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Abstract:  A new construction of a pseudorandom generator based on a 
simple combination of two LFSRs is introduced. This construction allows 
users to generate a large family of sequences using the same initial states 
and the same characteristic feedback polynomials of the two combined 
LFSRs. The construction is related to the so-called shrinking generator 
that is a special case of this construction. The construction has attractive 
properties such as exponential period, exponential linear complexity, good 
statistical properties and security against correlation attacks. All these 
properties make it a suitable crypto-generator for stream cipher 
applications. 
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A k-stage linear feedback shift register (LFSR) is a device that generates binary 
sequences.                          
 
An LFSR is made up of two parts: a shift register S, and a linear feedback function Q.                  
The shift register S consists of k stages S7 , S8 , ..., Sk- 8  which co9;: ��� 9�< 	 9�= %�� : �>	�"�?@�
The contents of these stages at a given time t is known as the state of the register S 
and is denoted by: St = S7 (t), S8 (t), ...,Sk- 8 (t). (Where at time ACBED  the state                                   
S7  = S7GFHDJI@K�L68GFHDJI@K M�M�MNK�L k- 8GFHDJI  is called the initial state of S). 

                                          
The linear feedback function Q is a function that maps the state of the register S to the %�� : �O	�"P?Q� 9 �R� : � < 	�S :UT�= SH	�"5V

Q(S7 (t), ...., Sk- 8 (t)) = (C7 S7 (t) ⊕ .... ⊕ Ck- 8 Sk- 8 (t))            
for some binary constants C7 , C8 , ..., Ck- 8  called the feedback coefficients.                      
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The feedback coefficients C� , C� , C� , C� , ...., Ck- � , Ck- �  determine a polynomial                                 
C�  ⊕ C� x

� ⊕ C�  x
�
 ⊕ .... ⊕ Ck- �  xk- �  ⊕ xk of degree k associated with the feedback 

function Q. We write h(x) to denote this polynomial and call it the characteristic 
feedback polynomial of the linear feedback shift register. 
 
Therefore, any k-stage LFSR can be uniquely described by a characteristic polynomial 
h(x) ���	��
������������� ��������������������
�����
 �!���"�������#��
%$'& h(x) = C�  ⊕ C� x� ⊕  ... ⊕ Ck- �  xk- �  ⊕ xk. 
 
The shift register S is clocked at a time interval, when this happens the contents             
of S are shifted one bit to the left (i.e. the content of Si is transferred into Si- �                            (*),+.-0/21�/23�34/�5

–
-�6

) and the new content of Sk- �  is computed by applying the feedback 
function Q to the old contents of S. 
 
The above can be expressed as follows: 
Si
(�7�89-�6:+<;>= ? � (�7 6A@�B�CD)E+GF0/H-0/I3�3�34/

k –
1
. 

Sk- � (�7�89-�6:+KJL(M; � (t), ...., Sk- � (t)). 
 
The binary sequence (St) generated by this device is the sequence of contents of             �����.N th stage S �  of S for all t. [i.e. The binary sequence (St) = S� , S� , S� , ......                  
where St = S� (t) ∈ OQP (*1R6  for 

7 +GF0/H-0/I1�/I3�3�3�3�3
]. 

 
The state sequence of this device is given by the sequence of states of the register S:                       
(St) = S� , S� , S� , ..... [Where St = S� (t), S� (t), ..., Sk- � (t) for

7 +GF0/H-0/I1�/I3�3�3�3�3
]. 

 
Since the output seqSI����TU�'���,VW�������UV�
,�#�U�U�YX	VUT�ZG[%�����\�]
���^��*[�����
,�*[_�����WTU���Y�����Y�_���Q�����WN th 
stage of the register then clearly each of the output sequence (St) and the state 
sequence (St) determine the other. 
 
 ̀ba�`

 Construction 
 
Linear feedback shift registers (LFSRs) are known to produce sequences with large 
period and good statistical properties. But inherent linearity of these sequences results 
in susceptibility to algebraic attacks that is the prime reason why LFSRs are not used 
directly for keystream generation. A well-known method for increasing the linear 
complexity preserving at the same time a large period and good statistical properties, �*[c���KTU���Y��
���������WT����>T�Z�����^K���Q�����ed f2g�hjilk�mln�o,�p�����W��������
,��V�����q Z>�sr	[���
��UV�$t^>������
�Vs����
l[
based on regularly clocked LFSRs are susceptible to basic correlation attacks. Using 
irregular clocking reduces the danger from correlation attacks and provides practical 
immunity to fast correlation attacks. 
 
