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Abstract. We study the problem of finding efficiently computable non-de-

generate multilinear maps from Gn
1 to G2, where G1 and G2 are groups of

the same prime order, and where computing discrete logarithms in G1 is hard.
We present several applications to cryptography, explore directions for building

such maps, and give some reasons to believe that finding examples with n > 2
may be difficult.

1. Introduction

This paper studies some questions in linear algebra and cryptography. Interest-
ing problems in cryptography have recently been solved using Weil or Tate pairings
on supersingular elliptic curves, or more generally on supersingular abelian vari-
eties [27]. These applications include one-round three-party key exchange [15],
identity-based encryption [3], and short digital signatures [4] (see also [28, 23]).

We show that multilinear generalizations of Weil or Tate pairings would have
far-reaching consequences in cryptography. Section 3 describes the desired proper-
ties for a multilinear form. Sections 4 to 6 give several applications. Such forms
would enable secure broadcast encryption with very short broadcasts and private
keys, a unique signature scheme, and one-round multi-party key exchange. The
main question is how to build the required multilinear maps. We now have the
means and the opportunity. But do we have the motive? In Section 7 we explore
the question of whether multilinear generalizations of Weil or Tate pairings can
come from geometry, or even just from a “motive”, in the sense of [14]. We give
evidence that it might not be possible to find cryptographically useful multilinear
forms within the realm of algebraic geometry (i.e., coming from an underlying curve,
surface, or higher-dimensional variety), except for the case of bilinear pairings on
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abelian varieties and “trivial” cases. This suggests that genuinely new techniques
might be necessary to construct multilinear maps with the desired properties.

2. Notation and Definitions

We first recall some standard notation and definitions that will be used through-
out the paper.

(1) The set of all finite length binary strings is denoted {0, 1}∗, and the set
of all binary strings of length m is denoted {0, 1}m.

(2) We view a randomized algorithm A as a function on two inputs, A(x, r),
where x ∈ {0, 1}∗ is the input given to the algorithm and r is in {0, 1}m
for some m. Here r represents the sequence of random bits used by the
algorithm. For an input x we letA(x) denote the random variableA(x, R),
where R is uniformly distributed in {0, 1}m.

(3) The probability of an event D is denoted Pr[D]. For a finite set S we use
x← S to define a random variable x that picks an element of S uniformly
at random (that is, for all c ∈ S we have Pr[x = c] = 1/|S|). For a
randomized algorithm A we use x ← A(y) to define a random variable
x that is the output of algorithm A on input y. In other words, for all
c ∈ {0, 1}∗ we have Pr[x = c] = Pr[A(y, r) = c]. We let

Pr[b(x) : x← A(y)]

denote the probability that b(x) is true, where x is the random variable
defined by x← A(y) and b is a predicate.

(4) We say that a function ν : Z+ → R+ is negligible if for all d > 0 and
sufficiently large n we have 0 < ν(n) < 1/nd. For example, ν(n) = 1/2n

is a negligible function.
(5) A function f(n) : Z+ → R+ is super-polynomial if for all c > 0 and all

sufficiently large n we have f(n) ≥ nc. A function f(n) : Z+ → R+ is
super-linear if for all c > 0 and all sufficiently large n we have f(n) ≥ cn.

Next, we give a definition of an n-multilinear map. We view the groups G1 and
G2 as multiplicative groups.

Definition 2.1. We say that a map e : Gn
1 → G2 is an n-multilinear map if it

satisfies the following properties:
(1) G1 and G2 are groups of the same prime order;
(2) if a1, . . . , an ∈ Z and x1, . . . , xn ∈ G1 then

e(xa1
1 , . . . , xan

n ) = e(x1, . . . , xn)a1···an ;

(3) The map e is non-degenerate in the following sense: if g ∈ G1 is a generator
of G1 then e(g, ..., g) is a generator of G2.

Let G1, G2 be finite cyclic groups of order ` and let g be a generator of G1.
Recall that the discrete log function in G1 is defined as Dlogg(gα) = α, where
α ∈ Z and 1 ≤ α ≤ `. The discrete log problem in G1 is to compute the discrete
log function in G1. We are mostly interested in groups where this problem is
intractable. It is well known [26] that computing discrete log in G1 is reducible to
computing discrete log in all prime order subgroups of G1. Therefore, we can and
will restrict our attention to groups G1, G2 of prime order `.
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We note that an efficiently computable n-multilinear map e : Gn
1 → G2 can be

used to reduce the discrete log problem in G1 to the discrete log problem in G2 (see
[19] and [10]). Let g, h ∈ G1 such that h = gα. Computing α given g and h is a
discrete log problem in G1. To reduce this to a discrete log problem in G2 compute
the following two values:

x = e(g, g, . . . , g) and y = e(h, g, g, . . . , g).

Then by n-multilinearity we have that y = xα as elements in G2. This simple
argument shows that if the discrete log problem in G1 is hard then discrete log in
G2 must also be hard. The converse is not known to be true.

Next, our goal is to define a cryptographic n-multilinear map generator. Rough-
ly speaking, a cryptographic n-multilinear map e : Gn

1 → G2 is an n-multilinear
map such that (1) the group action in G1 and G2 is efficiently computable, (2) the
map e is efficiently computable, and (3) there is no efficient algorithm to compute
discrete log in G1.

We will first define a multilinear map generator. Since we are studying compu-
tational problems on the groups G1 and G2 we cannot treat these groups as abstract
algebraic objects. Instead, we have to fix an explicit representation of group ele-
ments and have to ensure that all group operations and n-multilinear maps are
computable by polynomial time algorithms. Throughout the paper we represent
group elements as binary strings, namely G1, G2 ⊂ {0, 1}∗.

Definition 2.2. An n-multilinear map description Γ ∈ {0, 1}∗ is a description
of two groups G1 and G2 of the same prime order, an n-multilinear map e : Gn

1 →
G2, and functions prodb, inverseb, map, and testb, for b = 1, 2, satisfying:

• If b = 1, 2 and x, y ∈ Gb, then prodb(Γ, x, y) = xy and inverseb(Γ, x) = x−1.
• If x1, . . . , xn ∈ G1, then map(Γ, x1, . . . , xn) = e(x1, . . . , xn).
• If b = 1, 2 and x ∈ {0, 1}∗, then testb(Γ, x) = yes if and only if x ∈ Gb.

For example, a 2-multilinear map description Γ might include a prime power q,
coefficients for equations that define an abelian variety (or elliptic curve) A defined
over Fq, and the coordinates of a point P ∈ A(Fq) of prime order `. The group G1

would be the group generated by P , and G2 would be the group of `-th roots of
unity in F∗qd , where d is the order of q (mod `). The map e : G2

1 → G2 could be a
modified Weil pairing (as in §7 below).

Definition 2.3. A multilinear map generator G = G(t, n) is a randomized
algorithm that runs in polynomial time in (positive integer) inputs t and n, and
outputs a tuple (Γ, g, `). Here Γ is an n-multilinear map description where (1) the
functions prodb, inverseb, map, and testb run in polynomial time in t and n, (2) ` is
the order of the groups G1 and G2 defined by Γ, and (3) g is some generator of G1.

