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Abstract.  A new construction of a pseudorandom generator based on a simple 

combination of three feedback shift registers (FSRs) is introduced. The main 
characteristic of its structure is that the output of one of the three FSRs 
controls the clocking of the other two FSRs. This construction allows users to 
generate a large family of sequences using the same initial  states and the same 
feedback functions of the three combined FSRs. The construction is related to 
the Alternating Step Generator that is a special case of this construction.              
The period, and the lower and upper bound of the linear complexity of the 
output sequences of the construction whose control FSR generates a de Bruijn 
sequence and the other two FSRs generate m-sequences are established. 
Furthermore, it is established that the distribution of short patterns in these 
output sequences occur equally likely and that they are secure against 
correlation attacks. All these properties make it a suitable crypto-generator for 
stream cipher applications. 
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Keystream sequence generators that produce sequences with large periods, high linear 
complexities and good statistical properties are very useful as building blocks for stream 
cipher applications. The use of clock-controlled generators in keystream generators .�/,/�0�.�1�2
35476809.9:,4,4�;7<=.�>?4,@�.�A�B�CD0�E�CGF,:?2�0�HJI80�F�AK0�2*<7C�35B73DB�0K2�09/�1�4,/�0�1535CD0K29L�MKN�O  
 
In this paper, a new clock-controlled generator that is called the Clock-Controlled 
Alternating Step Generator (and referred to as CCASG) is introduced. The CCASG is a 
sequence generator composed of three FSRs A, B and C LGP�N�<=B�CDA�BQ.�1�0RCGFJ3�0�1�A�4JF�F�0�A�350K;
such that at any  time t, CG@�3DB80SA�4JF,350�FJ3T4J@�35B�0SU th stage of FSR A CD2SM�V(35B�0�FSW�XJY A is 
clocked once, FSR B is clocked by one plus the integer value represented in selected w 
fixed stages of FSR A, and FSR C is not clocked, otherwise, FSR A is clocked once,    
FSR B is not clocked, and FSR C is clocked by one plus the integer value represented in 
the selected w fixed stages of FSR A. FSR A is called the control register and FSRs B 
and C are called the generating registers. The output bits of the CCASG are produced by .K;,;,CGF,:7ZR4,;,I�[D47P73DB80T4JIJ35/,IJ386�C�352�4,@,W*X,Y=2 B and C under the control of FSR A.  
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Suppose that the control register FSR A has k stages and feedback function R.    
Similarly, suppose that the generating registers FSRs B and C have m and n stages 
respectively and feedback functions S and T respectively. Let A� =  A� �������  A� �	�
���  …, Ak- � ����� ,                                          
B� =  B � �������  B� �	�
���  …, Bm- � �	�
���  and C�  = C� �������� � ������������� n- � �����  be the initial states of A, B 
and C respectively.  
 
The initial state of the CCASG at time ��� �

 is given by: S�  = (A� , B� , C� ). 
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Define a function F that acts on the state of FSR A at a given time t to determine                     
the number of times FSR B or FRS C is clocked such that: At any time t,   
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Define two cumulative functions of FSR A, GA and QA � �"! # $%#'& #�(*) → �"!�# $%#+&#�(*)-,/. 0%1
that:  

 GA(t) = 2 −

=

3
4

t

i

A5 (i)F(Ai), for 6798 , and GA : 8�;=<>8 ,  

and  

QA(t) =  2 −

=

3
4

t

i

(A5 (i) ⊕ ? ;A@ : Ai), for 6 7B8 , and QA : 8�;=<>8 ,. 

{ Where ⊕ C D+E FHG	D ,JI C�C K G�KLFHENMOF�C .P F &�)'Q  
 
Thus, with initial state S5  = (A5 , B5 , C5 ), at time t the state of the CCASG is given by:                                   
St = (At, BGA(t), CQA(t) ). 

 
At any time t # G 1 D�F . GLR . GSFHTJG 1 D�UVUXWZY [\K , G 1 D 0 F�EHG�D+EHGXFHT�G 1 D ! th stage of FSR B added MOF�C . P F & G	F]G 1 D 0 FHEHG�D+E�GFHT�G 1 D ! th stage of FSR C i.e. B 5 (GA(t)) ⊕ C5 (QA(t)). 
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The CCASG may also be described in terms of the three output sequences (At), (Bt) and 
(Ct) of the feedback shift registers A, B and C respectively.                                
 