In this paper, a new clock-controlled generator that is called the (a, b)-Shrinking 
Generator (and referred to as (a, b)-SHKG) is introduced. The (a, b)-SHKG is a 
sequence generator composed of two linear feedback [%�����\�u
���^��*[�����
l[9v�d f2g�hc[%wxi*�>m%q
LFSR A and LFSR B; the first is clocked normally, but the second is clocked by the 
constant integer “ a”  if the co�Y�����Y�_���Q�����yN th stage of LFSR A �*[Wk�qE��������
�z{�*[��Uq � �]�*[
clocked by the constant integer “ b” . LFSRs A and B are called "the control register" 
and "the generating register" of the (a, b)-SHKG respectively. The output bits of the 
(a, b)-SHKG are produced by shrinking the output of LFSR B under the control of 
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LFSR A as follows: At any time t, the output of LFSR B is taken if the current output 
of LFSR A �*[,k�q>��������
�z{�*[���� �H�*[E���*[�TUV�
����U�An  
 
Suppose that LFSR A has m stages and characteristic feedback polynomial f(x).                     
Similarly, suppose that LFSR B has n stages and characteristic feedback polynomial 
g(x). Let A� =  A� (#F�6b/  A� (#F�6b/I3�3�34/�� m- � (#F�6  and B�  = B� (#F�6b/�� � (#F�6b/	3�3�34/�� n- � (#F�6  be the non-zero 
initial states of A and B respectively. At time t, LFSR A is clocked once. LFSR B is 
clocked Xt times, where: Xt = aA� (t) + b[A� (t) ⊕

-��
. { Where ⊕ denotes addition $��>�YS	����� n��  

 
Define the “cumulative”  function of A to be GA &	��N�q k�qA�>q�
�� → ��N�q k�qA�>q�
��_z{����
���&
GA(t) =  −

=

�
t

oi
iX , for t � N�q>V���� GA

(#F�6:+GF
. 

 
The state of the (a, b)-SHKG at time t is given by: St = (At, BGA(t)). 

 
At any time t, the output of the (a, b)-SHKG of initial state S�  = (A� , B� ) is the content ���"�����,N th stage of LFSR B [i.e. B� (GA(t))] if A� (t) �*[,k�q>��������
 wise there is no output.   
 
 
The (a, b)-SHKG may also be described in terms of the two output sequences (At) and 
(Bt) of the linear feedback shift registers A and B respectively.                                
 
Acting on their own, suppose that LFSR A and LFSR B produce output sequences                                  
(At) = Ao, A� , .... and (Bt) = B� , B� , ..... respectively. The sequences (At) and (Bt) are 
called “the control sequence”  and “the generating sequence”  of the (a, b)-SHKG 

respectively and referred to these as component sequences.  
 
Define a function Ge: ��N�q  k�q  �>q   …}  → ��N�q  k�q  �>q  …}  as follows: Let t’  ≥ F

 and suppose that 

At’
 =  - . Let t be the total number of ones in A� , A� , ..., At’ then Ge(t –

-�6:+ O A(t’ ). 
 
The output sequence (Zt) of the (a, b)-SHKG whose control sequence and generating 
sequence are (At) and (Bt) respectively is given by: Zt = BGe(t).             

 
 �������������������! ���"#��$��&%(')�*�)')�,+)�!-)'���.�/!�

(Zt) of the (a, b)-SHKG 
 
In this section some properties of the output sequences of the (a, b)-SHKG are 
established. Suppose that LFSRs A and B have initial states A0  and B0  respectively, and 
characteristic feedback polynomials f(x) and g(x) respectively. Let (At) and (Bt) denote 

the output sequences of A  and B respectively. Suppose that (At) and (Bt) are periodic of 

periods M and N respectively.   Let (Zt) be the output sequence of this (a, b)-SHKG. 
 
Let M 1  be the total number of ones in a full period M of (At). [i.e. M 1  is the total 243658769;:)<�=	<�2�9�>@?BA�CD?@C;E�E!9FC;:�>HGI28?BA�9KJ th stage of A in a full period M.] 
 
In the following lemmas, the period and the linear complexity of the output sequences 
are established. Finally, it is shown that output sequences of the (a, b)-SHKG have 
good statistical properties. 
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�������	��
����������������������
���������������! #"$�&%
(Zt) 

 
After M[ lcm(GA(M), N)/GA(M)]  clock pulses have been applied to LFSR A, 
lcm(GA(M), N) clock pulses will have been applied to LFSR B. Then both A and B 
return to their initial states A0  and B0 . Hence the state sequence of the generator is 
periodic with period dividing M[ lcm(GA(M), N)/GA(M)]  = MN/gcd(GA(M), N). 
 
