
Amir Herzberg Page 1 6/26/02 

Guaranteed Delivery  
for Secure Electronic Commerce and Payments 

Draft version: Wednesday, June 26, 2002 

-- Comments Welcome!! -- 
Amir Herzberg, amir@herzberg.name 

Computer Science Dept. 
Bar-Ilan University 

 
Abstract 

We present the Guaranteed Delivery Protocol for ensuring non-repudiation of 
submission and of origin, for time-sensitive messages. The protocol allows third 

parties (Delivery Authorities or notaries) to provide signed, timestamped receipts to 
the origin and destination of the message. The Delivery Authority (DA) may be 

distributed, for fault tolerance and proactive security. The message may be 
confidential, even from the DA; to achieve this we introduce the Commit then Encrypt 

then Sign (CtEtS) method, allowing a trusted third party to sign a statement 
concerning a document without exposure to its contents; this method may have 

additional applications (e.g. timestamping, certified delivery). Guaranteed delivery is 
an important enabler for secure e-commerce applications. We demonstrate 

applications to secure payments, banking, bidding, auctions, gambling and business-
to-business transactions such as supply chain.  

 
Keywords: secure electronic commerce; non-repudiation; timestamp; certified 
delivery; guaranteed delivery; secure messaging; delivery authority; secure payments.  

1. Introduction 
The Internet, with its global availability and support for automation, has a huge 
potential for improved services and commerce. However, security is often a concern. 
There are well-established standards for securing the communication among the 
parties. In particular, secure e-commerce applications often assume that 
communication among participants is authenticated and confidential. These security 
guarantees are provided by standard secure communication mechanisms that are part 
of the communication services. Specifically, e-commerce applications often assume 
that communication is secured in the Internet layer, using the IP-Security standard 
[RFC2411], in the transport layer, using TLS or SSL [R00,RFC2246], or in the 
application layer, e.g. using S/MIME [RFC2633,RFC2634]. See the network layers in 
Figure 1 below.   
 
However, for many e-commerce applications, there are additional security 
requirements beyond secure communication. These additional security requirements 
are often the result of the conflicting interests of the parties. It is possible to address 
such additional security requirements in each application individually. However, it is 
clearly desirable to identify common services required by many applications, and 
provide them by a common, underlying mechanisms.  



Amir Herzberg Page 2 6/26/02 

 
In particular, many secure electronic commerce applications require some non-
repudiated message delivery services. Such services are applied to messages or 
documents sent from one party (the origin) to another (the destination). Non-
repudiated delivery services can simplify the design and analysis of higher-layer 
mechanisms and applications, which can now assume a stronger (and therefore easier) 
environment. This extends the traditional communication network layers (e.g. of ISO 
or TCP/IP) with an additional layer, the non-repudiated delivery layer, as a 
foundation for secure e-commerce applications.  
 
Non-repudiation Services. Non-repudiation is a fundamental service required by 
many secure e-commerce applications.  The most important non-repudiation services 
are:  
 

1. Non-Repudiation of Origin (NRO), allowing the destination to 
prove that a message it delivered came from a specific, identified 
origin; the proof may also indicates the time of delivery.  

2. Non-Repudiation of Receipt (NRR), allowing the origin to prove 
that the destination received the message, at particular time. Some 
authors require that this proof is signed by the destination, and define 
also non-repudiation of delivery (NRD) as a proof of message 
delivery signed by a third party (e.g. post office).  

3. Non-Repudiation of Submission (NRS), allowing the origin to 
prove that it submitted the message, to the destination, at particular 
time. Namely, the origin has fulfilled its obligations for delivering the 
message; if it was not received this is due to a failure of the 
destination. The destination will normally receive the submitted 
message, except if there is a failure in the delivery of messages to it.  

 
Non-repudiation of origin is usually provided by the origin digitally signing the 
message, together with the identity of the destination (and optionally the time). If the 
public key of the origin may be revoked, non-repudiation of origin is ensured by 
attaching (to the signature) proof that the origin�s public key was valid at the time.  
 
Non-repudiation of submission and of receipt is harder to obtain; the basic problem is 
that the destination may fail to receive or acknowledge the message, intentionally or 
otherwise; in which case there certainly cannot be a receipt (and therefore non-
repudiation of receipt). Solutions require the parties to agree (in a non-repudiated 
manner, e.g. written contract) on a mutually trusted third party. Such a third party is 
called notary, proxy, or � and in this paper � Delivery Authority (DA).  
 
Once the parties agree on a delivery authority, non-repudiation for submission seems 
easy. The delivery authority provides the origin with signed, timestamped submission 
receipt for submissions sent via it. The origin can use this receipt in resolving disputes 
with the destination over damages due to the fact that the destination did not handle 
the message in time. This simple, `folklore` protocol has not received much attention, 
implementation or analysis (it was sometimes implied as a part of more complex non-
repudiation protocols, e.g. in [ISO13888-3, ZG96]). In this manuscript, we focus on 
the guaranteed delivery service, which provides non-repudiation of origin and of 
submission, refining, analyzing and extending the `folklore` protocol. Most of the 



Amir Herzberg Page 3 6/26/02 

existing works focus on certified delivery, which provides non-repudiation of origin 
and of receipt.  

Certified delivery. Even an agreed upon delivery authority cannot produce proof of 
message receipt by the destination, in particular, when the destination is unable or 
unwilling to receive the message. Many works solve this problem by requiring the 
delivery service to be atomic (or fair): the message is delivered if and only if a signed 
receipt is provided (ensuring NRR). A certified message delivery service provides 
atomic/fair delivery with non-repudiation of origin and of receipt; corresponding to 
the postal services of `certified mail with receipt for delivery`. Variants of the 
certified delivery problem require the destination to send specific documents instead 
of or in addition to the receipt, e.g. contract signing and fair exchange. Several 
messaging systems and standards support certified delivery services, in particular 
[X.400,MSP96,SEMPER], and ISO standards [ISO13888-1,ISO13888-3]. Much of 
the research on certified delivery focuses on avoiding the use of a delivery authority, 
by probabilistic and/or gradual exchange, as in [G82, EGL85], or using it only to 
handle exceptions as in [ASW97,M97,PSW00,ZG96]. For overview and bibliography 
of certified delivery protocols, see [KMZ02,Z01].  

For many applications, guaranteed delivery, ensuring non-repudiation of submission, 
is a more appropriate and useful service. Guaranteed delivery does not depend on the 
cooperation of the destination; the delivery authority provides the proof of submission 
to the origin.  This corresponds to regular certified mail, which is usually the required 
mechanism for legally binding, non-repudiated delivery of messages in existing 
business and commerce relationships. The guaranteed delivery problem also appears 
easier than the certified delivery problem, leading to simpler and more efficient 
protocols. In this paper we focus on guaranteed delivery.   
Organization and contributions. In this work, we suggest that a guaranteed 
delivery service, ensuring non-repudiation of submission and non-repudiation of 
origin, can be an important foundation layer for many secure e-commerce 
applications. We therefore propose that this (relatively simple) task should receive 
much more attention than it received so far, analyzed carefully, implemented and 
standardized. In this manuscript, we take the first steps in this direction, by presenting 
and motivating the guaranteed delivery problem, and presenting several protocols for 
guaranteed delivery.  
 
In Section 2, we define the guaranteed delivery service; this definition critical to allow 
simplified design of applications taking advantage of this layer. The definition is not 
as trivial as one may expect (based on this being `folklore` mechanism for so long), 
especially when considering (bounded) delays and clock drifts, as required for 
realistic applications. Additional complications are due to the dependency on 
computationally secure cryptographic mechanisms (e.g. signatures), which may be 
broken with negligible probability or with overwhelming computational resources.  
 
In Section 3, we present a simple guaranteed delivery protocol. The protocol handles 
bounded message delays and clock drifts. For simplicity, this protocol does not 
provide message confidentiality.  
 
In Section 4, we extend the protocol to provide message confidentiality, even from the 
Delivery Authority (DA). This requires a new method for combining signature and 



Amir Herzberg Page 4 6/26/02 

encryption operations, which we call Commit then Encrypt then Sign (CtEtS); this 
method is related to, but differs from, the recently proposed Commit then Encrypt and 
Sign (CtE&S) [ADY02] (their goal was to allow parallel computation of encryption 
and signature operations, while our motivation is to allow a third party, the DA, to 
provide non-repudiation for hidden information). The CtEtS method may have 
additional applications, e.g. for certified delivery, timestamping, and other tasks 
where a trusted third party is trusted for authenticating a document which is 
confidential (and not to be revealed even to the trusted third party).  
 
