
A Forward-Secure Public-Key Encryption Scheme

Jonathan Katz
∗

May 24, 2002

Abstract

Cryptographic computations are often carried out on insecure devices for which the
threat of key exposure represents a serious and realistic concern. In an effort to mitigate
the damage caused by exposure of secret data stored on such devices, the paradigm of
forward security was introduced. In this model, secret keys are updated at regular
intervals throughout the lifetime of the system; furthermore, exposure of a secret key
corresponding to a given interval does not enable an adversary to “break” the system
(in the appropriate sense) for any prior time period. A number of constructions of
forward-secure digital signature schemes and symmetric-key schemes are known.

We present the first construction of a forward-secure public-key encryption scheme
whose security is based on the bilinear Diffie-Hellman assumption in the random oracle
model. Our scheme can be extended to achieve chosen-ciphertext security at minimal
additional cost. The construction we give is quite efficient: all parameters of the scheme
grow (at most) poly-logarithmically with the total number of time periods.

1 Introduction

Exposure of secret keys can be a devastating attack on a cryptosystem since such an attack
typically implies that all security guarantees are lost. Indeed, standard notions of security
offer no protection whatsoever once the secret key of the system has been compromised.
With the threat of key exposure becoming more acute as cryptographic computations are
performed more frequently on small, unprotected, and easily-stolen devices (e.g., mobile
phones), new techniques are needed to deal with this concern.

A number of methods have been introduced in an attempt to counter this threat. Of
course, one may try to eliminate the occurrence of key exposure entirely by using tamper-
proof hardware or some variation of this idea. While this is an important direction of re-
search, such techniques are often too expensive or otherwise not practical for the intended
application. A second class of approaches assumes instead that key exposure will occur and
seeks to minimize the resulting damage. Secret sharing [20], threshold cryptography [8], and
proactive cryptography [19, 13] — in which secrets are “split” across multiple devices —
are perhaps the best-known approaches in this vein. Unfortunately, such solutions tend to
be costly; for one thing, they require multiple devices where a single device would have pre-
viously sufficed. Furthermore, threshold computations are inherently interactive and hence

∗
jkatz@cs.umd.edu. Department of Computer Science, University of Maryland (College Park). Portions

of this work were done while at Columbia University.

1

require extensive coordination between different hosts; in settings where communication
is at a premium (e.g., wireless networks), such computations become prohibitive. Finally,
note that for devices which are insecure and are thus expected to have a high incidence of
physical compromise, exposing secrets stored on multiple devices may not be significantly
more difficult than exposing the secrets stored on a single device.

In an effort to address these concerns, the notion of forward security was recently pro-
posed by Anderson [3] and later formalized by Bellare and Miner [4]. The basic idea is to
divide the lifetime of the system into N intervals (or time periods) labeled 0, . . . , N − 1.
The device begins by storing secret key SK0; this secret key will “evolve” with time so that
SK0 will be used during period 0, SK1 will be used during period 1, and so on. At the
beginning of time period i the device applies some function to the “previous” key SKi−1 in
order to derive the “current” key SKi; key SKi−1 is then deleted. The current key is used
for all (secret) cryptographic operations during the corresponding period. The public key
(assuming one exists) is never updated; instead, it remains fixed throughout the lifetime
of the system. A forward-secure scheme guarantees that an adversary who learns SKi for
some i will be unable to “break” the security of the system (in the appropriate sense) for
all time periods prior to i. Note that since the adversary obtains all secrets existing at
that point in time, the model inherently cannot prevent the adversary from “breaking” the
security of the system at time periods subsequent to i.

The forward-secure paradigm is quite general and can be applied to essentially any
cryptographic primitive; most research thus far, however, has focused on the construction of
forward-secure signature schemes and the related case of identification schemes. The generic
forward-secure signature scheme of Anderson [3] was improved by Bellare and Miner [4] who
also present the first efficient and non-generic construction. These initial works inspired a
sequence of improved constructions yielding more efficient forward-secure signature schemes
as well as schemes giving tradeoffs among the various parameters [17, 2, 15, 18]. Integrating
forward-secure signature schemes and threshold techniques has also been investigated [1, 21].
The only prior instance in which forward-security was considered for primitives other than
signature/identification schemes is the work of Bellare and Yee [5] focusing on the private-
key setting.