The (a, b)-SHKG E�: <�'43)(F9�> C;2 < 3�?BE 3�?�*8A�9;2�9,+69;: ?BA�9 J th stage of A (F<�24? C;GI2!> C.-0/
Therefore, after lcm(GA(M), N) clock pulses have been applied to B the (a, b)-SHKG 
produces M 1 N/gcd(GA(M), N) output bits. Hence, the period PZ of the sequence (Zt) is 
a divisor of M 1 N/gcd(GA(M), N). 

 
In the following lemma, it is shown that the maximum period of the output sequence 
(Zt) is attained under simple conditions. 
 
 �����������

 
 
Let c be a non-negative integer such that c = max(a, b). If the length m of LFSR A 
satisfies m < N/c, and gcd(GA 1 2�304�56387:9�;=<?>A@B;=<?>DCE>AFHG�IKJ�L Z of the sequence (Zt) is 
equal to M 1 N. 
 
Proof.  The proof of this lemma is given in the appendix.  

 
 MN�%O�����! P�����Q�

 
 
The linear complexity L of a periodic sequence (Zt) is equal to the degree of its 
minimal polynomial. The minimal polynomial is defined as the characteristic feedback 
polynomial of the shortest LFSR that can generate the sequence (Zt).  
 
 
The following lemma establishes that if (Bt) is an m- > 9�R43 9;2�(F9�S�T ] (i.e. B is a primitive 
n-stage LFSR) then under simple conditions the sequence (Zt)

A�C�>VU!C;E 7&W CK= C�(D? <�:�<�=6T
between the lower and upper bound of its linear complexity.  
 
 ���������N�

 
 
Suppose that (Bt) is an m- X >�Y�Z�>A@?[�>�I]\	CE>AFHG�IKJN5^7_1�` n –9#3Na�@�Jb;=<?>c@?ZKdfe&>AFgI f ones in a 
full period of (At3hG X aNCEIjiE>AFkI]\B`lG�m!>�mn2 1 7o` r for some r. Let c be a non-negative 
integer such that c = max(a, b).  
 
If the length m of LFSR A satisfies m < N/c, and gcd(GA 1 2�304p563q7.9r;=<?>A@q1ts t) has u Gt@?>Aa�FE[�IKd6C u >,vjG�; wyx X Z�[A<$;=<�a);�zn@?` r- 1  < L ≤ @?` r

.           
 
Proof.  
 
Upper Bound on L: To show an upper bound on the linear complexity of (Zt) it 
suffices to present a polynomial P(x) of degree d (for some positive integer d) for 



 
�

which the coefficients of P represent a linear relation satisfied by the elements of (Zt) S���� /��HA�CD? G�>��  
 

P(x) = 	
=

d

i 
 Pi x
i then �

=

d

i 
 Pi Zi+t �� ∀ t ≥ ��  
 
For  ≤ k < M �  let (Zk+t �M ) denote the kth translate of the sequence (Zt) decimated by 
M �  (i.e. Zk+j �M = Zk+jM � , for � ����������������! #"%$'&)(+*-,.&0/�132�4�565�785�789;:�1=<3<�">(��@?A&A"'&A1�?�&0/�"'&
this translate and decimation, written in terms of the sequence (Bt) is Zk+jM �  = 

BGe(k)+jGA(M)  i.e. (Zk+t �M ) is a translate of the sequence (Bt) decimated by GA(M). Since 

gcd(GA B CED��GFHDI�J�  and (Bt) is an m-sequence, each sequence (Zk+t �M ) has the same 
linear complexity as the original sequence (Bt), and it satisfies a polynomial Q(x) of 
degree n K�L�M *�� 1�� Q(E)(Zk+t �M ) = Q(E)(Zk+tM � DN��B;AD ∀ t, where E is the shift operator 

and B;AD  is the all-zero sequence of length N.  
 

Let Q(x) = �
=

n

i 
 Qi x
i then for each O �P��Q���#RS�#�������T�QB C �  –�AD , �

=

n

i 
 Qi
 Zk+(t+i)M �  �P ∀ t.                            

Then in terms of the bits of (Zt) one can write U
=

V
W

nM

h

Ph
 Zt+h X�Y ∀ t, where Ph X�Y  when                             

h (mod M Z ) ≠ Y , and PiM Z  = Qi for [ X�Y�\#]�\_^�^�^T\6` .  

 
Hence, a linear recurrence for the sequence (Zt) is found. Therefore, a polynomial                        
P(x) = Q(x) aM of degree nM Z  is found, such that P(E)(Zt) = Q(E) aM (ZtbcX�d;YAb , and then 
the linear complexity of (Zt) is at most nM Z . 
 
