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Abstract

We consider communication sessions in which a pair of parties begin by running an au-
thenticated key-exchange protocol to obtain a shared session key, and then secure successive
data transmissions between them via an authenticated encryption scheme based on the session
key. We show that such a communication session meets the notion of a secure channel protocol
proposed by Canetti and Krawczyk [10] if and only if the underlying authenticated encryption
scheme meets two new, simple definitions of security that we introduce, and the key-exchange
protocol is secure. In other words, we reduce the secure channel requirements of Canetti and
Krawczyk to easier to use, stand-alone security requirements on the underlying authenticated
encryption scheme.
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1 Introduction

We consider communication sessions in which a pair of parties begin by running an authenticated
key-exchange (KE) protocol to obtain a shared session key, and then secure successive data trans-
missions between them via an authenticated encryption scheme, a shared-key-based encryption
scheme whose goal is to provide both privacy and authenticity, based on the session key. Many
popular Internet protocols follow this structure [21, 15, 12, 1]. One reason is that it minimizes com-
putationally intensive public-key cryptography by using more efficient symmetric-key cryptography
for the bulk of the communication.

At Eurocrypt 2001, Canetti and Krawczyk presented security definitions for protocols of this
form [10]. They refer to such protocols as network channel protocols (or channel protocols for short).
In their work, they derive a realistic adversarial model from [2] and formulate security definitions
using a mixture of both simulation-based and indistinguishability-based approaches. The former
allows them to realistically and naturally capture the security properties of channel protocols and
the settings in which the protocols are deployed. The latter allows them to prove security of the
protocols with relative ease. The result is the notion of secure channels, a notion that captures
the desired security properties of the communication channels themselves, rather than those of the
components used in constructing them, namely the underlying authenticated encryption schemes.

In contrast, most existing work has traditionally focused on security properties of encryp-
tion schemes. Examples include indistinguishability notions for asymmetric encryption schemes
pioneered in [17] and adapted to symmetric-key settings in [3], non-malleability notions defined
in [14, 3] and refined in [8], and integrity notions defined in [18, 5, 19]. Due to the simplicity and
ease of use of these definitions, this approach has proved fruitful and has become the standard way
to prove security of encryption schemes.

Our work uses this traditional approach to investigate security properties of the authenticated
encryption schemes underlying channel protocols. In particular, our goal is to address the follow-
ing question. Suppose one takes a “secure” KE protocol and combines it with an authenticated
encryption scheme as described above to obtain a channel protocol. What are the necessary and
sufficient conditions on the underlying authenticated encryption scheme for the resulting channel
protocol to be a secure channel per [10]? The answer to this question will allow us to analyze
security of channel protocols in a modular fashion: first consider the underlying KE protocol and
the underlying authenticated encryption scheme separately, then determine whether the former is
“secure” and whether the latter meets the necessary and sufficient conditions. If both are affir-
mative, then the channel protocol in question is a secure channel. Not only does this approach
simplify protocol analysis, but the necessary and sufficient conditions also help distill exactly the
security properties of authenticated encryption schemes that are needed to obtain secure channels.
This understanding can help guide cryptographers in designing future schemes for building secure
channels.

Krawczyk has already made some progress in this direction in [19]: he provides a neces-
sary condition for a class of authenticated encryption schemes, namely those constructed via the
“Authenticate-then-Encrypt” method,1 to yield a secure channel, assuming that the underlying
KE protocol is “secure.” Our goal is to provide both necessary and sufficient conditions that are
easy-to-use and can be applied to any authenticated encryption schemes, as opposed to schemes
of a certain form. To this end, we use the traditional approach of defining security since it yields

1Under this paradigm, a message authentication scheme and an encryption scheme are composed to obtain an
authenticated encryption scheme as follows. To encrypt a message M , first compute its MAC via a message au-
thentication scheme and encrypt the concatenation of M and the MAC to obtain the ciphertext to be transmitted.
Decryption works in a natural way.
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definitions that are simple and relatively easy to use.

Security model of Canetti and Krawczyk. In [10], Canetti and Krawczyk use the adversarial
model of [2]: an adversary is in control of all message delivery and the execution of the protocol.
In particular, once the setup phase of the protocol is completed, all parties in the system simply
wait for activations from the adversary. Possible activations include sending messages, receiving
messages, and establishing a session. Messages are delivered solely by the adversary under either of
the following models: the Authenticated-links Model (AM) and the Unauthenticated-links Model
(UM). Both models allow the adversary to drop messages and to deliver them out of order. In the
former, an adversary cannot inject messages and must deliver messages without modifications. In
the latter, it can inject fabricated messages and modify messages before delivering them. Section 2.1
describes the security model of [10] in more detail.

Canetti and Krawczyk also present a security definition for KE protocols based on the approach
of [6] in this adversarial model. Intuitively, they consider a KE protocol to be secure if, when the
two parties involved in the exchange complete the protocol, (1) they arrive at the same session key,
and (2) it is hard for an adversary to distinguish the session key from a random value chosen from
the distribution of keys generated by the protocol.

Secure channels. Canetti and Krawczyk define a secure channel as a channel protocol that is
both a secure (network) authentication protocol and a secure (network) encryption protocol. The
definition of the former uses a simulation-based approach: a protocol secure in this sense must
emulate ideal message transmissions where the notion of emulation amounts to computational
indistinguishability of protocol outputs. To this end, [10] defines a session-based message trans-
mission (SMT) protocol, a protocol that does nothing more than its name suggests. For example,
to establish a session, a party simply records in its output that a session has been established. To
send a message, a party simply puts the message in the message buffer and records in its output
that the message has been sent.

The definition of secure encryption protocols applies an indistinguishability-based approach
similar to the “find-then-guess” game in [3] (which in turn is an adaptation of semantic security
of [17] into the symmetric setting) in this adversarial model. Specifically, the protocol is run in
the UM against an adversary which, at some point during the run, chooses a session it wishes to
break. The rest of the run closely follows the standard find-then-guess game with a few important
exceptions. See Section 2.2 for details.

Capturing the essence of secure channels. Following [10], we define a transform to specify
how the channel protocols considered in this paper are generated: given a KE protocol π and an au-
thenticated encryption scheme AE , we associate with them a channel protocol NC = NetAE(π,AE)
obtained by applying the transform to π and AE . This transform is defined in Section 2.3. We
focus on protocols constructed via this transform. Our goal is to find simple necessary and sufficient
conditions on the underlying authenticated encryption scheme such that the protocol is a secure
channel, assuming that the KE protocol is secure. We define two simple notions: SINT-PTXT
and IND-CCVA. The former (resp. the latter) is a necessary and sufficient condition on the un-
derlying authenticated encryption scheme such that the channel protocol is a secure authentication
(resp. encryption) protocol. In effect, this reduces the secure channel requirements of Canetti
and Krawczyk to easier to use, stand-alone security requirements on the underlying authenticated
encryption scheme.

We define the two notions using the traditional approach: we give an adversary access to certain
oracles, run it in an experiment, and then measure the probability that it succeeds. Section 3
describes these notions in detail. Precise statements of our main results are presented in Section 4
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along with the proof ideas.

Technical issue. The notion of secure authentication protocols captures reasonable authenticity
guarantees such as resistance against replay attacks and forgeries. Therefore, to determine if a
channel protocol provides authenticity when these attacks are of concern, it suffices to simply de-
termine whether the protocol is a secure authentication protocol. However, due to a technical issue
arisen from the notion of secure encryption protocol per [10], the same cannot be said regarding
privacy. In particular, there exists a channel protocol that clearly does not provide semantic secu-
rity [17] (i.e., partial information about transmitted messages may be leaked) and yet is provably a
secure encryption protocol. Arguably, however, this technical issue does not arise in many practical
protocols, including the popular SSH, SSL, and TLS. Consequently, the notion of secure encryption
protocol can still be applied to these protocols to obtain meaningful results regarding their privacy
guarantees. Section 5 discusses this issue in more detail.

Future work. Canetti and Krawczyk have recently proposed an alternative notion for secure
channels that implies their secure channel notion of [10]. This new notion is called universally
composable secure channels [11]. It provides strong composability guarantees, which means that its
security guarantees hold even if the channel protocol is used in combination with other protocols.
Thus, a natural research direction is to determine whether we can use the same approach taken
here to derive simple necessary and sufficient conditions for an authenticated encryption scheme to
yield a universally composable secure channel.

2 Definitions

2.1 Preliminaries

Since the authenticated encryption schemes considered in [10] have stateful decryption algorithms,
we modify the standard syntax of symmetric authenticated encryption schemes, which assumes
that decryption algorithms are stateless [3], to allow for stateful decryption algorithms. We also
explicitly specify the syntax of a message-driven protocol based on [2, 10] and restate the security
model of [10] in more detail here.