The security of the applications depends on the security of the delivery service, as 
provided by the Delivery Authority. In Section 5, we sketch some results on security 
in the presence of DA faults (and recoveries). We first show, in Subsection 5.1, that 
by a minor extension, namely adding the signature of the origin on the delivery 
request, we can ensure non-repudiation of origin holds even if the DA may be 
corrupted. This requires the origin and destination to agree on the origin�s public key 
in advance, without allowing revocation of this key.  
 
We then extend, in Subsection 5.2, the protocols of the previous sections to use 
multiple, redundant Delivery Authorities. The resulting protocol can handle arbitrary 
(possibly malicious) failures of Delivery Authorities. Every DA may fail, as long as 
the total number of authorities corrupted within any bounded time interval is under a 
pre-defined threshold. We allow recovery of a corrupted DA, and do not assume 
detection of failures or recoveries, thereby achieving proactive security, building on 
the results in this area, see e.g. [BHHN00, CGHN97, CHH01,HJJ*97]. Precise 
definition and analysis of the security this distributed/proactive version of the 
protocols, providing guaranteed delivery with faults and recoveries, is beyond the 
scope of this paper.  
 
Both certified delivery and guaranteed delivery services are a natural services for a 
non-repudiated delivery layer for secure e-commerce applications, as shown in 
Figure 1. The non-repudiated delivery layer can use secure communication 
(authentication and confidentiality) between the distributed authority and both origin 
and destination, provided by security facilities in the application layer (e.g. S/MIME 
[RFC2633], XML security [H02a]), transport layer (e.g. SSL / TLS [R00,RFC2246]) 
or Internet Layer (IP-Sec [RFC2411]). A non-repudiation delivery layer was proposed 
in SEMPER [LPSW00], but only with certified delivery service. Offering multiple 
non-repudiated delivery services resembles the offering of multiple services in the 
transport layer (UDP, TCP and others). In Section 6, we discuss several secure e-
commerce applications built on top of the guaranteed delivery service, including 
secure payments, banking, brokerage, bidding, auctions, gambling and business-to-
business transactions such as supply chain. 
 



Amir Herzberg Page 5 6/26/02 

Application Layer 
Non-repudiated Delivery Layer

E-commerce Application Layer

Link Layer

Internet Layer

Transport Layer

Certified
Delivery

Guaranteed
Delivery

Network
Layers

Secure
E-commerce
Layers

Other? 

TLS/SSL

IP-Sec

S/MIME

Exchange Contract OtherBiddingBankingPay

Secure
XML

 
Figure 1: Secure E-Commerce and Network Layers 

 
All of our protocols are efficient and practical. The simple protocol of section 3 does 
not require the origin to perform any public key operations, allowing implementations 
on computationally limited client platforms and with standard client software, and 
avoiding the well-known challenge of installing `local wallet software`. In Section 7, 
we discuss optimistic versions of the protocols, which have improved performance in 
the typical, no-faults case.  
 
To help readability, Appendix A contains tables of symbols.  
 
Non-repudiation and timestamping. The guaranteed delivery service provides 
the destination non-repudiation of origin, by delivering the document with a 
timestamp. The timestamp allows the destination to prove to a third party, e.g. judge, 
that the origin sent the document to the destination (at a particular time), and in 
particular, that the public key used to validate the origin was valid (not revoked) at the 
time of delivery. This deals with the risk that the destination would accept a document 
as properly signed by the origin by validating the origin�s public key, but later the 
origin will claim that its public key was already revoked and therefore it is not 
responsible for the document.  

Two (proposed) IETF standards already address the need for validating the public key 
of the origin of a message upon delivery. The Online Certificate Status Protocol 
(OCSP) [RFC2560] allows the destination (relying party) to check the validity of the 
public key by consulting an online Certification Authority (CA) or an Authorized 
Responder; however this does not provide proof that a particular (signed) message 
was received at that time, therefore OCSP is not sufficient for non-repudiation of 
origin. The Time Stamp Protocol (TSP) [RFC3161] provides time-stamps for 
arbitrary documents, and therefore can be used by the origin or destination to provide 
a timestamp for the (signed) message and the certificate, and thereby non-repudiation 
of origin. Indeed, we believe that our results can be applied as extensions to OCSP 
and TSP, and in particular that the services performed by the trusted third party in our 
protocols (the Delivery Authority, DA) are a natural extensions of the services of the 
trusted third party in OCSP (CA and/or Authorized Responder) and in TSP (the Time 



Amir Herzberg Page 6 6/26/02 

Stamping Authority, TSA). The main additional service in our protocols compared to 
OCSP, TSP, and other timestamping solutions, is delivery of the document to the 
destination, thereby providing non-repudiation of submission (with timestamped 
proof of submission) as well as non-repudiation of origin (with timestamped 
document and proof of origin). A Delivery Authority combines the functions of a CA 
and Authorized Responder, as in OCSP [RFC2560], a Time Stamping Authority, as in 
TSP [RFC3161], and a mailbox server as in POP3  [RFC1939].  

All the above methods, and also our protocols, rely on the delivery authority (or, in 
Section 5, on a sufficient number of authorities) to provide correct time-stamp. This 
implies that a penetration of the DA, or sufficient number of DA�s in the future, will 
allow forgery. Some works address this problem, by `linking` the timestamps so as to 
prevent backdating even if all DA keys are exposed [R99]. We do not address this 
issue, although our protocols can be used with forward-secure signatures [BM99] for 
the same effect.  

Timestamping Aspects. There are also some differences in the timestamping 
aspects of our solution compared to previous time-stamping solutions. We provide 
absolute timestamps, linking the delivery to a particular value of real time. Most 
previous results, e.g. [HS91,J98], focused on relative timestamps, creating linkage and 
thereby total or partial ordering among different timestamps. We do not see how to 
use relative timestamps for non-repudiation of delivery or of origin. 

Absolute timestamping has a simple, `folklore` solution: send the hash of the 
document to the time-stamping server, and the timestamp is the server�s signature on 
the time together with the hash of the document. One goal of signing a hash of the 
document (rather than the document directly) is to protect confidentiality of the 
document, even from the time-stamping authority (or delivery authority). Actually, to 
preserve confidentiality, the timestamp should be on a commitment to the document 
rather than on its hash; see details in Section  4. We also show, in Section 5, how to 
extend absolute timestamping to withstand time-stamping server failures (cf. [J98]).   

2. Model and Requirements 
We now present our model of the system and define the requirements from a 
guaranteed delivery service, as well as our assumptions about the underlying 
mechanisms (communication and clock synchronization). We tried to provide well 
defined model without making it overly complex and verbose; the interested reader 
should be able to add details and present our results using probabilistic I/O automata 
[L96], as done for the related problem of certified delivery in [PSW00].  
 
We consider a network with a set P of processors. For simplicity, we focus on the 
delivery of a single message from processor Org∈ P (origin) to processor Dest∈ P 
(destination). (To handle multiple messages, use separate executions of the protocol, 
each with unique identifier.) A protocol P is a mapping, for each processor in P, of a 
tuple (IE, OE, S, init, δ), where IE (OE) is the set of input (respectively output) 
events; S is the set of states, with init∈ S the initial state; and δ is a probabilistic state-
transition function from current state and input event, to next state and possibly one or 
more output events.  
 



Amir Herzberg Page 7 6/26/02 

The events define interactions with the application (higher layer) and with the 
underlying communication and clock services, as illustrated in Figure 2. The only 
input from the application is a deliver event which defines a message m∈ {0,1}* to be 
delivered. For simplicity, and without loss of generality, we assume that there is at 
most one deliver event in the execution, and it occurs in the origin Org. The protocol 
produces output by invoking receipt events to the application (higher layer), in the 
origin Org and destination Dest.   
 