Lower  Bound on L:  Let R(x) denote the minimal polynomial of (Zt). The sequence 
(Zt) satisfies Q(E) aM (ZtbeXPd;YAb , where M Zgfih8jlk6mSnpo=q8m�rHsutwv�f-x�y%o{z0|�olk6m�} ~�x�m��3f�j=} Q(x) is 
irreducible then the polynomial R(x) must be of the form Q(x)q for q ≤ � r

. 
 

Assume q ≤ � r- Z . Then R(x) divides Q(x) �� −r

. Since Q(x) is an irreducible polynomial 

of degree n it divides the polynomial d;]��I� N). Therefore, R(x) divides d;]���� N) �� −r

 =                        

d;]��I� Nr �� −

), but then the period of (Zt) is at most � r- � N �������%�����0���%�����'�0�-�����;���=�3�������� 
Therefore, ¡E¢�� r- �  and the lower bound follows. 

             
 £6¤-£¦¥�§u¨+©6ª�«�ª�¬i�ª�¬i®%«�¯6°²±=³�´u¨%±�ª�¬i¨%8³�µ

(Zt) 
 
In this section, the number of ones and zeroes in a full period PZ = M � N of the 
sequence (Zt) are counted. It is also discussed that when the initial state and the 
primitive characteristic feedback polynomial of the n-stage linear feedback shift 
register B of the (a, b)-SHKG are chosen with uniform probability over all non-zero 
initial states of length n and among all primitive polynomials of degree n respectively, 
then a collection of the output sequences of the (a, b)-SHKG’s has good statistical 
properties.  
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Let M �  � �{�����{�A�S�A�=�6���!� � �=�8���G�����	�Q�����'�Q��
�
6�%�=���²�-�p������ th stage of A in a full period M. 
Let N�  and N�  be the total number of ones and zeroes respectively that appears in the 
 th stage of B in a full period N. If the period of (Zt) attains its maximum value            
PZ = M � N, then it is obvious that the number of ones in a full period of (Zt) is M � N� , 
and the number of zeroes is M � N� .  
 
Next, consider some sample spaces that are used in the following theorem.              
 
Let Γ � A be the sample space of all characteristic feedback polynomials of LFSR A.  
Let Γ � A be the sample space of all non-zero initial states of LFSR A.                             
Let Ω � B be the sample space of all primitive characteristic feedback polynomials of 
LFSR B.              
Let Ω � B be the sample space of all non-zero initial states of LFSR B. 
 
Define the sample spaces ΓA

 and ΩB such that ΓA = Γ � A × Γ � A = {(f(x), A� ) | f(x) ∈ Γ � A,                      
A�  ∈ Γ � A}, and ΩB = Ω � B × Ω � B = {(g(x), B� ) | g(x) ∈ Ω � B, B�  ∈ Ω � B}.   
 
Coppersmith et �=�G���6�������!���A�A�'�A�%� �����'�Q���g�����+�-��� �0���=���A�A�'�A�+�=���p������
�� �-�3� �0� �!�+�����=���%�'�A�=� ���A�0� c 
feedback polynomial of an LFSR of length n are chosen with uniform probability over 
all non-zero initial states of length n and among all primitive polynomials of degree n 
respectively, then the distribution of any non-consecutive k bits produced by this 
LFSR is almost uniform. Since the output sequence of an (a, b)-SHKG is just some 
non-consecutive bits of LFSR B selected according to the control register LFSR A, 
then the output sequences of the (a, b)-SHKG whose generating register LFSR B has 
initial state and primitive characteristic feedback polynomial chosen with uniform 
probability over all non-zero initial states of length n and among all primitive 
polynomials of degree n respectively, inherit these properties.  
 
The following theorem established in �������A�A�'�A�	� �����'�8����� �����A�0� � � ���0����������
6�'���A�=� ���@�-�c�����
outputs of a collection of (a, b)-SHKG’s is almost uniform. 
 
 ¥�§u¨%³�±=¨��! 