The point of the security parameter t in Definition 2.3 will become apparent
when we define cryptographic multilinear map generators below. This parameter
will determine the size of the groups G1 and G2. The size of G1 as a function of
t must be large enough so that no polynomial time algorithm in t can compute
discrete log in G1.

Let G be a multilinear map generator. Define a randomized algorithm A’s
advantage in computing discrete log to be the probability that A is able to compute
discrete log in the group G1 = 〈g〉 defined by G(t, n). In other words,

AdvDlogG,A,n(t) = Pr [A (Γ, g, gr) = r : (Γ, g, `)← G(t, n), r ← Z/`Z] .
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Definition 2.4. A multilinear map generator G is a cryptographic multilinear
map generator if for all polynomial time algorithms A (polynomial in t) and all
n > 1, the function AdvDlogG,A,n(t) is negligible.

Open problem. The central open problem posed in this paper is the construction
of cryptographic multilinear map generators when n > 2.

For n = 2, (modified) Weil and Tate pairings on elliptic curves are believed
to give cryptographic bilinear map generators. The constructions in this paper
typically need n on the order of 160. Recall that asymptotically we only require
that the n-multilinear map be computable in polynomial time in n (and t).

3. Complexity assumptions

For some of the applications we present, the intractability of discrete log is not
sufficient to prove security. We will need to make slightly stronger assumptions. We
list these assumptions here. The reader may wish to skip this section for now and
refer back to it as needed in the later sections. For the remainder of this section,
fix a multilinear map generator G.
The multilinear Diffie-Hellman assumption. This assumption says that given
g, ga1 , . . . , gan+1 in G1, it is hard to compute e(g, . . . , g)a1···an+1 in G2. More pre-
cisely, define a randomized algorithmA’s advantage in solving the multilinear Diffie-
Hellman problem to be the probability that A is able to compute

e(g, . . . , g)a1···an+1

from g, ga1 , . . . , gan+1 , i.e.,

AdvDHmG,A,n(t) = Pr[A(Γ, g, ga1 , . . . , gan+1) = e(g, . . . , g)a1···an+1 :

(Γ, g, `)← G(t, n), (a1, . . . , an+1)← (Z/`Z)n+1].

Definition 3.1. We say the multilinear map generator G satisfies the multilin-
ear Diffie-Hellman assumption if for all polynomial time algorithms A (polynomial
in t) and all n > 1, the function AdvDHmG,A,n(t) is negligible.

The Diffie-Hellman inversion assumption. The assumption says that given
g, gb ∈ G1 it is hard to compute e(g, . . . , g)1/b ∈ G2. Define a randomized algorithm
A’s advantage in solving the Diffie-Hellman inversion problem to be the probability
that A is able to compute e(g, . . . , g)1/b from g, gb, i.e.,

AdvDHinvG,A,n(t) =

Pr
[
A(Γ, g, gb) = e(g, g, . . . , g)1/b : (Γ, g, `)← G(t, n), b← (Z/`Z)n+1

]
.

Definition 3.2. The multilinear map generator G satisfies the Diffie-Hellman
inversion assumption if for all polynomial time algorithms A (polynomial in t) and
all n > 1, the function AdvDHinvG,A,n(t) is negligible.

The generalized Diffie-Hellman assumption. The assumption says that given
ga1 , . . . , gan in G1 and given all the subset products g

Q
i∈S ai ∈ G1 for any strict

subset S ⊂ {1, . . . , n}, it is hard to compute ga1···an ∈ G1. Since the number of
subset products is exponential in n we provide access to all these subset products
through an oracle (an oracle is a function that can be evaluated in unit time). Let
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(Γ, g, `) be an output of G(t, n). For a vector ~a = (a1, . . . , an) ∈ (Z/`Z)n, define
OΓ,g,~a to be an oracle that for any strict subset S ⊂ {1, . . . , n} responds with:

OΓ,g,~a(S) = g
Q

i∈S ai ∈ G1.

Define a randomized algorithm A’s advantage in solving the generalized Diffie-
Hellman problem to be the probability that A is able to compute ga1···an given
access to the oracle OΓ,g,~a(S). In other words,

AdvDHgenG,A,n(t) = Pr[AOΓ,g,~a(Γ, g) = ga1···an :

(Γ, g, `)← G(t, n), ~a = (a1, . . . , an)← (Z/`Z)n].

Note that the oracle only answers queries for strict subsets of {1, . . . , n}.

Definition 3.3. We say G satisfies the generalized Diffie-Hellman assumption
if for all polynomial time algorithms A (polynomial in t) and all n > 1, the function
AdvDHgenG,A,n(t) is negligible.

4. One-Round n-way Diffie-Hellman Key Exchange

We give several applications of n-multilinear maps to cryptography. We start
with a simple application: constructing a one-round n-way Diffie-Hellman key ex-
change protocol. Joux [15] showed how Weil and Tate pairings can be used for a
one-round 3-way secret key exchange. Using an n-multilinear map, Joux’s protocol
generalizes naturally to a one-round (n + 1)-way secret key exchange.

Consider n + 1 parties who wish to set up a conference key using a one-round
protocol. The “one-round” refers to the fact that each party is only allowed to
broadcast one value to all other parties. All n+1 broadcasts occur simultaneously.
Once all n + 1 parties broadcast their values, each party should be able to locally
compute a global shared secret S. The secret S will then be used to derive a
conference key. An eavesdropper, seeing only the public broadcast values, should
not be able to compute the global secret S. This is a direct generalization of the
Diffie-Hellman protocol to n+1 parties (Diffie-Hellman is designed for two parties).
Solutions to this problem are useful in reducing the number of round trips in group
key management protocols [30]. This is a long-standing open problem.

More precisely, a one-round n-way conference key exchange scheme consists of
the following three randomized polynomial time algorithms:

Setup(t, n): Takes a security parameter t ∈ Z+ and the number of partici-
pants n. It runs in polynomial time in t, n and outputs public parameters
Γdh ∈ {0, 1}∗.

Publish(Γdh, i): Given an input i ∈ {1, . . . , n}, the algorithm outputs a pair
(pubi,privi), with both in {0, 1}∗. Party i broadcasts pubi to all other
parties, and keeps privi secret.

KeyGen(Γdh, j,privj , {pubi}i 6=j): Party j ∈ {1, . . . , n} collects the public
broadcasts sent by all other parties. It then runs algorithm KeyGen giving
it all these public values and its secret value privj . Algorithm KeyGen
outputs a conference key S.

The consistency requirement is that for all j = 1, . . . , n, algorithm KeyGen
produces the same conference key S. In other words, all n parties generate the
same secret conference key. The scheme is secure if no polynomial time algorithm,
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given all n public values (pub1, . . . ,pubn), will produce the secret conference key
S with non-negligible probability.

Definition 4.1. A one-round n-way conference key exchange scheme {Setup,
Publish, KeyGen} is secure if for all polynomial time randomized algorithms A the
following probability:

AdvDHA,n(t) = Pr
[
A(Γdh,pub1, . . . ,pubn) = S : Γdh ← Setup(t, n),

(pubi,privi)← Publish(Γ, i), S ← KeyGen(Γ, 1,priv1, {pubi}i 6=1)
]

is a negligible function in t.