Acting on their own, suppose that FSR A, FSR B and FSR C produce output sequences 

(At) = A5 , A� , ...,  (Bt) =  B5 , B� , ..., and (Ct) = C5 , C� , ... respectively. The sequence (At) is 
called the control sequence, and the sequences (Bt) and (Ct) are called the generating 
sequences of the CCASG respectively and referred to these as component sequences.  
 
For an FSR the state sequence is related to the corresponding output sequence of the FSR 
in the following way: At time t, the state of FSR A, At = A5 (t), A� (t), …, Ak- � (t) =                
At, A� ��� , …, At+k- � . Therefore, one can write the function F in terms of the output bits of A. 
 
The output sequence (Zt) of the CCASG whose control sequence and generating 
sequences are (At), (Bt) and (Ct) respectively is given by: Zt = BGA(t) ⊕ CQA(t).             
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(Zt) of the CCASG 
 
Suppose that A is an FSR with initial state A%  and feedback function R such that the 
output sequence (At) of A is a de Bruijn sequence of span κ and it has period &('*) κ +-,�.0/
Suppose that the feedback shift registers B and C are primitive linear feedback shift 
registers (LFSRs) with non-zero initial states B%  and C%  respectively, and primitive 
characteristic feedback polynomials g(x) of degree m and h(x) of degree n respectively 
(where g(x) and h(x) are associated with the feedback functions S and T 1�2�3�4�2�57698;:�2=< >�? +-,�.0/            
Let (Bt) and (Ct) denote the output sequences of LFSRs B and C respectively.                       
Then (Bt) and (Ct) are m-sequences of periods M =  @ ) m – ACB  and N =  @ ) n

 – ACBD102=3�4E2�5F608;:�2�<;> +-,�.0/
Let (Zt) be the output sequence of the CCASG whose component sequences are (At), (Bt) 
and (Ct). 
 
Note that a de Bruijn sequence of span κ can be easily obtained from an m-sequence 
generated by a κ- 3�69G7H�2I4�108-J�8;698;:�2�K�L�M�NPOQ>R3F8;JS4E< >TG�U�U�8-V�HTG�W=XQYI60Z[69\�2[27VEUTZ�]^27G�5�\
subsequence of (κ – _�?XE`a3�Z�5=57b�10108-V�H^8-V	69\�2�J -sequence. 
 
Since in a full period &c'�) κ of (At) the number of ones and zeroes is K d  =  K % 'e) κ- d +-,�.0/

 

Thus, after clocking FSR A K times, LFSR B is clocked GA @ &fBg'*) (κ- d h -w@ A�ie)*ikjei�) w) 
= ) (κ- d h -wl ) w- d @ ) w i�AmB�no'p) κ- q @ ) w i�AmB  times and LFSR C is clocked QA(K) = ) κ- q @ ) w i�ACB  
times. 
 
In this section, some properties of the output sequences such as period and linear 
complexity are established. It is shown that, when m and n are positive integers greater 
than _  satisfying gcd(m, n) =  A , and w satisfies rts�u @ ) w

 i�A�v  ) m
 – AmB  =  rts�u @ ) w

 i�A�v  ) n
 – AmB  =  A , 

then the period of the output sequences is exponential in κ, m and n, and that the linear 
complexity is exponential in κ. Finally, it is established that the distribution of short 
patterns in the output sequences of this CCASG turns out to be ideal. 
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(Zt) 

  
The sequence (Zt) can OE2�3�2�2�V	G�36"%	Z	3F2�&QbE27V�5=2�3fG=U�U�2=UkJ�Z�UQbE<-Z ,�' (Zt) = (BGA(t)) ⊕ (CQA(t)), 

where (BGA(t)) and (CQA(t)) are generated by the sub-generators whose component 

sequences are (At), (Bt) and (At), (Ct) respectively. 
 
In order to establish the period and the linear complexity of (Zt) one needs to first consider 
the periods and the linear complexities of the two sequences (BGA(t)) and (CQA(t)). 