Authenticated
Communication Layer

Non-repudiated
Delivery Layer

Application Layer

deliver(m)
receipt(x)

clock

send(x,j)

receive(x,j)

 
Figure 2: Interfaces of the Non-repudiated Delivery Layer 

 
We assume that processors can communicate using reliable and authenticated 
communication channels, with bounded delay ∆. Reliability intuitively means that 
messages sent arrive within ∆, unless the sender or receiver is faulty. For simplicity, it 
is sufficient for our purposes to categorize each processor as either faulty or non-
faulty; non-faulty processors execute the protocol while faulty processors can behave 
arbitrarily.  
 
To simplify our definitions and analysis, we assume a mapping of all events to real 
time, and that at any given real time there is at most one input event. We can now 
define the reliable communication channels properties, for non-faulty processors i, 
j∈ P:  

•  Secure and reliable send: if at time t processor i sends x∈ {0,1}* to j 
(i.e. i invokes output event send(x,j)), then during time interval [t,t+∆], 
processor j receives x from i (i.e. processor j has input event 
receive(x,i)).  

•  Secure and reliable receive: if at time t processor i receives x∈ {0,1}* 
from j (i.e. i has input event receive(x,j)), then during time interval [t-
∆,t], processor j sent x to i (i.e. processor j invoked output event 
send(x,i)). 

 



Amir Herzberg Page 8 6/26/02 

To implement reliable and authenticated communication with bounded delay, we may 
use secure authentication mechanisms in the underlying communication layers, as in 
Figure 1, based on shared key or public keys1, e.g. IP-Sec [RFC2411], TLS/SSL 
[R00,RFC2246] or S/MIME [RFC2633,RFC2634]; or see [CHH00] for proactive 
secure communication (resilience to and recovery from corruptions). To ensure 
reliable communication, with bounded delay, use a reliable transport layer such as 
TCP in conjunction with the authentication mechanism. We notice that such practical 
mechanism provide only probabilistic security and reliability, and assume 
computationally bounded adversary; it seems possible to extend our definitions and 
proofs to allow for this, but for simplicity we adopt the stronger assumptions here.   
 
We also assume that each non-faulty processor has a local clock, synchronized to real 
time, with maximal drift of ∆. Namely, each non-faulty processor i has a special 
variable clocki, which is an additional input to the state transition function δ , such 
that at every time t holds t-∆≤ clocki ≤ t+∆.  
 
To implement local clocks with bounded drift from real time, use reliable and secure 
clock synchronization protocols, with appropriate (reliable and secure) sources of 
real-time. The protocol can be an authenticated version of the Network Time Protocol 
[Mi91,Mi00]. For provable security resilient to corruptions of all clocks, as long as 
most clocks at any given period are not corrupted, use [BHHN00]. Again, in reality, 
the bound on the drift is only probabilistic; we believe our results are likely to hold 
under refined analysis taking this into account, and in this work we use the simpler 
assumption (that drift is always bounded by ∆).  
 
Designers can use the guaranteed delivery service to ensure non-repudiation of origin 
and of submission, thereby simplifying the design and analysis of secure e-commerce 
applications. The guaranteed delivery service cannot completely prevent delivery 
failures, since there can be a failure in the origin, destination or (one or multiple) 
delivery authorities. We define the threshold number of faults f of a delivery service 
as the number of delivery authorities that can fail, without disrupting delivery. In 
executions where the delivery authorities do not fail, or where the number of DA 
failures is below the permitted threshold f, a non-faulty origin should receive a receipt 
of submission, and a non-faulty destination should receive the message and receipt of 
origin. The guaranteed delivery service acts as a `black box`, and the application 
designer can ignore the delivery authority or authorities, except for validating 
receipts. For example, we first present protocols for a single Delivery Authority (DA), 
assuming it does not fail (i.e. f=0); then in Section  5 we show how to extend these 
protocols to utilize multiple DA servers, tolerating up to f>0 DA corruptions. 
However, the designer of an application using the guaranteed delivery service will not 
need to modify it for using any of the protocols we present, and certainly not to use a 
different number of authorities and threshold, except possibly for using different 
validation functions (preferably not even this). A failure of the delivery authorities, 
beyond the threshold f supported by the guaranteed delivery protocol, is simply 
mapped to a failure of the origin (if it does not receive receipt) or the destination (if 
the origin receives receipt but the destination does not receive the message). This is 

                                                 
1 If we use public keys to authenticate the communication, then the Delivery Authority (DA) knows 
the public keys of the parties, in particular of the origin, and whether the keys are valid (or revoked) at 
any given time.  



Amir Herzberg Page 9 6/26/02 

justified in the sense that this origin and destination agreed to be held responsible for 
failure of (more than f ) delivery authorities. Our results can be extended to support 
different fault thresholds for origin and for destination.  
 
We specify a guaranteed-delivery service by defining algorithms for the origin, 
destination and delivery authority. In addition, the parties agree on a pair of (public) 
receipt-validation functions <VO, VS>, for validating receipt of origin and of 
submission respectively; in some protocols these two functions are identical 
V=VO=VS. The agreement on <VO, VS> should be public and non-repudiable, e.g. via 
a contract specifying the functions explicitly, signed by origin and destination. Each 
receipt-validation function V has two inputs2: a message m and a receipt r.  
 
We now define a secure guaranteed delivery service. As an exercise, we first consider 
a simplified, idealized timing model, where clocks are completely synchronized, and 
message transmission is instantaneous3. A protocol P, with receipt-validation 
functions <VO, VS> is an unconditionally secure guaranteed delivery service for up to 
f faulty delivery authorities under simplified timing model if:  

1. Valid receipts define origin, destination and time (syntax): The value of 
V(m,r), for V∈ {VO, VS}, is either ⊥  (undefined � r is not a valid receipt for m), 
or a triplet <Org,Dest,t> where Org and Dest are identities (of origin and 
destination), and t is time (at which Org submitted m to Dest).  

2. Receipts are trustworthy (safety): if at most f DAs are faulty, then: 
a. Receipt of Origin proves delivery from origin, i.e. NRO: If there is 

a receipt(<m,r>) event in Dest, such that VO(m,r)=<Org,Dest,t>, 
then at time t there was a deliver(m) event in Org , or Org is faulty.  

b. Receipt of Submission proves delivery to destination, i.e. NRS: If 
there is a receipt(<m,r>) event in Org such that 
VS(m,r)=<Org,Dest,t>, then at time t there is a receipt(<m,r�>) event 
in Dest, such that VO(m,r�)=<Org,Dest,t>, or Dest is faulty.  

3. Origin always receives receipt for submission (liveness): If at most f DAs 
are faulty, and a deliver(m) event occurs in (non-faulty) Org at time t, then 
this is immediately followed by receipt(<m,r>) event in Org, such that 
VS(m,r)=<Org,Dest,t>. 

 
We now add details to deal with transmission delays and clock drift. This requires 
an agreed-upon maximal uncertainty time period M, such that receipts are 
received within M time units, and4 the time of submission and reception is 
bounded within a window of size M. The value of M is derived from the bounds 
on the delay and on the clock drift; we can compare guaranteed delivery protocols 
based on how M grows as a function of these bounds, but the application needs 
only to consider M. A protocol P, with receipt-validation function V, is an 
unconditionally secure guaranteed delivery service for up to f faulty delivery 
authorities with maximal uncertainty M if:  

                                                 
2 We normally use a keyed function Vk where k is a public validation key, which is also agreed upon 
between origin and destination as part of the contract they sign. However, since in this paper we only 
deal with single <origin, destination> pair, we consider k as part of the specification of V for 
simplicity. 
3 For this exercise, ignore our assumption that at any given real time there is at most one input event. 
4 Of course, we could use two different parameters here, but avoid this for simplicity.  



Amir Herzberg Page 10 6/26/02 

1. Valid receipts define origin, destination and time (syntax): The value of 
V(m,r), for V∈ {VO, VS}, is either ⊥  (undefined � r is not a valid receipt for m), 
or a triplet <Org,Dest,[min,max]> where [min,max] is a time interval (within 
which Org submitted m to Dest), where min<max<min+M. 

2. Receipts are trustworthy (safety): if at most f DAs are faulty, then: 
a. Receipt of Origin proves delivery from origin, i.e. NRO: If there is 

a receipt(<m,r>) event in Dest, such that VO(m,r)=<Org,Dest,[t,t�]>, 
then during [t,t�] there was a deliver(m) event in Org , or Org is 
faulty.  

b. Receipt of Submission proves delivery to destination, i.e. NRS: If 
there is a receipt(<m,r>) event in Org such that 
VS(m,r)=<Org,Dest,[t,t�]>, then during [t,t�] there is a 
receipt(<m,r�>) event in Dest, such that VO(m,r�)=<Org,Dest,[t,t�]>, 
or Dest is faulty.  