We present a one-round (n + 1)-way key exchange protocol from an n-multilinear
map generator G.

Setup(t, n + 1): Run algorithm G(t, n) to get (Γ, g, `). Let e : Gn
1 → G2 be

the n-multilinear map defined by Γ. Then g is a generator of G1 and ` is
the order of G1. Output Γdh = (Γ, g, `) as the public parameters.

Publish(Γdh, i): Pick a random integer ai ∈ [1, `−1]. Compute hi = gai ∈ G1.
Output (pubi,privi) where pubi = hi and privi = ai.
Party i broadcasts hi to all other participants and keeps ai secret.

KeyGen(Γdh, j,privj , {pubi}i 6=j): Let privj = aj and pubi = hi.
Party j computes the conference key S as follows:

S = e(h1, . . . , hj−1, hj+1, . . . , hn+1)aj ∈ G2.

This S is the output of algorithm KeyGen given (Γdh, j, privj , {pubi}i 6=j)
as input.

Note that S = e(g, g, . . . , g)a1a2···an+1 . Hence, all n+1 parties will obtain the same
conference key S. The following result is immediate from Definition 3.1.

Proposition 4.2. Let G be a multilinear map generator. If G satisfies the
multilinear Diffie-Hellman assumption then the protocol above is a secure one-round
(n + 1)-way conference key exchange scheme for every n > 1.

We note that to use the global secret S as a key for a symmetric cipher one
would have to prove that S can be converted into a binary string of a certain
length that is indistinguishable from a random string of the same length. This
would require a stronger complexity assumption than the multilinear Diffie-Hellman
assumption. Alternatively, one could use hard-core bits of e to generate the global
secret one bit at a time, but this would require many invocations of the key exchange
protocol above. This issue is analogous to the issue that comes up when using the
standard Diffie-Hellman secret as a secret encryption key [2].

5. Unique Signatures and Proofs for the n-way Diffie-Hellman Relation

Our next application is useful for building unique signatures and verifiable
pseudo random functions (VRF’s) [20]. Let G1 be a group of prime order ` with a
generator g.

Definition 5.1. We say that (g, g1, . . . , gn, h) ∈ Gn+2
1 is an n-way Diffie-

Hellman tuple if g generates G1 and there exist integers a1, . . . , an ∈ [0, `− 1] such
that gi = gai and h = ga1···an .
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Suppose there is no efficient algorithm for the discrete log problem in G1.
We study the following problem: is there an efficient algorithm A that takes an
arbitrary tuple I = (g, g1, . . . , gn, h) ∈ Gn+2

1 as input and returns yes if and only if
I is an n-way Diffie-Hellman tuple? We call this the n-way decision Diffie-Hellman
problem. For n = 2 one obtains the standard Decision Diffie-Hellman problem [2].

Recently Joux and Nguyen [16] showed that the group of points on a super-
singular elliptic curve over a finite field is an example of a group where discrete log
is (presumably) hard, but the standard (2-way) Decision Diffie-Hellman problem is
easy. A generalization of their idea using an n-multilinear map solves the n-way
decision Diffie-Hellman problem.

Algorithm 5.2. Suppose e : Gn
1 → G2 is an n-multilinear map. Let g be a

generator of G1 and let I = (g, g1, . . . , gn, h) ∈ Gn+2
1 . We test if I is an n-way

Diffie-Hellman tuple as follows:
(1) Compute A = e(g1, . . . , gn) ∈ G2.
(2) Compute B = e(h, g, g, . . . , g) ∈ G2.
(3) Test if A = B. If so, output yes. If not, output no.

The following simple result shows that the algorithm’s output is always correct.

Proposition 5.3. Suppose that e : Gn
1 → G2 is an n-multilinear map, and

I = (g, g1, . . . , gn, h) ∈ Gn+2
1 , where g is a generator of G1. Algorithm 5.2 outputs

yes given I as input if and only if I is an n-way Diffie-Hellman tuple.

Proof. Write gi = gai and h = gb. Then

e(g1, . . . , gn) = e(ga1 , . . . , gan) = e(g, . . . , g)a1···an ,

e(h, g, g, . . . , g) = e(gb, g, g, . . . , g) = e(g, g, . . . , g)b.

The non-degeneracy of e implies that e(g, g, . . . , g) is a generator of G2. It now
follows that e(g1, . . . , gn) = e(h, g, g, . . . , g) if and only if b ≡ a1 · · · an (mod `). �

We have just shown that a cryptographic n-multilinear map generator would
give rise to groups where discrete log is hard, but the n-way decision Diffie-Hellman
problem is easy.

5.1. Unique Signatures and Verifiable Pseudo Random Functions.
Using Algorithm 5.2 we give a simple construction for a unique signature scheme and
Verifiable Pseudo Random Functions. We first recall the definition of unique signa-
tures [12]. Intuitively, a unique signature scheme is a digital signature scheme where
every message has a unique digital signature (in most secure signature schemes
there are many valid signatures for a given message). Unique signature schemes
were known to exist in the common random string model [12] and in the random
oracle model [1], but until the results of Micali et al. [20] there were no construc-
tions for such schemes in the standard model defined below. Unique signatures are
used to construct Verifiable Pseudo Random Functions, which are a useful tool in
cryptographic protocol design [20].

Definition 5.4. An n-bit unique signature scheme (which is used to sign n-bit
messages) consists of three algorithms KeyGen,Sign,Verify defined as follows:

KeyGen(t): A randomized algorithm that outputs a signing key SK and a
verification key VK.
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Sign(M,SK): A deterministic algorithm that takes as input a message M ∈
{0, 1}n and a signing key SK and outputs a signature S.

Verify(M,S, VK): A deterministic algorithm that takes as input a message
M ∈ {0, 1}n, a signature S, and a verification key VK and outputs yes or
no.

These algorithms must satisfy the following requirements:
Consistency: For every key pair (VK,SK) produced by the KeyGen algo-

rithm and every message M ∈ {0, 1}n we have that

Verify(M,Sign(M,SK),VK) = yes.

Uniqueness: For every key pair (VK,SK) produced by the KeyGen algo-
rithm, every message M ∈ {0, 1}n, and every S1 and S2, we have that

Verify(M,S1,VK) = Verify(M,S2,VK) = yes ⇒ S1 = S2.

Security for a unique signature scheme is defined as for standard signatures
and is called security against existential forgery under an adaptive chosen message
attack [11]. This notion is defined by the following game between a challenger and
an attacker A:

Step 1: The challenger runs algorithm KeyGen(t) to generate a key pair
(VK,SK). It gives VK to the attacker and keeps SK to itself.

Step 2: The attacker A issues finitely many queries M1,M2, . . . in {0, 1}n
and receives the signatures S1, S2, . . . on these queries. These queries
can be issued adaptively, namely, the attacker can choose query Mi after
seeing the signatures S1, . . . , Si−1.

Step 3: Finally, the attacker A outputs a message signature pair (M,S)
where M 6∈ {M1,M2, . . .}.