Syntax of (symmetric) authenticated encryption schemes. A (symmetric) authenticated
encryption scheme AE = (K, E ,D) consists of three algorithms. The randomized key generation

algorithm K takes as input a security parameter k ∈ N and returns a key K; we write K
R

← K(k).
The encryption algorithm E could be randomized or stateful. It takes the key K and a plaintext M
to return a ciphertext C; we write C

R

← EK(M). The decryption algorithm D could be deterministic,
and it could be either stateless or stateful. It takes the key K and a string C to return either the
corresponding plaintext M or the symbol ⊥; we write x← DK(C) where x ∈ {0, 1}∗ ∪{⊥}. Above,
a randomized algorithm flips coins anew on each invocation, and a stateful algorithm uses and then
updates a state that is maintained across invocations.

Since the decryption algorithm is allowed to be stateful here, the usual correctness condition,
which requires that DK(EK(M)) = M for all M in the message space, is replaced with a less
stringent condition requiring only that decryption succeed when the encryption and decryption
processes are in synchrony. More precisely, the following must be true for any key K and plaintexts
M1,M2, . . .. Suppose that both EK and DK are in their initial states. For i = 1, 2, . . ., let Ci =
EK(Mi) and let M ′

i = DK(Ci). It must be that Mi = M ′
i for all i. Notice that this imposes no

correctness requirement when ciphertexts are received out of order. It is up to an individual scheme
to decide how to handle ciphertexts that arrive out-of-order. For example, it can reject all such
ciphertexts or accept only the ones that decrypt to certain seen messages. We stress that since this
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requirement is a part of the syntax of encryption schemes, it is liberal by design (messages that
arrive out-of-order can have arbitrary decryptions under this requirement!).2 The goal here is to
ensure that as many encryption schemes as possible can be analyzed under the security notions of
interest.

Syntax of message-driven protocols. A message-driven protocol NC = (IG,B, I, x, l, n, r,
activation list) consists of three algorithms, four positive integer parameters, and a list of activations
that can be invoked on a party along with instructions on how the party should handle them. Let
k ∈ N be the security parameter. The parameter n specifies the upper bound of the number of
parties in the system. The randomized input generation algorithm IG takes as inputs k and an
x-bit random string and returns n strings (x1, . . . , xn). The randomized bootstrapping algorithm3

B takes as inputs k and an l-bit random string and returns n + 1 strings (I0, . . . , In). For each
party Pi, the possibly randomized initialization algorithm I takes as inputs I0, Ii, xi, and an r-bit
random string. This may cause the party to update its internal state, to generate outputs to be
appended to its local output, and/or to produce messages to be sent to other parties.

Message-driven protocol execution [10]. Let k ∈ N be the security parameter. A protocol
NC = (IG,B, I, x, l, n, r, activation list) is executed against an adversary as follows. First, random
coins for IG,B, and I are generated, and IG and B are executed. Then, each party Pi executes the
initialization algorithm I giving it appropriate inputs as described above. When the initialization
algorithm completes, the party waits for incoming activations. Finally, the adversary is run using
k, I0, and as many random coins as it needs. The adversary takes over and activates any parties it
wishes to at this point.

Upon receiving an activation, a party executes the corresponding algorithm as specified in
activation list. Again, the result of the execution may be internal state updates, local output
generation, and/or outgoing messages. In the last case, the party appends the message in the
message buffer M along with its source, destination, and, in the case of a session-based protocol,
the associated session. As an example, upon receiving a “send” activation from the adversary,
a party finds the algorithm for handling a send activation in its activation list and executes the
algorithm. This typically involves encrypting the message, appending the ciphertext (along with
its source, destination, and session ID) to M, and recording the event (e.g., a record to the effect
“sent M to P within session s”) in the party’s local output.

Protocol output. The output of a running protocol is the concatenation of the cumulative local
outputs of all the parties, together with the output of the adversary. Furthermore, since all actions
of the adversary are recorded in the local outputs, they are part of the protocol output.

Session-based message-driven protocols [10]. A session-based message-driven protocol de-
fines at least two activations: establish-session and expire-session. They specify how each party can
establish a session between itself and another. We denote by (P, P ′, s) a session defined by the
initiating party P , the responding party P ′, and the session ID s. The two parties P and P ′ are said
to play the roles of an initiator and a responder, respectively. Two identical sessions (i.e., identical
session IDs, participating parties, and their respective roles) from the point of view of the initiator
and the responder are called matching sessions. In other words, if in an execution of a protocol an
initiating party P has a session (P, P ′, s) and a responding party P ′ has a session (P, P ′, s), then

2Recall that syntax and security notion are two separate concepts. Apparently “insecure” schemes such as one
that allows arbitrary decryptions for messages that arrive out-of-order are in fact legitimate encryption schemes, i.e.
they follow the syntax defined here. However, they are not secure under integrity notions, for instance.

3Known as an initialization function in [2, 10]. We drop their terminology here to avoid confusion with the
initialization algorithm.
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we say that the two sessions are matching.The defining feature of session-based protocols is that
individual sessions are maintained separately from one another even if they are established between
the same pair of parties.

Key-exchange protocols. A key-exchange (KE) protocol is a session-based message-driven
protocol that specifies how two parties can establish a shared session key to be used during a
session. Upon an establish-session activation, a party triggers a sub-protocol to establish a session
with another party. This sub-protocol will likely result in further activations such as message sends
and receipts. Once the sub-protocol completes, the two parties write on their outputs the resulting
session key and mark the entry as “secret.” Note that, although potentially confusing, the term
“key-exchange protocol” is commonly used in the literature to refer to this sub-protocol rather than
the entire protocol. Upon an expire-session activation of a particular session, the party erases the
corresponding session key from its output and any internal state it may have (e.g., its memory) and
terminate the session. Notice that this means that a session can be unilaterally expired. The goal
of this activation is to allow KE protocols to provide perfect forward secrecy of sessions, a property
that past session keys remain secret even after long-term keys are compromised [9, 13].

Network channel protocols. A network channel protocol (or a channel protocol for short) is
a session-based message-driven protocol with two additional activations: send and incoming. They
specify what a party running the protocol should do to send and receive a message.

Power of an adversary. When interacting with parties executing a session-based message-
driven protocol, an adversary is allowed to access the contents of each party’s local output except
those marked as “secret.” It can also perform the following actions: party activation, party corruption,
session-state reveal, and session-output reveal. In addition to these actions, an adversary against a
KE protocol can also perform a session-key reveal action against a party to obtain a session key. A
session is considered exposed if it belongs to a corrupted party, has been subjected to a session-
state reveal or a session-output reveal, or has a matching session that has been exposed. For
completeness, we include a detailed description of these actions in Appendix A.

Authenticated and unauthenticated links models. In the Authenticated-links Model
(AM), the adversary can perform all of the actions mentioned above. Furthermore, all message
delivery is performed by A: to deliver a message in the message bufferM, the adversary A removes
it fromM and activates the receiving party with the message as an incoming message. We empha-
size that A can deliver messages in any arbitrary order and can drop messages from M entirely.
However, it cannot deliver messages that are not inM, and when it does deliver a message, it must
do so without any modifications to the message. On the other hand, in the Unauthenticated-links
Model (UM), not only can a UM adversary perform all of the actions permitted to an AM adver-
sary, but it can also deliver messages that are not inM or modify messages inM before delivering
them.

Notation. We use |r| to denote the length in bits of a string r. Let k ∈ N be the security parameter,
and let U be an adversary. Let NC = (IG,B, I, x, l, n, r, activation list) be a session-based message-
driven protocol. We follow the notation of [2, 10] for the protocol output. We describe it here in
detail for the UM. The AM is done similarly except that the bootstrapping algorithm is ignored
and its outputs are omitted. We denote by UNADVπ,U(k, ~x,~r) the output of the UM adversary U
running against parties executing the protocol π with security parameter k, inputs ~x = (x1, . . . , xn),
and coins ~r = r′, r′′, r0, . . . , rn where |r′| = x, |r′′| = l, and |r0| = . . . = |rn| = r. We denote by
UNAUTHπ,U (k, ~x,~r)i the cumulative output of the party Pi running the protocol π with security pa-
rameter k, inputs ~x, and coins ~r against the UM adversary U . Then, we let UNAUTHπ,U (k, ~x,~r) =
UNADVπ,U(k, ~x,~r),UNAUTHπ,U (k, ~x,~r)1, . . . ,UNAUTHπ,U (k, ~x,~r)n and let UNAUTHπ,U (k) be
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the random variable describing UNAUTHπ,U (k, ~x,~r) when ~r is randomly chosen and ~x is generated
via IG(k, r′). We denote by UNAUTHπ,U the ensemble {UNAUTHπ,U(k)}k∈N .

2.2 Secure Channels per Canetti and Krawczyk [10]

In [10], Canetti and Krawczyk define a secure channel as a channel protocol that is both a (secure)
authentication protocol and a (secure) encryption protocol. For authentication protocols, their
approach is to first define a protocol considered ideal as a message authentication protocol called
the SMT protocol. A channel protocol is considered a secure authentication protocol if it emulates
the SMT protocol in the UM. Below, we present the concept of protocol emulation, the SMT
protocol, and the definition of secure authentication protocols in Definition 2.1, Construction 2.2,
and Definition 2.3, respectively.