3. Origin always receives receipt for submission (liveness): If at most f DAs 
are faulty, and a deliver(m) event occurs in (non-faulty) Org at time t, then 
during [t,t+M] there is a receipt(<m,r>) event in Org, such that 
VS(m,r)=<Org,Dest,[t0 ,t1]> and [t0 ,t1] ⊆  [t-M, t+M].   

 
The above definitions are unconditionally secure since they do not allow any 
probability of forgery, and allow computationally-unbounded attackers. The protocols 
we present depend on cryptographic mechanisms, which offer only probabilistic 
guarantees of security, and only against computationally limited adversaries. We 
therefore now present the final version of our definitions, where we assume 
computationally limited adversary ADV and allow for negligible probability of 
forgery. Let ADV(P) denote the probability distribution of executions of a protocol P  
with adversary ADV, where adversary controls all the input events and the clock 
variables,  as long as the properties we assumed for the lower layer communication 
and clock services are kept.  
 
We can now define guaranteed delivery service allowing negligible probability of 
forgery and assuming computationally bounded adversary. We only need to modify 
the safety conditions, essentially rephrasing them to state that the forgery events can 
happen only with negligible probability. A protocol P, with receipt-validation function 
V, is a secure guaranteed delivery service for up to f faulty delivery authorities with 
maximal uncertainty M if for every poly-time adversary ADV holds:  

1. Valid receipts define origin, destination and time (syntax): The value of 
V(m,r), for V∈ {VO, VS}, is either ⊥  (undefined � r is not a valid receipt for m), 
or a triplet <Org,Dest,[min,max]> where [min,max] is a time interval (within 
which Org submitted m to Dest), where min<max<min+M. 

2. Receipts are trustworthy (safety): if at most f DAs are faulty, then: 
a. Receipt of Origin proves delivery from origin, i.e. NRO: there is 

negligible probability that an execution in ADV(P) with non-faulty 
Org will contain a receipt(<m,r>) event in Dest, such that 
VO(m,r)=<Org,Dest,[t,t�]>, while during [t,t�] there was no 
deliver(m) event in Org.  

b. Receipt of Submission proves delivery to destination, i.e. NRS: 
there is negligible probability that an execution in ADV(P) with non-
faulty Dest will contain a receipt(<m,r>) event in Org such that 



Amir Herzberg Page 11 6/26/02 

VS(m,r)=<Org,Dest,[t,t�]>, while during [t,t�] there was no 
receipt(<m,r�>) event in Dest, such that VO(m,r�)=<Org,Dest,[t,t�]>.  

3. Origin always receives receipt for submission (liveness): If at most f DAs 
are faulty, and a deliver(m) event occurs in (non-faulty) Org at time t, then 
during [t,t+M] there is a receipt(<m,r>) event in Org, such that 
VS(m,r)=<Org,Dest,[t0 ,t1]> and [t0 ,t1] ⊆  [t-M, t+M].   

3. Simple Guaranteed Delivery Protocol 
We begin by presenting a simple guaranteed delivery protocol. In this version, we 
consider a single, completely trusted and reliable Delivery Authority (DA). More 
specifically, we make the following assumptions:  

1. The source and the destination know the public key of the Delivery 
Authority (DA) PUBDA , and have non-repudiable agreement to honor 
receipts signed using this key.  

2. The Delivery Authority (DA) is completely reliable and trustworthy. 
3. The message to be sent is not confidential (in the following section we 

show how to provide confidentiality).   
 
The flows of the simple guaranteed delivery protocol are illustrated in Figure 3 below. 
The protocol consists of two request-response pairs, where the Delivery Authority 
(DA) acts in both as a server. The Delivery Authority (DA) server receives the 
message from the source in the Submit request, and acknowledges it, providing the 
source with proof of submission, in the Submit response. The Delivery Authority 
(DA) server then keeps the documents, much like existing mailbox servers, until the 
destination requests them with a Pickup request. It is the responsibility of the 
destination to periodically perform Pickup requests (for simplicity, assume that 
Pickup requests should be generated every ∆ time units). The Delivery Authority 
(DA) server responds to the Pickup request with the message and proof of origin in 
Pickup response.  
 

Origin

Delivery
Authority

(DA)

Destination

2. Submit_res
ponse

4. Pickup_response1. Submit_req
uest 3. Pickup_request

(every ∆ time units)

 
Figure 3: Flows of the Guaranteed Delivery Protocol for a single DA 

Let tsend denote the (real) time when the origin sends the request. The flows are as 
follows: 



Amir Herzberg Page 12 6/26/02 

1. Submit request: the origin sends sr=(m,Org,Dest,[clockOrg(tsend)-2∆, 
clockOrg(tsend)+3∆]) to the DA, where m is the message to be delivered, 
Org is the origin, Dest is the destination, and tsend is the (real) time 
when the origin sends the request (with clockOrg(tsend) being the time 
available to the origin on its clock).   

2. Submit response: if the submit request sr is valid, then the DA sends to 
the origin a receipt (sr,s), where sr is the submit request and s is the 
DA�s signature over it. Otherwise, inform of error.  

3. Pickup request: the destination sends to the DA a request to pickup 
message5 delivered to it via the DA. 

4. Pickup response: the DA responds to the pickup request by sending the 
destination the signed receipt (sr,s), where sr is the submit request6 and 
s is the DA�s signature over it. This is the same signature as used in the 
submit response.  

 
The security of this protocol relies on the Delivery Authority (DA) correctly verifying 
the submit request sr. Let trec denote the (real) time when the request is received at the 
DA. The Delivery authority should verify7 that the current time on its clock, 
clockDA(trec) , is within timestamp interval in sr, say [t,t�]. For non-faulty origin, 
t=clockOrg(tsend)-2∆ and t�=clockOrg(tsend)+3∆. The delay is at most ∆, i.e. tsend ≤  trec ≤ 
tsend +∆. The maximal clock drift is also ∆; therefore:  

•  clockDA(trec) ≤ c+∆ ≤ tsend +2∆ ≤ clockOrg(tsend)+3∆ = t� 
•  clockDA(trec) ≥ trec-∆ ≥ tsend -∆ ≥ clockOrg(tsend) -2∆ = t 

This shows the following claim, which is the key to the proof of liveness:  
 
Claim 1: a non-faulty DA will never reject submit requests sent correctly by a non-
faulty origin Org, and will always send a receipt to the source (immediately in Submit 
response) and forward them to the destination (on next Pickup response) .  

 

Org

DA

∆∆∆∆ ∆∆∆∆

∆∆∆∆ ∆∆∆∆ ∆∆∆∆

clockOrg(tsend) clockDest(trec)

tsend

trec

 
Figure 4: Timing of requests from non-faulty origin 

 
The validation function V is the same for receipt of origin (NRO) and of submission 
(NRS), V=VO=VS, with input (m,r). It validates that r is a valid receipt for m, i.e. that 
r=(sr,s), with sr=(m,Org,Dest,[t,t�]) and that s is a signature by the DA on sr. The 
                                                 
5 For simplicity, we assume there is only one message for any pickup request. If multiple messages 
(and origins) may be delivered to the destination by the same DA, the pickup request can specify the 
origin(s), and/or the pickup reply may contain multiple deliveries. The details are simple and omitted.   
6 The pickup response may contain multiple messages (submit requests). 
7 The DA should also verify that the origin has sent the submit request, but we assumed this is done by 
the communication layer and therefore do not discuss it explicitly. This check may use shared key or 
public key mechanisms.  



Amir Herzberg Page 13 6/26/02 

public key of the DA (PUBDA), used for validating that s is a signature by DA on sr, is 
part of the definition of V. If r is a valid receipt for m, then V outputs triplet 
<Org,Dest,[ t,t�]>; otherwise it outputs ⊥ . Clearly: 
 
Claim 2: Whenever a non-faulty DA sends receipt (sr,s), following steps 2 and 4 of 
the protocol above, then:  

1. Syntax: sr=(m,Org,Dest,[t,t�]) for some message m and time 
interval [t,t�].  

2. Validity: V(m,(sr,s))= <Org,Dest,[t,t�]> 
  
We can now prove: 

 
Theorem 1. The Simple Guaranteed Delivery protocol with receipt-validation 
function V, is a secure guaranteed delivery service for non-faulty faulty DA, with 
maximal uncertainty 5∆.  
 
