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Abstract. In order to decide on advertisement fees for web servers, Naor
and Pinkas [15] introduced metering schemes secure against coalition
of corrupt servers and clients. In their schemes any server is able to
construct a proof to be sent to an audit agency if and only if it has
been visited by at least a certain number of clients. After that in series
of papers Masucci et. al. [1–3, 13, 14] generalized the idea of Naor and
Pinkas proposing first metering scheme with pricing and dynamic multi-
threshold metering schemes and later applying general access structures
and a linear algebraic approach to metering schemes.
In this paper we are interested in the efficiency of applying general access
structure and linear algebraic approach to metering schemes. We propose
a new model considering general access structures for clients, corrupted
clients and servers. Then we bind the access structures for clients and
corrupted clients into one. We propose a new metering scheme, which
is more efficient on the communication complexity and memory storage
compared with the scheme proposed in [3].

Advertising is one of the approaches for making money on the Inter-
net. In order for advertising to be effective the advertisers must have a
way to measure the exposure of their ads. For this purpose the so called
metering schemes, which should be secure against coalition of corrupted
servers and clients, are used. In the paper we propose a model for me-
tering schemes with fully general access structure which is simpler and
more efficient than the known ones and we prove that it satisfies stronger
security requirements.

? The author was partially supported by NATO research fellowship and Concerted
Research Action GOA-MEFISTO-666 of the Flemish Government.
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1 Introduction

A metering scheme is a protocol to measure the interaction between clients
and servers on a net. The time is divided in time frames and the audit
agency is interested in counting the number of visits received by each
server in any time frame. Metering schemes are useful in order to decide
the amount of money to be paid to web servers hosting ads, as well as
measurement of the use of coupons [15]. Franklin and Malkhi [10] were
the first to consider the metering problem in rigorous approach. Their so-
lutions only offer “lightweight security”, which can not be applied if there
are strong commercial interests to falsify the metering result. Naor and
Pinkas [15], consequently, introduced metering schemes secure against
fraud attempts by servers and clients. In their scheme any server which
has been visited by any set of r or more clients in a time frame, where r is
a fixed threshold, is able to compute a proof, whereas any server receiving
visits from less than r clients has no information about the proof. In this
threshold case scenario for both clients and servers, threshold refers to the
maximum number of colluding players (server, clients). In order to have
more flexible payment system Masucci and Stinson [1, 13] introduced me-
tering scheme with pricing. To be able to measure the number of visits in
any granularity Blundo et. al. in [2] introduced dynamic multi-threshold
metering schemes which are the metering schemes with associated thresh-
old to any server for any time frame. Masucci and Stinson in [14] made
the next step considering the general access structure for the clients and
threshold scheme for servers, where the access structure is the family of
all subsets of clients enabling a server to compute its proof. They proved
also a lower bound on the communication complexity of metering schemes
realizing such structures. A linear algebraic approach (i.e. applicable for
any general monotone access structure) to metering schemes is presented
in [3] by Blundo et. al. Namely, given any access structure for the clients,
they presented a method to construct a metering scheme realizing it from
any linear secret sharing scheme with the same access structure. Besides,
they proved some properties about the relationship between metering
schemes and secret sharing schemes. Some new bounds on the informa-
tion distributed to clients and servers in a metering scheme are presented
too. The main difference between the scheme in [3] and the scheme in [14]
is that the second one is not optimal with respect to the communication
complexity.

We will consider only the metering schemes that provide information
theoretic security. For computational secure metering scheme based on the
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Decisional Diffe-Hellman Assumption one can see [15]. Since we want to
protect against general adversary structures, we need to start from general
Linear Secret Sharing Schemes (rather than from Shamir’s scheme). It is
well known that LSSS’s are in natural 1− 1 correspondence with Mono-
tone Span Program MSP, introduced by Karchmer and Wigderson [12]).
MSP’s can be viewed as a linear algebra model for computing monotone
(access) function. Moreover, such an MSP always exists because MSP’s
can compute any monotone function. Threshold-based secret sharing and
metering make sense only in environment where one assumes that trust is
“uniformly distributed” over the players (clients and servers): any player
subset of a certain cardinality is equally likely (or unlikely) to cheat. In
many natural scenarios this assumption does not model reality well, and
moreover, in more realistic model no threshold solution will work. Why
we need to introduce a general access structure on the set of servers? In
the model introdused by Naor and Pinkas the audit agency deals with
servers, but in fact the servers are owned by companies, where each com-
pany posses different number of servers. In this scenario the uniformly
distributed trust on the set of servers does not model the reality well.

