
Intrusion-Resilient Signatures, or

Towards Obsoletion of Certificate Revocation

Gene Itkis Leonid Reyzin
Boston University
Computer Science

111 Cummington St.
Boston, MA 02215, USA
{itkis,reyzin}@bu.edu

April 30, 2002

Abstract

We propose a new notion of intrusion-resilient signature schemes, which generalizes and im-
proves upon both forward-secure [And97, BM99] and key-insulated [DKXY02] signature schemes.

Specifically, similarly to the prior notions, time is divided into predefined time periods (e.g.,
days) so that a signature includes the time period number, changing which invalidates the
signature. Also, similarly to key-insulated schemes, the user has two modules, signer and home
base: the former generates signatures on its own, and the latter is needed only to help update
the signer’s key from one period to the next.

The main strength of intrusion-resilient schemes, as opposed to prior notions, is that they
remain secure even after arbitrarily many compromises of both modules, as long as the com-
promises are not simultaneous. Moreover, even if the intruder does compromise both modules
simultaneously, it will still be unable to generate any signatures for the previous time periods.

We provide an efficient intrusion-resilient signature scheme, provably secure in the random
oracle model based on the strong RSA assumption.

We also show how such schemes can eliminate the need for certificate revocation in the case
of on-line authentication.

1 Introduction

Key exposures appear to be unavoidable. Thus, limiting their impact is extremely important and
is the focus of active research. While this issue applies to a wide range of security protocols, here
we focus on digital signatures.

1.1 Previous Work

Forward Security. Forward-secure signature schemes [And97, BM99] preserve the security of
past signatures even after the secret signing key has been exposed: time is divided into predefined
time periods, with the signer updating its secret at the end of each time period; the adversary is
unable to forge signatures for past periods even if it learns the key for the current one. In this
model, nothing can be done about the future periods: once the adversary exposes the current
secret, it has the same information as the signer.

1



Threshold and Proactive Security. Alternative approach explores the multi-party compu-
tation paradigm [Yao82, GMW87]: in threshold schemes [DF89], the signing key is somehow shared
among a number of signers, and signature generation requires a distributed computation involving
some subset of them. The adversary, however, cannot generate valid signatures as long as the
number of compromised signers is less than some predetermined security parameter (smaller than
the number of signers needed to generate a valid signature). Proactive schemes [OY91, HJJ+97]
improve upon this model by allowing multiple corruptions of all signers, limiting only the number
of simultaneous corruptions. Proactive forward-secure signatures considered in [AMN01] combine
this with the advantages of forward-security.

Key-Insulated Security. The recently proposed model of Dodis, Katz, Xu and Yung [DKXY02]
addresses the limitation of forward security: the adversary cannot generate signatures for the future
(as well as past) time periods even after learning the current signing key1. This is accomplished
via the use of two modules: a (possibly mobile) signer, and a (generally stationary) home base2.
The signer has the secret signing key, and can generate signatures on its own. At the end of each
time period, the signing key expires and the signer needs to update its keys by communicating with
the home base and performing some local computations (the communication with the base is, in
fact, limited to a single message from the base to the signer). Thus, although the signer’s keys are
vulnerable (because they are frequently accessed, and, moreover, because the signer may be mobile),
key exposure is less valuable to the adversary, as it reveals only short-term keys. Perhaps the most
compelling application of such a model is the example of a frequently traveling user, whose laptop
(or handheld) is the signer, and office computer is the home base. (Alternative approaches with
such applications in mind were proposed by [Mic96, Riv98, GPR98, LR00].) This model enables
security that is not possible in ordinary or even forward-secure schemes: even if the signing key is
compromised (for up to k time periods, for predetermined security parameter k), the adversary will
be unable to forge signatures for any other time periods. (Notice that in forward-secure schemes
model, signatures for any time period following a compromise are necessarily forgeable.)

1.2 Our Results: Intrusion-Resilient Security

1.2.1 Model

We define intrusion-resilient signature schemes to combine the benefits of the above three ap-
proaches. Namely, while maintaining the efficiency of non-interactive signature generation (not
provided by threshold and proactive schemes), intrusion-resilient schemes preserve security of past
and future time periods when both signer and base are compromised, though not simultaneously
(not preserved by key-insulated and forward-secure schemes), and security of past time periods in
the case of simultaneous compromise (not preserved by key-insulated3 and most proactive schemes).

These points deserve some elaboration. To address potential compromise of the base key,
[DKXY02] introduce a stronger version of key-insulated security, which requires that the base
cannot generate signatures on its own. However, no security is guaranteed in [DKXY02] if the
adversary manages to compromise both the base and the signer, even during different time periods.
(In fact, the encryption scheme becomes completely insecure in such a case.) This is a serious
limitation. If the user’s key is compromised even just once, then the prudent thing to do would

1[DKXY02] primarily addresses encryption schemes, but includes definitions for signature schemes as well.
2The terms user and secure device are used in [DKXY02]; we find “signer” and “home base” to be more descriptive.
3Because the focus of [DKXY02] is on encryption schemes, and no non-trivial forward-secure encryption schemes

are known today, it is, in a sense, by necessity that key-insulated notion of [DKXY02] does not provide forward
security when all the secrets are compromised.

2



be to revoke the entire public key and erase the secrets of the home base. Otherwise, a single
compromise of the home base would expose not only the future, but also all the past, messages.

In contrast, the salient feature of our new model is the guarantee that a compromise of the
home base is entirely inconsequential as long as the signer’s secret is not exposed at the same time.
It thus has the benefits of proactive security. Moreover, our model retains the benefits of forward
security even when all the secrets are compromised simultaneously.

To sum up, our intrusion-resilient model appears to provide the maximum possible security in
the face of corruptions that occur.