Proof: The syntax property follows from Claim 2. Liveness follows from Claim 1, 
and the validity property of Claim 2 (notice that the delay is bounded by ∆ and 
M=5∆). It remains to prove safety.   
 
Assume, to the contrary, that ADV is a poly-time adversary with significant 
probability of generating execution with receipt(<m,r>) event in Dest, such that 
V(m,r)=<Org,Dest,[t,t�]>, while during [t,t�] there was no deliver(m) event in non-
faulty Org. Therefore, in particular, there is no deliver(m) even at time t�� such that 
t��=t+2∆ and t��=t�-3∆; therefore non-faulty Org does not send 
sr=(m,Org,Dest,[t,t�]) to DA. From the secure and reliable receive property of the 
communication channel, it follows that the DA does not receive sr from Org. It 
follows that the DA never signs sr. But from the definition of V, clearly r=(sr,s) 
where s is a valid signature using the DA�s private key on sr. It is therefore possible, 
with significant probability, to use ADV to generate a signature using the DA�s private 
key on a message that the DA never signed, without access to the DA�s private key, 
contradicting the definition of a secure signature scheme. This proves safety of NRO. 
 
Safety of NRS follows similarly, from the secure and reliable send property of the 
communication channel. ■ 
 
Notice that the simple guaranteed delivery protocol does not use any public key 
operation by the origin; in particular the origin does not sign the message or the 
delivery request. This may seem surprising, as non-repudiation of origin is usually 
associated with public key signature by the origin. Adding signature by the origin 
may, indeed, ensure safety for NRO even if the DA fails (arbitrarily); we discuss this 
in Section 5, along with more advanced mechanisms for guaranteed delivery in the 
presence of faults (and recoveries).  

4. Guaranteed Confidential-Message Delivery  
In the previous section, we assumed that the message to be sent is not confidential. In 
fact, using the protocol of the previous section, it suffices that the parties trust the 
Delivery Authority regarding the confidentiality of the message as well as regarding 
the receipts (in which case, we could use the secure communication mechanisms we 



Amir Herzberg Page 14 6/26/02 

assumed that the DA has with both origin and destination, to hide the requests and 
responses in transit). In this section, we outline how to extend the protocol in order to 
protect the confidentiality of the message, without trusting the DA in this matter.  
 
The receipt which the origin receives from the DA is timestamped, and therefore the 
origin can use the DA to time-stamp a document by sending it to an arbitrary 
destination (e.g. itself); this is similar to using certified postal services for time-
stamping documents in a physically sealed envelop. Several proposals were made for 
preserving confidentiality of a timestamped document even from the trusted authority 
providing the timestamp (notary, time stamping authority, or in our case delivery 
authority). In existing proposals for time stamping, e.g. [HS91], this is achieved by 
time-stamping the hash of the message, using one-way, collision resistant hash 
function. This is a natural heuristics, however it is not secure under standard 
definitions of one-way collision resistant hash functions; for example it may be easy 
to find out parts of the message. One may use oracle hash functions [C97,CMR98], 
but notice even these allow an adversary to compare the hash to hash of a particular 
message; this may still be an exposure for some applications.  

To describe our solution, we first observe that the delivery authority (DA), unlike a 
time-stamping service, must also forward the message to the destination. The natural 
way to achieve this is that the origin will encrypt the message using the destination�s 
public key, i.e. send to the delivery authority EncDest(m,z), where z are any random 
bits required for encryption.  

Encrypting a message and then signing it (EtS) conflicts with the widely accepted 
design principle `Sign then Encrypt` (StE) of [AN95, AN96,Sy96]. We agree that one 
must be cautious in signing an encrypted document. This is certainly true of 
applications (like ours) where the signer receives the document already encrypted. In 
fact, even if the signer is also doing the encryption, EtS may not provide non-
repudiation. In fact, it is easy to show an (artificial) example of secure encryption and 
signature schemes, such that if the origin encrypts a message for the destination and 
then signs the resulting ciphertext, then the destination may be able to produce a 
different message and public key, that encrypt to the same ciphertext, and therefore to 
forge a signature. So how can we sign the encrypted document? 

To solve this, the Delivery Authority (DA), signs, in addition to the ciphertext, also 
the public key of the destination, PUBD. For the case where signing and encryption 
are by the same party, [ADR02] show that this method of using EtS is secure, when 
using cryptosystems where the random bits z applied during encryption are recovered 
during decryption (as with most cryptosystems). While in our case the origin encrypts 
and the DA signs, we believe that the proof of [ADR02] can be extended to cover this 
as well.  

It is also possible to use a public key cryptosystem where the random bits used for 
encryption are not recovered during decryption. In this case, the DA signs, in 
addition, a commitment c to the message m, computed by Org. Namely, c is the 
computed from <c,d>=Commit(m), where <Commit, Decommit> is a secure 
commitment scheme8. Efficient and provable9 secure constructions for commit 
                                                 
8 More precisely, we use a commitment scheme with a public key, agreed upon between origin and 
destination as part of their contract; but since this public key is fixed for our discussion (which 



Amir Herzberg Page 15 6/26/02 

schemes appear in [DPP94, DPP98, HM96]. The properties of the commitment 
scheme are:  

1. If <c,d>=Commit(m), then m=Decommit(c,d). 

2. Given <c,d>=Commit(m), it is infeasible to find a collision, i.e. m�≠m 
and d� such that m�=Decommit(c,d�). 

3. The commitment c gives no information about the input m.  

By signing the commitment rather than the actual message, the message is hidden 
from the DA. The destination can prove that it received message m by presenting the 
signed receipt together with the decommitment d. Since d is necessary and sufficient 
to recover m, we send encryption of d rather than of the message m. We call this 
method for providing non-repudiation via a third party on hidden messages Commit 
then Encrypt then Sign (CtEtS)10. The signature together with the decommitment 
provides the destination with a proof of origin  

For proof of submission, the origin must also prove that it provided the ciphertext 
correctly, so that the destination is able to decrypt and retrieve the message m. If the 
encryption function is deterministic, it is sufficient for the origin to provide d, since it 
is possible then to compute the ciphertext by applying the encryption function to d 
and comparing the signed ciphertext value. It is also easy to extend this to allow for 
probabilistic encryption (as required for security); the origin should simply produce 
the random bits z used during the encryption process, i.e. the encrypted message is 
x=ED(d,z).  
 
The protocol uses the same flows as in Figure 3. We only modify the Submit request 
as follows. The origin sends sr=(<x,PUBD ,c>,Org,Dest,[t-2∆,t+3∆]) to the DA, 
where m, Org, Dest, and t are as before, and: 

1. <c,d>=Commit(m). 
2. PUBD is the public key of the destination 
3. x=ED(d,z) is encryption of d, using public key of the destination PUBD 

and random bits z. 
 
The Delivery Authority (DA) should correctly verifying the submit request, 
performing the same checks as for the simple guaranteed delivery protocol (in 
previous section), and in addition validating that PUBD is a valid public key of the 
destination (in particular, that it was not revoked).  

We need different receipt validation functions VS and VO for proving submission and 
origin, respectively; as before, the public key of the DA (PUBDA) is part of the 
definition of both validation functions. The origin validation function VO has input 
(m,r), where m is the message and r =(sr,s,d). Its output is the triplet 
                                                                                                                                            
considers only a single pair of <origin, destination>, we consider the public key as part of the definition 
of the commitment scheme, for simplicity (similarly to our definition of V). 
9 Many practical protocols and systems use Commit(m)=h(m,d), where d chosen randomly. This 
heuristic is secure under the random oracle model, but not under specific choices of h; the provable 
constructions are nearly as efficient and hence preferable.   
10 Notice CtEtS is different from the Commit then Encrypt and Sign (CtE&S) method proposed to allow 
parallel computation of encryption and signature in [ADR02]. 