 
In the following two lemmas, the periods of the sequences (BGA(t)) and (CQA(t)) are 

5=ZQV�3F8-U�271�2�U /$( 10276-60271 +�)�. \�G�3�5�ZQVE3�8aU�271�2�Uk69\�8a3�4�1�Z�ZQ]E]9Z�1�69\�2!ZQb�6a4�b�6E3F2�&QbE27V�5=2�3�ZQ]�6a\E2!3�60ZQ4^G�V�UH�Z	H�27VE2719G760ZQ1 +�*�.�/,+ 8a3�4�1�Z�ZQ]E8a3�G=<-3FZk:�G�<a8aU	]9Z�1�69\�2!3�2-&Qb�2�V�5�2=3 (BGA(t)) and (CQA(t)).  

 
 ���-���.�/�

If gcd @ ) w i�A=v�) m – AmB ' A=v	0 1�234051�27682�9,:�;�u=< G of the sequence (BGA(t)) is                 

) κ @ ) m – ACB?>  
 
Proof.  The sequence (BGA(t)) will repeat whenever the states of the shift registers A and 

B return to their initial states A%  and B%  respectively. The register A returns to its initial 
state once every K =  ) κ clock pulses. Thus, for Y cycles of register A, register B is 
clocked YGA(K) times.  
 
Therefore, if for some integers U and Y, YGA(K) = UM, then the feedback shift registers 
A and B will simultaneously be in their initial states. The period of the sequence (BGA(t)) 

corresponds to the smallest integer value that the integer U can take.  
 
Now U = YGA(K)/M. Therefore, if gcd(GA @ &fB vA@�Bg'IA  [i.e. gcd @ ) κ - q @ ) w

 i�ACB v  ) m – ACBg'[A ],             
then the smallest value that U can take is when Y =  M. Clearly gcd @ ) κ- q , ) m

 – AmB  =  A ,                              
hence, if gcd @ ) w i�A�v  ) m

 – AmB  '�A  then gcd(GA @ &�B vB@�B 'eA . 
 
Thus, in M cycles of register A, register B cycles GA(K) times and the period of (BGA(t)) is 

&C@ '*) κ @ ) m – AmB . 
 
 ���-���.�D�

If gcd @ ) w
 i�A�v  ) n – AmB  =  A�v�051�2�3E051�2F682-9G:�;QuH< Q of the sequence (CQA(t)) is          

) κ @ ) n – ACB?>  
 
Proof.  Similar to the proof of the above lemma. 

 
 IJ��#K������ K���$�.L

  The linear complexity of a purely periodic sequence is equal to the degree 
of its minimal polynomial. The minimal polynomial is the characteristic feedback 
polynomial of the shortest LFSR that can produce the given sequence.  
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In the following two lemmas, the minimal polynomials of (BGA(t)) and (CQA(t)) are 

considered.  
 
 ���-���.���

If gcd @ ) w i�A�v  ) m – ACB  =  A�v�0 1�2�3�0 1�2�� :53�:����	�B68;
� � 3�;�� :�
��;�� 051�2��2�����23�s-2 @ � GA(t)) 

is of the form I(x)α � 1�2-9G2�) κ- d < α ≤ ) κ, and I(x) is an irreducible polynomial of degree m.  
i.e. The linear complexity of (BGA(t)) is L d�����s1�051���0����	) κ- d  < L d  ≤ �	) κ

.  

 
Proof.  First, recall that if gcd @ ) w i�A�v  ) m – AmB  =  A  then gcd(GA @ &fB vB@�B '�A . 
  
Upper  Bound on L � : If one starts at location i in the sequence (BGA(t)) for a fixed value 

of i with � ≤ i < K and chooses every Kth element in the sequence (BGA(t)), then this is 

equivalent to starting at position t = GA(i) in (Bt) and choosing every GA(K)th element. 
Such a sequence is a GA(K)-decimation of (Bt). All the GA(K)-decimation of (Bt)          
have the same minimal polynomial I(x) whose roots are the GA(K)th powers of the       
roots of g(x) +���.0/�( \�2S]98-V�G=<�3�2-&Qb�2�V�5�2 (BGA(t)) consists of K such sequences interleaved.                       