Motivated by work on forward security, the related notion of key-insulated cryptography
has recently been introduced [9, 10]. Although in both models the stored secret keys are
updated so as to limit the effect of key exposures, the models are in fact incomparable. On
one hand, the key-insulated model achieves a stronger level of security in that, even after
multiple key exposures occur, all non-exposed time periods remain secure. On the other
hand, the price for this additional security is the (necessary) assumption of a (semi-)trusted
server which is never compromised and with which the device must interact at the beginning
of each time period. In certain scenarios an assumption of this form is clearly unwarranted.

1.1 Our Contribution

As mentioned above, almost all previous research on forward-secure primitives (with the
exception of [5]) has focused on the case of digital signature schemes. Indeed, the question of
whether a (non-trivial) forward-secure public-key encryption scheme could be constructed
has been open since the introduction of the forward-security paradigm [3, 4]. We show here

2

Key generation time O(log N)
Encryption/Decryption time O(log N)
Key update time O(log N)
Ciphertext length O(log N)
Public key size O(1)
Secret key size O(log2 N)

Table 1: Summary of dependencies on the total number of time periods N .

a simple and efficient construction of a forward-secure public-key encryption scheme whose
security may be based on the bilinear Diffie-Hellman assumption (cf. [6]) in the random
oracle model. Using the Fujisaki-Okamoto transformation [11], chosen-ciphertext security
can be achieved with minimal additional cost. The dependency of the parameters of our
scheme on the total number of time periods N is quite good; in all cases, it is at most
poly-logarithmic. The key details are summarized in Table 1. We stress that these results
should not be interpreted as indicating “merely” asymptotic efficiency; in general (except
for the size of secret key storage), our scheme is as efficient as log2 N invocations of the
Boneh-Franklin identity-based encryption scheme [6] and is therefore quite practical for
reasonable values of N .

2 Definitions and Preliminaries

Here, we provide definitions for key-evolving public-key encryption schemes and also define
what it means for an encryption scheme to be forward-secure. The former definition is a
straightforward adaptation of [4]; the latter, however, is new and requires some care.

Definition 1 A key-evolving public-key encryption scheme ke-PKE = (Gen,Upd,Enc,Dec)
is a 4-tuple of algorithms such that:

• The probabilistic key generation algorithm Gen takes as input a security parameter
1k and the total number of time periods N . It returns a public key PK and an initial
secret key SK0.

• The probabilistic key update algorithm Upd takes as input a secret key SKi−1 as well
as the index i of the current time period. It returns a secret key SKi for period i.

• The probabilistic encryption algorithm Enc takes as input a public key PK, the index
i of the current time period, and a message M . It returns a ciphertext C for period
i. We always represent the output as a pair 〈i, C〉 and write 〈i, C〉 ← EncPK(i,M).

• The deterministic decryption algorithm Dec takes as input a secret key SKi and a
ciphertext 〈i, C〉. It returns a message M . We denote this by M := DecSKi

(〈i, C〉).

We require the standard correctness condition; namely, for any (PK,SK0) output by
Gen, any secret key SKi correctly generated for period i, all M , and all 〈i, C〉 output
by EncPK(i,M) we have M = DecSKi

(〈i, C〉).

3

A definition for forward-secure public-key encryption (PKE) does not follow immediately
from the corresponding definition for signature schemes. For one thing, in a forgery attack
the forged signature/message pair is the final output of the adversary whereas in the case
of PKE the adversary might be able to perform additional useful “attacks” even after
observing a ciphertext 〈i, C〉. To be more specific, one can imagine two plausible definitions
of forward-secure PKE: (1) the adversary must obtain some secret key SKi before requesting
ciphertext 〈j, C〉 for some j < i; or (2) the adversary must request ciphertext 〈j, C〉 before
he can obtain some secret key SKi with i > j. To make matters worse, neither definition of
security seems to imply the other. Our definition captures the strongest notion of security
by giving the adversary control over the ordering of the above events.