1.2.2 Construction

In Section 3 we provide an efficient scheme that satisfies intrusion-resilience. This scheme is as
efficient for signing and verifying as the signature scheme of Guillou-Quisquater [GQ88], requiring
just two modular exponentiations with short exponents for both signing and verifying. This is as
or more efficient than many of the ordinary signatures used in practice today. It is based on the
forward-secure signature scheme of Itkis and Reyzin [IR01].

Like the forward-secure signature scheme of [IR01], the security of our intrusion-resilient scheme
is based on the strong RSA assumption (precisely defined in Section 4.1) in the random oracle model.

1.3 Towards Obsoletion of Certificate Revocation

On-line authentication is a common application of signatures. For example, a user establishing an
authenticated connection to a web site (e.g., over SSL), must verify the web site’s signature on a
protocol message, as well as the web site’s certificate that attests to the authenticity of the web
site’s public key. If the web site’s secret key is compromised, the certificate needs to be revoked.

Certificate revocation, however, is a complex logistical problem that results in some of the most
cumbersome aspects of public key infrastructures. The most common, though perhaps not the most
efficient, mechanism is to consult a certificate revocation list (CRL), which would most likely be
stored at a remote location (certificates usually include a pointer to the corresponding CRL site).

However, if the web site uses our signature scheme, then an exposed secret key would compromise
the authenticity of the web site only for a limited time (less than the frequency with which certificate
revocation information is updated, which is typically one day). Then the user would not need to
check whether the certificate is revoked or not: by the time the revocation information is updated,
the web site would be authentic again, anyway.

Note that forward-secure signatures do not help address this problem: the web site’s certificate
would still have to be revoked in case of compromise. In contrast, if the web site uses intrusion-
resilient signatures, the certificate would have to be revoked only in the unlikely case that the web
site and its (presumably, separately protected) home base are compromised simultaneously. (We
note that short-lived certificates [Mic96, GGM00], key-insulated signatures [DKXY02] and proactive
signature [OY91, HJJ+97] can also be used to address certificate revocation; our solution, however,
seems to provide the most security if one is interested in abandoning certificate revocation/reissuing
entirely and having truly off-line certification authorities.)

2 Intrusion-Resilient Security Model

Our definitions are based on the definitions of key-insulated security of [DKXY02], which, in turn,
are based on the definitions of secure signatures of [GMR88] and forward secure signatures of
[BM99]. Before describing our model formally, we explain its differences from that of [DKXY02].

3



In our model the home base updates its internal state at the end of each time period (in addition
to sending the update information to the signer). We also provide for a special refresh procedure
(akin to proactivization) which allows recovery from compromise procedure. If a refresh is run
after a compromise of one of the parties but before the compromise of the other, the information
the adversary learned during the compromise becomes essentially useless, and the system remains
secure. Moreover, because our refresh involves just one message from the home base to the signer,
it can be combined with update and thus run at least every time period.

The adversary in our model is allowed the usual adaptive-chosen-message-and-time-period at-
tack, and, additionally, can obtain the secrets from the home base and the signer for time periods
of its choice. Furthermore, the adversary can intercept update and refresh messages of its choice
between the base and the signer. Like in [DKXY02], if the adversary only compromises the base
(in fact, even if the base is continuously monitored by the adversary from the start), it still cannot
forge signatures. Also like in [DKXY02], if the adversary compromises the signer, then it can forge
signatures only for the periods for which the secrets were obtained (either directly via signer com-
promise, or by combination of signer compromise and interception of consecutive update messages).
In contrast to [DKXY02], however, our model tolerates even multiple compromises of both base
and signer (in arbitrary order), as long as there is a refresh between any compromise of the different
modules. Moreover, even if there is no refresh, then the scheme still remains forward-secure.

We treat all compromises in one definition, as opposed to separately defining security against
different kinds of compromises. This allows us to precisely specify the security requirements when
different types of compromises (base, signer, update messages) are combined. This is in contrast
to the key-insulated definitions of [DKXY02], where compromises of the base key are considered
in isolation, and compromises of key update messages are reduced to compromises of pairs of
consecutive time periods4.

The definitions below are given in the standard model, but can easily incorporate random oracles
(used in our proofs).

2.1 Functional definition

We first define the functionality of the various components of the system; the security definition
is given in the subsequent section. Recall that the system’s secret keys may be modified in two
different ways, which we call update and refresh. Updates lead to changes that are visible to the
verifier and change the secrets from one time period to the next (e.g. from one day to the next).
In contrast, refreshes are transparent to outsiders (including the verifier).

Thus we use notation SK t.r for key SK , where t is the time period (the number of times the key
has been updated) and r is the “refresh number” (the number of times the key has been refreshed
since the last update). We follow the convention of [BM99], which requires key update immediately
after key generation in order to obtain the keys for t = 1 (this is done merely for notational
convenience, in order to make the number of time periods T equal to the number of updates, and
need not affect the efficiency of an actual implementation). We also require key refresh immediately
after key update in order to obtain keys for r = 1 (this is also done for convenience, and need not

4With respect to key update information, [DKXY02] define a scheme as having “secure key updates” if key
update information sent for time period i can be computed from signer’s keys for time period i and i − 1. We find
this requirement to be both too strong and too weak. It is too strong because it is quite possible that, while key
update information cannot be computed from signer’s keys, it is no more useful two consecutive signer’s keys. It is
too weak, because it does not rule out the possibility for the adversary to forge signatures for two consecutive time
periods if key update information is compromised. In fact, in [DKXY02], if the number of signer compromises that
the scheme resists is limited to t, then number of update information exposures is limited to only t/2.

4



affect efficiency of an actual implementation; in particular, the update and refresh information that
the base sends to the signer can be combined into a single message).