Amir Herzberg Page 16 6/26/02 

<Org,Dest,[t�,t��]> taken from sr. This output is produced only if the following 
validations are all successful:  

1. s is a signature by the DA (i.e. verified using PUBDA) on sr,  

2. m=Decommit(c,d) where c is taken from sr, 

3. The public key of the DA (PUBD) is correctly included in sr. 

The submission validation function VS has z as an additional input, i.e. r =(sr,s,d,z). It 
is exactly like VO but with an additional validation:  

4. x=ED(d,z). 

5. Delivery Authority Corruptions and Recoveries 
Guaranteed delivery requires the origin and destination to place considerable trust in 
the Delivery Authority (DA). The DA is responsible for authenticating the messages 
from the origin, validating the timestamp in the messages, delivering the messages to 
the destination, and � for confidential messages � validation of the destination�s 
public key. A failure of any of these functions, malicious or benign, can appear to the 
application as a failure of either origin or destination, possibly resulting in penalties as 
per the agreement between them.  
 
In the following subsections we sketch two extensions of the protocols that provide 
(different levels of) resiliency to corruptions of DA servers. In the first subsection we 
discuss the extra security gained when the origin signs the delivery request sent to the 
DA; this is limited to safety of non-repudiation of origin. In the second subsection, we 
discuss the use of multiple, redundant delivery authorities, which allows resiliency to 
corruptions of authorities, as long as at least some threshold number of authorities is 
not corrupted (in total, or during any given period if we allow recovery from 
corruptions).  

5.1. Safe Non-Repudiation of Origin with Corrupted DA  
The dependency on the trustworthiness of the DA is especially evident regarding the 
non-repudiation of origin. Non-repudiation of origin is often considered an obvious 
application for digital signatures. We also use digital signatures for non-repudiation of 
origin; however the traditional approach is for the origin to sign the message, while in 
the protocols presented so far (only) the DA signs the message. We now discuss 
briefly the value of adding the origin�s signature on the request sr, in addition to the 
DA�s signature.  
 
For the origin�s signature to be meaningful, the agreement between the origin and 
destination (as reflected in the validation functions) must identify the origin�s public 
key. The public key may be identified directly in the agreement. Alternatively, the 
public key may be signed by a trusted certificate authority (CA), and the agreement 
identifies the CA (and in particular includes the CA�s public key).  
 
In any case, the public key should remain valid throughout any possible dispute 
between the origin and destination. Otherwise, the origin can claim that the signature 
was performed using a revoked or expired key. We could time-stamp the request, but 



Amir Herzberg Page 17 6/26/02 

this will again introduce dependency on the DA (or another third party). To protect 
against a corrupted DA backdating the signature on the timestamp, use a forward-
secure signature algorithm as in [BM99].  
 
With this extension, we ensure the safety of the proof of origin even if the DA can be 
corrupted. Namely, If Dest has <m,r> such that VO(m,r)=<Org,Dest,[t,t�]>, then Org 
submitted message m to Dest at time between t and t�, or Org is faulty.  

5.2. Multiple Delivery Authorities Protocol, Resilient to 
Corruptions and Recoveries  

 
It is therefore natural to consider how to provide the origin and destination with a 
highly trustworthy guaranteed delivery service, using realistic assumptions on the 
delivery authority servers. In particular, it is desirable to design the guaranteed 
delivery service using multiple delivery authorities, in such a way that as long as the 
number of corrupted authorities is below some predefined threshold, the service is 
trustworthy. It is even better if the service is trustworthy even when each server may 
become corrupted, as long as the number of servers corrupted during any time period 
(of given length) is below some predefined threshold.  
 
We can achieve resiliency to corruption of delivery authorities by using multiple, 
redundant DA design as in Figure 5. The flows of this multiple-DA protocol are 
exactly as described in the previous sections, except that multiple requests and 
responses are sent for each delivery (corresponding to the multiple delivery 
authorities).  
 

Origin DA3 Destination
2. Submit_res

ponse

4. Pickup_response

1. Submit_req
uest 3. Pickup_request

DA1

DA2

2. 
Su

bm
it_

res
po

ns
e

1. 
Su

bm
it_

req
ue

st

4. Pickup_response

3. Pickup_request

 
Figure 5: Corruption-resiliency by multiple, redundant Delivery Authorities (DA) 

 
We define the validation function for a particular DA, say DAi , denoted VO,i ,VS,i  
exactly as VO , VS  as in the previous sections, using the public keys of DAi . The 
validation function VO for the multiple-DA protocol are defined by the threshold 



Amir Herzberg Page 18 6/26/02 

parameter  f as follows: 
{ }










⊥

>=<∀
>=

><
=

Otherwise

ttDestOrgrmVi
andfrtsririf

ttDestOrg
rmV iiO

i

O
]',[,,),()(

||..),(
]',[,,

),( ,  

Validation function VS is defined similarly. 
 
We continue the discussion focusing on the case where each DA carries the simple 
guaranteed delivery protocol of Section 3. Claims 1 and 2 still hold, when restated for 
one DA out of the set:  
 
Claim 1’: a non-faulty DA, say DAi ,  will never reject submit requests sent correctly 
by a non-faulty origin Org, and will always send a receipt to the source (immediately 
in Submit response) and forward them to the destination (on next Pickup response) .  
 
Claim 2’: Whenever a non-faulty DA, say DAi , sends receipt (sr,s), following steps 2 
and 4 of the protocol, then:  

1. Syntax: sr=(m,Org,Dest,[t,t�]) for some message m and time interval 
[t,t�].  

2. Validity: V(m,(sr,s))= <Org,Dest,[t,t�]> 
 
And from this follows: 

 
Theorem 2. The Multiple-DA Guaranteed Delivery protocol with receipt-validation 
function V, is a secure guaranteed delivery service for up to f faulty delivery 
authorities, with maximal uncertainty 5∆ .  
 
Proof: Similar to proof of Theorem 1. ■ 
 
The Multiple-DA protocol as presented above has the undesirable property that the 
validation process requires the public keys of all the delivery authorities which 
generated the receipts, and in particular awareness of the entity performing the 
validation to the value of the threshold f and to the identities of the delivery 
authorities. Validation also requires at least f signature verification operations. We can 
avoid these drawbacks, by using a threshold signature scheme, e.g. [S00], since all the 
delivery authorities sign exactly the same message.  This provides a `transparent` 
solution, where validation of receipts of origin and of submission are exactly the same 
for a Multiple-DA protocols as it is for a single DA protocol.  
 
Using the fact that all the delivery authorities sign exactly the same message, we can 
also use proactive signature schemes, e.g. [HJJ*97,R98], to allow resiliency to 
failures of every DA, as long as the number of corrupted delivery authorities during 
any time period of specific length Π (with Π>M) is bounded by f. This requires, of 
course, that the underlying communication and clock synchronization mechanisms are 
also proactively secure, e.g. using the protocols of [BHHN00,CHH00].  



Amir Herzberg Page 19 6/26/02 

6. Applications of Guaranteed Delivery 
We now discuss how some important secure electronic commerce applications can 
take advantage of an underlying guaranteed delivery service, as illustrated in Figure 
1.   
 
Consider first a simple electronic banking and brokerage application as illustrated in 
Figure 6. The client of the banking or brokerage service sends an order or request to 
the server, e.g. to buy a particular security. If the bank (or broker) is not available to 
perform the service, the customer may suffer losses; therefore it is reasonable for the 
customer and the bank to agree in advance that the bank is committed to receive 
orders sent by the customer thru a guaranteed delivery channel, e.g. certified post. The 
guaranteed delivery service facilitates such agreements via a communication network. 
 

Client
Server

(Bank / 
Broker)

Guaranteed
Delivery
Service

Order

Proof of
submission

Order, 
Proof of
Origin

 
Figure 6: Electronic Banking / Brokerage Application of Guaranteed Delivery 

A similar scenario exists in many business-to-business applications, such as supply 
chain relationships between a buyer and a provider, as in Figure 7. Here, both parties 
may need receipts for submission of requests as well as of replies.   