The attacker A wins the game if Verify(M,S, VK) = yes. Let AdvSigSig,A(t) denote
the probability that A wins the game.

Definition 5.5. We say that an n-bit unique signature scheme Sig is secure
against existential forgery under an adaptive chosen message attack if for all poly-
nomial time attack algorithms A (polynomial in t) the function AdvSigSig,A(t) is
negligible.

We give a simple construction for unique signatures. The construction is similar
to a Pseudo Random Function (PRF) based on the Decision Diffie-Hellman problem
(DDH) due to Naor and Reingold [25]. Our construction is based on a recent
result due to Lysyanskaya [17] who proposed a unique signature scheme where
the signature on an n-bit message consists of n group elements. We show that
multilinear maps give rise to a signature scheme where a signature on an n-bit
message is a single group element.

Let G be a multilinear map generator. The following unique signature scheme
is used to sign n-bit messages:

KeyGen(t): (1) Run algorithm G(t, n) to generate (Γ, g, `).
(2) Pick random a1,0, a1,1, . . . , an,0, an,1 ∈ {1, . . . , `− 1}.
(3) Set the signing key SK = (Γ, a1,0, a1,1, . . . , an,0, an,1), and

the verification key VK = (Γ, g, ga1,0 , . . . , gan,1).
Sign(M,SK): Let M = m1 . . .mn ∈ {0, 1}n. Output:

S = ga1,m1 ·a2,m2 ···an,mn ∈ G1.
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Verify(M,S, VK): Write VK = (Γ, g, g1,0, . . . , gn,1).
Test if I = (g, g1,m1 , . . . , gn,mn , S) is an n-way Diffie-Hellman tuple using
Algorithm 5.2. Output yes if I is an n-way Diffie-Hellman tuple and
output no otherwise.

For a given M and VK there is only one S ∈ G1 for which

(g, g1,m1 , . . . , gn,mn , S)

is an n-way Diffie-Hellman tuple. Hence, the scheme is a unique signature scheme.
Note that there is some negligible probability that two different messages have the
same signature.

Next, we argue that the scheme is a secure unique signature scheme. Security
is based on the generalized Diffie-Hellman assumption (Definition 3.3).

Theorem 5.6. Suppose the multilinear map generator G satisfies the general-
ized Diffie-Hellman assumption. Then for all fixed n ∈ Z+, the n-bit unique sig-
nature scheme above is secure against existential forgery under an adaptive chosen
ciphertext attack. Concretely, an attack algorithm A with advantage AdvSigSig,A(t)
in forging signatures gives rise to an algorithm B for the generalized Diffie-Hellman
problem in G with advantage

AdvDHgenG,B,n(t) ≥ AdvSigSig,A(t)/2n.

Proof. The proof is essentially identical to the proof of security given by
Lysyanskaya [17]. �

Concrete parameters. Signature schemes in practice are mostly used to sign
short messages that are the output of a collision resistant hash function such as
SHA-1. Using the terminology above, to sign a message M of arbitrary length we
compute S = Sign(H(M),SK) where H is some collision resistant hash. Therefore,
by Theorem 5.6, if H outputs n-bit strings then we need an n-multilinear map
generator G for which 2nAdvDHgenG,B,n(t) is negligible. In practice we often use n =
160 since the output of SHA-1 is 160-bit strings. Thus to give concrete parameters,
we need a group G1 = 〈g〉 where the generalized Diffie-Hellman problem cannot
be solved in time 280 with advantage greater than 1/2240 (this will ensure that no
280-time algorithm can existentially forge signatures with probability greater than
1/280). It is currently (believed to be) possible to build groups where the Diffie-
Hellman problem cannot be solved in time 280 with advantage greater than 1/2240

(using groups of points on elliptic curves over sufficiently large finite fields). We
hope that a 160-multilinear map e : G160

1 → G2 can be built for which G1 has the
same security parameters for the generalized Diffie-Hellman problem. We note that,
as in [17], the reduction in Theorem 5.6 can be made more efficient by restricting
the message space to codewords in a certain error correcting code.
Signature length. Note that a signature in the scheme above consists of a single
group element in G1. This means that this signature scheme can potentially produce
signatures that are as short as BLS signatures [4]. BLS signatures are existentially
unforgeable in the random oracle model, whereas the advantage of the signature
scheme above is that it is existentially unforgeable in the standard security model
(no random oracles are needed).

To conclude the section we note that Micali et al. [20] show that unique sig-
natures give rise to Verifiable Pseudo Random Functions (VRF). Hence, the con-
struction using n-multilinear maps also gives a simple construction for VRF’s.
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6. Broadcast Encryption with Short Keys and Transmissions

Broadcast encryption [8] appears to be the most interesting application to date
for n-multilinear maps. We begin by describing the broadcast encryption problem,
survey some of the existing work, and then describe a solution using n-multilinear
maps.

6.1. The broadcast encryption problem. Broadcast encryption involves
one broadcaster and n receivers. Each receiver is given a unique private key. The
broadcaster is given a broadcaster key. The broadcaster wishes to broadcast mes-
sages to a specific subset S ⊆ {1, . . . , n} of receivers (say, those receivers that
previously paid to receive the broadcast). Any receiver in S should be able to use
its private key to decrypt the broadcast. However, even if all receivers outside of S
collude they should not be able to decrypt the broadcast. More precisely, a broad-
cast encryption scheme is made up of three randomized polynomial time (in t and
n) algorithms:

Setup(t, n): Takes as input a security parameter t ∈ Z+ and the number of
receivers n. It outputs n private keys d1, . . . , dn and a sender key T .

Encrypt(S, T ): Takes as input a subset S ⊆ {1, . . . , n}, and sender key T . It
outputs a pair (Hdr,K) where Hdr is called the header and K is a message
encryption key. Let CM be the encryption of the message body M under
the symmetric key K. The broadcast to users consists of (S, Hdr, CM ).
The pair (S, Hdr) is often called the full header and CM is often called
the broadcast body.

Decrypt(S, di,Hdr): Takes as input a subset S ⊆ {1, . . . , n}, a receiver key
di, and a header Hdr. If i ∈ S, then the algorithm outputs the message
encryption key K. The key K can then be used to decrypt CM and obtain
the message body M .

To state a (simple) security requirement we define the following game between
an attack algorithm A and a challenger.

Step 1: The challenger takes (t, n) as input, and runs Setup(t, n) to generate
a sender key T and n private keys d1, . . . , dn.

Step 2: Algorithm A outputs a set S ⊆ {1, . . . , n} of receivers where it
wants to mount an attack. The challenger gives A all private keys dj for
which j 6∈ S.

Step 3: The challenger runs the Encrypt algorithm to obtain (Hdr,K) =
Encrypt(S, T ). It gives Hdr to algorithm A.

Step 4: Algorithm A outputs a key K ′ and wins the game if K = K ′.
Let AdvBrA,n(t) denote the probability that A wins the game when the challenger
is given (t, n) as input.

Observe that this game models an attack where all users not in the set S collude
to try and expose a broadcast intended for users in S only. The set S is chosen
adversarially.

