commitments to single bits. This extension can be obtained in two ways.
Firstly, one can simply run Protocol 3.3 in parallel m times (taking care that the zero-knowledge
arguments used are closed under the parallel composition of m executions, as is the case with
the bounded-concurrent zero-knowledge protocol of [3, 4]). Alternatively, one can directly modify
Protocol 3.3, and have A and B run m copies of the coin-tossing protocol in parallel, and then use
only a single zero-knowledge argument to prove a compound statement relating to all copies.

Discussion – knowledge versus extraction. As we have mentioned, the notion of a commit-
ment scheme with the additional property that the committed value can be extracted from the
sender is not new. However, all previous constructions worked by first committing to a value, and
then proving knowledge of this committed value. In contrast, Protocol 3.3 works in a completely
different way: it does not consist of two distinct “commit” and “knowledge/extract” phases; rather
the commitment and extraction are intertwined. Interestingly, this results in a subtle, yet important
difference.

In order to exemplify this, consider the following sender A∗. Sender A∗ obtains a one-way
permutation and erases the corresponding trapdoor. Then, in Step 3 of Protocol 3.3, A∗ sends a
random bit b ∈ {0, 1} to B. Otherwise, A∗ follows the instructions for A (and successfully concludes
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the commit stage). The important observation here is that since r1 ⊕ r2 is uniformly distributed,
A∗ cannot guess the value of the bit that it itself committed to with probability non-negligibly
greater than 1/2. This is very strange, especially considering the fact that extraction is supposed
to imply “knowledge”.

Such a phenomenon cannot occur in an extractable commitment scheme that uses separate
commit and extract phases. This is because the committed value is determined before the extraction
begins. Therefore, the sender can apply the extractor to itself and thereby obtain the committed
value. Thus, it makes sense to say that the sender “knows” the committed value. However, in our
protocol, the committed value is only determined at the conclusion of the protocol. Furthermore,
the value that is committed to may depend also on the random coins of the receiver B (as is indeed
the case for the above-described sender A∗). Therefore, it is not possible for the sender to later
“apply the extractor to itself in order to obtain the committed value”.

Thus, on one hand, it seems that the intuition that the sender “knows” the committed value
cannot be justified here. On the other hand, it seems that for applications that use such schemes,
it suffices to extract the actual committed value, irrespective of whether or not the value is prede-
termined.

Open problem. Our construction of a commit-with-extract scheme requires trapdoor permuta-
tions (for finding the preimage to r1 ⊕ r2), and collision-resistant hash functions (for the constant-
round zero-knowledge argument with strict polynomial-time simulation [3, 4]). In contrast, when
the commitment extractor may run in expected polynomial-time or when a non-constant number of
rounds may be tolerated, such a scheme can be constructed based on one-way functions only. This
raises an interesting question as to whether a constant-round commit-with-extract scheme can be
constructed from one-way functions only.

4 A Zero-Knowledge Argument of Knowledge

Given a constant-round commit-with-extract commitment scheme, it is not hard to construct a
constant-round zero-knowledge argument of knowledge with strict polynomial-time extraction,
thereby proving Theorem 1. The basic idea is that the prover commits to a witness using the
commit-with-extract scheme, and then proves that it has committed to a valid witness using a
zero-knowledge proof of membership. Intuitively, soundness follows from the soundness of the zero-
knowledge proof of membership and from the fact that the commit-with-extract scheme is perfectly
binding. Zero-knowledge follows from the hiding property of the commit-with-extract scheme and
from the zero-knowledge property of the proof of membership. Lastly, a knowledge extractor is
immediately obtained from the extractor of the commit-with-extract scheme. Details follow.

Let R be an NP-relation. Without loss of generality, we assume that all witnesses for R are of
the same length. We construct a zero knowledge argument of knowledge for R as follows:

Protocol 4.1 (zero-knowledge argument of knowledge for R):
• Common Input: x

• Auxiliary input to prover: w such that (x,w) ∈ R.

• Phase 1: P and V run a commit-with-extract protocol (with public decommitment) in which P
commits to the witness w.
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• Phase 2: P proves to V , using a constant-round zero-knowledge proof (or argument) of mem-
bership (with a strict polynomial-time simulator) that it has committed to a valid witness w in
the previous step.

Formally, let trans be the transcript of the commit-with-extract execution of Phase 1, and let
d be the decommitment message that P would send to V in the decommit phase of the commit-
with-extract scheme. Then, P proves the NP-statement that there exists a value d such that
(trans, d) defines a value w, such that (x,w) ∈ R.14

In Phase 2, we use a zero-knowledge argument system with a strict polynomial-time simulator
so that the resulting protocol will be a zero-knowledge argument of knowledge with both a strict
polynomial-time extractor and a strict polynomial-time simulator. If the system used in Phase 2 has
an expected polynomial-time simulator, then the resulting protocol will have a strict polynomial-
time knowledge-extractor but an expected polynomial-time simulator.

Theorem 1 is obtained by combining the following proposition with Theorem 3.2 (i.e., the existence
of commit-with-extract schemes).

Proposition 4.2 Assume that the commitment scheme of Phase 1 is a constant-round commit-
with-extract string commitment scheme. Then, Protocol 4.1 is a constant-round zero-knowledge
argument of knowledge for R, as defined in Definitions 2.1 and 2.2 (i.e., it has a strict polynomial-
time simulator and a strict polynomial-time knowledge-extractor). Furthermore, there exists a
witness-extended emulator for Protocol 4.1, as defined in Definition 2.3.