In this paper we first distinguish between three types of general access
structures: for clients, corrupted clients and servers. The access structure
for clients consists of qualified and forbidden set of clients, i.e. sets which
allow or disallow the server visited by them in given time frame to com-
pute its proof. The corrupted clients access structure gives us a possible
distribution for the corrupted clients. These two access structures are
bound into one access structure in Lemma 2. A general access structure
is considered for the set of servers. In the previous papers all authors
considered only the threshold case for them. We propose simpler and
more efficient on communication complexity and memory storage me-
tering scheme compared to the scheme proposed by Blundo et. al. [3].
The difference appears in the broadcast public information to clients and
servers, which is less in our scheme. As Naor and Pikas [15] pointed out it
will be nice to detect illegal behaviour of clients, i.e. verifying the shares
received from clients. This issue is not considered in the paper, since it is
ignored in the papers [1–3, 13, 14] too.

The paper is organized as follows: In Section 2 we present the nota-
tions used to describe the metering schemes. In Section 3 we study the
relationship between metering schemes and general access structures for
clients, corrupt clients and servers. In Section 4 we first present a linear
secret sharing scheme and linear algebraic approach to generalized ac-
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cess structures. Then this approach is used to design a metering scheme.
Finally, we examine our scheme for efficiency and correctness.

2 Preliminaries

A secret sharing scheme (SSS) allows to share a secret among several par-
ticipants, such that only qualified subset of them can recover the secret
pooling together their information. Subsets of participants that are not
enabled to recover the secret have absolutely no information about it. The
secret sharing were proposed independently by Shamir [17] and Blakley
[4]. The first secret sharing schemes have been (r, k)-threshold schemes,
were only groups of more than a certain number of participants r (where
r ≤ k and k is the number of all players) can reconstruct the secret.
Brickell [6] points out how the linear algebraic view leads to a natural
extension to a wider class of secret sharing schemes that are not neces-
sarily of threshold type. This have later been generalized to all possible
so-called monotone access structures by Karchmer and Wigderson [12]
based on a linear algebraic computational device called Monotone Span
Program.

As usual we call the groups which are allowed to reconstruct the secret
qualified, and the groups who should not be able to obtain any information
about the secret forbidden. The collection of all qualified groups is denoted
by Γ , and the collection of all forbidden groups is denoted by ∆. In fact, Γ
is monotone increasing and ∆ is monotone decreasing. The tuple (Γ,∆)
is called an access structure if Γ ∩ ∆ = ∅. If Γ ∪ ∆ = 2P , where P
is the set of participants, then we say that (Γ,∆) is complete and we
denote it by Γ . Otherwise, we say that (Γ,∆) is incomplete. By Γ− we
denote the collection of minimal sets of Γ and by ∆+ we denote the
collection of maximal sets of ∆. It is obvious that the (Γ−,∆+) generate
the (Γ,∆). Let K be a finite field. We will consider a general monotone
access structure (Γ,∆), which describes subsets of participants that are
qualified to recover the secret s ∈ K in the set of possible secret values.

A (k, r)-Vandermonde matrix (over K) with r ≤ k, is a matrix which
i-th row is of the form (1, αi, ..., α

r−1
i ), where α1, ..., αk ∈ K. For an

arbitrary matrix M over K, with m rows labeled by 1, . . . ,m and for
arbitrary non-empty subset A of {1, . . . ,m}, let MA denote the matrix
obtained by keeping only those rows i with i ∈ A. If {i} = A we write
Mi. Consider the set of row-vectors vi1 , . . . , vik and let A = {i1, . . . , ik}
be the set of indices, then we denote by vA the matrix consisting of rows
vi1 , . . . , vik . Instead of 〈ε, vi〉 for i ∈ A we will write 〈ε, vA〉. Let MT

A
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denote the transpose of MA, and let Im(MT
A ) denote the K-linear span

of the rows of MA. We use Ker(MA) to denote the kernel of MA, i.e. all
linear combinations of the columns of MA, leading to 0.