Definition 2 A key-evolving public-key encryption scheme ke-PKE is forward-secure in the
sense of indistinguishability (fs-IND) if no ppt adversary has non-negligible advantage in
the following game:

Setup: Gen(1k, N) is run, yielding output (PK,SK0). The adversary is given PK.

Attack: The adversary issues one breakin(i) query and one challenge(j,M0,M1) query, in
either order, subject to 0 ≤ j < i < N . These queries are answered as follows:

• On query breakin(i), key SKi is computed via Upd(· · ·Upd(SK0, 1), · · · i). This key is
then given to the adversary.

• On query challenge(j,M0,M1) a random bit b is selected and the adversary is given
EncPK(j,Mb).

Guess: The adversary outputs a guess b′ ∈ {0, 1}. The adversary succeeds if b′ = b.

The advantage of the adversary is defined as the absolute value of the difference between
its success probability and 1/2.

Remark 1. When schemes are defined in the random oracle model we additionally allow
the adversary to make a polynomially-bounded number of queries to any random oracles
used in constructing the scheme. These queries may be interleaved in any order with the
breakin and challenge queries.

Remark 2. Following [6, 14, 12], we may define forward security in the sense of one-
wayness (fs-OWE) in the obvious way. Similarly, we may also define forward security under
chosen-ciphertext attack (fs-CCA) as the natural extension of Definition 2. We defer the
details until the final version of this paper.

2.1 Cryptographic Assumptions

The security of our forward-secure encryption scheme is based on the difficulty of the bilinear
Diffie-Hellman (BDH) problem as recently formalized by Boneh and Franklin [6]. This
assumption, or variants thereof, has been used for a number of different cryptographic
constructions (e.g., [16, 7, 22, 14, 12]). We review the relevant definitions as they appear
in [6, 12]. Let G1 and G2 be two cyclic groups of prime order q, where G1 is represented
additively and G2 is represented multiplicatively. We use a map ê : G1×G1 → G2 for which
the following hold:

4

1. The map ê is bilinear ; that is, for all P0, P1 ∈ G1 and all x, y ∈ Zq we have
ê(xP0, yP1) = ê(P0, P1)

xy.

2. There is an efficient algorithm to compute ê(P0, P1) for any P0, P1 ∈ G1.

A BDH parameter generator IG is a randomized algorithm that takes a security param-
eter 1k, runs in polynomial time, and outputs the description of two groups G1, G2 and a
map ê satisfying the above conditions. We define the BDH problem with respect to IG as the
following: given (G1, G2, ê) output by IG along with random P, aP, bP, cP ∈ G1, compute
ê(P, P)abc. We say that IG satisfies the BDH assumption if the following is negligible (in
k) for all ppt algorithms A:

Pr[(G1, G2, ê)← IG(1
k);P ← G1; a, b, c← Zq : A(G1, G2, ê, P, aP, bP, cP) = ê(P, P)abc].

We note that BDH parameter generators for which the BDH assumption is believed to hold
can be constructed from Weil and Tate pairings associated with supersingular elliptic curves
or abelian varieties. As our results do not depend on any specific instantiation, we refer the
interested reader to [6] for details.

3 Forward-Secure Public-Key Encryption

3.1 Overview

We first provide an overview of our construction. Assume for simplicity that the total
number of time periods N is a power of 2; that is, N = 2t. We imagine a full binary tree of
height t in which the root is labeled with ε (representing the empty string) and furthermore
if a node at depth less than t is labeled with w then its left child is labeled with w0 and
its right child is labeled with w1. Let 〈i〉 denote the t-bit representation of integer i (where
0 ≤ i ≤ 2t−1). The leaves of the tree (which are labeled with strings of length t) correspond
to successive time periods in the obvious way; i.e., time period i is associated with the leaf
labeled by 〈i〉.