Proof: In order to prove that Protocol 4.1 is a zero-knowledge argument of knowledge, we prove
three properties: completeness, knowledge soundness (which implies computational soundness),
and zero knowledge. The proof of completeness is immediate. We proceed to prove zero knowledge
and knowledge soundness.

Zero-knowledge. The simulator S that we build to demonstrate the zero knowledge property
works as follows. In Phase 1 of the protocol, S follows the honest sender strategy of the commit-
with-extract scheme, but instead of committing to a real witness w (which it does not have),
it commits to garbage (e.g., to all zeros). Next, in Phase 2, simulator S cannot prove that it
committed to a correct witness (because it indeed did not). Rather, S runs the simulator for
the zero-knowledge proof of Phase 2. The hiding property of the commit-with-extract scheme
implies that the commitment to garbage is indistinguishable from a commitment to a real witness.
In addition, the zero-knowledge property of the proof of membership implies that the simulation
is indistinguishable from a real proof of membership. Combining these together (and using a
standard hybrid argument), we obtain that the overall simulation by S is indistinguishable from a
real execution of Protocol 4.1. Formally, let V ∗ be a verifier algorithm for Protocol 4.1. Then the
simulator S works as follows:

Algorithm 4.3 (simulator S):
• Input: x ∈ L, z ∈ {0, 1}∗

1. S plays the honest sender for the commit-with-extract scheme with V ∗(x, z) as the receiver,
and commits to 0p(|x|) (where p(n) is the length of all witnesses for statements of length n).

14Here we use the assumption that the commit-with-extract scheme satisfies public decommitment. Otherwise, the
statement that P needs to prove is not guaranteed to be in NP.
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2. Let trans be the series of messages sent to V ∗ in the previous step, and denote by V ∗(x, z, trans)
the residual machine who verifies the proof in Phase 2.15 Then, S runs the simulator for the
zero-knowledge proof of Phase 2, with V ∗(x, z, trans) as the verifier.

3. Output whatever V ∗ outputs (without loss of generality, we assume that V ∗ always outputs
its view).

We need to prove that:

{S(x, z)}x∈L,z∈{0,1}∗
c≡ {viewV ∗(P (x, y), V ∗(x, z))}x∈L,y∈RL(x),z∈{0,1}∗

where P is the honest prover algorithm. This is proven using a standard hybrid argument. We
define an intermediate distribution Hx,y,z in the following way: Hx,y,z is produced by an algorithm
S′ that follows the honest prover’s strategy in the first phase, and the simulator’s strategy in the
second phase (in order to enable it to run the honest prover’s strategy in the first phase, it is
explicitly given a valid witness y). That is, on input (x, y, z) where (x, y) ∈ R, algorithm S′ runs
the commit-with-extract algorithm and commits to the value y as the honest prover does (instead
of to 0p(|x|) as the simulator S would). However, in Phase 2, algorithm S′ runs the zero-knowledge
simulator on V ∗(x, z, trans) exactly as S does (instead of really proving the statement as the honest
prover would).

The fact that {S(x, z)} c≡ {Hx,y,z} follows directly from the hiding (secrecy) property of the
commit-with-extract scheme. The fact that {Hx,y,z} c≡ {viewV ∗(P (x, y), V ∗(x, z))} follows directly
from the (auxiliary-input) zero-knowledge property of the proof of membership used in Phase 2.
These two facts together imply that {S(x, z)} c≡ {viewV ∗(P (x, y), V ∗(x, z))}, as required.

We note that the simulator S inherits the properties of the underlying simulator for the proof
of Phase 2. Thus, if the underlying simulator is strict polynomial-time and non-black-box, then
so too is S. On the other hand, if the underlying simulator is black-box or runs in expected
polynomial-time, then the same is true for S.

Knowledge soundness. Let P ∗ be a (possibly cheating) prover that convinces the honest verifier
that x ∈ L with probability ε. The extractor for the zero-knowledge argument simply uses the
extractor CK of the commit-with-extract scheme in order to obtain P ∗’s view of the first phase,
along with a string w that is the unique value that is committed to in this phase. Intuitively, w
must be a valid witness with probability at least ε− µ(|x|), for some negligible function µ(·). This
holds because in Phase 2 of the protocol, P ∗ proves the validity of the committed witness. It then
follows from the soundness of the proof of membership that if w is not a valid witness, the verifier
rejects (except with negligible probability). In the formal proof of this, we also use the fact that
P ∗ “behaves” in a similar way in its interaction with CK and in a real interaction with the honest
verifier. (If this was not the case, then P ∗ may always convince V , but never commit to a valid
witness with CK. The extractor CK would then never extract a valid witness from P ∗.) We note
that this fact regarding the similarity of P ∗’s behavior with CK and V follows from the fact that
CK also outputs a view that is computationally indistinguishable to P ∗’s view in a real interaction
with V . We now formally describe the knowledge extractor algorithm K:

15The residual machine V ∗(x, z, trans) is formally defined as the machine who upon receiving a sequence of
messages (α1, . . . , αi) replies with the message that V ∗(x, z) would send upon receiving the sequence of messages
(trans, α1, . . . , αi).
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Algorithm 4.4 (knowledge extractor K):
• Input: (desc|x|(P ∗), x, y, r)

1. Let CK be the extractor for the commit-with-extract scheme. Then, invoke CK on input
(desc|x|(P ∗), x, y, r), and obtain the view of P ∗ in Phase 1, denoted v, along with a string w
that is the committed value corresponding to that view (i.e., w = commit-value(v)).