[In other words, if (BGA(t)) is written by rows into an array K columns wide, then each 

column is a sequence produced by I(x)]. Hence, the sequence (BGA(t)) may be produced by 

G�V	K�L�MQNT5�Z�V�3�6910b�5F602�U	G=3�]0Z�<-<aZ$%	3 +��.�/  
 
Take an LFSR with feedback polynomial I(x) and replace each delay by a chain of K 
delays and only the left most of each such group of K delays is tapped and input to the 
feedback function with a non-zero feedback coefficient. Thus, (BGA(t)) is produced by an 

LFSR with the feedback polynomial I(xK). Hence, the minimal polynomial of (BGA(t)) 

divides I(x
K) =  I(x

κ�
) = I(x)

κ 
. Hence, (BGA(t)) has linear complexity L !  bounded from 

above by "$#&%'"�(  

κ. 
 )+*
,�-�.
/�,�0'1�,2/�3�45.�67098	/7,2:<;�=�>�.
6�:?:@.	1�A�BC-�.
6�-D35EF

g(x) is irreducible, with degree m and 
exponent M and gcd(GA G #IHKJML'HN%PO , then the polynomial I(x), like g(x) is irreducible of 
degree m and exponent M.  
 
Lower Bound on L Q : Let Q(x) denote the minimal polynomial of (BGA(t)). The sequence 

(BGA(t)) satisfies I(E)
κR

(BGA(t)HN% GDS H  for all t, where GDS H  is the all-zero sequence and E is 

the shift operator. Since the polynomial I(x) is irreducible then the polynomial Q(x) must 
be of the form I(x)α  for α ≤ ( κ. 
 

Assume α ≤ ( κ- ! . Then Q(x) divides I(x) TU −κ

. Since I(x) is an irreducible polynomial of 

degree m it divides the polynomial VDWYX[Z M). Therefore, Q(x) divides V�W\X]Z M) ^U −κ

=                  

VDW_X`Z M
ab −κ

), but then the period of (BGA(t)) is at most c κ- d M e�f�gihkj�l�m�nDo�p�q�h�mDql�rs�t7u9u o�vkwkxIy t n t�z j�n t α {|c κ- d  and the lower bound follows.                      
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If gcd �� w �����

 � n – ���  =  
����� ������� he minimal polynomial of the sequence (CQA(t)) 

is of the form J(x)β ��������� � κ-  < β ≤ � κ, and J(x) is an irreducible polynomial of degree n.  
i.e. The linear complexity of (CQA(t)) is L !�"$#�% �&�'�)(��+*,� � κ-   < L !  ≤ � � κ.  

 
Proof.  Similar to the proof of the above lemma.      
            
 
Therefore, if gcd �� w

 
�����

 � m
 –
�-�

 =  gcd �� w �����
 � n – ���  . �&�'�����/� ���10����$23)4 " 365 � 7 GA(t)) and 

(CQA(t)) are PG . � κ �� m – ���8(��)489 Q . � κ �� n – �-�:��� " 0�� % �2<;���= >?()��4&� ���A@B2'��2'@C(�=D0E3)= >F��3,@B2(�= "
of (BGA(t)) and (CQA(t)) are equal to I(x)α and J(x)β �$� " 0E� % �'2<;���= >G�������$� � κ-   <  α, β ≤ � κ and 

I(x), J(x) are irreducible polynomials of degree m and n respectively. 
 
 HAI ��J)K����MLON 5P@Q()��4R�/(����S0E3 " 2+�'2<;���2����UTV��� " TV����(��'���
� ��()�W� " (��2 " 5�>X2�YTRT % 4 � @C�  n) =  

���
and w satisfies gcd �<� w �����

 � m – ��� . gcd �<� w ����� � n – ��� . ���/�'�����Z�'���[3 # � 0 # �
sequence (Zt) has period PZ . � κ �� m – ��� �� n – ���\()��4W=<2����(�� % 3,@]0�=�_^`2+� >ba "$#�% �c� ��(��+*� @d���U� � κ-  < L ≤ � @[���D� � κ.  
 