For simplicity, we refer to the node labeled by w as simply “node w”. Every node w in
the tree will have an associated secret key skw; recall further that there is one public key
PK which remains fixed throughout the lifetime of the scheme. The properties of our PKE
construction can informally be stated as follows:

1. To decrypt a message encrypted using PK during period i, only key sk〈i〉 is needed.

2. Given key skw, it is possible to efficiently derive keys skw0 and skw1.

3. Given PK and i, and without skw for all prefixes w of 〈i〉, it is infeasible to derive
sk〈i〉 and furthermore infeasible to decrypt messages encrypted during period i.

The formal statements corresponding to these requirements will become clear from the
detailed description below.

Once we have a scheme satisfying the above requirements, we immediately obtain an
efficient construction of a forward-secure encryption scheme.1 For a given period i, let

1This was noted in the context of digital signatures as well [4].

5

i0i1 · · · it = 〈i〉, where i0 = ε and i1, . . . , it ∈ {0, 1}. The secret key SKi for period i will
consist of (1) sk〈i〉 and also (2) {ski0···ik−11

} for all 1 ≤ k ≤ t such that ik = 0. Clearly,
this allows for correct decryption of ciphertexts transmitted during the appropriate period.
Furthermore, key updates can be done as follows: At the end of period i, key sk〈i〉 is
erased and — as can be easily verified — the remainder of the keys can be updated as
required (more detail is provided below). The above-stated requirements essentially imply
the forward-security of this scheme.

One may notice that the requirements listed above immediately give rise to a hierarchical
identity-based encryption scheme (HIBE) as well [14, 12]. Indeed, one can interpret our
results as showing a generic transformation from any HIBE to a forward-secure PKE; we
explore this connection further in the full version of this paper.

3.2 The Details

As mentioned in the previous section, an HIBE may be used toward the construction of
a forward-secure PKE. The construction we present here is based on the HIBE suggested
by [12] (the 2-HIBE of [14] is not suited for our purpose). We note that the proof of
forward-security for our construction does not immediately follow from the results of [12].
In particular, for an adaptive adversary — as considered here — the HIBE of [12] is proven
secure only for constant t (and hence constant N) whereas we give a proof of security for
t = Θ(log k) thereby allowing N = poly(k). Furthermore, because we do not require “full”
security in the sense of HIBE we give a simpler proof and tighter security reduction.

Let IG be a BDH parameter generator for which the BDH assumption holds. We now
present the details of the scheme.

Gen(1k, N) does the following:

1. IG(1k) is run to generate groups G1, G2 of order q and bilinear map ê.

2. A random generator P ← G1 is selected along with random sε ← Zq. Set Q = sεP .

3. The public key is PK = (G1, G2, ê, P,Q).

4. Set S0 = sεH1(0) and S1 = sεH1(1). Set sk0 = (S0, ∅) and sk1 = (S1, ∅). Using sk0,
recursively apply algorithm Extract (defined below) to generate keys sk01, sk001, . . .,
sk0t−11, sk0t .

5. Store SK0 = (sk0t , {sk1, sk01, . . . , sk0t−11}). Erase all other information.

We furthermore assume that hash functions H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}
n

are defined, either by Gen or else as part of the specification of the scheme. These hash
functions will be treated as random oracles in the analysis.

Extract(skw, w) takes as input the secret key associated with node w and outputs the secret
keys for nodes w0 and w1. It runs as follows:

1. Parse w as w1 · · ·w` where |w| = `. Parse skw as (Sw,Qw) where Sw ∈ G1 and
Qw = (Qw1

, . . . , Qw1···w`−1
) ∈ G

`−1
1

.

6

2. Choose random sw ∈ Zq. Set Sw0 = Sw + swH1(w0) and Sw1 = Sw + swH1(w1). Set
Qw1···w`

= swP and Qw0 = Qw1 = (Qw1
, . . . , Qw1···w`

).

3. Output skw0 = (Sw0,Qw0) and skw1 = (Sw1,Qw1).

Upd(SKi, i + 1) (where i < N − 1) does the following:

1. Parse 〈i〉 as i0i1 · · · it where i0 = ε. Parse SKi as (sk〈i〉, {ski0···ik−11
}ik=0). Erase sk〈i〉.

2. We distinguish two cases. If it = 0, simply output the remaining keys as the key
SKi+1 for the next period. Otherwise, let k̃ be the largest value such that i

k̃
= 0

(such k̃ must exist since i < N−1). Let i′ = i0 · · · ik̃−1
1. Using ski′ (which is included

as part of SKi), recursively apply algorithm Extract to generate keys ski′1, ski′01, . . .,
sk

i′0t−k̃−11
, sk

i′0t−k̃ . Erase ski′ and output the remaining keys as SKi+1.