2. Output w.

Let p(x, y, r) be the probability that P ∗(x, y, r) convinces the honest verifier on input x in a real
execution. We claim that the probability that the witness output by K is valid is at least p(x, y, r)−
µ(|x|), for some negligible function µ(·). In order to show this, consider a modified extractor K̃
that has the same Step 1 as K, but in Step 2 it first verifies the proof of membership provided
by P ∗ and then outputs w if and only if it accepts this proof. Formally, in Step 1, K̃ runs the
extractor CK and obtains a pair (v, w), as described for K. Then, in Step 2, K̃ verifies the proof
of membership from the residual prover P ∗ that is defined by the view v (i.e., the residual prover
is the original P ∗, but with its current view set to v). Extractor K̃ then outputs w if and only if
it accepts this proof.

Now, since K̃ only contains additional checks, it follows that K outputs w whenever K̃ outputs
w. Therefore, it suffices to show that K̃ outputs a correct witness w with probability at least
p(x, y, r) − µ(|x|). In order to demonstrate that K̃ succeeds with this probability, first recall that
by the definition of a commit-with-extract scheme, it holds that

{
viewCK

P ∗ (x, y, r)
} c≡ {

viewP ∗(P ∗(x, y, r), V )
}

where viewCK
P ∗ (x, y, r) is the random-variable describing the view of P ∗ as output by CK, and

viewP ∗(P ∗(x, y, r), V ) is the random-variable describing the view of P ∗ in a real execution with V .
Therefore, the probability that K̃ accepts the proof of membership from the residual P ∗ is negligibly
close to the probability that the honest verifier V accepts this proof of membership (otherwise, the
proof of membership constitutes a distinguisher between the view output by CK and P ∗’s real
view). Thus, K̃ accepts the proof of membership with probability at least p(x, y, r) − µ(|x|). By
the soundness of this proof of membership, it must be that w is a valid witness with probability
at least p(x, y, r) − µ′(|x|), for some negligible function µ′ (otherwise, the residual prover is able
to prove a false statement with non-negligible probability). This completes the proof of knowledge
soundness.

Witness-extended emulation. We conclude by providing a proof of the existence of a witness-
extended emulator E for Protocol 4.1. Recall that, upon input (desc|x|(P ∗), x, y, r), E must output
a view that is indistinguishable from P ∗(x, y, r)’s view in a real execution. Furthermore, if this view
contains a transcript in which the honest verifier V accepts the proof, then E must also output a
valid witness (except with negligible probability). This is easily accomplished as follows:

Emulator E extracts a witness in the same way as the extractor K described above. However,
E must also output P ∗’s complete view of an execution. In order to do this, after CK concludes, E
proceeds to verify the proof of membership of Phase 2 (like the aforementioned K̃). This suffices to
obtain P ∗’s entire view: the commit-with-extract extractor CK provides P ∗’s view from Phase 1,
and the remainder of P ∗’s view is derived from the verification of the proof of membership of
Phase 2.
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More formally, the witness-extended emulator E invokes the commit-with-extract extractor
CK with input (desc|x|(P ∗), x, y, r) and obtains the output. This output contains a view v that is
indistinguishable from P ∗’s view in a real execution of commit-with-extract. Furthermore, if this
view defines a committed value, then CK also outputs this value (with overwhelming probability).
Next, E verifies the proof of membership from the residual prover P ∗ that is defined by the view
v (as described above for K̃). In this proof, E obtains the residual P ∗’s view of Phase 2. Then,
E concatenates the view output by CK in Phase 1 with P ∗’s view in Phase 2, and outputs them
both as P ∗’s view of the entire execution. Furthermore, if E accepted the proof of Phase 2, then it
outputs the witness obtained from CK in Phase 1.

It is easy to see that the view output by E is indistinguishable from P ∗’s view in a real execution
(P ∗’s view from Phase 1 is indistinguishable from its view in a real execution and the view from
Phase 2 is identical). Furthermore, if E accepts the proof of Phase 2, then with overwhelming
probability the transcript of Phase 1 defines a valid witness. As we have mentioned above, by the
properties of CK, it follows that with overwhelming probability it also outputs this witness. This
concludes the proof.

5 Black-Box Lower Bounds

In this section, we show that there does not exist a constant-round zero-knowledge argument
(resp., argument of knowledge), with a black-box simulator (resp., extractor) that runs in strict
polynomial-time. That is, we prove Theorems 2 and 3.

Before presenting the proofs, we provide intuition as to why it is not possible to obtain a strict
polynomial-time black-box extractor for constant-round zero-knowledge protocols. First, consider
a very simple (cheating) prover P ∗ who at every step either aborts or sends the honest prover
message. Furthermore, the probability that it does not abort at any given step is ε = ε(n). Then,
black-box extractors for constant-round zero-knowledge protocols typically extract a witness using
the following strategy: Invoke an execution with P ∗ and if P ∗ aborts, then also abort. However,
if P ∗ does not abort (and thus sends a prover message in some crucial round), then continually
rewind P ∗ until another prover message is obtained for this round. It is essential that the extractor
obtains at least two different prover messages, because this is what gives it additional power over an
honest verifier. (Additional power is essential because an honest verifier should not learn anything
from the prover, whereas the extractor must obtain the actual witness.) Now, for P ∗ described
above, the extractor enters the “rewinding stage” with probability only ε. However, once it enters
this stage, the expected number of rewinding attempts by the extractor until a second non-abort
reply is obtained equals 1/ε (because P ∗’s non-abort probability at every step is only ε). Combining
this together, we have that the overall expected amount of work is bounded. However, we cannot
provide any strict polynomial upper-bound on the running time of the simulator, because for every
given polynomial, it is possible to choose ε so that 1/ε is greater than this polynomial.