Proof.  From the above lemmas, the minimal polynomials of (BGA(t)) is I(x)α and that of 

(CQA(t)) is J(x)β where � κ-   < α, β ≤ � κ. Since I(x) and J(x) are irreducible of different 

degrees then gcd � N � ^e�f�Xg � ^e�h� . � , hence gcd(I(x)α, J(x)β� . �ji+k,lnmporq�s�ths�u+v)ths�w�x<q�s&y�s�tnz<v){
of (Zt) is PZ = lcm(PG, PQ) i<k)wBx<q�s�v,tns�|

 } m ~)l  and the minimal polynomial of (Zt)                        
is I(x)αJ(x)β of degree L = (mα + nβ) i+k,w�x+q�s�v)ths�|���m'k,��lhmr�Gs�����s�w�x+q�sRy�s�tnz<v){�v,u (Zt)                   
is PZ . = % @ �<� κ �� m – ���Y� � κ �<� n – �-�h� . � κ �� m – ��� �<� n – ����� gcd �<� m – ��� � n – ��� .� κ �<� m – �-� �<� n – ����� �<� gcd(m, n) – ����i<�)w[�s�|
|
��k)m ~)lnmdorq)���$wcx+q�s�y�s�tnz<v){�v,u (Zt) is                                         
PZ . � κ �� m – ��� �� n – ���  and the linear complexity of (Zt) is L such that:                                         � @d���U� � κ-   < L ≤ (m + �D� � κ. 

 
 ��� � H�I �C�)�n�,�n����h�<���)����K�J)����K��h�<����J,�

(Zt) 
 
In this section, the number of ones and zeroes in a full period PZ . � κ �<� m – �-� �<� n – ���  of the 
sequence (Zt) are counted. It also shown that when m and n are positive integers greater x+q)���������$xhz<�eu<�)z�)� gcd(m���D� . �  and w satisfies gcd �<� w ����� � m – ��� . gcd �<� w ����� � n – ��� . � , 
then any pattern of length q ≤ min(χ, δ) where χ and δ are positive integers                             
such that χ =  � (m – ����� � w +  

�_�  and δ =  � (n – �-�$� � w
 +  

� �
 occurs with probability                                     � -q

 +  ¡ � �U� � m-q) +  ¡ � �U� � n-q). [Where � Ω�  is the integer part of Ω for any real number Ω.] 
 
Since (Bt) and (Ct) are m-sequences then in a full period ¢ . �<� m – ���  of (Bt) the number 
of ones and zeroes is M  
. � m-   and M £ . �� m-   – ���  respectively, and in a full period                ¤ . �<� n – �-�  of (Ct) the number of ones and zeroes is N  . � n-   and N£ . �� n-   – �-�tns���y�s���x+z'¥�s�� �&i¦�lnm  
 



 

 

�
 

 

 

If the period of (Zt) attains its maximum value PZ . � κ �<� m – �-� �<� n – ��� , then it is obvious 
that the number of ones and zeroes in a full period of (Zt) is � κ � �<� m – �-� � n-   –� m-  ]  and � κ � �<� m – ��� � n-   – �<� m-   – �����  respectively.         
 � �Gx<q�s�u+v���<v��Bz�)�Bx+q�s�v)ths�|&w,��z|&z<�'��t�xhs���q���z��,��s��rx+vBx+q�sCv)��s�������s�{
	,�����)�,x+q�s�t�i�,l���thsA��y)y��<zs�{
to determine the distribution of short patterns in the output sequences of the CCASG. 
 
 HAI ��J)K������ a1�,��@�()�)4G���)�X0E3 " 2+�'2<;���2����UTV��� " TX����(�������'�)()��� " (��2 " 5e>V2'�`TGT % 4 � @C�  �D� . �A(��)4
let w satisfy gcd �<� w ����� � m – ��� . gcd �� w ����� � n – ��� . ���_aE��� χ and δ be positive integers 
such that χ = � (m – ���$� � w �R� �   and δ = � (n – ����� � w �j�_�  .                
 
The probability of occurrences of any pattern σ = (σ £ , σ  , ...., σq-  ) ∈ ��� ����� q of length               
q ≤ min(χ, δ) in the sequence (Zt

�:2 "A� -q # 0\�3B()�
���$��3���365:3��e4���� ¡ � �U� � m-q�?� ¡ � �U� � n-q). 
 
Proof.  The proof is given in the appendix. 

 
Clearly, the smaller the value for w compared to m and n is, the better the above result is. 
This does not mean that it is suggested to take w to be very small, for example � . � .  
For more security it is better to irregularly clock the generating registers by large values, 
so that the gap between the bits selected from the generating sequences is large. 
 
Experiments have shown that if T % 4 � @C�C�D� . � , then for any value of w satisfying         
gcd( � w ����� � m – �-� . T % 4 �<� w  ����� � n – �-� . � , the output sequences of the CCASG have 
good statistical properties. 