It can be easily verified that the key SKi+1 that is output has the correct form.

EncPK(i,M) (where M ∈ {0, 1}n) does the following:

1. Let i1 · · · it = 〈i〉. Select random r← Zq.

2. Output 〈i, C〉 where C = (rP, rH1(i1i2), . . . , rH1(i1 · · · it),M ⊕H2(ê(Q,H1(i1))
r))

DecSKi
(〈i, C〉) does the following:

1. Parse 〈i〉 as i1 · · · it. Parse SKi as (sk〈i〉, {ski0···ik−11}ik=0) and sk〈i〉 as (S〈i〉,Q〈i〉)
where Q〈i〉 = (Qi1 , . . . , Qi1···it−1

). Parse C as (U0, U2, . . . , Ut, V).

2. Compute

M = V ⊕H2

(

ê(U0, S〈i〉)

Πt
k=2

ê(Qi1···ik−1
, Uk)

)

.

We now verify that decryption is performed correctly. When encrypting, we have
ê(Q,H1(i1))

r = ê(P,H1(i1))
rsε . When decrypting, we have U0 = rP , U2 = rH1(i1i2), . . . ,

Ut = rH1(i1 · · · it) so that

ê(U0, S〈i〉)

Πt
k=2

ê(Qi1···ik−1
, Uk)

=
ê
(

rP, sεH1(i1) +
∑t

k=2
si1···ik−1

H1(i1 · · · ik)
)

∏t
k=2

ê
(

si1···ik−1
P, rH1(i1 · · · ik)

)

=
ê(P,H1(i1))

rsε ·
∏t

k=2
ê (P,H1(i1 · · · ik))

rsi1···ik−1

∏t
k=2

ê (P,H1(i1 · · · ik))
rsi1···ik−1

= ê(P,H1(i1))
rsε

and thus decryption succeeds.
The security of the above scheme is stated in the following theorem:

Theorem 1 Suppose there is an adversary A that has advantage δ against the above scheme
in the sense of fs-OWE (cf. Remark 2) and that makes at most qH2

hash queries to H2. Then
there is an algorithm A′ that solves the BDH problem with respect to IG with probability at
least (δ − 2−n)/N · qH2

7

A proof of Theorem 1 appears in Appendix A.
In particular, the theorem implies that as long as IG satisfies the BDH assumption,

then the above scheme is fs-OWE whenever N = poly(k). We note that the loss of a factor
of N in the security reduction (implying the “limitation” N = poly(k)) is also present
in most previous work on forward-secure primitives (e.g., [4, 2, 15]). However, we can in
fact improve upon this and construct a modified scheme whose security depends on the
number of periods elapsed thus far. We can further modify this scheme so as to support an
“unbounded” number of time periods (i.e., the number of time periods does not need to be
known at the time of key generation).2 We defer details to the final version.

As in [6, 14, 12], we may apply the transformation due to Fujisaki and Okamoto [11] to
obtain a scheme which is forward-secure under adaptive chosen-ciphertext attacks. Details
and a full proof (which is non-trivial and does not follow immediately from the results of
[11]) will appear in the final version.

3.3 Analysis of Parameters

We briefly justify the claims given in Table 1. Key generation requires t invocations of
Extract in addition to O(1) other operations. Each invocation of Extract runs in O(1) time,
showing that the entire key generation process requires time O(log N). Encryption time,
decryption time, and ciphertext length are all clearly O(log N). The key update time is
O(log N) in the worst case; amortizing over all time periods results in complexity O(1).
Finally, note that during any time period i the secret key SKi consists of at most log N
“node” secret keys skw; furthermore, each node secret key is of size O(log N). This implies
that the total secret storage is O(log2 N).