Definition 6.1. We say that the broadcast encryption scheme is secure if for
all polynomial time attack algorithms A and for all n > 1 the function AdvBrA,n(t)
is negligible.

Note that in the attack game above the adversary is non-adaptive — it requests
the entire set of keys S at once. An adaptive adversary could request user keys
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adaptively. That is, it would decide to request the private key for user ir after
seeing the private keys for users i1, i2, . . . , ir−1. Here we only consider non-adaptive
adversaries.

The question is how to build broadcast encryption schemes where both the
header size and private key size are small as a function of the number n of receivers.
One trivial construction gives a secure broadcast encryption scheme where the size
of the private keys di is independent of n, but unfortunately the header size is linear
in n. Another trivial construction gives a broadcast encryption scheme where the
size of the header Hdr is independent of n, but the size of each private key di

is exponential in n. These are two extremes of the spectrum. Recently Naor-
Naor-Lotspiech [24] gave an elegant construction where each private key consists
of O((log n)2) encryption keys for a symmetric encryption scheme. The header
consists of O(n−|S|) encryptions of a message key using the symmetric encryption
scheme. When the size of the symmetric encryption key is k-bits the system has
the following parameters:

private-key-size = O(k(log n)2) ; header-size = O(k(n− |S|)).

Halevi and Shamir [13] showed that the private key size can be reduced to approx-
imately O(k log n). This broadcast system is designed to broadcast to large sets S,
i.e., when the size of S is close to n, so that n−|S| is small. The value of k depends
on the security parameter t. We must ensure that a polynomial time algorithm (in
t) cannot scan through the entire set of symmetric keys, a set of size 2k. Therefore,
for simplicity we say that k must be at least c(log t)2 for some constant c > 0. In
fact, any super-linear function in log t will do. For consistency with the notation in
this section we say that the scheme, with the improvement of Halevi-Shamir, has
the following parameters:

private-key-size = O
(
(log t)2 log n

)
; header-size = O

(
(log t)2(n− |S|)

)
.

A central open problem in this area is whether one can build a secure broadcast
encryption scheme where both the size of the header and the size of each private
key di depend at most logarithmically on n. We note that Fiat-Naor [8] and Chick-
Tavaras [6] gave constructions based on RSA that meet this requirements. However,
these constructions either do not resist collusion of users [8] outside the set S, or
the construction can only handle a small number [6] of receiver sets S.

6.2. An efficient solution using n-multilinear maps. Using n-multilinear
maps it is possible to give an efficient solution to the broadcast encryption problem
(efficient in terms of private key size and header size). We construct a secure
broadcast scheme with the following parameters:

private-key-size = O((log t)2) ; header-size = 0.

In fact, (log t)2 can be replaced by any super-linear function in log t.
Let G be a multilinear map generator and let n be the intended number of

receivers. Let (Γ, g, `) be an output of G(t, n). The order of G1 must be sufficiently
large to make discrete log difficult. We assume elements in G1 are represented as
binary strings of length O((log t)2). Since we always assume t > n, the important
point here is that the length of elements in G1 depends at most logarithmically on
n.
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We will also fix a function Fm,Γ : {0, 1}m → Gn
1 . We call {0, 1}m the seed

space. We will need m = m(t) to be a function of the security parameter t. The
function m(t) will be determined later.

For a given seed a ∈ {0, 1}m, a given set S ⊆ {1, . . . , n}, and a given g ∈ G1

we define an auxiliary function ΦS,a,g : {1, . . . , n} → G1 as follows:

ΦS,a,g(i) =
{

gi if i ∈ S
g otherwise

where Fm,Γ(a) = (g1, . . . , gn). We describe the new broadcast encryption scheme
by describing the three algorithms Setup, Encrypt, and Decrypt.

Setup(t, n): Run algorithm G(t, n) to generate (Γ, g, `).
Pick a random α ∈ [1, `− 1].
Pick a random a ∈ {0, 1}m and write Fm,Γ(a) = (g1, . . . , gn) ∈ Gn

1 .
The sender key is T = (Γ, g, a, α).
The i-th receiver key is di = (i, Γ, g, a, ui) where ui = gα

i .
Encrypt(S, T ): To transmit to a set S do:

Step 1: Compute KS = e
(
ΦS,a,g(1), . . . ,ΦS,a,g(n)

)α ∈ G2.
Step 2: Output KS as the message encryption key. The header Hdr is

the empty string ε (in other words, the size of the header is zero).
Decrypt(S, di, ε): To obtain the message encryption key KS using di, com-

pute:

KS = e

(
ΦS,a,g(1), . . . ,ΦS,a,g(i− 1), ui, ΦS,a,g(i + 1), . . . ,ΦS,a,g(n)

)
.

The security of the system relies on the Diffie-Hellman inversion assumption
(Definition 3.2). We show that an attack on the broadcast encryption scheme leads
to an algorithm that can solve the Diffie-Hellman inversion problem for G. Unfor-
tunately, the proof requires that the function Fm,Γ : {0, 1}m → Gn

1 be modeled as a
random oracle (see [1] for the definition; essentially, a random oracle implements a
function chosen uniformly at random from the set of all functions from the domain
to the range).

Theorem 6.2. Suppose the multilinear map generator G satisfies the Diffie-
Hellman inversion assumption, and suppose the function Fm,Γ : {0, 1}m → Gn

1 is
a random oracle. Then the broadcast encryption scheme above is secure as long as
m = m(t) is a super-linear function in log t (e.g., m(t) = (log t)2).

Proof. Suppose there is a polynomial time attacker A that wins the broadcast
encryption game with non-negligible probability, i.e., ε(t) = AdvBrA,n(t) > 1/tc for
some c > 0. Let T (t) be the running time of algorithm A. We know that T (t) < td

for some d > 0. We build an algorithm B for solving the Diffie-Hellman inversion
problem where

AdvDHinvG,B,n(t) > ε(t)− T (t)
2m(t) − T (t)

.

Since m(t) is a super-linear function in log t we know that 2m(t) is super-polynomial
and therefore T (t)

2m(t)−T (t)
is a negligible function. It follows that AdvDHinvG,B,n(t)

is non-negligible, and hence B will violate the Diffie-Hellman inversion assumption
for G.

We describe algorithm B. Let (Γ, g, `) ← G(t, n). As usual, Γ defines an n-
multilinear map e : Gn

1 → G2. Algorithm B is given Γ and g, h ∈ G1. Write h = gb
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where b ∈ [1, ` − 1]. Algorithm B’s goal is to construct e(g, g, . . . , g)1/b, the b-th
root of e(g, g, . . . , g) in G2.

Algorithm B(Γ, g, h) works by running A as follows:

Fm,Γ-queries: At any time algorithm A may query the oracle for the func-
tion Fm,Γ. To answer these queries B maintains an F -list consisting of
tuples (a, (g1, . . . , gn)). Initially the F -list is empty. When A issues a
query for Fm,Γ(a) with a ∈ {0, 1}m, algorithm B checks whether a ap-
pears as the first entry of some tuple (a, (g1, . . . , gn)) on the F -list. If so,
B replies with Fm,Γ(a) = (g1, . . . , gn). Otherwise, B picks a random tuple
(g1, . . . , gn) ∈ Gn

1 , appends the tuple (a, (g1, . . . , gn)) to the F -list, and
responds to A with Fm,Γ(a) = (g1, . . . , gn).