Definition 2.1 [Protocol Emulation [2, 10]] Let π, π ′ be message-driven protocols. We say that
π′ emulates π in the UM if, for any UM adversary U , there exists an AM adversary A such that
AUTHπ,A and UNAUTHπ′,U are computationally indistinguishable.

Construction 2.2 [SMT Protocol [10]] The protocol SMT is a session-based message-driven
protocol with the following activations: establish-session, expire-session, send, and incoming. Upon
an establish-session activation, a party records the event accordingly in its output. Upon an
expire-session activation, a party checks that the session exists, marks the session as expired, and
records the event accordingly in its output. When a party receives a send activation involving a
message, a partner, and a session ID, it checks that the session is established and is not expired.
If so, it sends the given message to its partner via the specified session. Then, it records the event
accordingly in its output. Finally, upon an incoming activation, a party checks that the session is
established and is not expired. If so, it records the event accordingly in its output.

Definition 2.3 [Network Authentication Protocol Security [10]] A protocol is considered to
be a secure authentication protocol if it emulates the SMT protocol in the UM.

In defining secure encryption protocols, [10] adapts the indistinguishability-based approach to a
multi-party computation setting. We present their security definition here. In what follows,
the activation send∗(P,Q, s,Mb) has the same effects as send(P,Q, s,Mb) except that the party
Q merely records the fact that a message is sent but not the actual contents of the message,
i.e., P records the entry “sent a message to Q within session s”. Similarly, the activation
incoming∗(Q,P, s, C,Mb) has the same effects as incoming(Q,P, s, C) except that, if the decrypted
message of C is equal to Mb, then Q merely records the fact that a message is received but not
the actual contents of the message Mb, i.e., Q records the entry “received a message from P
within session s”. For completeness, these two activations are defined in detail in Appendix B.

Let b be a bit. In the experiment below, an adversary U runs in the UM, and its goal is to
break one session of its choice by performing an action called test-session against the session and
then doing what it can to guess the bit b. Once U picks a session, say (P,Q, s), it outputs a pair of
messages, say (M0,M1). The sender P is then activated to send Mb. However, if P records in its
local output at this point that it sends Mb, then U can easily win the game by simply looking at
P ’s output. Therefore, P is activated with send∗(P,Q, s,Mb), rather than a regular send activation.
The rest of the run continues in the same way as before except that now the receiving party of the
tested session uses incoming∗(Q,P, s, C,Mb) to handle incoming messages. The reason for this is
the following: if Q records all decryptions of incoming ciphertexts, U can easily determine the bit
b by simply taking the challenge ciphertext corresponding to Mb, handing it to Q as an incoming
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ciphertext, then seeing what Q writes on its output. The activation incoming∗ prevents this trivial
attack.

Unfortunately, the game in its present form allows U to easily win via another trivial attack.
Suppose the tested session is (P,Q, s). First, U picks any message M , activates P with a send
activation to send M to Q via s, and outputs the challenge message pair (M,M ′) where M 6= M ′.
As a result of the send activation, P encrypts M to obtain a ciphertext C and appends C to the
message buffer. Now, U activates the receiver Q with the ciphertext C as an incoming message
from P via session s. If Q does not record the decrypted message, then C corresponds to M ,
and thus b = 0. Otherwise, C corresponds to M ′, and thus b = 1. Therefore, to prevent this
trivial attack, [10] requires that an adversary never ask for an encryption of a particular message
more than once. This requirement is can be easily implemented using counters. For example, the
encryption algorithm can prepend an internal counter to the input message before encrypting the
resulting string to obtain the ciphertext. In fact, the use of this mechanism is common in practical
Internet protocols including SSH [21], SSL [15], and TLS [12]. Definition 2.4 below describes the
security of network encryption protocols more precisely.

Definition 2.4 [Network Encryption Protocol Security [10]] Let k ∈ N. Let NC = (IG,B, I, x,
l, n, r, activation list) be a channel protocol. Let U be a UM attacker, and let rU : N → N be the
function specifying the upper bound of the running time of U in terms of k. Consider the following
experiment:

Experiment Expind-ne-b
NC,U (k)

r′
R

← {0, 1}x ; r′′
R

← {0, 1}l ; r0
R

← {0, 1}rU (k) ; (x1, . . . , xn)← IG(k, r′) ; (I0, . . . In)← B(k, r′′)

For i = 1, . . . , n do ri
R

← {0, 1}r ; start Pi on (I0, Ii, xi, ri)
Run U on input (k, I0, r0), carrying out U ’s actions as specified in NC
. When U submits test-session(Pi, Pj , s0) and outputs (M0,M1)

— Activate Pi with send∗(Pi, Pj , s0,Mb)
. Continue carrying out U ’s actions as specified in NC except

— Whenever U activates Pj with incoming(Pj , Pi, s0, C),
Activate Pj with incoming∗(Pj , Pi, s0, C,Mb) instead

Until U halts and outputs a bit d
Output d

Above, we require that U submit only one test-session query and that it not expose the tested session
thereafter. Furthermore, for the tested session, we require that U never invoke send activations
involving M0 or M1 and also never invoke send activations involving a particular message more
than once. We define the advantage of the adversary via

Advind-ne
NC,U (k) = Pr[Expind-ne-1

NC,U (k) = 1 ]− Pr[Expind-ne-0
NC,U (k) = 1 ] .

The channel protocol NC is said to be a secure encryption protocol in the UM if the function
Advind-ne

NC,U (·) is negligible for any UM adversary U whose time-complexity is polynomial in k.

2.3 From KE and Authenticated Encryption Schemes to Channel Protocols

In [10], Canetti and Krawczyk use a template by which one can describe how a KE protocol and an
authenticated encryption scheme can be used as building blocks for a channel protocol. We define
a transform based on this template.

Construction 2.5 [Transform [10]] Let π = (IG,B, I, x, l, n, r, activation list) be a KE protocol,
and let AE = (K, E ,D) be an authenticated encryption scheme. We associate with π andAE a chan-

9



nel protocol NAE = NetAE(π,AE) = (IG,B, I, x, l, n, r, alist) where alist contains the activations in
activation list together with the following activations.

1. establish-session(Pi, Pj , s, role): This triggers a KE-session under π within Pi with partner Pj ,
session ID s, and role ∈ {initiator, responder}. If the KE-session completes, Pi records in its local
output the entry “established session s with Pj” and the generated session key marked as
“secret.” Otherwise, no action is taken.

2. expire-session(Pi, Pj , s): If the session (Pi, Pj , s) exists at Pi, the party Pi marks the session as
expired and erases the session key. Then, Pi records in its local output “expired session s
with Pj”. Otherwise, no action is taken.

3. send(Pi, Pj , s,M): The party Pi checks that the session (Pi, Pj , s) has been completed and not

expired. If so, it computes C
R

← EK(M) using the corresponding session key K, puts (Pi, Pj , s, C)
in the message bufferM, and records “sent M to Pj within session s” in the local output.
Otherwise, no action is taken.

4. incoming(Pj , Pi, s, C): The party Pj checks that the session (Pi, Pj , s) has been completed and
not expired. If so, it computes M ← DK(C) under the corresponding session key K. If M 6= ⊥,
then Pj records “received M from Pi within session s”. Otherwise, no action is taken.

3 Simple Characterizations of Authenticated Encryption Schemes

for Secure Channels

We propose two new security notions for authenticated encryption schemes: SINT-PTXT and
IND-CCVA. The goal is to capture the necessary and sufficient properties of the authenticated
encryption scheme such that, once the transform per Construction 2.5 is applied to the scheme and
a KE protocol, the resulting channel protocol is a secure channel, assuming that the KE protocol
“securely implements” the key generation algorithm of the authenticated encryption scheme. We
postpone a precise definition of the term in quotes to Section 4. In what follows, we use x

R

← f(y)
to denote the process of running a possibly randomized algorithm f on an input y and assigning
the result to x. If A is a program, A⇐ x means “return x to A.” The time-complexity referred to
in our definitions is the worst case total execution time of the entire experiment, plus the size of
the code of the adversary, in some fixed RAM model of computation. Also, oracles corresponding
to stateful algorithms maintain their states across invocations.

First, we capture the notion of a secure authentication protocol with SINT-PTXT. Recall that
a protocol is considered a secure authentication protocol if it emulates the SMT protocol in the
UM where SMT is an ideal session-based message transmission protocol. Under the SMT protocol
in the AM, when a party sends a message M to another party, the message M is simply put on
the buffer. Since the adversary is operating in the AM, it can drop messages but cannot modify or
inject messages. Therefore, a secure authentication protocol must ensure that each sent message is
received at most once (i.e., replay attacks are unsuccessful), and that its contents are left intact.