 

Buyer Provider
Guaranteed

Delivery
Service Response

Proof of
submission

Request, 
Proof of
Origin

Request

Proof of
Response

Response, 
Proof of
Origin

 
Figure 7: Business to Business Supply Chain Application of Guaranteed Delivery 

We next illustrate applicability of guaranteed delivery to payment protocols. 
Specifically, the `Final payments` protocol of [H02b], illustrated in Figure 8. In this 
protocol, each Payment Service Provider (PSP), e.g. PSPB, periodically sends signed 
Payment Routing Tables (PRT) in which it commits to honor Payment Orders (PO) 
signed by other PSPs (e.g. PSPA). However, the PRT specifies `extra time`, such that 
a PO must be deposited this extra time before it expires (to allow PSPB to deposit the 
PO at PSPA in time). This assumes a guaranteed delivery mechanism provides a 



Amir Herzberg Page 20 6/26/02 

timestamped proof of submission (for deposit of POs), so that payments are assured 
even if the PSP is (temporarily) disconnected. This application does not use the proof 
of origin, as the PO is signed by the issuing PSP.   
 

5. PO
(signed by PSP_A) 7. PO

(signed by PSP_A)

1. PRT (signed by PSP_A)

2. PRT
(signed by PSP_B)

6. PO (signed by PSP_A)

8. PO (signed by PSP_A)

3. Offer, PRT (unsigned)

4. Offer,
PRT,

Approval

Customer
C

PSP
A

PSP
B

Merchant
M

 
Figure 8: Final Payments Protocol using Guaranteed Delivery 

 
Finally, we mention briefly that guaranteed delivery is useful also as underlying layer 
for secure bidding, gambling and `closed` auctions applications. In such applications, 
the client often submits some bid (bet or offer, respectively). The client wants a 
receipt to prove its submission; the content of the bid (bet or offer) often have to be 
kept confidential from the server (and other clients) until a predefined deadline. The 
delivery authority can support such applications, with the trivial extension of 
forwarding all bids (bets or offers, respectively) to the destination only at the 
predefined deadline, with a proof of origin that may also show this is the complete set 
of bids (bets or offers, respectively). See illustration in Figure 9.   
 



Amir Herzberg Page 21 6/26/02 

Client
B

Bidding /
Gambling /
Auctions

Server

Delivery
AuthorityProof of

submission

Bids/Bets/
Offers, 
Proofs of
Origin

Client
A

Bid/Bet/Offer

Proof of
submission

Client
C Proof of

submission

Bid/Bet/Offer

Bid/Bet/Offer

 
Figure 9: Using Guaranteed Delivery for Bidding, Gambling and Auctions 

7. Optimistic Protocols 
A well-known design principle for fault-tolerant and secure systems is: for safety, 
assume the worst; for optimization, be optimistic. Systems and protocols optimized 
for the typical case, with no faults and delays much lower than the timeout bounds 
[HK00], are often called optimistic. Several works study optimistic certified delivery 
protocols, e.g. see [ASW97,KMZ02, M97, PSW00, Z01, ZG96]; these works avoid 
the involvement of the DA in typical, fault-free executions11. Several of these 
protocols have the appealing property that the proofs (of origin and of receipt) of 
executions where the DA is involved are indistinguishable from the proofs in 
executions where the DA is offline; we say that these protocols are transparent.   
 
It is easier to design optimistic guaranteed delivery protocols. Specifically, assume 
that the origin and destination agree on (fixed) public keys, without allowing 
revocations. Then the origin can try to submit a signed and time-stamped message 
directly to the destination, which should send back a signed receipt. Only when there 
is a failure, e.g. the origin does not receive the signed receipt (e.g. by 2∆), would the 
origin send the message through the DA (or multiple DA�s).   

8. Conclusions and Further Research 
Non-repudiation is a basic requirement from commercial relationships, especially in 
for business-to-business commerce and for banking and payment applications. We 
show that many of these applications can be built on top of a relatively simple and 
efficient service of guaranteed delivery. Other e-commerce applications may require 
other non-repudiation services, such as certified delivery, which is studied by other 

                                                 
11 Since the DA is not involved `online` for typical, fault-free transactions, these protocols are 
sometimes called `offline`; we prefer the (more common) term `optimistic`.  



Amir Herzberg Page 22 6/26/02 

works; we propose that as a general architecture, one may consider a non-repudiation 
delivery layer as an underlying service to many (most?) secure e-commerce 
applications. 
 
Our work is trying to provide solid foundations for practical electronic commerce 
protocols and systems. We expect further work to provide additional solid 
mechanisms for secure e-commerce applications, especially in the banking and 
finance areas, where the importance of security is well recognized.   
 
There are many directions for further research based directly on the current work, 
such as implementation, standardization, deployment and applications. In addition, let 
us mention one specific area that was not addressed, namely, support for 
interoperability between origin and destination that use (and trust) different delivery 
authorities. This is important, in particular to support ad-hoc relationships between 
potential business partners, which may not justify the effort to agree on a common set 
of delivery authorities. A solution may employ trust relationships between multiple 
delivery authorities, using hierarchy or a `web of trust`.  

References 
[ADR02] Jee Hea An, Yevgeniy Dodis and Tal Rabin, On the Security of Joint Signature and 
Encryption, in Theory and Application of Cryptographic Techniques, pp. 83-107, 2002.      
 
[AN95] Ross Anderson and Roger Needham. Robustness principles for public key protocols. In Proc. 
Int'l. Conference on Advances in Cryptology (CRYPTO 95), volume 963 of Lecture Notes in 
Computer Science, pages 236--247. Springer-Verlag, 1995. 
http://citeseer.nj.nec.com/article/anderson95robustness.html    
 
[AN96] Abadi, M. and Needham, R. 1996. Prudent engineering practice for cryptographic protocols. 
IEEE Trans. Softw. Eng. 22, 1 (Jan.), 6-15. http://citeseer.nj.nec.com/abadi96prudent.html   
 
[ASW97] N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Exchange. In 
Proceedings of 4th ACM Conference on Computer and Communications Security, Zurich, April 1997. 
 
[BHHN00] Boaz Barak, Shai Ha-Levi, Amir Herzberg, Dalit Naor, Clock Synchronization with Faults 
and Recoveries, proceedings of the Nineteenth ACM Symposium on Principles of Distributed 
Computing (PODC 2000), July 16-19 2000, Portland, Oregon, pp. 133-142. 
 
[BM99] Mihir Bellare and Sara K. Miner. A Forward-Secure Digital Signature Scheme. In Proc. of 
Crypto, pp. 431--448, 1999. 
 
[C97] Ran Canetti, �Towards Realizing Random Oracles: Hash Functions That Hide All Partial 
Information�, Advances in Cryptology � Crypto 97 Proceedings, pp. 455-469, 1997.  
 
[CHH00] Ran Canetti, Shai Ha-Levi and Amir Herzberg. "Maintaining authenticated communication 
in the presence of break-ins". In Journal of Cryptography, Vol. 13, No. 1, January 2000, pp. 61-105. 
Extends version in Proceedings of the sixteenth annual ACM symposium on Principles Of Distributed 
Computing (PODC), 1997, Pages 15 - 24. 
 
[CMR98] R. Canetti, D. Micciancio and O. Reingold, "Perfectly One-Way Probabilistic Hash 
Functions," Proceedings of 30th STOC, 1998. 
 
[DPP94] Ivan B. Damgård, Torben P. Pedersen, Birgit Pfitzmann: On the Existence of Statistically 
Hiding Bit Commitment Schemes and Fail-Stop Signatures; Crypto '93, LNCS 773, Springer-Verlag, 
Berlin 1994, 250-265. 
 
[DPP98] Ivan B. Damgård, Torben P. Pedersen, Birgit Pfitzmann: Statistical Secrecy and Multi-Bit 



Amir Herzberg Page 23 6/26/02 

Commitments; IEEE Transactions on Information Theory 44/3 (1998) 1143-1151. 
 
[EGL85] Shimon Even, Oded Goldreich, Abraham Lempel: A Randomized Protocol for Signing 
Contracts; Communications of the ACM 28/6 (1985) 637--647. 
 
[G82] Oded Goldreich. A protocol for sending certified mail. Technical report, Computer Science 
Department, Technion, Haifa, Israel, 1982. 
 
[H02a] Amir Herzberg, Securing XML, Dr. Dobbs Journal, March 2002. 
 
[H02b] Amir Herzberg, Introduction to Secure Communication and Commerce using Cryptography, 
Chapter 12 � Payments, draft of book to be published by Prentice-Hall, available online at 
http://amir.herzberg.name/book.html.  
 