 
 

Let (Zt) denote the output sequence of an (a, b)-SHKG whose control register LFSR A 
is the m-stage linear feedback shift register with non-zero initial state A�  and 
characteristic feedback polynomial f(x), and whose generating register LFSR B is the 
n-stage linear feedback shift register with non-zero initial state B�  and primitive 
characteristic feedback polynomial  g(x). Let the distribution on ΩB be uniform            
[ i.e. P(g(x), B� )) =  "�#%$ΩB|, for all (g(x), B� ) ∈ ΩB] . Let c be a non-negative integer such 
that c = max(a, b). Let k be a positive integer satisfying m(k –"'&�(*),+ � n –"'&
i.e. k <  - + � n –"'&�#.+0/  (�&21*".3547698 t t �  be a positive integer and let Rk be the Zk� -valued 

random variable on ΓA
 × ΩB that maps the elementary event (f(x), A� , g(x), B� ) to the        

k consecutive output bits of (Zt) beginning at t �  i.e. Rk(f(x), A� , g(x), B� ) =                                            

Zt � , Zt �;: � , ..., Zt � +k- � . Let ϑ be any binary pattern of k bits. The probability that Rk = ϑ <0=><0?A@CB 8ED�F ?	G 8 � -k ± [ (m(k –"'&�(�&A1H".3�# � n .            
 
 



 
�

From the above theorem, any pattern of length k occurs with probability in the range                               � -k ± [ (m(k –"'&�(�& 1 ".3�# � n among any of the |ΓA| × |ΩB| k-tuples consisting of a 
specified set of k consecutive output bits of (a, b)-SHKG’s satisfying the conditions of �����%�����=� ��   
 
Clearly, the smaller the numbers “ a”  and “ b”  compared to n are, the better the above 
result is. This does not mean that it is suggested to take “ a”  and “ b”  to be very small, 
for example � F ��� ��� ��� " . For more security it is better to irregularly clock the 
generating register LFSR B by large values, so that the gap between the bits selected 
from the output of LFSR B is large. 
 
In the next section, an (a, b)-SHKG with primitive LFSRs is considered. 
 
 �	��
�
�����������������

 
 
Suppose that A and B are primitive m and n stages LFSRs respectively with period        
M =  + � m

 –"'&  F ?���� � + � n –"'&�D 8 =! 8�( @ <#" 8%$ & 4�698 @ +(' t) denote the resulting output sequence 
of the (a, b)-SHKG whose control and generating registers are A and B respectively. 
 
Since A is a primitive m-stage LFSR of period M 

� + � m –"'& , then GA(M) =                
F � m- � 1 � + � m- �  –"'& . 
 
If 
G ( � +0F � m- � +  � + � m- �

 –"'&*)  � n
 –"'&  =  "  and m ) + � n

 –"'&�#'( , �����=� �,+ ���=�3���	�3�+�=���.- (Zt) has 

period PZ =  � m- � + � n
 –"'& , and linear complexity L such that: 

? � m- �
 <  L ≤ 

? � m- � . 
 / ����� ��������������� ��� �����>�=���.�����)�����%�����=� ��� ���%�'�0�����.-u  -�0_�����+���!� � �=��� f ones and zeroes in 
a full period of (Zt) is � m+n- �  and � m- � + � n- �  –"'&  respectively and the collection of the 
output sequences of this family of (a, b)-SHKG’s has good statistical properties. 
 
In the next section, some correlation attacks on the (a, b)-SHKG are considered. 
 
 12�3�����4��5��

 
 
A suitable stream cipher should be resistant against a “known-plaintext”  attack. In a 
known-plaintext attack the cryptanalyst is given a plaintext and the corresponding 
cipher-text (in another word, the cryptanalyst is given a keystream), and the task is to 
reproduce the keystream somehow.   
 
The most important general attacks on LFSR-based stream ciphers are correlation 
attacks. Basically, if a cryptanalyst can in some way detect a correlation between the 
known output sequence and the output of one individual LFSR, this can be used in a 6 ��� �S�����l�=�����%����7��_�=��8+�'���A�%�:9 ���)�����@�-����� �S�����_�=�<; />=<? �A@�0�B�0�C,0�D��    
 
The output sequence of the (a, b)-SHKG is an irregular decimation of its generating 
sequence. Thus, one would not expect a strong correlation to be obtained efficiently, 
especially, if the primitive characteristic feedback polynomials of the LFSRs are of 
���-��� ���=�3�3�-���FEp�=�-����� ��C���0u�=��� ����� �!�=� �_�	���;��� “ a”  and “ b”  which are used to clock the 
generating register are considered as part of the key. 