We define the SINT-PTXT notion in Definition 3.1. An adversary is given access to an encryp-
tion oracle and a decryption oracle. This captures its ability to obtain encryption and decryption
of messages and ciphertexts of its choice. We use a multiset, denoted T below, to keep track of
messages that have been sent but not yet received. Whenever a message is received, it is removed
from the multiset. If an adversary is able to submit a query to the decryption oracle that results in
a message that is not in the multiset T , i.e., the message is not one of those waiting to be received,
then it wins.
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Definition 3.1 [SINT-PTXT] Let AE = (K, E ,D) be an authenticated encryption scheme. Let
k ∈ N. Let A be an adversary with access to two oracles. Consider the following experiment.

Experiment Exp
sint-ptxt
AE ,A (k)

K
R

← K(k) ; T ← ∅ // T is a multiset

Run AEK(·),DK(·)(k)
Reply to EK(M) as follows:

C
R

← EK(M) ; T ← T ∪ {M} ; A⇐ C
Reply to DK(C) as follows:

M ← DK(C)
If M = ⊥ Then A⇐M
Else If M ∈ T Then T ← T − {M} ; A⇐M

Else return 1
Until A halts
Return 0

We define the advantage of the adversary via

Adv
sint-ptxt
AE ,A (k) = Pr[Exp

sint-ptxt
AE ,A (k) = 1 ] .

The scheme AE is said to be SINT-PTXT secure if the function Adv
sint-ptxt
AE ,A (·) is negligible for any

adversary A whose time-complexity is polynomial in k.

Now, we capture the notion of a secure encryption protocol. To capture an adversary’s ability to
obtain encryption and decryption of messages and ciphertexts of its choice, we give it access to an
encryption oracle EK(·) and a decryption oracle DK(·). The definition follows that of [10] closely
and straightforwardly. Let b ∈ {0, 1}. Recall that, in the definition of secure encryption protocol
per [10], once the adversary outputs a challenge message pair (M0,M1), the receiver of the tested
session does not record the decrypted message if it is equal to the secret message Mb. Therefore,
we capture this through an oracle denoted by DK(·,Mb). This oracle is the same as the standard
decryption oracle DK(·) except the following. If a given ciphertext decrypts to Mb, then the oracle
DK(·,Mb) returns a special symbol ±. Otherwise, it returns the decrypted message. Additionally,
since an adversary in the definition per [10] cannot obtain encryptions of a particular message more
than once, we also impose the same restriction on the adversary in our experiment.

Definition 3.2 [IND-CCVA] Let AE = (K, E ,D) be an authenticated encryption scheme. Let
b ∈ {0, 1} and k ∈ N. Let A be an adversary that has access to three oracles. Consider the following
experiment.

Experiment Expind-ccva-b
AE ,A (k)

K
R

← K(k)

(M0,M1, st)← AEK(·),DK(·)(k, find) ; C
R

← EK(Mb) ; d← AEK(·),DK(·,Mb)(k, guess, C, st)
Return d

The computation EK(Mb) above is a call to the encryption oracle. Also, the oracle DK(·,Mb) shares
states with (i.e., is initialized with the current states of) DK(·) if any. Furthermore, we require
that A never query EK(·) on M0 or M1 and also never query EK(·) on a particular message more
than once. We define the advantage of the adversary via

Advind-ccva
AE ,A (k) = Pr[Expind-ccva-1

AE ,A (k) = 1 ]− Pr[Expind-ccva-0
AE ,A (k) = 1 ] .

The scheme AE is said to be IND-CCVA secure if the function Adv ind-ccva
AE ,A (·) is negligible for any

adversary A whose time-complexity is polynomial in k.
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4 SINT-PTXT and IND-CCVA are Necessary and Sufficient

Our results uses Definition 4.1 below. It describes how a key generation algorithm of an authenti-
cated encryption scheme should relate to a KE protocol of a channel protocol based on the authen-
ticated encryption scheme. In particular, the KE protocol should “implement” the key generation
algorithm, meaning that two parties that have completed the KE protocol with each other should
end up with the same key which in turn should be drawn from the distribution generated by the
key generation algorithm. The definition, which is adapted from [10], captures this property more
precisely via the following game. Let k ∈ N be the security parameter. Let Π be a session-based
message-driven protocol that includes a KE protocol π as a sub-protocol, and let U be a UM adver-
sary running against Π. The adversary U can carry out actions specified in Π plus one additional
activation, namely a test-session-key query, against at most one unexpired and unexposed session
s whose KE portion is completed. Once U perform a test-session-key query, a bit b is chosen at
random. If b = 0, then U receives the session key for s. Otherwise, it receives a value r

R

← K(k).
The adversary wins if it correctly guesses the bit b.

Definition 4.1 [Securely Implementing a Key Generation Algorithm via a Key Ex-

change Protocol.] Let k ∈ N be the security parameter. A KE protocol π is said to securely
implement a key generation algorithm K in the UM during the run of a protocol if, for any adversary
U in the UM,

— When an uncorrupted party completes π with another uncorrupted party, they both arrive at
the same session key, AND

— U wins the game above with probability no more than 1/2 plus a negligible function of k.

We present our results here. They state that, respectively, SINT-PTXT and IND-CCVA are nec-
essary and sufficient for the notions of network authentication and network encryption of Canetti
and Krawczyk [10]. We present the theorems and their proof ideas below. The full proofs in detail

are in Appendix C. For brevity, we write X
s
≈ Y when the ensembles X and Y are statistically

indistinguishable.

Theorem 4.2 [Given a secure KE, SINT-PTXT ⇔ Secure Authentication Protocol]
Let AE = (K, E ,D) be an authenticated encryption scheme, and let π be a KE protocol. Let
NAE = NetAE(π,AE) be the associated channel protocol as per Construction 2.5. Suppose that π
securely implements K in the UM during the run of NAE. Then, AE is SINT-PTXT secure if and
only if NAE is a secure authentication protocol.

We sketch the proof for each direction of the “if and only if,” assuming throughout that π se-
curely implements K. For the “if” direction, we show that if AE is SINT-PTXT, then given
any UM adversary U against NAE, we can construct an AM adversary A against SMT such that

AUTHSMT,A
s
≈ UNAUTHNAE,U . The crux of this proof is essentially the same as that of Theorem 12

of [10], and thus, we do not discuss it further.
For the “only if” direction, we show that, given any sint-ptxt adversary F against AE , we

can construct a UM adversary U against NAE such that, for any AM adversary A against SMT,

AUTHSMT,A 6
s
≈ UNAUTHNAE,U as follows. The adversary U starts two parties P1 and P2. Then, it

activates P1 with establish-session(P1, P2, s) and runs F . Whenever F submits an encryption query
EK(M), the adversary U activates the party P1 with send(P1, P2,M, s). Similarly, whenever F sub-
mits a decryption query DK(C), the adversary U activates the party P2 with incoming(P2, P1, C, s).
Recall that a successful adversary F can essentially replay a message or forge a ciphertext the de-
crypts to a previously-unseen message. Since such actions are not allowed in the AM, there can be
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no AM adversaries that can generate the global output that is statistically indistinguishable from
that generated by U .

Theorem 4.3 [Given a secure KE, IND-CCVA ⇔ Secure Encryption Protocol] Let
AE = (K, E ,D) be an authenticated encryption scheme, and let π be a KE protocol. Let NAE =
NetAE(π,AE) be the associated channel protocol as per Construction 2.5. Suppose that π securely
implements K in the UM during the run of NAE. Then, AE is IND-CCVA secure if and only if
NAE is a secure encryption protocol.

We sketch the proof for each direction of the “if and only if,” assuming throughout that π securely
implements K. For the “if” direction, we show that, given any ind-ne adversary U against NAE, we
can construct an ind-ccva adversary A against AE such that A’s success probability is no less than
that of U divided by the total number of sessions established by U over its run. The adversary
A simply simulates U as in the experiment Expind-ne-b

NAE,U (k) (where b is a bit) with one exception:
during the find phase, A chooses a session at random and uses its oracles to encrypt and decrypt
messages in this session. If U submits a test-session query on the chosen session and outputs a pair
of test messages, A does too. (Otherwise, A aborts.) Then, A enters its guess phase and continues
the simulation exactly as before. It halts and outputs what U outputs. Since π securely implements
K, the adversary A correctly simulates U . Thus, it succeeds if U does.

For the “only if” direction, we show that, given any ind-ccva adversary A against AE, we can
construct an ind-ne adversary U against NAE such that U ’s success probability is no less than
that of U using a similar technique as before: U establishes a session between two parties, then
runs A, answering its encryption and decryption queries by making send and incoming activations
respectively for the session. Finally, U halts and outputs what A outputs. Since π securely
implements K, the adversary U correctly simulates A. Thus, it succeeds if A does.

5 Understanding Secure Channels through SINT-PTXT and IND-
CCVA

We explore the new notions by taking the standard approach of relating them to familiar notions.
Since the two notions are necessary and sufficient for secure channels, the knowledge we gain from
this exercise is applicable to secure channels as well. In our comparisons, we use the following
terminology. Suppose X and Y are security notions. We say that X implies Y if any scheme secure
under X is secure under Y . We say that X does not imply Y if there exists an encryption scheme
that is secure under X but is insecure under Y . We say that A is equivalent to B if A implies B
and vice versa. We say that X is strictly stronger than Y if X implies Y but Y does not imply X.
Finally, we say that X and Y are incomparable if X does not imply Y and if Y does not imply X.