This idea underlies our lower bounds. Specifically, we show that by carefully choosing the
abort probabilities, it is possible to achieve the following effect: A strict polynomial-time black-
box extractor will not have “time” to obtain two non-abort responses from the prover P ∗ in any
given round. (By “not having time”, we mean that with noticeable probability, the extractor
will have to wait longer than the bound on its running-time in order to see a second non-abort
response.) Essentially, this means that the extractor cannot “rewind” the prover. However, as we
have mentioned above, an extractor must have additional power over a real verifier, and the only
additional power awarded a black-box extractor is essentially the ability to rewind the prover. We
therefore conclude that strict polynomial-time black-box extractors cannot exist for constant-round
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zero-knowledge protocols. The same argument also holds for strict polynomial-time simulation of
constant-round zero-knowledge protocols. We now proceed to the proofs.

Theorem 5.1 (Theorem 2 – restated) There do not exist constant-round zero-knowledge proofs
or arguments with strict polynomial-time black-box simulators for any language L 6∈ BPP.

Theorem 5.2 (Theorem 3 – restated) There do not exist constant-round zero-knowledge proofs
or arguments of knowledge with strict polynomial-time black-box knowledge extractors for any re-
lation R such that the language LR 6∈ BPP.

Our proofs of the above lower bounds closely follow the methodology and techniques used in previous
black-box lower bounds [25, 13].

5.1 Outline of the Proofs

As we have mentioned above, the underlying idea behind the proofs of both Theorem 5.2 and
Theorem 5.1 is the same. We will explain the intuition behind this idea in the context of knowledge
extraction (i.e., in the context of the proof of Theorem 5.2) and then describe how this intuition
generalizes also to the context of simulation (for the proof of Theorem 5.1).

Theorem 5.2 is proven by showing that if a language L has a constant-round zero-knowledge
protocol (P, V ) with a black-box strict polynomial-time knowledge extractor, then there exists a
cheating verifier strategy V ∗, such that for every x ∈ L, if V ∗ interacts with the honest prover P ,
then with noticeable probability, V ∗ will obtain a witness w for x from the interaction with P . Of
course, the ability to do this contradicts the zero-knowledge property of the protocol, unless the
verifier V ∗ could anyway obtain a witness by itself. Since V ∗ runs in probabilistic polynomial-time,
it must therefore be the case that L ∈ BPP (because then, indeed, V ∗ could obtain a witness by
itself).

We construct this verifier V ∗ from the black-box knowledge extractor of the system (P, V ).
Loosely speaking, this is done in the following way:

1. We let x ∈ L and consider a cheating prover strategy P ∗ that is of the following form: P ∗

behaves exactly as the honest prover P behaves on input x, except that in each round of
the proof, it may choose to abort the execution with some probability. We will choose these
probabilities so that P ∗ will still have a noticeable probability to convince the honest verifier
to accept x.

The actual strategy that we use for P ∗ is one that causes it to abort with quite high proba-
bilities (but still noticeably bounded away from 1). In particular, P ∗ will abort in each round
with probability greater than 1/2 (and even greater than 1− 1/n). Note however that since
the number of rounds in the protocol is constant, this does not preclude P ∗ from causing the
honest verifier to accept with noticeable probability.

2. Consider an execution of the knowledge extractor when it is given black-box access to P ∗.
Every query that the extractor makes to the black-box is a list of messages (α1, . . . , αi), and
the reply received by the extractor is what P ∗ would send in a real execution when the first i
verifier messages were α1, . . . , αi. Thus, if P ∗ would abort on this series of messages in a real
execution, then the extractor receives back an abort reply, denoted ⊥. Note that at the end
of the execution the knowledge extractor should output a witness for x with some noticeable
probability.
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We show that it is possible to choose P ∗’s abort probabilities in such a way, that if we run
the knowledge extractor with black-box access to P ∗ then with noticeable probability, the
extractor will get at most c non-abort replies, where c is the number of verifier messages in
the protocol. Furthermore, these replies will correspond to i queries (where i ≤ c) of the form
(α1), (α1, α2), . . ., (α1, . . . , αi) where α1, . . . , αi are some strings. That is, all these queries are
prefixes of a single sequence (α1, . . . , αi). Notice that when this occurs, the extractor’s view
is like a real interaction with the honest prover P (in particular, it does not gain anything by
“rewinding” P ∗).

3. We then implement a verifier strategy V ∗ that sends these messages α1, . . . , αi when it in-
teracts with the prescribed prover P . Basically, the verifier works by internally running the
knowledge extractor. When the extractor makes a query, the verifier either answers it with ⊥
or forwards the query to the prover, and then returns the prover’s reply to the knowledge
extractor. We show that the verifier has a noticeable probability of perfectly simulating P ∗ to
the knowledge extractor. Therefore, with noticeable probability, the knowledge extractor (in
conjunction with the verifier) is able to extract a witness x during this interaction with the
prover P . We conclude that with noticeable probability, V ∗ obtains a witness w for x from
the interaction with P , and so the proof system cannot be zero-knowledge (unless L ∈ BPP).