It is well known that any square Vandermonde matrix has non-zero
determinant. If M is a (k, r)-Vandermonde matrix over K and A is non-
empty subset of {1, ..., k}, then the rank of MA is maximal (i.e. is equal to
r, or equivalently, Im(MT

A ) = Kr) if and only if |A| ≥ r. Moreover: Let ε
denote the column vector (1, 0, ..., 0) ∈ Kr. If |A| < r, then ε /∈ Im(MT

A ),
i.e. there is no λ ∈ K |A| such that MT

Aλ = ε.
Let us define the standard scalar product 〈x, y〉 and x ⊥ y, when

〈x, y〉 = 0. For a K-linear subspace V of K l, V ⊥ denotes the collection of
elements of K l, that are orthogonal to all of V (the orthogonal comple-
ment), which is again a K-linear subspace. For all subspaces V of K l we
have V = (V ⊥)⊥, (Im(MT

A ))⊥ = Ker(MA) or Im(MT
A ) = (Ker(MA))⊥,

〈x,MT
Ay〉 = 〈MAx, y〉. Hence from Im(MT

A ) = (Ker(MA))⊥ follows the
lemma.

Lemma 1. [7] The vector ε /∈ Im(MT
A ) if and only if there exists z ∈ K l

such that MAz = 0 and z1 = 1.

3 Metering schemes for General Access Structures

Consider the following scenario: there are n clients, k servers and an audit
agency A which is interested in counting the client visits to the servers in
τ different time frames. For any i = 1, . . . , n and j = 1, . . . , k, we denote
by Ci the i−th client and by Sj the j−th server.

We consider an access structure (Γ,∆) of qualified and forbidden
groups for the set of clients {C1, . . . , Cn}.

In a metering scheme realizing the client access structure (Γ,∆) any
server which has been visited by at least a qualified subset of clients in Γ
in fixed time frame is able to provide the audit agency with a proof for
the visits it has received.

A second access structure (complete) ΓS can be considered for the set
of servers {S1, . . . , Sk}. We call the set of subsets of servers corrupt if they
are not in ΓS . We denote also the set of possible subsets of corrupt clients
by ∆C , which is in fact monotone decreasing. It is obvious requirement
that Γ ∩∆C = ∅.

A corrupt server can be assisted by corrupt clients and other corrupt
servers in computing its proof without receiving visits from qualified sub-
sets. A corrupt client can donate to a corrupt server the whole private
information received by the audit agency during the initialization phase.
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A corrupt server can donate to another corrupt server the private infor-
mation received from clients in previous time frames and in the actual
time frame.

Several phases can be defined in the Metering scheme. We will follow
the settings of the scheme in [3]:

There is an initialization phase in which the audit agency A chooses
the access structures, computes the corresponding matrices and make
them public and distributes some information to any client Ci through a
private channel. For any i = 1, . . . , n we denote by v(t)

ϕ(i) the shares that
the audit agency A gives to the client Ci for time frames t = 1, . . . , τ .

A regular operation consists of a client visit to a server during a
time frame. During such a visit the client gives to the visited server a
piece of information which depends on the private information, on the
identity of the server and on the time frame during which the client visits
the server. For any i = 1, . . . , n; j = 1, . . . , k and t = 1, . . . , τ , we denote
by c(t)ϕ(i),ϕ̃(j) the information that the client Ci sends to the server Sj when
visiting him in time frame t.

During the proof computation phase any server Sj which has been
visited by at least a subset of qualified clients in time frame t is able to
compute its proof. For any j = 1, . . . , k and t = 1, . . . , τ we denote by
p
(t)
ϕ̃(j) the proof computed by the server Sj at time t when it has been

visited by qualified set of clients.
During the proof verification phase the audit agency A verifies the

proofs received by servers and decides on the amount of money to be paid
to servers. If the proof received from a server at the end of a time frame
is correct, then A pays the server for its services.