In this section, we discuss relations among notions of symmetric encryption as summarized in
Figure 1. Our strategy for showing that X implies Y is the standard reduction approach: given
an adversary that successfully breaks the scheme under the notion Y , construct an adversary that
successfully breaks the scheme under the notion X. To show that X does not imply Y , we start
with a scheme secure under X, then modify it to obtain a scheme that remains secure under X but
is insecure under Y .

The standard privacy notions we consider here are indistinguishability under chosen-plaintext
and adaptive chosen-ciphertext attacks (IND-CPA and IND-CCA). The original definitions of these
notions were in the asymmetric setting [17, 16, 14, 20] but can be “lifted” to the symmetric setting
using the encryption oracle based template of [3]. We use the “find-then-guess” definitions per [3]

13



privacy integrity

IND-CCA IND-CCVA

IND-CPA

SINT-PTXT INT-CTXT

INT-PTXT

[4] [5]

Figure 1: Relations among notions of symmetric encryption: An arrow from a notion X
to a notion Y denotes that X is strictly stronger than Y . A dashed line between a notion X
and a notion Y denotes that the two notions are incomparable. The relations established in other
papers are annotated with the corresponding citations. For simplicity, only interesting relations are
shown here. We emphasize that the existing notions in this figure (those in unshadowed frames) are
variants of the standard notions in the literature in which oracles maintain states across invocations.

throughout our discussions here. In particular, for both notions, an adversary A plays a game in
which it is to “find” a pair of challenge messages (M0,M1), obtain the ciphertext corresponding
to the encryption of one of the challenge messages, and then “guess” a bit indicating to which
challenge message the ciphertext corresponds. For IND-CPA, A is given access to an encryption
oracle throughout the game. For IND-CCA, A is given access to both an encryption oracle and a
decryption oracle throughout the game. (This notion is also known as IND-CCA2 [4].)

The integrity notions considered here are integrity of plaintexts [5] and integrity of ciphertexts [7,
18, 5]. An adversary attacking a scheme under these notions is given access to two oracles: a
standard encryption oracle and a verification oracle— an oracle that returns a bit indicating whether
the given ciphertext is valid, i.e., whether it decrypts to ⊥. An adversary succeeds in breaking a
scheme under the INT-PTXT notion if it can forge a ciphertext that decrypts to a “new” message,
i.e., a message that has not been submitted to the encryption oracle before. Similarly, it succeeds
in breaking a scheme under the INT-CTXT notion if it can forge a “new” and valid ciphertext, i.e.,
a valid ciphertext that has not been returned by the encryption oracle.

Strictly speaking, the definitions of the existing security notions considered here, namely IND-
CPA, IND-CCA, INT-PTXT and INT-CTXT, do not explicitly deal with encryption schemes with
stateful decryption algorithms. Therefore, to compare them to our proposed notions, namely IND-
CCVA and SINT-PTXT, we make one small modification to existing definitions. Specifically, we
allow each oracle used in the definitions to maintain states across invocations. It is easy to see
that, this modification notwithstanding, the relations among existing notions shown in [4] and [5]
remain the same. It is also easy to see that any schemes secure under the original definitions are
secure under the definitions with this modification. Henceforth, we use the original names to refer
to the modified definitions.

Now we justify all relations among the six notions shown in Figure 1 although the figure only
shows some of them. We group the justifications of the relations into three categories: those for
relations among privacy notions, those for relations among integrity notions, and those for relations
across the two categories. Not all of the relations are interesting. Nonetheless we include them all
here for completeness. We conclude this section with a brief discussion.
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5.1 Privacy Notions

IND-CCA 6=⇒ IND-CCVA. We show that IND-CCA does not imply IND-CCVA. The idea here
is to construct an encryption scheme for which there exists a valid ciphertext whose decryption is
known but the ciphertext itself is never produced. This allows an ind-ccva adversary to submit
a valid ciphertext to the decryption oracle without the help of the encryption oracle and to then
use the decryption oracle’s response to its advantage. In more detail, given an IND-CCA secure
scheme SE , we construct a scheme SE ′ as follows. The key generation remains the same. The
encryption algorithm prepends a bit 0 to all ciphertexts. The decryption algorithm strips the first
bit b off of the input ciphertext. If b = 0, then it returns the decryption of the rest of the ciphertext.
Otherwise, it returns a single bit 0. It is easy to see that SE ′ is IND-CCA secure. (In fact, this
is shown in the proof of Proposition 3.3 in [5].) However, SE ′ is not secure under IND-CCVA. An
adversary can simply output a pair of bits (0, 1) as the challenge messages then request for the
decryption of the ciphertext 10. If the oracle’s response is ±, then it outputs 0. Otherwise, it
outputs 1. It wins with probability one.

IND-CCVA 6=⇒ IND-CPA. Recall that, in the definition of secure encryption protocols, an ind-ne
adversary U is not allowed to submit send activations involving a particular message more than
once for the tested session. This translates into a similar restriction for ind-ccva adversaries since
IND-CCVA is necessary and sufficient for the notion of secure encryption protocols. Unfortunately,
under this restriction, one can show that there exists a stateless and deterministic encryption
scheme secure under IND-CCVA. An example of such a scheme is presented in Appendix D. Now,
it is well-known that stateless deterministic encryption schemes are not secure under the standard
privacy notions. Furthermore, it is easy to see that they are not secure under the variant of the
privacy notions with stateful oracles considered here. Consequently, this means that IND-CCVA
does not imply IND-CPA and IND-CCA.

IND-CPA 6=⇒ IND-CCVA. Since IND-CCA does not imply IND-CCVA and since IND-CCA
implies IND-CPA, we have that IND-CPA does not imply IND-CCVA.

IND-CCVA 6=⇒ IND-CCA. Since IND-CCVA does not imply IND-CPA and since IND-CCA
implies IND-CPA, we have that IND-CCVA does not imply IND-CCA.

5.2 Integrity Notions

SINT-PTXT =⇒ INT-PTXT. The reasoning behind this relation is simple. If an adversary can
forge a ciphertext for a message that has not been previously encrypted, i.e., it defeats INT-PTXT,
it can also defeat SINT-PTXT with the same attack.

INT-PTXT 6=⇒ SINT-PTXT. To show this relation, we simply use a stateless scheme secure under
INT-PTXT. Being stateless, it is thus insecure under SINT-PTXT. An example of a scheme we can
use for this purpose is a stateless scheme constructed via the encrypt-then-MAC composition4 as
defined and shown in [5] to be INT-PTXT secure if the underlying MAC and encryption schemes
are secure. Note that this does not contradict the result in [10] since the encrypt-then-MAC
composition defined there is stateful.

4Under this paradigm, to encrypt a message M , first encrypt M then MAC the result to obtain the ciphertext to
be transmitted. Decryption works in a natural way.

15



INT-CTXT 6=⇒ SINT-PTXT. The reason is similar to the previous case. Consider stateless schemes
constructed via the encrypt-then-MAC composition as defined and shown in [5] to be INT-CTXT
secure if the underlying MAC and encryption schemes are secure (the security assumption on the
MAC here is stronger than in the case of INT-PTXT security above). Being stateless, however,
they are not secure under SINT-PTXT.

SINT-PTXT 6=⇒ INT-CTXT. Consider a scheme secure under SINT-PTXT. It is easy to see that
adding a redundant bit to every ciphertext generated via this scheme yields a scheme that is insecure
under INT-CTXT (ciphertexts can now be easily forged) but is still secure under SINT-PTXT (the
underlying messages are unaffected and so will still be hard to forge).

5.3 Comparing Privacy Notions to Integrity Notions

No integrity notions imply privacy notions. We show a simple scheme secure under all of the
integrity notions but does not provide any privacy. The scheme uses a secure MAC scheme to
obtain INT-PTXT and INT-CTXT in a straightforward manner. Furthermore, to ensure SINT-
PTXT, it also uses an internal counter. To ensure that it does not provide privacy, we transmit
each plaintext message as part of the ciphertext. In more detail, consider the scheme SE defined
as follows. Both encryption and decryption algorithms maintain internal counter. To encrypt a
message, the encryption algorithm increments its internal counter, prepends the counter to the
message, MAC the resulting string, and finally outputs the message and the resulting tag. To
decrypt a ciphertext, the decryption algorithm increments its internal counter, computes the MAC
of the concatenation of its counter and the message portion of the ciphertext, compares the resulting
MAC to the tag part of the ciphertext, and outputs the message if they match. It is easy to see
that SE is secure under SINT-PTXT as well as INT-PTXT and INT-CTXT, assuming that the
underlying MAC is secure. Furthermore, since messages are transmitted in the clear, SE clearly
does not provide any privacy.

No privacy notions imply SINT-PTXT. We know that schemes with stateless decryption algorithms
are not SINT-PTXT secure. However, there are plenty of schemes with stateless decryption algo-
rithms secure under IND-CCA and IND-CPA. Furthermore, the scheme in Appendix D shown to
be secure under IND-CCVA also has a stateless decryption algorithm.