A 〈signer-base〉 key-evolving signature scheme is a septuple of probabilistic polynomial-time
algorithms (Gen,Sign,Ver ; US,UB; RB,RS)5:

1. Gen, the key generation algorithm.6

In: security parameter(s) (in unary), the total number T of time periods
Out: initial signer key SKS 0.0, initial home base key SKB0.0, and the public key PK .

2. Sign, the signing algorithm.
In: current signer key SKS t.r, message m
Out: signature (t, sig) on m for time period t

3. Ver , the verifying algorithm
In: message m, signature (t, sig) and public key PK
Out: “valid” or “invalid” (as usual, signatures generated by Sign must verify as “valid”)

4. UB, the base key update algorithm
In: current base key SKB t.r

Out: the next base key SKB (t+1).0 and the key update message SKU t

5. US, the signer update algorithm
In: current signer secret key SKS t.r and the key update message SKU t

Out: the next signer secret key SKS (t+1).0

6. RB, the base key refresh algorithm
In: current base key SKB t.r

Out: new base key SKB t.(r+1) and the corresponding key refresh message SKRt.r

7. RS, the signer refresh algorithm
In: signer’s current secret key SKS t.r and the key refresh message SKRt.r

Out: signer’s secret key SKS t.(r+1) corresponding to the base’s key SKB t.(r+1)

Differences from Prior Notions. If only Gen,Sign,Ver are used, then t.r and SKB can
be ignored in these algorithms, and the above functional definition becomes that of an ordinary
signature scheme.

Relaxing the above restrictions to also allow the use of US (while setting SKU t = 1 for all t),
extends the definition to that of forward-secure signatures (or a “key-evolving” scheme [BM99], to
be more precise).

Functional definition of a “key-insulated” signature scheme [DKXY02] is obtained by further
relaxing the restrictions to allow the use of UB as well (and thus removing SKU t = 1 restriction),

5Intuitively (and quite roughly), the first three correspond to the ordinary signatures; the first four correspond to
forward-secure ones, the first five (with some restrictions) correspond to key-insulated ones; and all seven are needed
to provide the full power of the intrusion-resilient signatures.

6As opposed to the other algorithms below, which are meant to be run by a single party (signer, verifier or
base), it may be useful to implement the key generation algorithm as distributed between the signer and the home
base modules, in such a way that corruption even during key generation does not fully compromise the scheme.
Alternatively, key generation may be run by a third party (avoiding the need the need for the signer and the base to
run the expensive and sensitive prime generation). For simplicity of definitions, however, we postpone consideration
of these scenarios until Section 3.

5



but restricting SKB t = 〈SKB , t〉 for some secret SKB and for every period t (i.e. the base secret
does not change).

Finally, our model is obtained by removing the remaining restrictions: allowing the base secret
to vary and using RB,RS.

2.2 Security Definition

In order to formalize security, we need to specify, for each time period, how many times the base
and the signer refresh their keys. Let RN : N → N be the function specifying this. That is, in time
period t, the keys will be refreshed RN (t) times–i.e., there will be RN (t)+1 instances of signer and
base keys. (Recall that each update is immediately followed by a refresh; thus, keys with refresh
index 0 are never actually used.) Then consider all the keys generated during the entire run of the
signature scheme. They are generated by the following procedure.

Experiment Generate-Keys(k, T,RN )
t← 0; r ← 0
(SKS t.r,SKB t.r,PK )← Gen(1k, T )
for t = 1 to T

(SKB t.0,SKU t−1)← UB(SKB (t−1).r)
SKS t.0 ← US(SKS (t−1).r,SKU t−1)
for r = 1 to RN (i)

(SKB t.r,SKRt.(r−1))← RB(SKB t.(r−1))
SKS t.r ← RS(SKS t.(r−1),SKRt.(r−1))

Let SKS ∗, SKB∗, SKU ∗ and SKR∗ be the sets consisting of, respectively, signer and base
keys and update and refresh messages, generated during the above experiment. Because the keys
SKS t.0,SKB t.0 for 0 ≤ t ≤ T , SKU 0 and SKR1.0 are generated only by our notational convention,
but are never actually stored or sent (because key generation is immediately followed by update,
and each update is immediately followed by refresh), we omit them from the sets SKS ∗,SKB∗ and
SKU ∗, respectively. Note that SKRt.0 for t > 1 is used (it is sent together with SKU t−1 to the
signer), and thus is included into SKR∗.

To define security, let F , the adversary (or “forger”), be a probabilistic polynomial-time oracle
Turing machine with the following oracles:

• Osig , the signing oracle (constructed based on SKS ∗), which on input (m, t, r) (1 ≤ t ≤ T ,
1 ≤ r ≤ RN (t)) outputs Sign(SKS t.r,m)

• Osec, the key exposure oracle (constructed based on the sets SKS ∗,SKB∗,SKU ∗ and SKR∗),
which

1. on input (“s”, t.r) for 1 ≤ t ≤ T, 1 ≤ r ≤ RN (t) outputs SKS t.r;

2. on input (“b”, t.r) for 1 ≤ t ≤ T, 1 ≤ r ≤ RN (t) outputs SKB t.r;

3. on input (“u”, t) for 1 ≤ t ≤ T − 1 outputs SKU t and SKRt+1.0; and

4. on input (“r”, t.r) for 1 ≤ t ≤ T, 1 ≤ r < RN (t), outputs SKRt.r.

Note that exposure of the update key automatically exposes the following refresh key, because they
are sent together in one message.