 
�

The following attack on Coppersmith et al’s Shrinking Generator SG �-���0���6���_�%�%� �-�>���6�
allows a cryptanalyst to reconstruct the initial states of the SG in a running time upper 
bounded by � + � m n� ) provided that the characteristic feedback polynomials of LFSRs 
A and B are known. In this attack, a cryptanalyst can exhaustively search for A’s 
initial state; each such state can be expanded to a prefix of the control sequence (At) 
using the characteristic feedback polynomial of A. Suppose that the sequence (At) is 
expanded until its nth 6 ��8 ��� 
����6���_�%�%�w  / ����� ������� 
�������� � 0G�=��� ������� ����� 9����<E)���%���6�����8�
corresponding n-long prefix of the output sequence (Zt), one can derive the value of n 
non-consecutive bits of the generating sequence (Bt). Since the characteristic feedback 
polynomial of B is known, then B’s initial state can be revealed given these              
non-consecutive n-bits by solving a system of linear equations. Therefore, the attack’s 
complexity is exponential in m and polynomial in n, or more precisely, � + � m n� ).          
 
The above attack can also be applied on the (a, b)-SHKG with an additional condition 
that is, a cryptanalyst has also to exhaustively search for the values for “ a”  and “ b”  in 
order to reveal the location of the n non-consecutive bits in the sequence (Bt), so 
he/she can solve the system of linear equations. Therefore, the attack takes 
approximately O( Φ � m n� ) where Φ  is approximately the number of possible values 
for “ a”  and “ b”  such that gcd(GA(M), N) =  "  and m < N/c.  
 
If the characteristic feedback polynomials of A and B are kept secret, another attack is 
introduced on the SG �-�P���6� E �������N�A�:96�	��� + � ��� m n) steps to recover the secret key � ����    
 
This attack can also be applied on the (a, b)-SHKG with the same additional condition 
as in the previous attack that is, a cryptanalyst has also to exhaustively search for the 
values of “ a”  and “ b” . Therefore, to recover the secret key, this attack takes    
O( Φ � ��� m n) steps. 
 
There is also another attack that can be applied to the SG and the (a, b)-SHKG through 
the linear complexity, but this attack requires + � m

 n) consecutive bits of the output 
sequence. 
 
It is mentioned in � ����  that a Shrinking Generator SG with secret primitive characteristic 
feedback polynomials, and their length satisfy 

G ( � +0/�) ? & � " , has a security level 
approximately equal to � ���  for m ≈ l and n ≈ l. Thus, if m ≈ �
	  and n ≈ �
	 , the SG 
appears to be secure against all presently known attacks m�=���0�������%�3�-�E�A@�0�B�0�C,0�D�0G���=�    
 
The (a, b)-SHKG produces bits from the generating register LFSR B using the same 
techniques as the SG. The only difference is that the generating register is clocked Xt 
times at time t. For � F � � ��� � � " , the (a, b)-SHKG becomes a SG.  
Like the SG, for m ≅ �
	  and n ≅ �
	 , the (a, b)-SHKG appears to be secure against the �%��� ���=���'�0�����J�'���A�%�:9 ���-���0���6���_�%�%� �-� �A@�0 B�0.C,0 D�0����:0���-�0��=��0�� ��0����,0��:@��  ��������%�5�!�=� 0
the (a, b)-SHKG is more secure than the SG against all the above attacks if the values 
for “ a”  and “ b”  are taken to be part of the secret key. 
 
For maximum security, the (a, b)-SHKG should be used with secret “ a” , “ b” , secret                        
primitive characteristic feedback polynomials, and “ a” , “ b” , m and n should satisfy                                         G ( � +0F � m- �

 +  � + � m- �
 –"'&*)  � n

 –"'&  =  "  and m )!+ � n
 –"'&�#'( . Subject to these constraints,              

if m ≅ l  and n ≅ l, the (a, b)-SHKG has a security level approximately equal to Φ � ��� .  



 
�

Remark. When “ a”  = “ b”  = d, the output sequence of the (d, d)-SHKG whose control 
and generating sequences are (At) and (Bt& /�F�& � 8 = 8�8 ? F = F ? +�" )E"'& -SHKG whose 
control and generating sequences are (At) and (Ct) where (Ct) is the d 

th decimation of 
(Bt). Since any two distinct (generating) sequences (of equal period) decimated by di 
and dk respectively (for i ≠ k) may produce a same sequence. Then, for some values 
for “ a”  and “ b”  where “ a”  = “ b”  = dj 

��� D�� ��� ) " ) � )	� )�F ? + � i, di)-SHKG may 
generate the same output sequence as an (dk, dk)-SHKG where i and k ∈ 
 � ) " ) � ) 4 4 4 � 4
Therefore, it is suggested to avoid the case where “ a”  = “ b” .                             
 