Step 1: At the beginning of the attack game, algorithm A outputs a subset
of users S ⊆ {1, . . . , n}. Algorithm B needs to respond with all private
keys for users i 6∈ S. It does so as follows:
(1) Pick a random a ∈ {0, 1}m. If a already appears as the first entry of

some tuple on the F -list, algorithm B outputs fail and terminates
the simulation. The algorithm failed.

(2) Otherwise, algorithm B picks random r1, . . . , rn ∈ {1, . . . , `}. For
i ∈ S set gi = gri . For i 6∈ S set gi = hri . Let (g1, . . . , gn) be the
resulting tuple. We define Fm,Γ(a) = (g1, . . . , gn) and append the
tuple (a, (g1, . . . , gn)) to the F -list.

(3) At this point we know that Fm,Γ(a) = (g1, . . . , gn). For i 6∈ S define
di = (i,Γ, g, a, ui) where ui = gri . Note that for all i 6∈ S we have
ui = g

1/b
i . This means that the set of private keys {di}i 6∈S is valid

and consistent. The (unknown) secret α that would normally be used
to generate these keys is defined to be α = b−1 mod `.

(4) For all i 6∈ S give di to algorithm A.
Step 2: We know that algorithm A will respond with the key for the set S,

namely:

KS = e

(
ΦS,a,g(1), . . . ,ΦS,a,g(n)

)α

= e

(
ΦS,a,g(1), . . . ,ΦS,a,g(n)

) 1
b

with probability at least ε(t). By definition we have

KS = e(g, g, . . . , g)b−1 Q
i∈S ri .

Step 3: Set c =
(∏

i∈S ri

)−1 (mod `). Then (KS)c = e(g, g, . . . , g)1/b.
Hence, by computing Kc

S , algorithm B obtains the value it was asked
to compute.

Algorithm B will produce the correct answer if (1) it does not abort in Step 1,
and (2) it receives the correct answer from algorithm A in Step 2. By definition
of algorithm A we know that event (2) happens with probability at least ε(t). To
bound the probability for event (1) first observe that A makes at most T (t) queries
to the function Fm,Γ prior to Step 1. Algorithm B will abort in Step 1 if it picks
a random a ∈ {0, 1}m that happens to equal one of A’s queries. The probability
that A’s i-th query is equal to a given that the first i − 1 queries are distinct and
not equal to a is at most 1

2m−i . Hence, whenever T (t) < 2m, the probability that
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B aborts in Step 1 is at most
1

2m
+

1
2m − 1

+ . . . +
1

2m − T (t) + 1
<

T (t)
2m − T (t)

.

Hence,

AdvDHinvG,B,n(t) = Pr[(1) and (2)] ≥ Pr[(2)]− Pr[¬(1)] ≥ ε(t)− T (t)
2m − T (t)

as required. �

Summary of the parameters. Suppose G satisfies the Diffie-Hellman inversion
assumption. Then by Theorem 6.2, to get a secure broadcast encryption scheme we
can take m = (log t)2. The private key consists of an m-bit string and two group
elements in G1. By assumption, the two group elements are also of length O(m).
Hence, we get the following parameters for our scheme:

private-key-size = O((log t)2) ; header-size = 0.

The full header in the scheme contains only the description of the set S. Since we
always assume that t > n we get that the size of the private key depends logarith-
mically on the number of receivers n. Hence, multilinear maps give a broadcast
encryption scheme with optimal size broadcast and very short private keys. On the
down side, encryption and decryption take time proportional to n.

7. Constructions and Restrictions

Where does one look for n-multilinear forms with the desired properties?
For n = 2, the answer is Weil and Tate pairings associated to abelian varieties.

If A is a principally polarized supersingular abelian variety over a finite field F , then
the Weil pairing êN , for any positive integer N not divisible by the characteristic
of F , is a Galois-equivariant non-degenerate bilinear map êN : A[N ]× Â[N ]→ µN ,
where A[N ] is the N -torsion on A, Â[N ] is the N -torsion on the dual abelian variety,
and µN is the group of N -th roots of unity. A principal polarization then induces
a map eN : A[N ] × A[N ] → µN . When A is a Jacobian variety, [21] (see also
Section 5.1 of [18] for the case of elliptic curves) gives an algorithm for computing
the pairing. If P ∈ A(F ) is a point of prime order `, and ϕ ∈ End(A) sends P to an
independent point of order `, then the modified Weil pairing ê : G2

1 → G2 defined
by ê(P1, P2) = e`(P1, ϕ(P2)) is a 2-multilinear map in the sense of Section 3, where
G1 is the subgroup of A(F ) generated by P , and G2 is the group of `-th roots of
unity. When A is a supersingular Jacobian variety, then the group G2 lies in a
relatively small extension of the ground field F , and therefore Miller’s algorithm is
efficient.

Maps that are algebraic (in the sense of being polynomial maps between alge-
braic varieties) are Galois-equivariant. If A and B are algebraic varieties, f : A→ B
is a morphism, A, B, and f are defined over a field F , and K is a Galois extension
of F , we say that f is Gal(K/F )-equivariant if for all σ ∈ Gal(K/F ) and x ∈ A(K),
we have σ(f(x)) = f(σ(x)). If a map between algebraic varieties is computable,
we would expect it to be defined by polynomial equations, i.e., to be algebraic, and
therefore Galois-equivariant.

Very roughly speaking, a motive over a field is something whose “realizations”
behave as if they were the cohomology groups associated to a variety. According to
3.1 of [29], “one reason for Grothendieck’s introduction of motives was to serve as
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analogues of the Jacobian of a curve in higher dimensions.” See [14] for a treatment
of motives over finite fields. If varieties giving rise to n-multilinear maps cannot be
found for n > 2, one could at least hope that such maps might arise from motives.
The results below give evidence that even such a hope might be too optimistic. We
believe that our paper is the first to give connections between the theory of motives
and the field of cryptography. We expect that the motivic point of view will prove
to be valuable in better understanding the mathematics that underlies public key
cryptography.

If e : Gn
1 → µ` is an n-multilinear map where G1 is a group of prime order

` that comes from geometry (or from a motive), then it might be reasonable to
expect that the underlying geometric object or motive would in fact give rise to
a compatible system of such maps that are Galois-equivariant, for all but finitely
many primes `. It is reasonable to expect such a map e to come about by restricting
(to one-dimensional subspaces) a multilinear and Galois-equivariant map V n → µ`,
where V is a finite-dimensional F`-vector space with a Galois action, coming from
the Galois action on the underlying geometric object (or the `-adic realization of
the motive). This is the case for Weil and Tate pairings on abelian varieties. (But
note that, while the Weil pairings e` are all Galois-equivariant, the modified pairing
ê defined above only becomes Galois-equivariant after passing to a field where the
endomorphism ϕ is defined.) We will give evidence that suggests that there is
something special about pairings on abelian varieties that permits this to happen.