6



The only restriction we put on adversary’s queries to Osig is that the values t and r be within
the appropriate bounds, and that the order of exposures “respect erasures” (in particular, we do not
assume any synchrony of the network that presumably carries the update and refresh messages).
In other words, if a value has been queried, another value that has to have been erased prior to
that query cannot be queried. Formally,

• (“b”, t.r) has to be queried before (“b”, t′.r′) if t′ > t or t′ = t and r′ > r;

• (“b”, t.r) has to be queried before (“r”, t′.r′) if t′ > t or t′ = t and r′ ≥ r;

• (“b”, t.r) has to be queried before (“u”, t′) if t′ ≥ t;

• (“s”, t.r) has to be queried before (“s”, t′.r′) if t′ > t or t′ = t and r′ > r.

The following experiment captures adversary’s functionality.

Experiment Run-Adversary(F, k, T,RN )
Generate-Keys(k, T,RN )
(m, j, sig)← FOsig,Osec(1k, T,PK )
if Ver(m, j, sig) =“invalid” or (m, j) was queried by F to Osig or a query to Osec was

out of bounds or did not respect erasures
then return “adversary failed”
else let Q be the set of key exposure queries F made to Osec; return (j,Q)

For a set of key exposure queries Q, time period t ≥ 1 and refresh number r, 1 ≤ r ≤ RN (t), we
say that key SKS t.r is Q-exposed :

[directly] if (“s”, t.r) ∈ Q; or

[via update] if r = 1, (“u”, t− 1) ∈ Q, and SKS (t−1).RN (t−1) is Q-exposed; or

[via previous refresh] if r > 1, (“r”, t.(r − 1)) ∈ Q, and SKS t.(r−1) is Q-exposed; or

[via next refresh] if r < RN (t), (“r”, t.r) ∈ Q, and SKS t.(r+1) is Q-exposed.

Replacing SKS with SKB throughout the above definition results in the definition of base key
exposure (or more precisely SKB t.r being Q-exposed).

Note that the above definitions are recursive, with direct exposure as the base case. Also note
a difference between update and refresh messages: intercepting the former might help F to expose
only future keys, while intercepting the latter might help F to expose both future and past (down
to the previous update) keys.

Clearly, exposure of signer key (SKS t.r for the given t and any r) enables the adversary to
generate legal signatures for that period (t). Similarly, simultaneous exposure of both base and
signer keys (SKB t.r,SKS t.r, for some t, r) exposes all information in the system to the adversary.
Therefore, we cannot hope to prevent the adversary from generating valid signatures for the current
and future time periods.

Thus, we say that the scheme is (t, Q)-compromised, if either

• SKS t.r is Q-exposed for some r, 1 ≤ r ≤ RN (t); or

• SKBt1.r and SKSt1.r are both Q-exposed for some t1 < t and r, 1 ≤ r ≤ RN (t1).

7



In other words, a particular time period has been rendered useless if either the signer was
broken into during that time period, or, during a previous time period, the signer and the base were
compromised without a refresh in between. Note that update and refresh messages by themselves
do not help the adversary in our model—they only help when combined, in unbroken chains, with
signer or base keys.

Definition 1. Let SiBIR[k, T ] be a 〈signer-base〉 key-evolving scheme with security parameter k
and number of time periods T . Let F be an adversary for it and RN : N → N be a function.
Define

SuccSiBIR(SiBIR[k, T ], F,RN ) def=
Pr[Run-Adversary(F, k, T,RN ) = (j,Q) : F has not (j,Q)-compromised the scheme] ≤ ε(k, T ) .

Let InSecSiBIR(SiBIR[k, T ], τ, qsig) (the insecurity function for intrusion resilience) be the maximum
of SuccSiBIR(SiBIR[k, T ], F,RN ) over all functions RN and all F that run in time at most τ
and ask at most qsig signature queries. The scheme SiBIR[k, T ] is (τ, ε, qsig)-intrusion-resilient if
InSecSiBIR(SiBIR[k, T ], τ, qsig) < ε.

3 Intrusion-Resilient Scheme: Construction

Our scheme, which we call SiBIR1, is based on the [IR01] forward-secure signature scheme, which,
in turn, is based on the Guillou-Quisquater [GQ88] ordinary signature scheme. (In the interests
of conciseness, we do not present the rationale behind the [IR01] forward-secure scheme.) In fact,
the [IR01] forward-secure scheme can be obtained from our scheme by simply eliminating the base,
and setting all the messages that the signer expects equal to 1.

The scheme utilizes two security parameters, l and k. Let H : {0, 1}∗ → {0, 1}l be a hash
function (modeled in the security proof as a random oracle).

algorithm SiBIR1.Gen(k, l, T )
Generate a modulus n:

Generate random (dk/2e − 1)-bit primes q1, q2 s.t. pi = 2qi + 1 are both prime
n← p1p2

Generate exponents:
Generate primes ei s.t. 2l(1 + (i− 1)/T ) ≤ ei < 2l(1 + i/T ) for i = 1, 2, . . . , T .

(This generation is done either deterministically or using a small seed seed and H as a

pseudorandom function; let E be the information, if any, necessary to regenerate e1, . . . , eT )

s[1,T ]
R← Z∗n; SKS 0 ← (0, T, n, ∅, s[1,T ], ∅, E) //the two ∅ are placeholders to be filled in during US

b[1,T ]
R← Z∗n; SKB0 ← (0, T, n, b[1,T ], E)

v ← 1/(s[1,T ]b[1,T ])e1·...·eT mod n; PK ← (n, v, T )
return (SKS 0,SKB0,PK )

Figure 1: Key generation algorithm. Refresh index on the keys is omitted to simplify notation.