Example: Consider an (a, b)-SHKG � < @CB F� - =�@ F G 8 ( � ? @ D � $ D 8 G <0=�@ 8%D F ?�� F 	 -stage 
generat

<0?	G D 8 G <0=�@ 8%D 4�� � D � F � � ��� � � � ) @CB 8 + � ) � & -SHKG with a non-zero initial state ��� D @CB 8 ( � ? @ D � $7D 8 G <0=�@ 8%D F ?�� @CB 8 <0? < @ < F $ =�@ F @ 8 "�"�"�" ��� D @CB 8 G 8 ? 8%D�F @ <0?	G D 8 G <0=�@ 8%D  D � ��� (�8 =@CB 8 = F�/ 8 � ��@  ���@ = 8 ¡ � 8 ? (�8 F =2@CB 8 + 	 ) 	 & -SHKG with the same initial state for the 
control D 8 G <0=�@ 8%D F ?�� @CB 8 <0? < @ < F $ =�@ F @ 8�" � " ����� D @CB 8 G 8 ? 8%D�F @ <0?	G D 8 G <0=�@ 8%D 4�� B <0= F�D <0= 8 =�= <0? (�8@CB 8 � nd decimation of the output sequence of the generating register with initial state 
"�"�"�" <0=2@CB 8 = F�/ 8 F =2@CB 8 	 th decimation of the output sequence of the generating 
regis

@ 8%D�� < @CB <0? < @ < F $ =�@ F @ 8 " � " � 4  
 
 ���������� !�#"%$'&�(�)

 
 
Interesting examples of existing LFSR-based constructions for comparison with the 
(a, b)-SHKG are Coppersmith et al's Shrinking Generator SG *,+#-/.10�24365�798:5�;=<?>�8
clock-controlled generators introduced in *A@1-�BDCE0GF#.1HI<?CKJML�NK.1HPOQCK.10R.10�2RSTL�5�UV>�810XWY3
(kZ , k[ )-Clock-Controlled Generator (kZ , k[ )-CCG *A@1\�-A]�^_>�8 SG and the (kZ , k[ )-CCG 
have similar proven properties as the (a, b)-SHKG.  
 
The (kZ , k[ )-CCG is built up from two LFSRs A and B, and it works the same way as 
the (a, b)-SHKG, the only difference is that the output of B under the control of A is 
taken to be the output of the (kZ , k[ )-CCG regardless of the current output of A. One 
advantage of the (kZ , k[ )-CCG is that it generates an output bit each time A is clocked.  
On the other hand, the omission of bits, which is important in LFSR-based constructions *,+#-  is significantly more superior for the (a, b)-SHKG than the (kZ , k[ )-CCG. For the 
(kZ , k[ )-CCG one of any c = max(a, b) consecutive bits originally output by B appears 
in the output sequence of the (kZ , k[ )-CCG, whereas for the (a, b)-SHKG one of any 
(m c) consecutive bits originally output by B appears in the output sequence of the      
(a, b)-SHKG. Also if k bits from the control sequence are required to determine the 
original locations of k bits in the generating sequence of an (kZ , k[ )-CCG, then `�a  bits 
of the control register (on average) are required to determine the locations of k bits in 
the generating sequence of an (a, b)-SHKG.  
 
The SG is a special case of our construction, it is actually an (a, b)-SHKG with            

“ a”  =  “ b”  bdc . Although the (a, b)-SHKG is slower than the SG, its advantages is 
that, it provides more security as mentioned in the previous section. Moreover, for the 
SG in order to produce a new sequence, one has to at least choose another initial state 
or another characteristic feedback polynomial, whereas for the (a, b)-SHKG in order 
to produce a new sequence, it suffices to choose another value(s) for “ a”  and/or “ b” . 
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From the theoretical results established, it is concluded that an (a, b)-SHKG with 
primitive LFSRs generates sequences with large periods, high linear complexities, 
good statistical properties and they are secure against correlation attacks. 
Furthermore, using the same initial states and the same characteristic feedback 
polynomials, the (a, b)-SHKG produces a new sequence each time new value(s) are 
assigned for “ a”  and/or “ b” . These characteristics and properties enhance its use as a 
suitable crypto-generator for stream cipher applications. 
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: Recall that Zi = BGe(i).  
 � .VJM<�@ 6 (T8VJV.1NEN <?>�.M< CE0 . ; L�NEN/F#81H�CK5#2 5�; (At) <?>�8 0 L�7&%�81H 5�;4@ WY3%C,3 M [ , so when 
considering a full period of (At) there are M [  outputs Zi and the sequence (Bt) advances 
GA(M) places, so∀ j ≥ ����� i + jM [  = BGe(i) + jGA(M).         J�8�,X]�@HM  
 � .VJM< � 6 ? 8M< k, k’  be any pair of indices. If ∀ j: Bk + jGA(M) = Bk’  + jGA(M), then N divides   

(k – k’ ). / H65#5�; 5�;�; .VJM< � 6 C	81;YCE0�89. 368�, L�810�JV8 (Ct) where Ct = BtGA(M) ∀ t ≥ � . The sequence (Ct) 

is a decimation of the sequence (Bt) by GA(M). As gcd(GA � ��� ��� � b c  and (Bt) has 
period N, then the sequence (Ct) also has period N.  
 