Definition 1. [3] An (n, k, τ) metering scheme realizing the access struc-
tures (Γ,∆), ΓS and corrupt set of clients ∆C is a protocol to measure
the interaction between n clients C1, . . . , Cn with access structure (Γ,∆)
and k server S1, . . . , Sk with access structure ΓS during τ time frames in
such a way that the following properties are satisfied:

1. For any time frame t any client is able to compute the information
needed to visit any server.

2. For any time frame t any server Sj which has been visited by a
qualified subset of clients G ∈ Γ in time frame t can compute its proof
for t.

3. Let B2 be a coalition of corrupt servers, i.e. B2 /∈ ΓS and let B1

be a coalition of corrupt clients, i.e. B1 ∈ ∆C . Assume that in some
time frame t each server in the coalition has been visited by a subset of
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forbidden clients B3, i.e. B3 ∈ ∆. Then the servers in the coalition B2

have no information about their proofs for time frame t, even if they are
helped by the corrupt clients in B1.

In [16] we introduced an operation for the access structure, which
generalize the notion of Q2(Q3) adversary structure introduced by Hirt
and Maurer [11]. Now we will expand this definition.

Definition 2. For the access structure (Γ,∆) and monotone decreasing
set ∆C we define the operation ∗ as follows: ∆∗∆C = {A = A1∪A2;A1 ∈
∆,A2 ∈ ∆C}.

In order to build an (n, k, τ) metering scheme realizing the access struc-
tures (Γ,∆), ΓS and corrupt set of clients ∆C , we consider the tuple
(Γ,∆ ∗∆C). It is obvious that ∆ ∗∆C is monotone decreasing.

Lemma 2. An (n, k, τ) metering scheme realizing the access structures
(Γ,∆), ΓS and corrupt set of clients ∆C exists, if and only if (Γ,∆∗∆C)
is an access structure (i.e. Γ ∩∆ ∗∆C = ∅).

In the next section we will present a metering scheme satisfying the condi-
tions of Lemma 2. Such schemes we will call an (n, k, τ) metering scheme
realizing the access structures (Γ,∆ ∗∆C) and ΓS .

4 Linear SSS and Metering Schemes

4.1 LSSS and MSP

A SSS is linear if the dealer and the participants use only linear operations
to compute the shares and the secret. Each linear SSS (LSSS) can be
viewed as derived from a monotone span program computing its access
structure. On the other hand, each monotone span program gives rise to
an LSSS. Hence, one can identify an LSSS with its underlying monotone
span program. Note that the size ofM is also the size of the corresponding
LSSS. Now we will consider any access structure, as long as it admits a
linear secret sharing scheme.

Definition 3. [12, 7] The quadruple M = (K,M, ε, ψ) is called mono-
tone span program, where K is a finite field, M is a matrix (with m rows
and d ≤ m columns) over K, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective
function and ε is a fixed vector, called target vector, e.g. column vector
(1, 0, ..., 0) ∈ Kd. The size of M is the number of rows m.
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Here ψ labels each row with a number from [1, . . . ,m] corresponding
to a fixed player, so we can think of each player as being the “owner” of
one or more rows. And for every player we consider a function ϕ which
gives the set of rows owned by the player. In some sense ϕ is inverse of ψ.
It is well known that the number of columns d can be chosen to be smaller
than the number of rows m, without changing the access structure that
is computed by a MSP.

Theorem 1. [5, 9] MSP is said to compute an access structure (Γ,∆) if
and only if
a) ε ∈ Im(MT

G) when G is a member of Γ .
b) ε /∈ Im(MT

G) when G is a member of ∆.

4.2 The scheme realizing Metering Scheme for General
Access Structure

Let M be the matrix obtained from MSP (Definition 3) computing the
(Γ,∆ ∗∆C) access structure.

Conjecture: For any generalized complete access structure Γ there
exists a “special” matrix N with the following property:
(i) G /∈ Γ if and only if the rows in NG are linearly independent.

Note that if Γ is a threshold (r, k) access structure with (k, r)-Vandermonde
matrix the requirement (i) is satisfied. Also in some cases the matrix N
can be derived from the matrix M by removing the first column in M ,
but this can not be used as a rule.

For the access structure ΓS we consider such kind of “special” matrix
N as in the conjecture above. Analogously to the MSP we will denote by
ψ̃ the surjective function which label each row of N with a corresponding
player, and ϕ̃ the “inverse” of ψ̃.