 
Therefore, when m and n are positive integers greater  than 

�
 satisfying gcd(m, n) =  

�
and w satisfies gcd( � w ����� � m – ��� . gcd(� w  ����� � n – �-� . ����� �����b( CCASG with a                 
de Bruijn sequence as the control sequence and m-sequences as the generating sequences 
generates sequences with period PZ . � κ �<� m – �-� �<� n – �-�f�r=2����(�� % 3)@]0E=�_^`2+� >�a "�#)% �R�'�)(p�
(m +  n) � κ-   < L ≤ � @[���D� � κ,  and these sequences have good statistical properties.   
 
In the following section, some correlation attacks on the CCASG are considered. 
 
 ���������! #"%$

 
 
A suitable stream cipher should be resistant against a known-plaintext attack.                   
In a known-plaintext attack the cryptanalyst is given a plaintext and the corresponding 
cipher-text (in another word, the cryptanalyst is given a keystream), and the task is to 
reproduce the keystream somehow.   
  
The most important general attacks on LFSR-based stream ciphers are correlation attacks. 
Basically, if a cryptanalyst can in some way detect a correlation between the known 
output sequence and the output of one individual LFSR, this can be used in a divide and 
conquer attack on the z��{)z'¥�z<{,������&('%)�* i~�w��,+�w��)��w���¦�lhm  



 

 

�
 

 

 

 orq�sjv)�,x+y)�,x
�$s,�,��s�����sbv,uBx<q�s������ )#� z�����c��{){)z'x+z<v,�c|&v){)���<vW¦cv,uGz'x+�&x��Bv�z'thtns��,���'��th�'�
decimated generating sequences (BGA(t)) and (CQA(t)). Thus, one would not expect a strong 

correlation to be obtained efficiently, especially, if primitive feedback polynomials of 
high hamming weight are associated with the feedback functions of the registers B and C in�)��lhw�����{Bx+q�sC��s��s��$xhs�{ w fixed stages ��� .....,,,

−wiii AAA of the control register that are used 

to clock the generating registers are considered as part of the key [i.e. w and i � , i 	 , …, iw- 	  
are kept secret]. 
 
If the characteristic feedback functions of A, B and C are known then a cryptanalyst can 
exhaustively search for the initial state of A; each such state can be expanded to a prefix 
of the control sequence (At) using the characteristic feedback function of A. Suppose that 
one expands the sequence (At) until its pth 
�������������������������������! ����"� p = max(m, n).         
From this prefix, and from the knowledge of a corresponding p-long prefix of the output 
sequence of (Zt), one can derive the value of p non-consecutive bits of the generating 
sequences (Bt) and (Ct) using the following relation: 
 

BGA(t) ⊕ BGA # $ % 	 &   if At ')( ,  
Zt ⊕ Z$ % 	  =  

CQA(t) ⊕ CQA # $ % 	 &    if At '+* .  

 
 
Since the characteristic feedback functions of B and C are known, then the initial states 
of B and C can be revealed given these non-consecutive p-bits of (Bt) and (Ct) 
respectively by solving a system of linear equations, but first one has to reveal the value 
of w in order to determine the locations of these non consecutive p-bits in (Bt) and (Ct). 
Therefore, the attack takes approximately O(Φ , κm- n- ) steps where: 
 

Φ = 
. −

= −−
−

/
/ )!)

0
((

)!
0

(k

w wk

k
. 

 
If the number of fixed stages w is known, but the selected stages i 1 , i 2 , …, iw- 2  are kept 

secret, the  Φ = .
)!)

3
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−−
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For  κ ≈ 4�5 , m ≈ 4�5  and n ≈ 4�5 , the CCASG appears to be secure against all correlation 6�78796�:�;�<>=8?�79@"A�B�C�:ED�B�=8?�F8G�H�I�J�H9I�IEHKI�L�H�IEM�H�I�N�H�I�O�H�IEP�H�IEQ�H9IER�S�T  
 
There is also another attack that can be applied to the CCASG through the linear 

complexity, but this attack requires U8VXW�Y[Z]\ κ
 consecutive bits of the output sequence. 