As mentioned above, in the simulation case (i.e., when proving Theorem 5.1) we use a similar
technique. Basically, we prove Theorem 5.1 by showing that if L has a constant-round zero-
knowledge proof or argument system (P, V ) with a black-box strict polynomial-time simulator, then
there exists a cheating prover strategy P ∗ that does not have any auxiliary input (like a witness),
and yet for every x ∈ L causes the honest verifier V to accept x with noticeable probability.
We stress that, unlike the honest prover, this cheating strategy P ∗ does not get a witness for x
as auxiliary input. It is not hard to show that the existence of such a strategy P ∗ implies that
L ∈ BPP.

In summary, both impossibility results are due to the following two facts:

1. Intuitively, in order to successfully extract or simulate, the extractor (resp., simulator) must
see at least two different continuations of the same transcript. That is, it must get meaningful
replies to queries of the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i) where α′i 6= αi. Other-

wise the extractor (resp., simulator) does not have any advantage over the interactive verifier
(resp., prover). (Informally speaking, “rewinding” is essential for black-box simulation and
extraction.)

2. For any strict polynomial-time extractor or simulator, there exist provers (resp., verifiers)
for which the time required to obtain non-abort responses to two queries (α1, . . . , αi−1, αi)
and (α1, . . . , αi−1, α

′
i) where α′i 6= αi is greater than the running-time of the extractor (resp.,

simulator).

5.2 Proof of Theorems 5.2 and 5.1

We now proceed to the actual proofs.

Notation and Conventions: We identify an interactive program A with its next message func-
tion (or process, if it is randomized). That is, we consider A as a non-interactive algorithm that
gets as input the history of the interaction (i.e., the sequence of messages that A received until this
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point), and outputs the next message that A would send in a protocol execution in which it sees
this history.

We say that an algorithm B has oracle access to an interactive algorithm A, if B has oracle
access to A’s next message function (after fixing its random tape to some value). That is, B can
query its oracle with any sequence of messages of the form (α1, . . . , αi) and it will receive back the
next message that A would send in an interaction in which it received this sequence of messages.

We say that an interactive program aborts an execution if it sends the message ⊥. We assume
that once a party sends the message ⊥, then (since it aborted the execution) all its future messages
are also ⊥. In the notation of the next message function, this means that if A(α1, . . . , αi) = ⊥ for
some strings α1, . . . , αi, then A(α1, . . . , αi, αi+1, . . . , αj) = ⊥ for every choice of αi+1, . . . , αj .

The following two lemmas (whose proofs are very similar) lie at the heart of the proofs of Theo-
rem 5.2 and Theorem 5.1 (respectively).

Lemma 5.3 Let (P, V ) be a constant-round system of proofs or arguments of knowledge for a
relation R with a black-box strict polynomial-time knowledge extractor K. Then, there exists a
probabilistic polynomial-time cheating verifier algorithm V ∗ and a polynomial p(·) such that for
every x ∈ LR, the probability that V ∗ outputs a witness for x after interacting with the honest
prover P on input x is at least 1/p(|x|).

We later show that if the proof system (P, V ) is zero knowledge, then the existence of such a
cheating verifier V ∗ implies that L ∈ BPP. Likewise, we prove:

Lemma 5.4 Let (P, V ) be a constant-round zero-knowledge proof or argument system for a lan-
guage L, with a black-box strict polynomial-time simulator S. Then, there exists a probabilistic
polynomial-time cheating prover algorithm P ∗ and a polynomial p(·) such that for every x ∈ L, the
honest verifier V accepts after interacting with P ∗(x) with probability at least 1/p(|x|).

We stress that P ∗’s only input is x and, in particular, it does not receive a witness for x as auxiliary
input. Later we will show that the existence of such a prover P ∗ implies that L ∈ BPP (as shown
in previous black-box lower bounds for zero-knowledge; e.g., see [25, 13]).

5.2.1 Proof of Lemma 5.3

Let R be a relation and let (P, V ) be a system of proofs or arguments of knowledge for R, where the
number of messages sent by the verifier equals some constant c. Furthermore, let K be a black-box
knowledge extractor for (P, V ) that when extracting a witness for x runs for at most t(n) steps,
where n = |x| and t(·) is some polynomial. Thus, the number of oracle queries made by K is
strictly upper-bound by a polynomial t(n).16 We assume without loss of generality that all verifier
messages in the proof system are of length m = m(n), where m(·) is some polynomial. We also
assume without loss of generality that the first message in the system is from the verifier to the
prover.

16Note that the running time of the extractor is independent of the running time of the prover. That is, the
extractor is restricted to t(n)-time (and thus oracle queries) even if the cheating prover runs in time that is larger
than t(n). This may seems like an “unfair” restriction, even for a black-box extractor. However, we can extend our
lower bound to hold even if the running time of the extractor is allowed to be a fixed polynomial in the running time
of the cheating prover. This extension holds under the assumption that one-way functions exist and applies to any
proof system that has an efficient prover algorithm. This can be shown by considering a prover strategy P ∗ that uses
a pseudorandom function instead of a t-wise independent hash function, see below.
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Conventions regarding the extractor K: Recall that a black-box extractor has oracle access
to the prover from whom it extracts. Thus it can query this oracle on sequences of messages of
the form (α1, . . . , αi). For the sake of simplicity, we can assume without loss of generality, that the
extractor K always behaves in the following way:

1. It never asks the same query twice.

2. If K queries the oracle with q, then prior to this query, it has queried the oracle with all the
proper prefixes of q. (If q = (α1, . . . , αi) is a sequence of messages, then the prefixes of q are
all the sequences of the form (α1, . . . , αj) for j ≤ i.)