Initialization: The audit agency A chooses access structures (Γ,∆∗∆C)
and ΓS . Using MSP these access structures are bound with matrices M
and N . Let M be with m rows and d columns and N be with m̃ rows and
d̃ colomns. These matrices are made public.
Next A chooses τ random d× d̃ matrices R(t). We can consider them as
one “big” dτ × d̃ matrix R, which is kept secret.
So, A gives to each client Ci row vectors v(t)

ϕ(i) = Mϕ(i)R
(t) for t = 1, . . . , τ .

These are the shares of client Ci in time frame t.

Regular Operation: When client Ci visits a server Sj during a time
frame t, Ci computes the values c(t)ϕ(i),ϕ̃(j) = Nϕ̃(j)(v

(t)
ϕ(i))

T and sends them
to the server Sj .
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Proof Computation: Assume that the server Sj has been visited from
a qualified set G ∈ Γ of clients during a time frame t. So, it computes λ
(Theorem 1) s.t. MT

ϕ(G)λ = ε. With λ it computes p(t)
ϕ̃(j) = 〈c(t)ϕ(G),ϕ̃(j), λ

T 〉
which are the desired proofs and sends them to A.

Proof Verification: When the audit agency A receives these values
p
(t)
ϕ̃(j) it can easily verify if this is the correct proof for the server Sj for

time t. A calculates the value p̃(t)
ϕ̃(j) = 〈Nϕ(j), (R(t))1〉, where by (R(t))1 we

denote the first row of matrix R(t) and compares whether p(t)
ϕ̃(j) = p̃

(t)
ϕ̃(j).

We will prove that if the server Sj has been visited from a qualified set
G ∈ Γ of clients during a time frame t the equality should hold.

p
(t)
ϕ̃(j) = 〈c(t)ϕ(G),ϕ̃(j), λ

T 〉 = 〈Nϕ̃(j)(v
(t)
ϕ(G))

T , λT 〉

= 〈Nϕ̃(j)(Mϕ(G)R
(t))T , λT 〉 = 〈Nϕ̃(j)(R

(t))TMT
ϕ(G), λ

T 〉

= 〈Nϕ̃(j)(R
(t))T , λTMϕ(G)〉 = 〈Nϕ̃(j)(R

(t))T , εT 〉

= 〈Nϕ̃(j), ε
TR(t)〉 = 〈Nϕ̃(j), (R

(t))1〉

= p̃
(t)
ϕ̃(j)

4.3 Analysis of the Scheme

It is obvious that Property 1 and Property 2 of Definition 1 are satisfied.
Now we prove that Property 3 is satisfied. We consider the worst possible
case, in which a subset of clients D ∈ ∆ ∗∆C helps a coalition of corrupt
servers B2 /∈ ΓS in computing their proofs for time frame τ . The total
information known to the coalition of corrupt servers is constituted by
the maximum information collected in time frames 1, . . . , τ − 1. That is,
we assume that each server in the coalition has been visited by all clients
C1, . . . , Cn in these time frames plus the information received in time frame
τ .

Since the audit agency A chooses the matrices R(t) randomly and keep
them secret the clients have different shares for different time frames, so
the information they give visiting the server Sj is different. Hence all
collected information for previous visit is not consistent with the current
information and the coalition of corrupt serves can not use it.

Let us consider the value p
(t)
ϕ̃(j) = 〈c(t)ϕ(G),ϕ̃(j), λ

T 〉. Assume that the
group of clients D ∈ ∆ ∗∆C helps Sj to compute his proof. It is easy to
prove (see [7, 8] or [16, Theorem 2]) that from the point of view of the
clients in D, the information c(t)ϕ(D),ϕ̃(j) can be consistent with any secret
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matrix R̃(t). So, the clients in D have no information about the secret
matrix R(t) and hence for the information c(t)ϕ(G),ϕ̃(j) for some G ∈ Γ .

Finally, let us consider the value p̃(t)
ϕ̃(j) = 〈Nϕ̃(j), (R(t))1〉. The coalition

B2 /∈ Γs can try to guess (R(t))1 or if there is a linear dependance between
the row-vectors Nϕ̃(j) for j ∈ B2 to compute p̃(t)

ϕ̃(j) provided that they

already know all values p̃(t)
ϕ̃(j1) for j1 ∈ B2 \ {j}.