 
For maximum security, the CCASG should be used with secret initial states, secret 
characteristic feedback functions, secret w fixed stages satisfying ^`_�abU8\ w W�c�db\ m – ceZgf
^`_�ahUK\ w W�c�d�\ n – ceZif�c , and m, n j @"D�6k7"D�@h79l�6�?)I!<m6k7"=K<mnKo�=8? jp^`_�ahU8V!d�YqZrfsc . Subject to these 



 

 

�
 

 

 

constraints, a CCASG with κ ≈ 4�5 , m ≈ 4�5  and n ≈ 4�5  appears to be secure against all 
presently known attacks.  

 
 �������	��
�����������

 
 
An interesting example of existing FSR-based construction for comparison with the 
CCASG is the Alternating Step Generator ��������� A�n � C�?�79l�D�@ F9R�S"T  
 
The ASG is a special case of the CCASG; it is actually a CCASG with � f! . Although 
the CCASG is slower than the ASG, its advantage is that it provides more security.           
For an ASG with κ ≈  l, m ≈  l and n ≈  l, if the characteristic feedback functions of A, B 
and C are known, then in order to reveal the initial states of the three registers the attack " D�?�79=KA�?�D�B = ?X< DE:k7"=8A�? M 796�;�DE<+6$#�#�@"A�%�=&" 6k7"D(' o*) UK\ ll + ) steps, whereas for the CCASG,           
the attack takes approximately O(Φ \ ll + ) steps. Moreover, for the ASG in order to produce 
a new sequence, one has to choose a new initial state and/or a new characteristic feedback 
function for at least one of the FSRs, whereas for the CCASG in order to produce a new 
sequence, it suffices to select another w stages. 

 
 ,.- �0/21���324$5	�0/

 
 
From the theoretical results established, it is concluded that a CCASG whose control FSR 
generates a de Bruijn sequence and generating FSRs generate m-sequences produces 
sequences with large periods, high linear complexities, good statistical properties, and 
they are secure against correlation attacks. Furthermore, using the same initial states and 
the same characteristic feedback functions, the CCASG produces a new sequence each 
time different w fixed stages are selected. These characteristics and properties enhance its 
use as a suitable crypto-generator for stream cipher applications.  
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Appendix 
 
Proof.  Since gcd(m, n) =  c  and ̂̀ _�ahUK\ w W�cEd  \ m

 – ceZ  f ^ _�ahUK\ w W�cEd  \ n
 – ceZ  f+c , then the period 

of (Zt) PZ f�\ κ U8\ m – ceZ U8\ n – ceZ . 
 
Let t ∈ 

�  �d  cEd  …, PZ – c��  be represented in the form t = u + (v W���� Z \ κ, u ∈
�  �d�c�d  …, K – c�� ,    

v ∈ 
�  �d  cEd  …, M – c�� , y ∈

�  Ed�c�d
	 d�� – c��  and let us first consider the frequency of patterns 
among subsequences Zt, Z ��� , …, Zt+ q- �  for a fixed u ∈

�  Ed�c�d
	 d�� – c�� .  
 
Let ρ = ρ(u) and θ = θ(u) be defined by:      
             ρ �>f  Ed θ �  = σ � ,         
  ρ � ���  = ρi ⊕ Au+i(σ � ���  ⊕ σi),         � I �  
  θ � ���  = θi ⊕ U"c ⊕ Au+i)(σ � ���  ⊕ σi), for i ∈

�  �d�cEd�	 d�� –\�� .  
 
Then σ can be written as: σi = ρi ⊕ θi,   (i ∈

�  �d�cEd�	 d�� – c��kZ    � L �  
The matching condition at time t is: 
Zt+ i = σi,    i ∈

�  �d�c�d
	 d�� – c�� .       � M �  
This is equivalent to: 
BGA(t+i) ⊕ CQA(t+ i) = ρi ⊕ θi,   i ∈

�  �d�c�d�	 d�� – c�� .     � N�6 �  
 
Using the following relations: 
GA U���W��hWsceZrf�� A(u + i) + A� (i)F(Ai) 
                                    i ∈