Key generation and update. Like in the forward-secure scheme of [IR01] and the ordinary
signature scheme of [GQ88], the public key consists of an RSA modulus n and a value v ∈ Z∗n. For

8



algorithm SiBIR1.UB(SKB t)
Let SKB t = (t < T, T, n, b[t+1,T ], E)
Regenerate et+1, . . . , eT using E
bt+1 ← b

et+2·...·eT
[t+1,T ] mod n; b[t+2,T ] ← b

et+1

[t+1,T ] mod n
return (SKB t+1 = (t+ 1, T, n, b[t+2,T ], E),SKU t = bt+1)

algorithm SiBIR1.US(SKS t,SKU t)
Let SKS t = (t < T, T, n, ŝt, s[t+1,T ], et, E); SKU t = bt+1

Regenerate et+1, . . . , eT using E
st+1 ← s

et+2·...·eT
[t+1,T ] mod n; s[t+2,T ] ← s

et+1

[t+1,T ] mod n
ŝt+1 ← st+1bt+1 mod n
return SKS t+1 = (t+ 1, T, n, ŝt+1, s[t+2,T ], et+1, E)

Figure 2: Update algorithms. Refresh index on the keys is omitted to simplify notation.

each time period t, there is a corresponding exponent et (all the exponents have to be relatively
prime). What is needed to generate signatures in time period t is ŝt such that ŝett ≡ 1/v (mod n).

Because the factorization of n has to be erased after key generation in order to achieve forward
security, in order be able to generate ŝt, ŝt+1, . . . , ŝT , one needs to know a root of 1/v of degree
e[t,T ]

def= et · et+1 · . . . · eT . Call this root ŝ[t,T ]: then ŝ
e[t,T ]

[t,T ] ≡ 1/v (mod n). Note that this value can
be easily updated: ŝ[t+1,T ] = ŝet[t,T ]; also note that the “current” signing key can be easily obtained

via ŝt = ŝ
e[t+1,T ]

[t,T ] .
In order to achieve intrusion-resilience, ŝ[t,T ] is never stored explicitly. Rather, it is shared

multiplicatively between the signer and the base. The signer stores s[t,T ] and the base stores b[t,T ],
such that ŝ[t,T ] = s[t,T ]b[t,T ]. This multiplication is never explicitly performed: instead, the signer
computes st = s

e[t+1,T ]

[t,T ] , the base computes bt = b
e[t+1,T ]

[t,T ] , and the two values are multiplied together
to obtain ŝt.

Following the conventions that key generation is immediately followed by key update, the first
signer secret key contains blanks for ŝ0 and e0. We note that, in actual implementation, it will be
more efficient to combine the first key generation and update.

Finally, note that key generation and update algorithms do not affect the refresh index, so we
omit it in Figures 1 and 2 in order to simplify notation.

Variations on Key Generation. Most of the key generation algorithm can be easily split
between the signer and the base. Namely, once the shared modulus n is generated and given to
both parties, the base can generate b[1,T ] on its own, and the signer can generate s[1,T ] on its own,
as well. Both parties can then generate “shares” b

e[1,T ]

[1,T ] and s
e[1,T ]

[1,T ] that can be combined to compute
the public key. The shares themselves can be made public without adversely affecting security.
Thus, the amoung of cooperation required during key generation is minimal

The same modulus n can be used by multiple signature schemes. In particular, our signature
scheme can be made identity-based if a third party is trusted to take roots modulo n of the identity
v.

Refresh. Because the signer and the base share a single value multiplicatively, the refresh

9



algorithm presented in Figure 3 is quite simple: the base divides its share by a random value, and
signer multiplies its share by the same value. Recall that each update is immediately followed by
refresh (and, in fact, update and refresh information can be sent by the base to the signer in one
message).

algorithm SiBIR1.RB(SKB t.r)
Let SKB t.r = (t, T, n, b[t+1,T ], E)
Rt.r

R← Z∗n
b[t+1,T ] ← b[t+1,T ]/Rt.r
return (SKB t.r+1 = (t, T, n, b[t+1,T ], E),SKRt.r = Rt.r)

algorithm SiBIR1.RS(SKS t.r,SKRt.r)
Let SKS t.r = (t, T, n, ŝt, s[t+1,T ], et, E); SKRt.r = Rt.r
s[t+1,T ] ← s[t+1,T ] ·Rt.r
return SKS t.r+1 = (t, T, n, ŝt, s[t+1,T ], et, E)

Figure 3: Key refresh algorithms

Signing and Verifying. Figure 4 describes our signature and verification algorithms. They
are exactly the same as in the forward-secure signature scheme of [IR01]. Again, we omit the refresh
index on the signer’s key for ease of notation.

algorithm SiBIR1.Sign(M,SK t) %same as IR.Sign in [IR01]
Let SK t = (t, T, n, ŝt, s[t+1,T ], et, E)
x

R← Z∗n
y ← xet mod n
σ ← H(t, et, y,M)
z ← xŝσt mod n
return (z, σ, t, et)

algorithm SiBIR1.Ver(M,PK , (z, σ, t, e)) %same as IR.Ver in [IR01]
Let PK = (n, v, T )
if e ≥ 2l(1 + t/T ) or e < 2l or e is even then return 0
if z ≡ 0 (mod n) then return 0
y′ ← zevσ mod n
if σ = H(t, e, y,M) then return 1 else return 0

Figure 4: Signing and verifying algorithms. Refresh index on the keys is omitted to simplify
notation.

Variations. Our scheme can be easily modified (with no or minimum increase in storage require-
ment!) to “re-charge” the signer for more than one time period at a time. To enable the signer

10



to compute ŝt1 , ŝt1+1, . . . ŝt2 , the base simply needs to send the signer b[t1,t2] = b
e[t2+1,T ]

[t1,T ] . In fact, it
is easy to extend this method to non-contiguous time periods. This feature may have interesting
applications for delegation (including self-delegation).