7.1. Preliminaries. We begin with some notation. If F is a field and F s is a
separable closure, let GF = Gal(F s/F ). Suppose N ∈ Z+ and char(F ) - N . Write
µN for the group of N -th roots of unity in F s. The cyclotomic character

χN : GF → (Z/NZ)×

is defined by σ(ζ) = ζχN (σ) for every σ ∈ GF and ζ ∈ µN .

Remark 7.1. If V1, . . . , Vn are finite-dimensional F`-vector spaces, then there
is a natural one-to-correspondence between multilinear homomorphisms

h : V1 × · · · × Vn → µ`

and linear homomorphisms

h̃ : V1 ⊗ · · · ⊗ Vn → µ`,

with h(x1, . . . , xn) = h̃(x1 ⊗ . . .⊗ xn).

Lemma 7.2. Suppose F = Fq, N and d are positive integers, char(F ) - N , and
χN : GF → (Z/NZ)× is the cyclotomic character. Then χN = χd

N if and only if
qd−1 − 1 is divisible by N .

Proof. We have χN = χd
N ⇐⇒ χd−1

N = 1 ⇐⇒ d − 1 is divisible by the
order of χN , which is [F (ζN ) : F ] where ζN is a primitive N -th root of unity.
Equivalently, ζN ∈ Fqd−1 , i.e., N divides |Fqd−1 | = qd−1 − 1. �

Note that when d = 1, the condition that N divide qd−1 − 1 is trivially true.
As we will see below, it is this condition that makes n-multilinear forms special in
the case where n = 2.
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7.2. Tensor products of Weil pairings. We next discuss a straightforward
generalization of the Weil pairing, namely a tensor product of Weil pairings. The
linearity is now obvious, as is the Galois-equivariance as a map from A[N ]2r to µ⊗r

N .
However, after composing this map with an isomorphism µ⊗r

N → µN , the resulting
map from A[N ]2r to µN is Galois-equivariant if and only if qr−1 − 1 is divisible by
N , where q is the size of the finite field of definition.

More precisely, suppose that F = Fq, that N and r are positive integers, that
gcd(N, q) = 1, that A is a principally polarized abelian variety over F , and that
eN : A[N ]×A[N ]→ µN is the Weil pairing induced by a principal polarization on
A. Then the form er,N : A[N ]2r → µ⊗r

N defined by

er,N (P1, . . . , Pr, Q1, . . . , Qr) = eN (P1, Q1)⊗ · · · ⊗ eN (Pr, Qr)

is multilinear and GF -equivariant.
If r = 1, then er,N is the Weil pairing eN , and er,N is GF -equivariant, bilinear,

and alternating.
However, the situation is not so nice if r > 1. Fixing a generator ζ of µN , there

is an isomorphism hr,N : µ⊗r
N → µN , induced by hr,N (ζa1⊗· · ·⊗ζar ) = ζa1···ar . By

Lemma 7.2, the map hr,N is GF -equivariant if and only if qr−1−1 is divisible by N .
Thus for fixed r > 1, the Galois-equivariance of the composition hr,N ◦er,N holds for
only finitely many values of N . Therefore for r > 1, the maps hr,`◦fr,` : A[`]2r → µ`

do not in any meaningful sense fit into a “compatible system” of mod ` maps for
infinitely many primes `. Further, the isomorphism hr,N can only be computed
by solving a Diffie-Hellman-like problem, namely, given ζa1 , . . . , ζar , find ζa1···ar

(without knowing a1, . . . , ar).

7.3. Alternating multilinear maps. We next consider alternating multilin-
ear forms (the Weil pairing is one such). We show that for d-dimensional abelian va-
rieties with d > 1, there are only finitely many primes ` for which a non-degenerate
alternating multilinear form from A[`]2d to µ` can be Galois-equivariant. In other
words, one only obtains a system of alternating, non-degenerate, Galois-equivariant
multilinear forms from A[`]2d to µ` for infinitely many primes ` when the maps are
bilinear pairings and A is an elliptic curve.

Lemma 7.3. Suppose V is an n-dimensional F`-vector space. Then:
(a) there is a unique (up to scaling) multilinear alternating form f : V n � µ`;
(b) if F = Fq, ` - q, and ρ : GF → Aut(V ) is a homomorphism defining a

Galois action on V , then f is GF -equivariant if and only if χ` = det(ρ),
where χ` : GF → F×` is the cyclotomic character.

Proof. It is well-known that the set of alternating n-multilinear maps from an
n-dimensional vector space to a one-dimensional vector space is one-dimensional.
We thus have (a). Fix a generator ζ of µ` and a basis {v1, . . . , vn} of V over F`.
Define

f(w1, . . . , wn) = ζdet A

with wi =
∑n

j=1 aijvj for i = 1, . . . , n and A = (aij) ∈ Mn(F`). Then f is multi-
linear and alternating, and is the unique such map, up to the choice of generator
and basis. Now f is GF -equivariant if and only if for every σ ∈ GF , we have
σ(f(v1, . . . , vn)) = f(σ(v1), . . . , σ(vn)). Since σ(f(v1, . . . , vn)) = σ(ζ) = ζχ`(σ) and

f(σ(v1), . . . , σ(vn)) = f(ρ(σ)(v1), . . . , ρ(σ)(vn)) = ζdet ρ(σ),
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we have (b). �

Proposition 7.4. Suppose that ` is prime, that F = Fq, that ` - q, that A
is a d-dimensional abelian variety over F , and that V = A[`] is the GF -module of
`-torsion on A. Then the alternating multilinear form f defined in Lemma 7.3(a)
above (with n = 2d) is GF -equivariant if and only if qd−1 − 1 is divisible by `.

Proof. Let ρ : GF → Aut(V ) be the mod ` representation for A. Writing
Φ for the Frobenius element of GF , then det ρ(Φ) is the constant term in the
characteristic polynomial of Φ acting on A[`], so det ρ(Φ) = qd = χ`(Φ)d. Since Φ
generates GF , we have det ρ = χd

` . The result now follows from Lemmas 7.3(b) and
7.2. �

From the point of view of cryptography, one problem with the above alter-
nating map f is that to compute it one must express elements of V in terms of
the basis {v1, . . . , vn}, and this amounts to solving the discrete log problem. For
example, if {P1, . . . , P2d} is an F`-basis for A[`], and Q = nP1, then to compute
f(Q,Q2, . . . , Q2d) one begins by trying to compute n, which is the discrete log of
Q with respect to P1.

Another problem is that Proposition 7.4 provides evidence that when d > 1,
this form f is not a very natural map, and therefore is not likely to be easily
computable. In particular, for fixed A (and therefore q and d), these maps are
Galois-equivariant for only finitely many primes `. Though these maps are defined
on an algebraic object, namely an abelian variety, they are not in general themselves
algebraic, since they are not in general Galois-equivariant. We elaborate on this
further in what follows.

7.4. Motives. If an n-multilinear map is computable, it is reasonable to ex-
pect it to come from geometry, as is the case for Weil and Tate pairings when n = 2.
Failing that, one might hope that it at least comes from a motive.