�  Ed�c�d
	�d�� –\�� .    � N�@ �  
QA U���W��hWsceZrf�� A(u + i) + (A � (i) ⊕ ceZ� pU Ai) 
 79l�D < C�"XA�n�D7C�C�6�79=KA�? � N�6 � 6�?�B�A�n�79l�D :�A�@9@�D�< #�A�?�B�=8? j D(C�C�6k7"=8A�?�n9A�@ U��bWsceZ  becomes: 
BGA !  ��� ��� " ⊕ BGA(t+ i) = ρ � ���  ⊕ ρi, 

           � O �  
CQA !  ��� ��� " ⊕ CQA(t+ i) = θ � ���  ⊕ θi,      

 
since, when A� U#� Zif�c , θ � ���  ⊕ θi = CQA !  ��� ��� " ⊕ CQA(t+ i) f  , and when A � U#� Zif  , ρ � ���  ⊕ ρi 

=  BGA !  ���$��� " ⊕ BGA(t+i) f� .  
 
 
 



 

 

���
 

 

 

This has two solutions:    
BGA(t+i) = ρi, CQA(t+i) = θi,        � OE6 �   

and       (i ∈
�  �d�c�d
	 d�� – c��kZ  

BGA(t+i) f)c ⊕ ρi, CQA(t+ i) f)c ⊕ θi,        � O7@ �  
 
The number of solutions to this equation is equal to the number of occurrences of the 
pattern σ in the sequence (Zt) (where ��f � W U�� W � � Z \ κ, v ∈

�  �d�c�d 	 d � – c�� ,                                 
y ∈

�  Ed�c d$	�d � – c�� ) i.e. to the quantity we want to determine. 
 ? = 7Kl�A�C�7�@�D�<m7K@�=K:k7"= ? j A�C�@�< D7' :�D�<�� D�:EA�?�<k=8B�D�@�79l�D�< A�'8C�7"=8A�? A�n�D7C�C�6�7"=8A�? � OE6 � T >�6�;�=8? j C�< D�A�nE7Kl�D
fact that � f�\ κ and that GA(K) = QA(K) =  \ κ- � ( \ w �
	�� , this equation becomes:  
 
BGA(u+ i) + vGA(K)  = ρi,            ����  
[The term yM is omitted since (Bt) has period M]  (i ∈ ������������� – ���!  
CQA(u+ i) + (v +  yM) QA(K) = θi.            #"��  
 
Let ϕ(u) = { i � ≤ i ≤ (q –$% &�(' A )+*-,/.�, �� ≠ GA(u + i)}  which is less than m              
since q ≤ min(χ, δ) where χ = 0 (m – �1 �23$ w , �54  and δ = 0 (n – �� !21$ w , �54 , then the 
assumptions that (Bt) is an m- 687:9�;<7�=<>�7�?+@�A<BDC�E�F<G�EH7:9�;�G!E#?�I�=J����HF�G:6K$ m–ϕ(u)–L  solutions if     
ρ ≠ � .  
 
Let φ(u) = { i � ≤ i ≤ (q –$3 M�ON A )+*P,Q.(, �� ≠ QA(u + i)} , then similarly (Ct) is an             
m-sequence and gcd(m, n) =  gcd(M, N SRT�U?+@�A<BDC(E�F<G�E�7:9�;�G!E#?�I�=��"���F<G�6V$ n–φ(u)– L  solutions 
if θ ≠ � . This remains true for ρ =  �  and/or θ =  �  if we accept an error at most             W ) �X23$ m–q , W ) �X23$ n–q). Note that ϕ(u) + φ(u) = (q – �� . 
 Y B�7!G�Z�BDC�[�E�F�7\6]G!@�7\Z�7�68;<BDE<G:B+6�IUF<I�B�^�6V_�I�Z�7�9�;<G�E�?+I�=��`:a<� .  
 b 7�=<>�7:[�E�F�7�E#I�E�G:BV=�;�@�a�7!Z\I�_\68I�B+;�E�?�I�=<6(E�IT7�9�;<G�E�?+I�=T�c��\?�6(d�$ ) $ m–ϕ(u)– L  ) $ n–φ(u)– L  eRf$ m+n–q] , 
which is independent of u. This finally implies that the frequency of the pattern σ is given 
by: d ) $ m+n–q !2 gThHi , W ) �X23$ m–q , W ) �X23$ n–q).  
 
Therefore, in a full period of (Zt) any pattern of length q ≤ min(χ, δ) occurs with a 
probability ) �521$ q , W ) �X23$ m–q , W ) �521$ n–q).                
 