Another simple modification of our scheme can yield forward-secure threshold and proactive
scheme (similar to, but more efficient than, the scheme of [AMN01]). Efficiency for the verifier and
for each of the modules participating in the signing will be essentially the same as for the regular
Guillou-Quisquater scheme.

4 Security

4.1 Complexity Assumption

(This section is heavily based on [IR01].) We use a variant of the strong RSA assumption (in-
troduced in [BP97] and [FO97]), which postulates that it is hard to compute any root of a fixed
value modulo a composite integer. More precisely, the strong RSA assumption states that it is
intractable, given n that is a product of two primes and a value α in Z∗n, to find β ∈ Z∗n and r > 1
such that βr = α.

However, we modify the assumption in two ways. First, we restrict ourselves to the moduli
that are products of so-called “safe” primes (a safe prime is one of the form 2q + 1, where q itself
is a prime). Note that, assuming safe primes are frequent, this restriction does not strengthen
the assumption. Second, we upperbound the permissible values or r by 2l+1, where l is a security
parameter for our scheme (in an implementation, l will be significantly shorter than the length k
of the modulus n).

More formally, let A be an algorithm. Consider the following experiment.

Experiment Break-Strong-RSA(k, l, A)
Randomly choose two primes q1 and q2 of length dk/2e − 1 each

such that 2q1 + 1 and 2q2 + 1 are both prime.
p1 ← 2q1 + 1; p2 ← 2q2 + 1; n← p1p2

Randomly choose α ∈ Z∗n.
(β, r)← A(n, α)
If 1 < r ≤ 2l+1 and βr ≡ α (mod n) then return 1 else return 0

Let SuccSRSA(A, k, l) = Pr[Break-Strong-RSA(k,l,A) = 1]. Let InSecSRSA(k, l, τ) be the maximum
of SuccSRSA(A, k, l) over all the adversaries A who run in expected time at most τ . Our assumption
is that InSecSRSA(k, l, τ), for τ polynomial in k, is negligible in k. The smaller the value of l, of
course, the weaker the assumption.

In fact, for a sufficiently small l, our assumption follows from a variant of the fixed-exponent RSA
assumption. Namely, assume that there exists a constant ε such that, for every r, the probability
of computing, in expected time τ , an r-th root of a random integer modulo a k-bit product of two
safe primes, is at most 2−k

ε
. Then, InSecSRSA(k, l, τ) < 2l+1−kε , which is negligible if l = o(kε).

4.2 Security Proof

Our security proof is more complex that the one of [IR01], although the two proofs are quite similar.
Both are based on the forking lemma of [PS96].

11



Theorem 1 For any τ , qsig, and qhash,

InSecSiBIR(SiBIR1[k, l, T ]; t, qsig, qhash) ≤

T
√

(qhash + 1)InSecSRSA(k, l, τ ′) + 2−l+1T (qhash + 1) + 22−kqsig(qhash + 1) ,

where τ ′ = 4τ +O(lT (l2T 2 + k2)).

The proof of the theorem is given in Appendix A

4.3 Active Attacks

Because information flows only from the base to the signer, the adversary’s only possible active
attack is to send a bad SKR or SKU value to the signer. An active attacker can thus always prevent
signatures from being issued. While our definition does not consider active attacks for the sake of
simplicity, in our implementation in Section 3, the active adversary cannot do anything worse that
merely sabotage the system. It is easy to show that, in terms of forging new signatures, its powers
are no greater than those of a passive attacker who merely obtains SKR and SKU values.

References

[AMN01] Michel Abdalla, Sara Miner, and Chanathip Namprempre. Forward-secure threshold
signature schemes. In David Naccache, editor, Progress in Cryptology — CT-RSA 2001,
volume 2020 of Lecture Notes in Computer Science, pages 143–158. Springer-Verlag,
April 8-12 2001.

[And97] Ross Anderson. Invited lecture. Fourth Annual Conference on Computer and Commu-
nications Security, ACM, 1997.

[BM99] Mihir Bellare and Sara Miner. A forward-secure digital signature scheme. In Michael
Wiener, editor, Advances in Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes
in Computer Science, pages 431–448. Springer-Verlag, 15–19 August 1999. Revised
version is available from http://www.cs.ucsd.edu/~mihir/.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signa-
ture schemes without trees. In Walter Fumy, editor, Advances in Cryptology—
EUROCRYPT 97, volume 1233 of Lecture Notes in Computer Science, pages 480–494.
Springer-Verlag, 11–15 May 1997.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In G. Brassard, editor, Ad-
vances in Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 307–315. Springer-Verlag, 1990, 20–24 August 1989.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public
key cryptosystems. In Lars Knudsen, editor, Advances in Cryptology—EUROCRYPT
2002, Lecture Notes in Computer Science. Springer-Verlag, 28 April–2 May 2002.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In Burton S. Kaliski Jr., editor, Advances in
Cryptology—CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages
16–30. Springer-Verlag, 17–21 August 1997.

12



[GGM00] Irene Gassko, Peter Gemmell, and Philip MacKenzie. Efficient and fresh certication,
2000.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
April 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, pages 218–229, New
York City, 25–27 May 1987.

[GPR98] Oded Goldreich, Birgit Pfitzmann, and Ronald L. Rivest. Self-delegation with controlled
propagation - or - what if you lose your laptop. In CRYPTO, pages 153–168, 1998.

[GQ88] Louis Claude Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based
signature scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, Advances
in Cryptology—CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages
216–231. Springer-Verlag, 1990, 21–25 August 1988.

[HJJ+97] Amir Herzberg, Markus Jakobsson, Stanis law Jarecki, Hugo Krawczyk, and Moti Yung.
Proactive public key and signature systems. In Fourth ACM Conference on Computer
and Communication Security, pages 100–110. ACM, April 1–4 1997.