Neither IND-CCA nor IND-CPA imply INT-PTXT or INT-CTXT. This is implied by the fact
that IND-CCA does not imply INT-PTXT shown in [5].

IND-CCVA =⇒ INT-PTXT. Let AE be an authenticated encryption scheme. Suppose that there
exists an int-ptxt adversary A. In particular, A can forge a ciphertext C of a message M that has
not been previously encrypted, i.e., it can generate C on its own without ever submitting M to
the encryption oracle. Then, we construct an ind-ccva adversary A′ as follows. First, A′ forges the
ciphertext C corresponding to a message M in the find stage, outputs (M,M ′) where M 6= M ′ as
the challenge message pair, then submit C to the decryption oracle in the guess stage. If it receives
the special symbol ± as a response, then it returns 0. Otherwise, it returns 1. Thus, A ′ is successful
if A is successful.

IND-CCVA 6=⇒ INT-CTXT. The reasoning behind this relation is simple. Suppose SE is a scheme
secure under IND-CCVA. Consider a scheme SE ′ that is almost identical to SE except that its
encryption algorithm appends to all ciphertexts a bit that is ignored by the decryption algorithm.
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It is easy to show that SE ′ remains IND-CCVA secure. However, it is clearly insecure under
INT-CTXT.

5.4 Discussion

First, we comment that, as Figure 1 shows, SINT-PTXT is reasonably strong: it implies INT-PTXT
but not the stronger notion of INT-CTXT. Also, an integrity notion, specifically INT-PTXT, turns
out to be necessary for IND-CCVA, a privacy notion.

Being a necessary and sufficient characterization of secure encryption protocol of [10], IND-
CCVA is not meant to constitute a complete security measure on its own. Rather, it guarantees
secrecy only in conjunction with additional mechanisms that guarantee uniqueness of messages.
Consequently, it may be surprising at first glance that IND-CCVA emerges as a notion that is
incomparable to both IND-CPA and IND-CCA. In particular, IND-CCVA does not imply even
a weak notion of privacy such as IND-CPA. Moreover, it is easy to see that a channel protocol
constructed from the stateless deterministic encryption scheme used to prove the relation that
IND-CCVA does not imply IND-CPA (i.e., that in Appendix D) does not provide the stateful
variant of semantic security either. The unfortunate implication here is that channel protocols
proven secure as an encryption protocol may in fact leak information. This is a rather unexpected
result since one would naturally assume that a secure encryption protocol should protect privacy
of transmitted information. On the other hand, it is also arguably simply a technical issue that
does not arise in many cases in practice. As pointed out in [10], if one can ensure that all messages
are unique, then one can obtain security. (In particular, this requirement rules out the stateless
deterministic encryption scheme in Appendix D.) One way to ensure uniqueness of messages is
to simply prepend unique message IDs to all messages and to verify them when ciphertexts are
received. In fact, many Internet protocols in use today (e.g., SSH, SSL, and TLS) already do
so: they include in every packet a sequence number maintained internally by the communicating
parties [21, 15, 12].
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A Adversary Actions

An adversary A running against a session-based message-driven protocol can perform the first four
actions below. An adversary A against a key exchange protocol can perform all of the actions
below.

1. Party activation. The activation list specifies what can be activated on a party. Examples include
asking a party to send a message to, receive a message from, or establish a session with another
party. An adversary can also ask a party to expire an existing session. This causes the party to
permanently erases all state information relevant to the session.

2. Party corruption. A obtains from a party all of its state, including its long-term secrets. The
party appends to its output the entry “corrupted” and terminates. It generates no further
output.

3. Session-state reveal. A obtains from a party the portion of its state that is “local” to the specified
session. The protocol specifies what information is considered “local” to a session. This query
is valid only for sessions that have not completed. The party appends to its output the entry
“revealed state of (P, P ′, s)” where (P, P ′, s) is the session being revealed.

4. Session-output reveal. A obtains from a party all of its transcripts that have been created for the
specified session (P, P ′, s) and are marked “secret.” The party appends to its output the entry
“revealed output of (P, P ′, s)”.

5. Session-key reveal. A obtains from a party the session key for the specified session which must be
completed but has not expired. The party appends to its output the entry “revealed session

key for (P, P ′, s)” where (P, P ′, s) is the session in question.

B Description of the send∗ and incoming∗ Activations

Let NC be a network channel protocol. Let k ∈ N be the security parameter, let b ∈ {0, 1}, and let
U be a UM attacker. The activations send∗ and incoming∗ used in the experiment Expind-ne-b

NC,U (k)
are defined as follows.
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Activation send∗(Pi, Pj , s,M) at Pi

If the session (Pi, Pj , s) is expired or exposed, then return
If the key exchange protocol for the session (Pi, Pj , s) is not completed, then return
C ← EK(M) where K is the session key for the session (Pi, Pj , s)
Record “sent a message to Pj within session s” on Pi’s output
Put (Pi, Pj , s, C) in the message bufferM

Activation incoming∗(Pj , Pi, s, C,Mb) at Pj

If the session (Pi, Pj , s) is expired, then return
If the key exchange protocol for the session (Pi, Pj , s) is not completed, then return
M ← DK(C) where K is the session key for the session (Pi, Pj , s)
If M = Mb then record “received a message from Pi within session s” on Pj ’s output

else if M 6= ⊥ then record “received M from Pi within session s” on Pj ’s output

C Proofs that SINT-PTXT and IND-CCVA are Necessary and

Sufficient

We state the lemmas from which Theorem 4.2 and Theorem 4.3 directly follow. Lemma C.1 and
Lemma C.2 prove the former. Lemma C.3 and Lemma C.4 prove the latter. Then, we present their
proofs in detail.

Lemma C.1 [Given a secure KE, SINT-PTXT⇒ Secure Authentication Protocol] Let
AE = (K, E ,D) be an authenticated encryption scheme, and let π be a KE protocol. Let NAE =
NetAE(π,AE) be the associated channel protocol as per Construction 2.5. Suppose that π securely
implements K in the UM during the run of NAE. If AE is SINT-PTXT secure, then given any UM
adversary U against NAE, we can construct an AM adversary A against SMT such that

AUTHSMT,A
s
≈ UNAUTHNAE,U .

Lemma C.2 [Given a secure KE, SINT-PTXT⇐ Secure Authentication Protocol] Let
AE = (K, E ,D) be an authenticated encryption scheme, and let π be a KE protocol. Let NAE =
NetAE(π,AE) be the associated channel protocol as per Construction 2.5. Suppose that π securely
implements K in the UM during the run of NAE. Then, given any sint-ptxt adversary F against
AE , we can construct a UM adversary U against NAE such that, for any AM adversary A against
SMT,

AUTHSMT,A 6
s
≈ UNAUTHNAE,U .

Lemma C.3 [Given a secure KE, IND-CCVA⇒ Secure Encryption Protocol] Let AE =
(K, E ,D) be an authenticated encryption scheme, and let π be a KE protocol. Let NAE =
NetAE(π,AE) be the associated channel protocol as per Construction 2.5. Suppose that π se-
curely implements K in the UM during the run of NAE. Then, given any ind-ne adversary U
against NAE, we can construct an ind-ccva adversary A against AE such that

Advind-ne
NAE,U(k) ≤ S ·Advind-ccva

AE ,A (k)

where U establishes at most S sessions and A’s time-complexity is polynomially-related to that
of U .

Lemma C.4 [Given a secure KE, IND-CCVA⇐ Secure Encryption Protocol] Let AE =
(K, E ,D) be an authenticated encryption scheme, and let π be a KE protocol. Let NAE =
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NetAE(π,AE) be the associated channel protocol as per Construction 2.5. Suppose that π se-
curely implements K in the UM during the run of NAE. Then, given any ind-ccva adversary A
against AE, we can construct an ind-ne adversary U against NAE such that

Advind-ccva
AE ,A (k) ≤ Advind-ne

NAE,U (k) .

Furthermore, U ’s time-complexity is polynomially-related to that of A.

C.1 Proof of Lemma C.1

Proof Idea. The crux of this proof is the same as that of Theorem 12 of [10]. Let k ∈ N and
i ∈ {1, . . . , n}. Given a UM adversary U , we construct an AM adversary A. We denote the parties
interacting with A and U by Pi and P ′

i , respectively. To run U , the AM adversary A simulates
the parties P ′

i by carrying out all requests and activations from U by itself on P ′
i ’s behalf and only

makes requests and activations to a party Pi for events that have been recorded and events that
involve corruption or exposure of a party.

Then, we show that for any security parameter k ∈ N, any UM adversary U , and the AM
adversary A defined above, if AE is SINT-PTXT secure, then the random variables AUTHSMT,A(k)
and UNAUTHNAE,U (k) are statistically indistinguishable.