3. For some polynomial t′ = t′(n), the extractor makes exactly t′(n) queries to its black-box in
every execution.

We can assume all of the above because any extractor can be easily modified such that it behaves
in the above way, without affecting its output distribution. Furthermore, if the upper bound on
the number of queries made by the original extractor is t(n), then the number of queries t′ made
by the modified extractor is exactly c · t(n) (the multiplicative factor of c is used for asking all of
the prefixes of a query before the query itself). From now on, we will denote the number of queries
made by K by t = t(n), and not by t′(n).

Our proof will follow the outline mentioned at the beginning of Section 5. That is, we will
construct a prover strategy P ∗ that aborts with certain probability p∗, but when it does not abort,
uses the same strategy as the honest prover. On the one hand, the knowledge extractor K will have
to output a witness with probability close to p∗ when given access to P ∗. On the other hand, we
will show a cheating verifier V ∗ that can successfully simulate the behavior of KP ∗ with noticeable
probability, even though it only gets access to one interaction with the honest prover P (and does
not get black-box access to P ∗).

The prover strategy P ∗. We are now ready to describe the prover strategy P ∗. Let ε = ε(n) be
some value that will be determined later (it will be of the form 1/q(n) for some polynomial q(·)).
Let H = {Hn}n∈N be a family of t(n)-wise independent hash functions,17 such that every h ∈ Hn

is a function from {0, 1}≤c·m to {0, 1}n, where {0, 1}≤c·m denotes the set of all strings of length at
most c ·m. (Recall that t = t(n) denotes the number of queries the knowledge extractor K makes
to its black-box.)

Our prover strategy P ∗ behaves as follows: in the ith round of the protocol, with probability
ε2

c−i
it behaves exactly as the honest prover, and otherwise (with probability 1− ε2

c−i
) it aborts.

The random coins the prover P ∗ uses to decide whether to abort or continue will be chosen by
applying a fixed hash function h ∈ Hn (that was initially chosen at random) to the current message
history. Before proceeding to a more formal description of P ∗, we explain why we choose its abort
probabilities in this way. As we have described above, the main idea is to prevent an extractor from
obtaining two non-abort responses from P ∗ for the same round. More exactly, we wish to fix the
abort probabilities so that the probability that an extractor sees two non-abort responses for the
same round is significantly less than the probability that P ∗ provides a full proof without aborting
at all, in which case it convinces V . (Since the extractor must obtain a witness with the probability
that P ∗ convinces V , this means that there is a significant probability that the extractor will not

17Recall that a hash family is t-wise independent if for every t distinct values x1, . . . , xt the random variables
h(x1), . . . , h(xt) (where h is chosen at random from Hn) are independently and uniformly distributed in the range of
h. We will never make more than t queries to the function, and so one can think of it as a truly random function.
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see two non-abort messages for any given round, but must still succeed in obtaining a witness.)
Now, by choosing the abort probabilities so that they degrade exponentially, we achieve our aim.
Specifically, for any i, the product ε2

c−1 · . . . · ε2c−i+1 · (ε2c−i
)2 (which is the probability that two non-

abort responses are obtained for the ith round) is significantly less than the product ε2
c−1 · . . . · ε20

(which is the probability that P ∗ never aborts).
We now describe the strategy for P ∗’s operation (note that we define P ∗ in the form of its

next-message function):

Algorithm 5.5 (Prover P ∗:)
• Common input: x – the statement to be proven

• Auxiliary input: y ∈ R(x) – a witness for x

• Random tape: (h, r) – h defines a function in Hn, and r is the length of the random tape required
by the honest prover strategy

• Input: series of verifier messages q = (α1, . . . , αi)

1. Step 1 – decide whether or not to abort:

(a) Compute h(q′) for every prefix q′ of q. That is, for every j (1 ≤ j ≤ i), compute
h(α1, . . . , αj).

(b) Abort (outputting a special symbol ⊥), unless for every j, the first 2c−j log(1/ε) bits of
h(α1, . . . , αj) are equal to 0.

(Notice that since the definition of P ∗ is by its next message function, we have to ensure that
it replies to q only if it would not have aborted on messages sent prior to q in an interactive
setting. This is carried out by checking that it would not have aborted on all prefixes of q.)

2. Step 2 – if the decision is to not abort, then follow the honest prover strategy:

(a) Run the honest prover P (with initial input (x, y) and random tape r) on input messages
(α1, . . . , αi), and obtain its response β.

(b) Return β.

Note that if the honest prover P was computationally efficient then so is the cheating prover P ∗.
(This is important because for the case of arguments, all provers must be efficient.) Our first step
is to show that P ∗ convinces V with noticeable probability. Suppose that the system (P, V ) has
completeness bound p (i.e., the honest prover causes the honest verifier to accept with probability
at least p; recall that p is assumed to be noticeable). Then, define p∗ = ε2

c−1p. We claim that
the probability (over P ∗’s random tape) that P ∗ convinces the honest verifier to accept is at least
p∗. Indeed, conditioned on P ∗ not aborting, its behavior is identical to the behavior of the honest
prover P , in which case it convinces V with probability p. Now, since P ∗’s probability of not
aborting is equal to ε2

c−1 · . . . · ε20
= ε2

c−1 the claim follows. As we have mentioned above, we will
choose ε so that ε > 1/q(n) for some polynomial q(·). Then, since c is a constant, it follows that
the probability p∗ that P ∗ convinces the honest V is noticeable, as desired.