[IR01] Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and
verifying. In Joe Kilian, editor, Advances in Cryptology—CRYPTO 2001, Lecture Notes
in Computer Science, pages 332–354. Springer-Verlag, 19–23 August 2001.

[LR00] Anna Lysyanskaya and Ron Rivest. Bepper-based signatures. Presented by Rivest at
the CIS seminar at MIT, 27 October 2000.

[Mic96] Silvio Micali. Efficient certificate revocation. Technical Report MIT/LCS/TM-542b,
Massachusetts Institute of Technology, Cambridge, MA, March 1996.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks. In 10-th
Annual ACM Symp. on Principles of Distributed Computing, pages 51–59, 1991.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli
Maurer, editor, Advances in Cryptology—EUROCRYPT 96, volume 1070 of Lecture
Notes in Computer Science, pages 387–398. Springer-Verlag, 12–16 May 1996.

[Riv98] Ronald L. Rivest. Can we eliminate certificate revocation lists? In Rafael Hirschfeld,
editor, Financial Cryptography, volume 1465 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[Yao82] A.C. Yao. Protocols for secure computations. In 23rd Annual Symposium on Foun-
dations of Computer Science, pages 160–164, Chicago, Illinois, 3–5 November 1982.
IEEE.

13



A Security Proof

Below we present the outline of the proof of Theorem 1, much of which is borrowed from [IR01];
we provide details only where the proof differs from that of [IR01].

First, we state the following theorem that will allow us to upper-bound the insecurity function.

Theorem 2 Given a forger F for SiBIR1.[k, l, T ] that runs in expected time at most τ , asking
qhash hash queries and qsig signing queries, such that SuccSiBIR(SiBIR1.[k, l, T ], F,RN ) ≥ ε, we can
construct an algorithm A that, on input n (a product of two safe primes), α ∈ Z∗n and l, runs in
expected time τ ′ and outputs (β, r) such that 1 < r ≤ 2l+1 and βr ≡ α (mod n) with probability
ε′, where

τ ′ = 4τ +O(lT (l2T 2 + k2))

ε′ =

(
ε− 22−kqsig(qhash + 1)

)2

T 2(qhash + 1)
− ε− 22−kqsig(qhash + 1)

2lT
.

Proof Outline. A will use F as a subroutine. (Note that A gets to provide the public key for F
and to answer its signing, hashing and key exposure queries.)

A randomly guesses j between 1 and T , hoping that F ’s eventual forgery will be for the j-th time
period. It then generates e1, . . . , eT just like the real signer, and computes v = 1/αe1·...·ej−1ej+1·...·eT

mod n (note that this is different from [IR01] proof).
Then A runs F on input v. Answering F ’s hash and signature queries is easy, because A

fully controls the random oracle H. Answering key exposure queries is a little trickier, and is
discussed below. If A’s guess for j was correct, and F indeed will output a forgery for the j-th time
period,(z, σ, j, e) on some message m. We will assume that F asked a hash query on (j, e, y,m)
where y = zevσ mod n (F can always be modified to do so.)

Then, A resets F and runs it a second time with the same random tape, giving the same answers
to all the oracle queries before the query (j, e, y,m). For (j, e, y,m), A gives a new answer σ′. If F
again forges a signature (z′, σ′, j, e) using the same hash query, we will have that y ≡ zevσ ≡ z′evσ′

(mod n), so (z/z′)e ≡ vσ
′−σ ≡ αe[j+1,T ](σ−σ′) (mod n). Note that because e is guaranteed to be

relatively prime with e[j+1,T ], and σ−σ′ has at least one fewer bit than e, gcd(e[j+1,T ](σ−σ′), e) =
gcd(σ − σ′, e) < e (as long as σ 6= σ′). Thus, Lemma 1 of [IR01], A will be able to efficiently
compute the a root of α of degree e/ gcd(fj+1(σ′ − σ), e) > 1.

What remains is to show how A answers key exposure queries. First, A generates a random
b[1,T ].0 ∈ Z∗n. Then, A performs all the base update and refresh operations using SiBIR1.UB and
SiBIR1.RB to generate b[t+1,T ].r, SKU t = bt+1 and SKRt.r = Rt.r for 1 ≤ t ≤ T and 0 ≤ r <
RN (t). A sets s[1,T ].0 = 1/b[1,T ].0 mod n and performs updates and refreshes (using SiBIR1.US
and SiBIR1.RS and the already generated SKRt.r and SKU t) until time period j (exclusive) to
generate s[t+1,T ].r for 1 ≤ t < j and 0 ≤ r < RN (t). A sets s[j+1,T ].0 = αe1...·...ej−1/b[j+1,T ].0 mod n,
and performs all the remaining updates and refreshes to generate s[t+1,T ].r for j ≤ t < T and
0 ≤ r < RN (t).

A then throws away the above-generated values ŝt and SKU t = bt+1 for t < j. Instead, for
t < j, A sets ŝt = αe1...·et−1et+1·...·ej−1ej+1·...·eT mod n.

Thus, now A has all the information needed to answer “s”, “b” and “r” queries, as well as
(“u”, t) queries for t ≥ j, except ŝj , which will not be asked if F forges for time period j. Note
that ŝett = 1/v, and thus is the same as the true signer would give. In addition, for t ≥ j,
(b[t+1,T ].rs[t+1,T ].r)e[t+1,T ] = 1/v, and thus is also the same as the true signer would give. The only

14



“inconsistency” with the true signer is for t < j, when b[t+1,T ].rs[t+1,T ].r = 1. However, because F is
prohibited from exposing both b[t+1,T ].r and s[t+1,T ].r for t < j, F will never notice this inconsistency.
This will be proven more formally by Lemma 1 below.