We do so by first arguing that, for any k ∈ N, if AUTHSMT,A(k) and UNAUTHNAE,U(k) are
statistically distinguishable, then a forgery event has occurred. Before defining a forgery event,
we first describe the concept of matching entries. An entry in the local output of a party Pi that
reads “sent M to Pj within session s” is said to be a match of an entry in the local output
of a party Pj that reads “received M from Pi within session s”. We mandate that once two
entries are matched, they cannot be matched with any other entries, in which case we say that they
become unavailable. An entry that has not been matched (i.e., is not unavailable) is considered
available. A forgery event is an event in which the local output of a party Pj contains an entry of the
form “received M from Pi within session s” while the local output of Pi does not contain an
available matching entry. In other words, a forgery event occurs if, for some M,Pi, Pj , and s, the
output of Pj contains a receipt record of M from Pi within session s and the record is available.

Then, we construct an adversary F so that, if a forgery event occurs, then F wins as follows.
First, F chooses a session s at random from all sessions and uses its oracles, rather than the actual
session key, to compute the messages transmitted via s. Then, F runs the UM adversary U until it
halts. We argue that, if a forgery event occurs, then F wins as follows. Since the multiset T in the
experiment Exp

sint-ptxt
AE ,F (k) keeps track of sent messages that are yet to be received, an occurrence of

a forgery event means that there exists a message M that has been received but M 6∈ T . Therefore,
the adversary F will succeed in breaking the SINT-PTXT security of AE . Since we assume that
the KE protocol securely implements the key generation algorithm, this concludes the proof.

Proof Details. Given a UM adversary U , we construct A as follows. Here, rU (·) specifies the
upper bound on the running time of U .

Adversary A(k, rA)

r′
R

← {0, 1}x ; r′′
R

← {0, 1}l ; r0
R

← {0, 1}rU (k) ; (x1, . . . , xn)← IG(k, r′) ; (I0, . . . In)← B(k, r′′)

For i = 1, . . . , n do ri
R

← {0, 1}r ; start P ′
i on (I0, Ii, xi, ri)

Run U on (k, I0, r0), carrying out U ’s actions as follows:
. When U activates P ′

i with establish-session(P ′
i , P

′
j , s, role),

expire-session(P ′
i , P

′
j , s), send(P ′

i , P
′
j , s,M), incoming(P ′

i , P
′
j , s, C),

or any activations as part of the run of the KE protocol
— Invoke the same activation against P ′

i
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— Put any resulting messages to be delivered on U ’s message bufferM
. When U corrupts P ′

i

— Corrupt P ′
i and give P ′

i ’s internal states to U
— Corrupt Pi

. When U exposes a session (P ′
i , P

′
j , s) at P ′

i

— Expose the same session at P ′
i and give resulting data to U

— Expose the session (Pi, Pj , s) at Pi

. When P ′
i records “established session s with P ′

j”, “expired session s with P ′
j”,

or “sent M to P ′
j within session s”

— Activate Pi with establish-session(Pi, Pj , s), expire-session(Pi, Pj , s), or send(Pi, Pj , s,M)
. When P ′

i records “received M from P ′
j within session s”

— Find an available match of this entry in the local output of P ′
j

— If an available match is found
Then match the two entries and activate Pi with incoming(Pi, Pj , s,M)
Else If Pj is corrupted or exposed

Then activate Pj with send(Pj , Pi, s,M) and Pi with incoming(Pi, Pj , s,M)
Else abort

Until U halts
Output what U outputs

We define the following event, make a few observations, then state and prove Claim C.6. Lemma C.1
follows directly.

Forgery Event: There exists two parties P ′
i and P ′

j such that at some point during the protocol
execution, the local output of P ′

j contains an entry “received M from P ′
i within session

s” where M is a message and s is a session ID, and this entry cannot be matched with any
available entry in the local output of P ′

i .

Remark C.5

1. The adversary A above simulates U exactly as in any run of U against parties running NAE.

2. The adversary A aborts if a forgery event occurs.

3. Suppose that A does not abort. Then, for each entry recorded in the local outputs of the
simulated parties running NAE against U , there is an entry recorded in the local outputs of
the parties running SMT against A.

Claim C.6 Let k ∈ N be the security parameter, let AE = (K, E ,D) be an authenticated encryp-
tion scheme, and let π be a KE protocol. Let NAE = NetAE(π,AE). Let U be a UM adversary, and
let A be the AM adversary defined above. Suppose that the KE protocol π securely implements
K. If AE is SINT-PTXT secure, then AUTHSMT,A(k) and UNAUTHNAE,U (k) are statistically
indistinguishable.

We prove Claim C.6 by contradiction. Suppose that AUTHSMT,A(k) and UNAUTHNAE,U (k) are
statistically distinguishable. From Remark C.5, this means that a forgery event occurs. We con-
struct an adversary F that breaks SINT-PTXT security of AE with non-negligible probability. The
adversary F works as follows. Here, rU (·) specifies the upper bound on the running time of U .

Adversary F EK(·),DK(·)

r′
R

← {0, 1}x ; r′′
R

← {0, 1}l ; r0
R

← {0, 1}rU (k) ; (x1, . . . , xn)← IG(k, r′) ; (I0, . . . In)← B(k, r′′)
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For i = 1, . . . , n do ri
R

← {0, 1}r ; start P ′
i on (I0, Ii, xi, ri)

Pick a session (P ′
i , P

′
j , s0) at random from all sessions

Run U on (k, I0, r0) carrying out U ’s actions as specified in NAE except
— When U activates P ′

i with send(P ′
i , P

′
j , s0,M),

Take P ′
i ’s code for handling a send activation

Replace execution of the encryption algorithm in the code with call to the oracle EK(·)
Execute the resulting code

— When U activates P ′
j with incoming(P ′

j , P
′
i , s0, C),

Take P ′
j ’s code for handling an incoming activation

Replace execution of the decryption algorithm in the code with call to the oracle DK(·)
Execute the resulting code

Until U halts
Output what U outputs

Notice that, when F picks a session at random, it does not yet know the total number of sessions
to be established. We address this by putting an upper bound on the total number of sessions
using the running time of U and letting F choose a session at random. Also, recall that the KE
protocol π is assumed to securely implement the key generation algorithm K. This means that the
session keys and the keys used by the oracles are drawn from the same distribution. Therefore, the
probability that a forgery event occurs in a regular run of U and the probability that it occurs in
F ’s run of U above are the same.

We argue here that, if a forgery event occurs, then the experiment Exp
sint-ptxt
AE ,F (k) returns 1.

First, we observe that the code of F above ensures that each send activation results in the corre-
sponding encryption query and that each incoming activation results in the corresponding decryp-
tion query. Now, recall that in the experiment Exp

sint-ptxt
AE ,F (k), whenever F submits an encryption

query EK(M) (or, equivalently here, whenever U activates P ′
i with a send activation involving M),

the message M is added to the multiset T . Furthermore, whenever F submits a decryption query
DK(C) (or, equivalently here, whenever U activates P ′

j with an incoming activation involving C),
if C decrypts to some message M 6= ⊥, then M is removed from T . In short, whenever a message
is sent, it is added to T , and whenever a message is received, it is removed from T .

If a forgery event occurs in the session (P ′
i , P

′
j , s0), then we know that (1) there is a receipt

record involving M,P ′
i , and s in the output of P ′

j but (2) it cannot be matched with any available
matching send entry in the output of P ′

i . The first condition implies that F will submit a query
that decrypts to M 6= ⊥ to the decryption oracle. The second condition implies that this query
results in M 6∈ T . Therefore, the experiment returns 1, and F succeeds. Finally, since F chooses
the session (P ′

i , P
′
j , s0) from the total number of sessions which is polynomial in k, the probability

that F succeeds remains non-negligible. Moreover, F runs in time polynomial in k since U does.
Hence, Claim C.6 follows.

C.2 Proof of Lemma C.2

Proof Idea. Given an sint-ptxt adversary F against AE , we construct a UM adversary U as
follows. The adversary U starts two parties P1 and P2, activates P1 with establish-session(P1, P2, s),
then runs F . Whenever F submits an encryption query EK(M), the adversary U activates the
party P1 with send(P1, P2,M, s). Similarly, whenever F submits a decryption query DK(C), the
adversary U activates the party P2 with incoming(P2, P1, C, s).

Similar to the proof of Lemma C.1, our analysis involves a forgery event in the simulation. The
forgery event is defined exactly as in the proof of Lemma C.1, so we do not repeat it here. Now,
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suppose that F wins its game, meaning that it has submitted a decryption query that results in
a message M 6= ⊥ so that M 6∈ T . Since the multiset T in the experiment Exp

sint-ptxt
AE ,F (k) keeps

track of sent messages that are yet to be received, this means that there exists a receipt record
of a message with no available matching send record. In other words, U has caused a forgery
event to occur. Now, since no two plaintext messages can encrypt to the same ciphertext, the fact
that the received message has not been sent implies that no ciphertext whose decryption is the
received message has been inserted into the message bufferM before U delivers the ciphertext to
the recipient. Therefore, U has indeed activated a party with an incoming string that is not in the
message bufferM. Since such an action is not permitted in the AM and since its effect is actually
recorded by a party, there can be no AM adversaries that can generate the global output that is
statistically indistinguishable from that generated by U . Thus, Lemma C.2 follows.