Now if Bk + jGA(M) = Bk’  + jGA(M) ∀ j ≥ � , then the translates (Ct + h) and (Ct + h’) are equal 

where k = hGA(M) (mod N) and k’  = h’GA(M) (mod N). Hence, N divides (h – h’ ) so 
that N divides (h – h’ )GA(M) i.e. N divides (k – k’ ). 
 
Proceeding with the main proof. Let PZ be the period of the sequence (Zt). By the 
argument given above PZ must divide M [ N/gcd(GA(M), N) = M [ N. 
 
Proceeding to show that M [ N divides PZ. By definition Zi = Zi + Pz.  
In particular, ∀ i, j, Zi + jM [  = Zi + Pz + jM [ . 3 3�CE0�*<J�8�,X]�@HM6B ∀ i, j: BGe(i) + jGA(M) = BGe(i +P z) + jGA(M). 3 3�CE0�*<J ; .VJM<@��M6B ∀ i, N divides Ge(i + PZ) – Ge(i).      J�8�,X]���M  
 � 8! < 3I<I81F9C,3 <I5/3�>�5#" <?>�.M< J�8�,X]���M_C,3_F#5X3A3�C %�NK8 5�0 N �=CE; M [  divides PZ.                    
 (T8!"=H�C <I8QJ�8�,X]���M�. 3_; 5�NENK5#" 3 6  
∀ i, ∃ j i: Ge(i + PZ) = Ge(i) + j iN.        (e,X]� �M  
Putting ��$�% c&�  instead of (i) CE0>J�8�,X]� �M 6  ')( ��$�% c*%,+ Z� b ')( ��$�% c&�-%/.
0 1 [ N.        J�8�,X] +�M  "�L�% <?H6.VJM<?CE0�*<J�8�,X]� �M_;YH65�7 J�8�,X] +�M 6  
∀ $ � ')( ��$�% c*%,+ Z) – Ge(i + PZ� b ')( ��$�% c&� – Ge(i) + (j 0 1 [  – j i)N.      J�8�,X]���M  
 



 
���

Notice that, 
')( ��$�% c&� – Ge(i) ≤ (mc) since one can not have more than (m –c&�  

consecutive zeroes in the m-stage LFSR A. 
 
If j 0 1 [  – j i were different than zero, it would imply that N ≤ (m c), which is impossible 
assuming m < (N/c). Therefore, (j 0 1 [  – j i b � � , and then  
∀ $ � ')( ��$�% c*%,+ Z) – Ge(i + PZ� b ')( ��$�% c&� – Ge(i). 
 
The latter implies that the translate of (At) starting at Ai’ [where Ge(i) = GA(i’ ), and       
Ai’ b c ]  is identical to the translate starting at A(i+Pz)’. This means that M divides           
[ (i + PZ)’  – i’ ] , or equivalently, that the number of elements in the sequence (At) 
between Ai’ and A(i+Pz)’ C,3 .97=L�N <?CEF�NK8 5�; C < 3 F#81H�CK5#2X] A L�< <?>�810 <?>�890 L�7&%�81H 5�; @ WY3 CE0 <?> C,3
segment is a multiple of M [ ] � 0 <?>�8%5�<?>�81H/>�.10�2�BT<?>�8:0 L�7&%�81H 5�;�@ WY3/C,3/8! �.VJM<?N � PZ,        
thus proving that M [  divides PZ. 
 
Let h be such that: PZ = hM [ .        J�8�,>:�M  
∀ j, B����� Z �  = ZZ  = ZjPz = ZjhM [  = B����� Z � 1	��
 � A(M).           J�8�,9\�M  
 ^_>�8 NK. 3I<�8�, L�.1NEC <2� ; 5�NENK5#" 3 ;YH65�7 J�8�,:@HM!])"#5 ∀ j: B����� Z �  = B����� Z � 1���
 � A(M). This implies that 

N divides hGA(M), and since gcd(GA(M), N) = c , then N divides h ] � H65�7 J�8�,X]�:�M M [ N 
divides PZ.  
 
Hence, the period PZ of (Zt) is equal to M [ N. 
 