Let us consider the second possibility for server Sj which is visited
only by clients D ∈ ∆ ∗∆C . In fact, we can prove a stronger requirement
in addition to the requirements in Definition 1.

Definition 4. An (n, k, τ) metering scheme realizing the access struc-
tures (Γ,∆), ΓS and corrupt set of clients ∆C is a protocol to measure
the interaction between n clients C1, . . . , Cn with access structure (Γ,∆)
and k server S1, . . . , Sk with access structure ΓS during τ time frames in
such a way that the following properties are satisfied:

1. - 3. As in Definition 1
4. Let B2 be a coalition of corrupt servers, i.e. B2 /∈ ΓS and let B1 be

a coalition of corrupt clients, i.e. B1 ∈ ∆C . Assume that in some time
frame t the fixed server in the coalition (e.g. Sj and j ∈ B2) has been
visited by a subset of forbidden clients B3, i.e. B3 ∈ ∆. Assume that
in the same time frame t each other server in the coalition B2 has been
visited by a subset of qualified clients B4, i.e. B4 ∈ Γ . Then the servers
in the coalition B2 \ {j} are able to compute their proofs for time frame
t, but they are unable to “help” the server Sj with the computation of his
proofs, even if they are helped by the corrupt clients in B1.

Even if all the servers in the corrupted coalition B2, except Sj , have
been visited by a qualified subset of clients B4 at that time frame (i.e.
they are able to compute their proofs), Sj can not compute its proofs by
finding a linear combination of their proofs p(t)

ϕ̃(j1) for j1 ∈ B2\{j}. This is
true since B2 is not in ΓS and by requirement (i) of the Conjecture there
is no linear combination between the row vectors Nϕ̃(j1) for j1 ∈ B2 \ {j}
and Nϕ̃(j). Hence the Property 4 of Definition 4 also holds.

4.4 Efficiency of the Scheme.

Let |K| = q and denote by dimEi the dimension of the vector space gen-
erated by the vectors Mϕ(i) of client Ci over K, i.e. dimEi = |ϕ(i)|. We de-
note by E0 the set of secrets and by dimE0 the dimension of E0. It is well
known that the information rate of a LSSS is ρ = dimE0/(max1≤i≤ndimEi)
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and this rate is optimal (e.g. ρ = 1) in the threshold case. Assuming that
the matrix M (built by means of MSP) has a maximum possible infor-
mation rate for the given access structure Γ. To be able to compare our
result with the result of [3] we need to consider ΓS to be a threshold (r, k)
access structure. In this case the matrix N is (k, r)-Vandermonde matrix
(i.e. m̃ = k, d̃ = r and ψ̃, ϕ̃ are bijections).

In [3] the audit agency broadcasts two types of public information one
is the linear mapping Mχ that enables the clients in χ ∈ Γ to compute
the secret. The second is the linear mapping Πt

j , i.e. the numbers λt
j,i for

j = 1, . . . , k; i = 1, . . . , rτ ; and t = 1, . . . , τ.
The amount of information that a client Ci receives from the audit

agency during the initialization phase (i.e. the shares of the client) is
equal to r τ log(q) dimEi, which is the same as in [3].

The amount of information that a client sends to a server during a
visit is equal to log(q) dimEi, which is again the same as in [3].

In our scheme the public information broadcast by audit agency A
given by the matrices M and N is equal to d log(q)

∑n
i=1 dimEi =

m d log(q) and k r log(q), respectively. Note also that the clients need to
know only the matrix N , and the servers need to know only the matrix
M , in order to perform their duties.

On the other hand the amount of broadcast information in [3] is the
linear mappingMχ, which corresponds to our matrixM , and the numbers
λt

j,i from the second linear map Πt
j . Hence the amount of information for

the second mapping is τ2 k r log(q). Note also that both the clients and
the servers need to know these numbers λt

j,i.
Therefore our scheme is more efficient on the communication complex-

ity comparing with the scheme proposed in [3], since it broadcasts less
(k r log(q) v.s. τ2 k r log(q)) public information to clients and servers.
Another consequences is that the memory storage required in our scheme
is less comparing with the Blundo et. al. [3] scheme.