We have shown that P ∗ convinces V with probability at least p∗ = ε2
c−1p. By the validity

(or knowledge soundness) condition on the system (P, V ), this means that when the knowledge
extractor K is given oracle access to P ∗, then it outputs a witness for the statement x with
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probability at least p∗ − µ(|x|) (where the probability is over the random tapes of both P ∗ and
K).18 In particular, K outputs a witness with probability at least p∗/2.

We now claim that if ε is chosen appropriately, then with probability at least p∗/4, the extractor
K will receive at most c non-⊥ answers from P ∗, and all of these answers are prefixes of a single
sequence (α1, . . . , αi), for some i ≤ c. Informally speaking, this means that with probability at
least p∗/4, the extractor K is unable to obtain any meaningful information by rewinding P ∗ (all
attempts at rewinding P ∗ result in abort responses).

Claim 5.6 Let p̃ be the probability (over all choices of P ∗’s random tape) that K obtains non-
⊥ replies for two queries of the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i), where αi 6= α′i.

Then, there is a choice of ε such that for every fixed random tape for K, it holds that p̃ < p∗/4.
Furthermore, ε = 1

q(n) for some polynomial q(·).

Proof: Let ε(n) = p
4·t2c

(recall that p is the completeness bound of the honest prover and that
t is number of oracle queries made by K). First, note that for this choice of ε, there exists a
polynomial q(·) such that ε = 1

q(n) . Next, for every i ≤ c and every j, k ∈ [t], we let pi
j,k denote the

probability that the jth query of K is of the form (α1, . . . , αi−1, αi), the kth query of K is of the
form (α1, . . . , αi−1, α

′
i), and K receives a non-⊥ response for both of these queries. (Recall that by

convention K never asks the same query twice, so this means that αi 6= α′i.) We now bound the
probability pi

j,k. Recall that P ∗ decides whether or not to abort by applying a t-wise independent
hash function to the query. By the t-wise independence of the function, P ∗’s abort decision is
independent for each query. Therefore, if K makes two queries of this form, it will obtain a reply
with probability that is ε2

c−1+...+2c−i+1 ·(ε2c−i
)2, which is the probability that P ∗ does not abort

in the first i − 1 rounds on history (α1, . . . , αi−1) multiplied by the probability that P ∗ does not
abort in the ith round both when given the message αi and when given the message α′i. Since
2c−1 + · · ·+ 2c−i+1 + 2 · 2c−i = 2c, we have

pi
j,k = ε2

c−1+···+2c−i+1+2·2c−i
= ε2

c

By applying the union bound over all i ∈ [c] and j, k ∈ [t], we have that p̃ ≤ t2c · ε2c
, where p̃ is

defined in the claim statement. Plugging in p∗ = ε2
c−1p we have that p̃ ≤ t2c · εp∗/p. Finally, since

ε = p
4·t2c

, we have that p̃ ≤ p∗/4 as required.

Summing up, we have shown the following. On the one hand, when the extractor K is given oracle
access to P ∗, it must obtain a witness with probability at least p∗/2 (where the probability is over
the random tapes of both P ∗’s and K). On the other hand, the probability that K views two
non-abort responses from P ∗ of the form discussed in Claim 5.6 is at most p∗/4. This means that
with probability p∗/2 − p∗/4 = p∗/4, the extractor K obtains a witness without obtaining non-⊥
replies for two queries of the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i), where αi 6= α′i.

We are now ready to construct the verifier V ∗. Loosely speaking, the verifier V ∗ will manage
to output a witness after interacting with the honest prover by internally running the knowledge
extractor K, and referring some of its queries to the real prover. The important point is that with

18Strictly speaking, the knowledge soundness property is defined for deterministic prover strategies. That is, denote
by P ∗h,r the prover strategy of P ∗ with its random tape set to (h, r), and denote by ph,r the probability (now over V ’s
random tape only) that P ∗h,r convinces V that x ∈ L. Then, the knowledge soundness property states that K must
extract a witness from P ∗h,r with probability at least p̃h,r = ph,r − µ(|x|). Now, as we have shown, the expectation of
ph,r taken over all of P ∗’s random tapes is p∗ (this is the probability over both P ∗ and V ’s random tapes that P ∗

convinces V that x ∈ L). Therefore, the expectation of p̃h,r (which is the probability over both P ∗ and K’s random
tapes that K extracts a witness for x) is at least p∗ − µ(|x|), as required.
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noticeable probability, K will work in exactly the same way as when it is given oracle access to P ∗.
The description of V ∗ is as follows:

Algorithm 5.7 (Verifier V ∗)
• Input: x (statement to be proven)

1. Choose a random h ∈ Hn

2. The verifier will store the history of messages that it has sent to the prover so far in the
execution. Initially, this list is empty.

3. Run the knowledge extractor K on input x.

4. When the extractor K makes a query (α1, . . . , αk) do the following:

(a) Follow the same procedure as P ∗ in order to decide whether or not to answer the query
with ⊥ (i.e., answer the query with ⊥ unless for every j ∈ [k] the first 2c−jlog(1/ε) bits
of h(α1, . . . , αj) are equal to 0).