[HJJ*97] Proactive public key and signature systems; Amir Herzberg, Markus Jakobsson, Stanislav 
Jarecki, Hugo Krawczyk, and Moti Yung; Proceedings of the 4th ACM conference on Computer and 
communications security , 1997, Pages 100 � 110. 
 
[HK00] A. Herzberg and S. Kutten. �Early Detection of Message Forwarding Faults�, SIAM Journal of 
Computing, August-October issue, 2000. 
 
[HM96] S. Halevi and S. Micali, "Practical and Provably-Secure Commitment Schemes from 
CollisionFree Hashing", in Advances in Cryptology - CRYPTO96, Lecture Notes in Computer Science 
1109, Springer-Verlag, 1996, pp. 201-215. http://citeseer.nj.nec.com/halevi96practical.html 
  
[HS91] Stuart Haber and W.-Scott Stornetta. How to Time-Stamp a Digital Document. Journal of 
Cryptology, 3(2):99--111, 1991. http://citeseer.nj.nec.com/haber91how.html   
 
[ISO13888-1] ISO/IEC 3rd CD 13888-1. Information technology � security techniques � Non-
repudiation, Part 1: General model. ISO/IEC JTC1/SC27 N1274, March 1996.  
 
[ISO13888-3] ISO/IEC 2nd CD 13888-3. Information technology � security techniques � Non-
repudiation, Part 3: Using asymmetric techniques. ISO/IEC JTC1/SC27 N1379, June 1996.  
  
[J98] Mike Just. Some Timestamping Protocol Failures. In Internet Society Symposium on Network 
and Distributed System Security, 1998. Available at http://citeseer.nj.nec.com/just98some.html. 
 
[KMZ02] An Intensive Survey of Non-repudiation Protocols. Steve Kremer, Olivier Markowitch & 
Jianying Zhou . To appear in Computer Communications Journal. Elsevier. 2002. 
 
[L96] Nancy Lynch, Distributed Algorithms, Morgan Kaufman, San Francisco, 1996.  

[LPSW00] Gerard Lacoste, Birgit Pfitzmann, Michael Steiner, Michael Waidner (Editors), SEMPER - 
secure electronic marketplace for Europe, Vol. 1854, Springer-Verlag, ISBN = "3-540-67825-5", 
partially available at citeseer.nj.nec.com/lacoste00semper.html.  

[Mi00] Mills, D.L. Public key cryptography for the Network Time Protocol. Electrical Engineering 
Report 00-5-1, University of Delaware, May 2000. 23 pp. Available online from 
http://www.eecis.udel.edu/~mills/bib.htm.  
 
[Mi91] Mills, D.L. Internet time synchronization: the Network Time Protocol. IEEE Trans. 
Communications COM-39, 10 (October 1991), 1482-1493. Available online from 
http://www.eecis.udel.edu/~mills/bib.htm.  
 
[M97] Silvio Micali, Certified E-Mail with Invisible Post Offices - or - A Low-Cost, Low-Congestion, 
and Low-Liability Certified E-Mail System; presented at 1997 RSA Security Conference, San 
Francisco.  
 
[MSP96] National Security Agency. Secure Data Network System : Message Security Protocol (MSP), 
January 1996. 



Amir Herzberg Page 24 6/26/02 

 
[PSW00] Birgit Pfitzmann, Matthias Schunter, Michael Waidner, Provably Secure Certified Mail, IBM 
Research Report RZ 3207 (#93253), IBM Research Division, Zurich, Feb. 2000. 
 
[R00] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley, 2000. 
 
[R98] Tal Rabin. A Simplified Approach to Threshold and Proactive RSA. In H. Krawczyk, editor, 
Advances in Cryptology--CRYPTO'98, Lecture Notes in Computer Science Vol. 1462, pp. 89--104, 
Springer-Verlag, 1998. 
 
[R99] Meelis Roos, Integrating Time-Stamping and Notarization, Master Thesis, Tartu University, 
Faculty of Mathematics, May 1999. 
 
[RFC1939] J. Myers, M. Ross, Post Office Protocol - Version 3, IETF Network working group, August 
2001, http://www.ietf.org/rfc/rfc3161.txt.  
 
[RFC2246] T. Dierks, C. Allen, The TLS Protocol: Version 1.0, Network Working Group, Internet 
Engineering Task Force (IETF). Available online at http://www.ietf.org/rfc/rfc2246.txt. 
 
[RFC2411] R. Thayer, N. Doraswamy and R. Glenn, IP Security Document Roadmap, Network  
Working Group, Internet Engineering Task Force (IETF). Available online at 
http://www.ietf.org/rfc/rfc2411.txt. November 1998.                                        
 
[RFC2560] Michael Myers, R. Ankney, A. Malpani, S. Galperin, and Carlisle Adams. RFC2560: 
X.509 Internet Public Key Infrastructure Online Certicate Status Protocol - OCSP, June 1999, 
http://www.ietf.org/rfc/rfc2560.txt.  
 
[RFC2633] B. Ramsdell, Editor, S/MIME Version 3 Message Specification,   Network  Working 
Group, Internet Engineering Task Force (IETF). Available online at http://www.ietf.org/rfc/rfc2633.txt. 
June 1999.                                        
 
[RFC2634] P. Hoffman, Editor, Enhanced Security Services for S/MIME, Network  Working Group, 
Internet Engineering Task Force (IETF). Available online at http://www.ietf.org/rfc/rfc2634.txt. June 
1999.                                        
 
[RFC3161] C. Adams, P. Cain, D. Pinkas, R. Zuccherato, RFC 3161: Internet X.509 Public Key 
Infrastructure Time-Stamp Protocol (TSP), IETF Network working group, August 2001, 
http://www.ietf.org/rfc/rfc3161.txt.  
 
[S00] Victor Shoup, "Practical Threshold Signatures", Advances in Cryptology - Eurocrypt 2000, 
Springer-Verlag LNCS 1807, pp.207-220, 2000. 
 
[Sy96] P. Syverson. Limitations on Design Principles for Public Key Protocols. In Proceedings of the 
1996 IEEE Symposium on Security and Privacy, pages 62--73, Oakland, CA, May 1996. 
http://citeseer.nj.nec.com/syverson96limitation.html   
 
[Z01] Jianying Zhou. "Non-repudiation in Electronic Commerce". Computer Security Series, Artech 
House, August 2001 
 
[ZG96] Jianying Zhou and Dieter Gollmann. Observations on non-repudiation. In Kim Kwangjo and 
Matsumoto Tsutomu, editors, Advances in Cryptology - Asiacrypt 96, vol. 1163 of LNCS, pp. 133--
144. Springer-Verlag, 1996. http://citeseer.nj.nec.com/28044.html 



Amir Herzberg Page 25 6/26/02 

 

Appendix A: Symbol Tables 

Receipt validation function for proof of submission VS

Receipt validation function for proof of originVO

Public key of Destination (Dest)PUBD

Commit valuec
Decommit valued
Random bits used for encryptionz

Submit request, sr=(m,o,d,[t,t�])sr
Public key of Delivery Authority (DA)PUBDA

Bound on message delay and clock drift∆∆∆∆
Maximal uncertainty time period, agreed between partiesM

Receipt validation function, <o,d,[t,t�]> or ⊥⊥⊥⊥V(m,r)
Receiptr
Undefined (V(m,r)= ⊥⊥⊥⊥ if r is not valid receipt of m)⊥⊥⊥⊥
Message to deliverm
Destination Dest
OriginOrg

Delivery AuthorityDA

 
Table 1: List of symbols (part I) 

Output eventsOE
States (of a processor) S

Validation functions for proof of origin (resp. submission) for DAiVO,i ,VS,i 

(real) time that request is send to DAtsend

(real) time that request is received at DAtrec

The ith delivery authority (for multiple-DA protocol)DAi

State transition functionδ
Initial state (init∈ S)init

Input eventsIE
Protocol, i.e. mapping from P to tuples (IE, OE, S, init, δ). P

Value of the clock of processor p at real time tClockp(t)
Maximal number of faulty delivery authoritiesf
Event where a receipt (and message) is provided to the applicationReceipt
Event where application provides message m (once, in the origin)Deliver

The set of processors; includes Org, DestP

 
Table 2: List of symbols (part II) 