From now on, we consider forms that are not necessarily alternating. In Corol-
lary 7.7 we will show that if the desired n-multilinear map comes from a motive over
a finite field, and is part of a system of Galois-equivariant mod ` maps for infinitely
many primes `, then n = 1 or 2 (and the motive has weight 2 or 1, respectively).
For n = 1, the identity isomorphism µ` → µ` gives trivial 1-multilinear maps of
weight 2 motives. Weil or Tate pairings on abelian varieties give rise to 2-multilinear
maps of weight 1 motives. Note (Remark 2.7 of [22]) that the category of motives
over finite fields is generated by Artin motives (which have weight 0) and abelian
varieties (which have weight 1). Corollary 7.7 provides evidence that the desired
forms will be motivic only in the case of bilinear pairings on abelian varieties and
in trivial cases.

As alluded to in §7.2, it is not easy to tell when two elements of µ⊗n
` are the

same, if n > 1. For purposes of cryptography, we will therefore only consider the
cases where the range is µ`, Z/`Z, or Hom(µ`, Z/`Z) in what follows.

Theorem 7.5. Suppose that ` is prime, that F = Fq, that ` - q, and that
V1, . . . , Vn are finite-dimensional F`-vector spaces with GF -actions. Write Φ for
the Frobenius element of GF . Suppose f : V1 × · · · × Vn � µ` is multilinear and
GF -equivariant. Then there are α1, . . . , αn ∈ F̄` such that α1 · · ·αn = q and for
each i, αi is an eigenvalue of Φ acting on Vi. If µ` is replaced by Z/`Z (respectively,
Hom(µ`, Z/`Z)), then q is replaced by 1 (respectively, 1/q) in the conclusion.
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Proof. The multilinear map f gives rise to a linear map f̃ : V1⊗· · ·⊗Vn � µ`,
as in Remark 7.1. Since f is GF -equivariant, we have

f̃ ◦ Φ⊗n(x1 ⊗ · · · ⊗ xn) = f̃(Φ(x1)⊗ · · · ⊗ Φ(xn))

= Φ ◦ f̃(x1 ⊗ · · · ⊗ xn) = f̃(x1 ⊗ · · · ⊗ xn)q.

Therefore, f̃(Φ⊗n−q)(x1⊗· · ·⊗xn) = 0 for all xi ∈ Vi and 1 ≤ i ≤ n. Since f̃ 6= 0,
the map Φ⊗n − q does not surject onto V1 ⊗ · · · ⊗ Vn, and thus is not injective.
Therefore, q is an eigenvalue of Φ⊗n. By Proposition 11 on p. A.VII.39 of [5] and
induction, the set of eigenvalues of Φ⊗n is

{α1 · · ·αn : αi is an eigenvalue for the action of Φ on Vi}.

Since the Galois action on Z/`Z is trivial, q is replaced by 1 in the above, if µ` is
replaced by Z/`Z. Similarly, q is replaced by 1/q if µ` is replaced by its dual. �

As a special case, note that if F = Fq, ` - q, V is an n-dimensional F`-
vector space with a GF -action, f : V n � µ` is multilinear, alternating, and GF -
equivariant, and S is the set of eigenvalues of the action of Φ on V , then Lemma
7.3 shows that

∏
α∈S αnα = q, where nα is the multiplicity of α as an eigenvalue.

Corollary 7.6. Suppose M1, . . . ,Mn are motives over F = Fq that are ho-
mogeneous of weights m1, . . . ,mn, respectively. Assume the Tate Conjecture holds
for ζ-functions of smooth projective varieties over finite fields (see (1.14) of [22]).
If ` is prime and ` - q, let (Mi)` be the mod ` realization of Mi. Suppose S is
an infinite set of primes ` such that ` - q and such that there is a GF -equivariant
multilinear homomorphism f` : (M1)`×· · ·×(Mn)` � µ`. Then m1+ · · ·+mn = 2.
If µ` is replaced by Z/`Z (respectively, Hom(µ`, Z/`Z)), then m1 + · · · + mn = 0
(respectively, −2).

Proof. Write Si ⊂ Q̄ for the set of eigenvalues of Frobenius acting on Mi. Let
T be the finite set

T = {q − α1 · · ·αn : αi ∈ Si} ⊂ Q̄.

By Proposition 2.2 of [22], |αi| = qmi/2 (this follows from the Weil Conjectures,
proved by Deligne in [7]). Thus, |α1α2 · · ·αn| = q(m1+···+mn)/2. Suppose m1+ · · ·+
mn 6= 2. Then 0 /∈ T . Therefore there are only finitely many prime ideals of the
ring Z̄ of algebraic integers that divide elements of the finite set T . However, by
Theorem 7.5, for every ` ∈ S there is a prime ideal of Z̄ above ` that divides some
element of T . Thus, S is finite. To finish the proof, replace q by 1 (resp., 1/q) in
the definition of T . �

Corollary 7.7. Suppose M is a motive over F = Fq that is homogeneous of
weight m. Assume the Tate Conjecture holds for ζ-functions of smooth projective
varieties over finite fields (see (1.14) of [22]). If ` is prime and ` - q, let M` be
the mod ` realization of M . Suppose S is an infinite set of primes ` such that ` - q
and such that there is a GF -equivariant multilinear homomorphism f` : Mn

` � µ`.
Then (m,n) = (2, 1) or (1, 2). If µ` is replaced by Z/`Z, then m = 0. If µ` is
replaced by Hom(µ`, Z/`Z), then (m,n) = (−2, 1) or (−1, 2).
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7.5. Tate pairings. We end with a brief discussion of Tate pairings (see Sec-
tion 3.3 of [9] for more information). Suppose that F = Fq, that K = Fqm , that
` is a prime divisor of qm − 1, and that J is the Jacobian of a curve of genus ≥ 1
defined over F . Then (see Corollary 3.21 of [9]) the Tate (or Tate-Lichtenbaum)
pairing induces a non-degenerate Gal(K/F )-equivariant bilinear pairing

〈 , 〉 : J(K)[`]× J(K)[`]→ µ` ⊂ K.

If P ∈ J(K)[`] and G1 is the group generated by P , then this pairing induces a
Gal(K/F )-equivariant pairing

〈 , 〉 : G1 ×G1 → µ`.

If J is supersingular, then K is a “small” extension of F (see [27]), so this map is
efficiently computable. Note that the Weil pairing is invariant under field extension,
while the Tate pairing is not — changing the field K changes the map. Therefore in
at least one way, the Tate pairing can be viewed as a less natural map. This augers
well for the idea that useful pairings in cryptography could come from geometry, and
yet not have all possible seemingly good properties (such as Galois-equivariance).
We therefore conclude on the optimistic note that interesting geometric objects
could still lead to useful n-multilinear maps with n > 2.

8. Conclusions

We gave strong motivation for constructing cryptographic n-multilinear maps.
We showed that such maps give low-bandwidth broadcast encryption schemes,
unique signature schemes, verifiable pseudo random functions, and a one-round
conference key exchange protocol. We hope this ample motivation will eventually
lead to an efficient construction for a cryptographic multilinear map. We also give
evidence that such maps might have to either come from outside the realm of alge-
braic geometry, or occur as “unnatural” computable maps arising from geometry.
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