Acknowledgments

We are very grateful to Craig Gentry for helpful discussions regarding [12] as well as a
preliminary version of subsequent work.

References

[1] M. Abdalla, S. Miner, and C. Namprempre. Forward-Secure Threshold Signature
Schemes. RSA ’01.

[2] M. Abdalla and L. Reyzin. A New Forward-Secure Digital Signature Scheme. Asiacrypt
’00.

[3] R. Anderson. Two Remarks on Public-Key Cryptology. Invited lecture, CCCS ’97.
Available at http://www.cl.cam.ac.uk/users/rja14/.

[4] M. Bellare and S. Miner. A Forward-Secure Digital Signature Scheme. Crypto ’99.

[5] M. Bellare and B. Yee. Forward Security in Private-Key Cryptography. Manuscript,
Nov. 2001. Available at http://eprint.iacr.org.

2Similar results were previously shown by [18] in the context of forward-secure digital signatures.

8

[6] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Crypto
’01.

[7] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. Asiacrypt
’01.

[8] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. Crypto ’89.

[9] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Public-Key Cryptosystems.
Eurocrypt ’02.

[10] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Schemes.
Manuscript, April 2002.

[11] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. Crypto ’99.

[12] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Manuscript, May
2002. Available at http://eprint.iacr.org.

[13] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Public-
Key and Signature Schemes. CCCS ’97.

[14] J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption. Eurocrypt
’02.

[15] G. Itkis and L. Reyzin. Forward-Secure Signatures with Optimal Signing and Verifying.
Crypto ’01.

[16] A. Joux. A One-Round Protocol for Tri-Partite Diffie Hellman. ANTS ’00.

[17] H. Krawczyk. Simple Forward-Secure Signature From any Signature Scheme. CCCS
’00.

[18] T. Malkin, D. Micciancio, and S. Miner. Efficient Generic Forward-Secure Signatures
with an Unbounded Number of Time Periods. Eurocrypt ’02.

[19] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. PODC ’91.

[20] A. Shamir. How to Share a Secret. Comm. ACM, 22(11):612–613, 1979.

[21] W. Tzeng and Z. Tzeng. Robust Forward-Secure Digital Signatures with Proactive
Security. PKC ’01.

[22] E. Verheul. Self-Blindable Credential Certificates from the Weil Pairing. Asiacrypt ’01.

9

A Proof of Theorem 1

Our proof is largely similar to that of [12] except that, because we work in a different
context, we are able to simplify some details. As mentioned earlier, our results are not
immediately implied by those of [12] since (in their setting) they are unable to handle an
adaptive adversary when t = Ω(1). In our context, we are able to achieve security against
an adaptive adversary even when t = O(log k).

Assume an adversary A who has advantage δ in attacking the scheme of Section 3 in
the sense of fs-OWE. We show how to construct an adversary A′ solving the BDH problem
with probability at least (δ − 2−n)/qH2

N .
Adversary A′ is given (G1, G2, ê) as output by IG(1k), and is additionally given random

elements P,Q = sεP, P ′ = bP , and U0 = cP . The goal of A′ is to output ê(P, P)sεbc. A′ will
simulate an instance of the ke-PKE for adversary A. First, A′ sets PK = (G1, G2, ê, P,Q)
and gives PK to A. Next, A′ guesses a random index i∗ ∈ {0, . . . , N − 1} (this represents
a guess of the period for which A will request a challenge). Let 〈i〉 = i∗1 · · · i

∗
t and i∗0 = ε.

To answer the hash queries of A, algorithm A′ maintains lists H list
1 and H list

2 . To begin,
H list

2 will be empty. H list
1 is prepared by first having A′ select random x2, . . . , xt ∈ Zq and

then storing the tuples (i∗1, P ′), (i∗1i
∗
2, x2P), . . . , (i∗1 · · · i

∗
t , xtP) in H list

1 . Next, A′ generates
“node keys” {ski∗

0
···i∗

k−1
1}i∗

k
=0 as follows:

1. If i∗1 = 0, choose random y1 ∈ Zq. Store (1, y1P) in H list
1 and set sk1 = (y1Q, ∅).

2. Select random s′i∗
1

, s′i∗
1
i∗
2

, . . . , s′i∗
1
···i∗

t−1

∈ Zq.