Proof Details. Given an sint-ptxt adversary F , we construct a UM adversary U as follows.

Adversary U(k, I0, r0)
Activate P1 with establish-session(P1, P2, s, initiator)
Wait until the KE protocol for the session (P1, P2, s) is completed

Run F EK(·),DK(·)(k)
. Reply to EK(M) queries as follows:

— Activate P1 with send(P1, P2, s,M)
— Wait until an entry (P1, P2, s, C) is appended to the message buffer
— Return C to F

. Reply to DK(C) queries as follows:
— Activate P2 with incoming(P2, P1, s, C)
— If P2 records “received M from P1 within session s”

Then return M to A ; Else return ⊥ to A
Until F halts

Recall that the KE protocol π is assumed to securely implement the key generation algorithm
K. This means that the session key and the key used by the oracles are drawn from the same
distribution. Therefore, the probability that F successfully breaks SINT-PTXT security of AE
remains unaffected.

Now we argue that, if F succeeds, then a forgery event has occurred. We use a similar line of
reasoning as in the proof of Lemma C.1. First, we observe that the code of U above ensures that
each encryption query results in the corresponding send activation and that each decryption query
results in the corresponding incoming activation. Now, recall that in the experiment Exp

sint-ptxt
AE ,F (k),

whenever F submits an encryption query EK(M) or, equivalently here, whenever U activates P ′
i

with a send activation involving M , the message M is added to the multiset T . Furthermore,
whenever F submits a decryption query DK(C) or, equivalently here, whenever U activates P ′

j

with an incoming activation involving C, if C decrypts to some message M 6= ⊥, then M is
removed from T . In short, whenever a message is sent, it is added to T , and whenever a message
is received, it is removed from T .

If F succeeds, then it has submitted a decryption query DK(C) such that (1) the response
M = DK(C) is not equal to ⊥ and (2) M 6∈ T . The former implies that, at some point during the
protocol execution, U activates P2 with incoming(P2, P1, s, C) and P2 actually records the receipt of
M . The latter implies that, at that moment, there is no matching send entry at P1 for the receipt
entry of M recorded at P2.

Now, since no two plaintext messages can encrypt to the same ciphertext, the fact that the
received message has not been sent implies that no ciphertext whose decryption is the received
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message has been inserted into the message buffer M before U delivers the ciphertext to the
recipient. Therefore, U has activated P2 with an incoming string that is not present in the buffer
M at the time. Since such an action is not permitted in the AM and since the effect of this
activation is actually recorded by P2, there exists no AM adversaries that can generate the global
output that is statistically indistinguishable from that generated by U . Thus, Lemma C.2 follows.

C.3 Proof of Lemma C.3

Given an ind-ne adversary U against NAE, we construct an ind-ccva adversary A against AE below.
The activation incomingDK(·,Mb) is defined in a similar manner as in Appendix B except that here
we use the oracle DK(·,Mb) to determine whether to write the decrypted message in the local
output.

Activation incomingDK(·,Mb)(Pj , Pi, s, C) at Pj

If the session (Pi, Pj , s) is expired, then return
If the KE protocol for the session (Pi, Pj , s) is not completed, then return
M ← DK(C,Mb)
If M = ± then record “received a message from Pi within session s” on Pj ’s output

else if M 6= ⊥ then record “received M from Pi within session s” on Pj ’s output

Now, we define the adversary A as follows. Here, rU (·) specifies the upper bound on the running
time of U .

Adversary AEK(·),DK(·)(k, find)

r′
R

← {0, 1}x ; r′′
R

← {0, 1}l ; r0
R

← {0, 1}rU (k) ; (x1, . . . , xn)← IG(k, r′) ; (I0, . . . In)← B(k, r′′)

For i = 1, . . . , n do ri
R

← {0, 1}r ; start Pi on (I0, Ii, xi, ri)
Pick a session (Pi, Pj , s0) at random from all sessions
Run U on (k, I0, r0)
. Carry out U ’s actions as specified in NAE except

— Whenever U activates Pi with send(Pi, Pj , s0,M),
Take Pi’s code for handling a send activation
Replace execution of the encryption algorithm in the code with call to the oracle EK(·)
Execute the resulting code at Pi

— Whenever U activates Pj with incoming(Pj , Pi, s0,M),
Take Pj ’s code for handling an incoming activation
Replace execution of the decryption algorithm in the code with call to the oracle DK(·)
Execute the resulting code at Pj

Until U submits test-session(P,Q, s) and outputs (M0,M1)
If P 6= Pi or Q 6= Pj or s 6= s0 then abort
st← (Pi, Pj , s0)‖M0‖M1‖ internal states of all parties ‖ state of U
Output (M0,M1, st)

Adversary AEK(·),DK(·,Mb)(k, guess, C, st)
Parse st as (Pi, Pj , s0)‖M0‖M1‖ internal states of all parties ‖ state of U
Restart all parties and U to where they were
. If the session (Pi, Pj , s0) is expired or exposed, then abort
. If the KE protocol for the session (Pi, Pj , s0) is not completed, then abort.
. Record “sent a message to Pj within session s0” on Pi’s local output
. Put (Pi, Pj , s0, C) in the message buffer
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. Carry out U ’s actions as specified in NAE except
— Whenever U activates Pj with incoming(Pj , Pi, s0, C),

Execute incomingDK(·,Mb)(Pj , Pi, s, C) at Pj

Until U halts and outputs a bit d
Output d

Notice that A does not yet know the total number of sessions to be established when it picks a
session at random. We address this by putting an upper bound on the total number of sessions using
U ’s running time. It is easy to see that A simulates U exactly as in the experiment Exp ind-ne-b

NAE,U (k)
where b ∈ {0, 1}. We stress that this is true even though the session key for the tested session
(Pi, Pj , s0) is substituted with the key used by the oracles, the reason being that the KE protocol π
securely implements the key generation algorithm K. Therefore, if U can guess the bit b correctly,
then so can A. Since there are a total of at most S sessions in the run of U , the probability that
A guesses the tested session (Pi, Pj , s0) correctly is 1/S. Thus,

1

S
·Advind-ne

NAE,U(k) = Advind-ccva
AE ,A (k) .

Furthermore, recall that the time-complexity of an adversary pertains to the entire experiment in
which it runs. Therefore, the time-complexity of A is polynomially-related to that of U . Thus,
Lemma C.3 follows.

C.4 Proof of Lemma C.4

Given an ind-ccva adversary A against AE, we construct an ind-ne adversary U against NAE below.

Adversary U(k, I0, r0)
Activate P1 with establish-session(P1, P2, s, initiator)
Wait until the KE protocol for the session (P1, P2, s) is completed

Run AEK(·),DK(·)(k, find)
. Reply to EK(M) queries as follows:

— Activate P1 with send(P1, P2, s,M)
— Wait until an entry (P1, P2, s, C) is appended to the message bufferM
— Return C to A

. Reply to DK(C) queries as follows:
— Activate P2 with incoming(P2, P1, s, C)
— If P2 records “received M from P1 within session s”

Then return M to A ; Else return ⊥ to A
Until A outputs (M0,M1, st)
Submit the query test-session(P1, P2, s) and output (M0,M1)
Wait until an entry (P1, P2, s, c) is appended to the message bufferM

Run AEK(·),DK(·,Mb)(k, guess, c, st)
. Reply to EK(M) queries exactly as before
. Reply to DK(C,Mb) queries as follows:

— Activate P2 with incoming(P2, P1, s, C)
— If P2 records “received M from P1 within session s”

Then return M to A
Else If P2 records “received a message from P1 within session s”

Then return ± to A ; Else return ⊥ to A
Until A stops and outputs a bit d
Output d
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Since the KE protocol π securely implements the key generation algorithm K, it is easy to see that
U runs A in the same environment as the experiment Expind-ccva-b

AE ,A (k) where b is a bit. Therefore, if
A can guess the bit b correctly, then so can U . Furthermore, time-complexity of U is polynomially-
related to that of A. Thus, Lemma C.4 follows.

D A Deterministic Encryption Scheme Secure under IND-CCVA

Let l be a positive integer, and let F be an l-bit block cipher. We denote by FK(M) and F−1
K (C)

an application of the block cipher on M with key K and an application of the inverse cipher on
C with key K, respectively. Consider an encryption scheme SE with message space {0, 1} l that
works as follows: to encrypt a message M using a key K, compute and return FK(M); to decrypt a
ciphertext C using K, compute and return F −1

K (M). Being deterministic, SE is clearly not secure
under IND-CPA. However, it is easy to see that, if F is a pseudorandom permutation, then SE is
secure under IND-CCVA. To see this, recall that an adversary against SE under this notion is not
allowed to ask for encryptions of its challenge message pair. Furthermore, if it asks for a decryption
of the challenge ciphertext C, it will get back only the symbol ±. Therefore, there is not much the
adversary can do here to win its game other than breaking the block cipher itself. We omit details.
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