5 Conclusions and Open Problem

In the paper we propose a model for metering schemes with fully gen-
eral access structure – for clients, corrupted clients and servers. In the
literature till now was considered general access structure for clients and
threshold access structure for servers. The scheme is simpler, with more
efficient communication complexity and memory storage than the known
ones and we prove that it satisfies stronger security requirements.
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There is still an open problem: to be proved the existence of a “special”
matrix N for any access structure. It is well known [8] that every non-
zero vector can be used as a target vector in the MSP. So, the question is
whether we can build a matrix with a zero target vector. We can restate
the conjecture as:
Conjecture′: A “special” matrix N is said to compute a generalized
access structure (Γ,∆) if and only if
a) Ker(NT

G) 6= ∅ when G is a member of Γ .
b) Ker(NT

G) = ∅ when G is a member of ∆.
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Appendix

Toy Example In order to give to the reader a better idea of the proto-
col, we will consider the following example: Let K = GF (2) and let we
have the access structures Γ− = {123, 145, 245, 235, 135} , (∆ ∗ ∆c)+ =
{124, 125, 134, 234, 345} and Γ−

S = {12, 23, 34}, ∆+
S = {14, 13, 24}. Let

the public matrices M and N and the secret random matrix R (i.e.
τ = t = 1) are as follows:

M =



0 0 0 1 1

0 0 1 0 1
0 0 0 0 1

1 0 1 1 1
1 1 1 1 1

0 1 0 0 0

1 1 0 1 1
0 0 1 1 0


N =



1 0 0

1 0 0
0 1 0

0 1 0
0 0 1

0 0 1

 R =


a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5



The agency gives to each client the corresponding row vectors:

vϕ(1) =
(
a4 + a5|b4 + b5|c4 + c5

)
, vϕ(2) =

(
a3 + a5

a5

∣∣∣∣b3 + b5
b5

∣∣∣∣ c3 + c5
c5

)
,

vϕ(3) =
(

a1 + a3 + a4 + a5

a1 + a2 + a3 + a4 + a5

∣∣∣∣ b1 + b3 + b4 + b5
b1 + b2 + b3 + b4 + b5

∣∣∣∣ c1 + c3 + c4 + c5
c1 + c2 + c3 + c4 + c5

)
,

vϕ(4) =
(
a2|b2|c2

)
,

vϕ(5) =
(
a1 + a2 + a4 + a5

a3 + a4

∣∣∣∣b1 + b2 + b4 + b5
b3 + b4

∣∣∣∣ c1 + c2 + c4 + c5
c3 + c4

)
Let the set of qualified clients C1, C4, C5 visits the server S3 and the

set of forbidden clients C1, C2, C4 visits the servers S1, S2.
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The server S1 receives the following values from the clients:

cϕ(1),ϕ̃(1) = (a4 + a5), cϕ(2),ϕ̃(1) =
(
a3 + a5

a5

)
, cϕ(4),ϕ̃(1) = (a2).

Respectively, for the server S2 the values are as follows:

cϕ(1),ϕ̃(2) = (a4 + a5|b4 + b5), cϕ(2),ϕ̃(2) =
(
a3 + a5

a5

∣∣∣∣b3 + b5
b5

)
,

cϕ(4),ϕ̃(2) = (a2|b2).
And for the server S3:

cϕ(1),ϕ̃(3) = (b4 + b5|c4 + c5), cϕ(4),ϕ̃(3) = (b2|c2),

cϕ(5),ϕ̃(3) =
(
b1 + b2 + b4 + b5

b3 + b4

∣∣∣∣c1 + c2 + c4 + c5
c3 + c4

)
.

Since the server S3 is visited by the set of qualified clients, it computes
λ = (1, 1, 1, 0) such that MT

ϕ(1,4,5)λ = ε and calculates his proof p3 =(
b1
c1

)
.

Finally, the audit agency verifies that p̃3 =
(
b1
c1

)
= p3. Note that if

S1 and S2 are corrupted servers they can not (even together) calculate

their proofs p̃1 = (a1), p̃2 =
(
a1

b1

)
, respectively. Even more, if one of the

corrupted servers is S3, which is visited by the set of qualified clients, the
other bad server (e.g. S1) is not able to compute its proof (by Property 4
of Definition 4).