3. For each 2 ≤ k ≤ t such that i∗k = 0:

(a) Choose random yk ∈ Zq and store
(

i∗1 · · · i
∗
k−1

1, ykP − (s′i∗
1
···i∗

k−1

)−1P ′
)

in H list
1 .

(b) Set ski∗
1
···i∗

k−1
1 =

(

s′i∗
1
···i∗

k−1

ykQ +
∑k−1

`=2
s′i∗

1
···i∗

`−1

x`Q,
(

s′i∗
1

Q, . . . , s′i∗
1
···i∗

k−1

Q
))

.3

A′ will respond to hash queries of A in the obvious way. If A queries Hb(X), then A′

checks whether there is a tuple of the form (X,Y) in H list
b . If so, the value Y is returned.

Otherwise, A′ chooses random Y from the appropriate range, stores (X,Y) in H list
b , and

returns Y .
We now verify that the node keys created above have the correct distribution. In case

i∗1 = 0, note that y1Q = sεy1P = sεH1(1) so that sk1 is of the correct form. For 2 ≤ k ≤ t,
define si∗

1
···i∗

k−1
= sεs

′
i∗
1
···i∗

k−1

. We then have:

s′i∗
1
···i∗

k−1

ykQ +

k−1
∑

`=2

s′i∗
1
···i∗

`−1

x`Q = si∗
1
···i∗

k−1
ykP − sεP

′ + sεP
′ +

k−1
∑

`=2

si∗
1
···i∗

`−1
x`P

= si∗
1
···i∗

k−1
(ykP − (s′i∗

1
···i∗

k−1

)−1P ′) + sεP
′

+
k−1
∑

`=2

si∗
1
···i∗

`−1
x`P

3For k = 2 the upper limit of the summation is less than the lower limit; by convention, we let the sum
in this case be 0.

10

= sεH1(i
∗
1) +

(

k−2
∑

`=1

si∗
1
···i∗

`
H1(i

∗
1 · · · i

∗
`+1)

)

+ si∗
1
···i∗

k−1
H1(i

∗
1 · · · i

∗
k−11).

Furthermore, s′i∗
1
···i∗

k−1

Q = si∗
1
···i∗

k−1
P . Thus, ski∗

1
···i∗

k−1
1 has the correct form for all k such

that i∗k = 0. Using these node keys, A′ can derive key SKi∗+1 with the correct distribution;
this implies that A′ can correctly respond to query breakin(i) of A for any i > i∗.

A′ now runs A, responding to hash queries as described previously. If A makes a query
breakin(i) for i ≤ i∗ or a query challenge(j) for j 6= i∗, then A′ aborts. Otherwise, A′

responds to the breakin(i) query by generating the appropriate node keys and giving these
to A (as mentioned previously, A′ can do this whenever i > i∗). A′ responds to the query
challenge(i∗) with 〈i∗, C〉, where C = (U0, x2U0, . . . , xtU0, V) and V is selected at random
from {0, 1}n. Note that, as long as A′ does not abort, this results in a perfect simulation of
the view of A.

Eventually (assuming A′ does not abort), A outputs a guess M in an attempt to break
the one-way security of the scheme. At this point, A′ picks a random tuple (X,Y) from
H list

2 and outputs X. Let X∗ = ê(P, P)sεbc = ê(Q,P ′)c. Let query be the event that, at the
end of the simulation, X∗ appears as the first element of some tuple in H list

2 and let correct

be the probability that A succeeds in correctly guessing M . By assumption, Pr[correct] = δ.
Since H2 is modeled as a random oracle, we have Pr[correct|query] = 2−n. Therefore:

δ = Pr[correct|query] Pr[query] + Pr[correct|query] Pr[query]

≤ Pr[query] + 2−n(1− Pr[query])

so that Pr[query] ≥ δ − 2−n. The probability that A′ does not abort is exactly 1/N .
Assuming A′ does not abort, A′ outputs the correct answer with probability Pr[query]/qH2

.
Theorem 1 follows.

11