We have not yet specified, however, how A answers (“u”, t) queries for t < j. This is non-
trivial, because it seems that the answer must be consistent with both SKB (t+1).1 and SKS (t+1).1,
which are themselves inconsistent. However, note that only one of SKB (t+1).1 and SKS (t+1).1 can
be exposed by F . Thus, whenever A receives the query (“u”, t), A simply guesses which of the
two will be exposed, and makes SKU t consistent with that one. If A guesses that SKB (t+1).1

will be exposed, then A sets SKU t = bt+1 = b
e[t+2,T ]

[t+1,T ].RN (t). Otherwise, A sets SKU t = ŝt+1/st+1 =

ŝt+1/s
e[t+2,T ]

[t+1,T ].RN (t). If it later turns out that A’s guess is incorrect, A rewinds F to the update query,
and tries again. A will not need to rewind past an update query, because A will learn whether
SKS (t+1).1 or SKB (t+1).1 is exposed before the next update, because queries respect the order of
erasures. Therefore, the expected number of tries per update query is 2, thus slowing A down by
a factor of 2. Note that this is the only place in the proof where we use that A’s queries come in
order—otherwise, if A were able to ask all the update queries first, and then decide which base or
signer keys to expose, we would have to rewind exponentially many times.

To complete the proof, we need the following Lemma.

Lemma 1 Let Q be a set of key exposure queries that F asked, such that the scheme is not (j,Q)-
compromised. Then the probability that A returns a particular set of answers to F ’s key exposure
queries is equal to the probability that the true signer/base pair returns this set of answers to F .

Proof The public key v and the exponents e1, . . . , eT have the same distribution for A as for
the true signer. Once we fix v, e1, . . . , eT and b[1,T ], then the random choices made by the true
signer/base pair consist of values Rt.r for 0 ≤ r < RN (t) (s[1,T ] is no longer random, but rather
uniquely determined by v, e1, . . . , eT and b[1,T ]). We will call them “honest choices” and superscript
them and the corresponding s[t+1,T ].r, b[t+1,T ].r and SKU t values withH for “honest”: RHt.r, s

H
[t+1,T ].r,

bH[t+1,T ].r and SKUH
t . The random choices made by A also consist of Rt.r for 0 ≤ r < RN (t). We

will call these “fake choices” and superscript them and the corresponding s[t+1,T ].r, b[t+1,T ].r and
SKU t values with F for “fake”: RFt.r, s

F
[t+1,T ].0, bF[t+1,T ].r and SKU F

t .
We claim that there exists a bijection B that maps fake choices to honest choices and preserves

the answers to F ’s queries. This claim suffices to establish that F will see answers with the right
distribution.

To prove the claim, consider the signer’s keys that are Q-exposed. For each pair t.r, with t < j,
such that SKS t.r is Q-exposed, but the previous key SKS t.(r−1) (or SKS (t−1).RN (t−1), if r = 1) is
not Q-exposed, let RHt.(r−1) = B(RFt.(r−1)) = RFt.(r−1)/v

1/(e[t+1,T ] . Similarly, for each pair t.r, with
t < j, such that SKS t.r is not Q-exposed, but the previous key SKS t.(r−1) (or SKS (t−1).RN (t−1), if
r = 1) is Q-exposed, let RHt.(r−1) = B(RFt.(r−1)) = RFt.(r−1) · v

1/(e[t+1,T ] .
It is clear that the above map B is a bijection. We now need to verify that it results in

the same answers, i.e., RFt.r = RHt.r whenever (“r”, t.r) ∈ Q (or (“u”, t − 1) ∈ Q and r = 0),
sF[t+1,T ].0 = sH[t+1,T ].0 whenever (“s”, t.r) ∈ Q, bF[t+1,T ].0 = bH[t+1,T ].0 whenever (“b”, t.r) ∈ Q, and
SKU F

t = SKUH
t whenever (“u”, t) ∈ Q.

This is done by induction: one proves that, under the correspondence provided by B, if SKS t.r is
Q-exposed for t < j, then sF[t+1,T ].r = sH[t+1,T ].r, and otherwise (in particular, if SKB t.r is Q-exposed)
bF[t+1,T ].r = bH[t+1,T ].r (the base case relies on the fact that SKS 0.0 is not Q-exposed by definition,

15



and the inductive case relies on the fact that SKS t.r and SKB t.r cannot be simultaneously Q-
exposed). Because SKS j.r is not Q-exposed for any r, and the map B does not modify anything
past the j-th time period, this guarantees that bF[t+1,T ].r = bH[t+1,T ].r for t ≥ j. By construction,
sF[t+1,T ].r = sH[t+1,T ].r for t ≥ j. Also, RFt.r = RHt.r, unless SKS t.r−1 is Q-exposed and SKS t.r is not
(or vice versa), in which case SKRt.r cannot be queried by the adversary (otherwise, both SKS t.r−1

and SKRt.r would be Q-exposed). Finally, SKU F
t = SKUH

t by the construction above.

This allows us to prove Theorem 1
Proof of Theorem 1 To compute the insecurity function, simply solve for (ε− 22−kqsig(qhash +
1))/T the quadratic equation in Theorem 2 that expresses ε′ in terms of ε to get

(ε− 22−kqsig(qhash + 1))/T

= 2−l(qhash + 1) +
√

2−2l(qhash + 1)2 + ε′(qhash + 1)

≤ 2−l(qhash + 1) +
√

2−2l(qhash + 1)2 +
√
ε′(qhash + 1)

= 2−l+1(qhash + 1) +
√
ε′(qhash + 1),

and then solve the resulting inequality for ε.

16