(b) If the above decision was to not answer the query with ⊥, then check whether the history
of messages sent so far to the prover consists exactly of (α1, . . . , αk−1). If this is the
case then send αk to the prover and forward the prover’s response β to the knowledge
extractor K. If this is not the case, and so there was a previous query that was not
answered with ⊥ and is not a prefix of this query, then abort. (In this case we say that
the verifier failed.)

5. At the end of the execution, if the extractor outputted a witness for x then output this witness.

Intuitively, when V ∗ does not output fail, it perfectly emulates an execution of K with oracle access
to P ∗. Therefore, V ∗ outputs a valid witness whenever K would output a witness without obtaining
non-⊥ replies for two queries of the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i), where αi 6= α′i.

This means that V ∗ outputs a valid witness with probability at least p∗/4.
More formally, let good be the event that K outputs a witness without obtaining non-⊥ replies

for two queries of the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α
′
i), where αi 6= α′i. Then, as we

have shown, the probability that the good event occurs is at least p∗/4. Now, the probability space
over which we computed the probability that good occurs is (h, r, rK), where (h, r) is the random
tape of P ∗ and rK is the random tape of the extractor K. Recall that h was used by P ∗ for deciding
whether or not to abort and r was used by P ∗ for running the honest prover strategy. Now, observe
that the probability space over which we need to compute V ∗’s success in outputting a valid witness
is also (h, r, rK). The only difference is that here h and rK are randomly chosen by V ∗, and r is
the random-tape of the honest prover with which V ∗ interacts. Therefore the probability space is
the same and we have that the probability that V ∗ outputs a witness is also at least p∗/4, which is
noticeable. This completes the proof.

5.2.2 Concluding the Proof of Theorem 5.2

To prove Theorem 5.2 we need to show that if (P, V ) is a constant round zero-knowledge proof of
knowledge for some relation R with a strict polynomial-time knowledge extractor, then LR ∈ BPP.
Indeed, if (P, V ) is such a system then by Lemma 5.3, there exists a verifier V ∗ that for every x ∈ L,
outputs a witness for x with noticeable probability after interacting with the honest prover. Now,
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since (P, V ) is zero-knowledge, there exists a simulator S∗ for V ∗ whose output is computationally
indistinguishable from the output of V ∗. Thus, for every x ∈ LR, it holds that simulator S∗(x)
outputs a witness for x with noticeable probability. On the other hand, if x 6∈ LR then S∗ will
certainly not output a witness for x. Therefore, S∗ can be used to obtain a probabilistic polynomial-
time procedure for deciding membership in LR. In other words, LR ∈ BPP.

5.2.3 Proof of Lemma 5.4 and Theorem 5.1

The proof of Lemma 5.4 largely follows the proof of Lemma 5.3. Given a c-round zero knowledge
protocol (P, V ) with a black-box strict polynomial-time simulator S, one first constructs a verifier
V ∗ that behaves identically to the honest verifier V , except that it may choose to abort in any
round. This verifier V ∗ corresponds to the cheating prover constructed in Algorithm 5.5 within the
proof of Lemma 5.3, and uses the same procedure to decide whether or not to abort. Specifically,
the probability that it does not abort in the ith round of the protocol is ε2

c−i
, in which case it

follows the instructions of the honest verifier. Now, let p∗ = ε2
c−1 · p, where p is the completeness

bound of the zero-knowledge protocol. Then, as above, it follows that an interaction between the
honest prover and V ∗ yields an accepting transcript with probability exactly p∗. Therefore, any
simulator given oracle access to V ∗ must output an accepting transcript with probability at least
p∗−µ(n) > p∗/2. Next, an analogue to Claim 5.6 is presented. That is, we show that it is possible to
choose ε so that the probability that the (strict polynomial-time) simulator obtains non-⊥ replies
for two queries of the form (α1, . . . , αi−1, αi) and (α1, . . . , αi−1, α

′
i), where αi 6= α′i, is at most

p∗/4. Furthermore, ε is noticeable (implying that p∗ is also noticeable). Putting this together,
we have that when given black-box access to V ∗, the simulator S has a noticeable probability of
outputting an accepting transcript, even after viewing at most c non-⊥ responses from its oracle,
where all these responses are prefixes of the same sequence (α1, . . . , αi). Thus, S can be used to
convince the honest verifier with noticeable probability that x ∈ L. That is, in a similar way to the
proof of Lemma 5.3, we use this observation about the simulator S to construct a cheating prover
algorithm P ∗ (the construction of P ∗ corresponds to the cheating verifier algorithm described in
Algorithm 5.7). This prover P ∗ does not get a witness as auxiliary input, but still for every x ∈ L,
it manages to convince the honest verifier to accept with noticeable probability. We omit the full
details of the proof of Lemma 5.4.

To prove Theorem 5.1, we need to show that if (P, V ) is a constant-round zero-knowledge
protocol for L with a black-box strict polynomial-time simulator, then L ∈ BPP. Now, let (P, V )
be such a protocol. By Lemma 5.4, there exists a prover algorithm P ∗ such that on every input
x ∈ L, the prover P ∗ with input x only (and no witness) manages to convince the honest verifier
to accept x with noticeable probability. By the soundness of the system, we know that if x 6∈ L
then the honest verifier will accept x with at most negligible probability. Therefore, one can test
whether or not x ∈ L in probabilistic polynomial-time, by emulating an interaction between P ∗

and V on input x, and outputting 1 if and only if the verifier accepts in this execution. Thus,
L ∈ BPP.
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