
On Key-collisions in (EC)DSA Schemes
(CRYPTO 2002 - Rump Session Note)

Tomáš Rosa, tomas.rosa@i.cz

1 ICZ, Prague, Czech Republic
2 Dept. of Computer Science and Eng., FEE, Czech Technical University in Prague

We start by reviewing one of those practical definitions of a non-repudiation service: The third independent
party can be convinced that a particular event did (or did not) occur ([3]). Next we continue by the definition of
what we mean by the term k-collision: Let (m, S) be a message and its signature. The pair of public keys (PubA,
PubB), PubA ≠ PubB, is said to be a key-collision (k-collision) if there is (m, S), such that S is a valid signature of
m under both public keys PubA and PubB. Such a signature S we refer to as a k-colliding signature.

Now we briefly show some scenarios, under which an ability to find a particular k-collision may lead to
attacks on a non-repudiation service. In the first scenario we assume that there are two companies (represented as
users A, B), which want to enter a tender. But actually only one of them will want to take this contract later on.
We assume here it to be illegal for a selected company to pass its contract to another one, once this selected
company realizes that it actually doesn’t want that work under given (unpredictable) conditions. That is the exact
case, where k-collisions may help. Our two companies may agree to find a k-collision for their particular
submission message. Later on, when the selection is made, actually only one of them will apply its signature. It
is also reasonable to assume that during a tender evaluation there will be now identities of submitting companies
available, so it may be possible to do this change even without any suspicion. Comparing to classical attacks on
non-repudiation, this attack actually leads to the claim: “It has been someone else, who has signed this
message…” instead of the claim: “I have not signed this message, I have signed that one…”

Another attack scenario may arise if it is possible to compute the second public key PubB in the k-collision
without any cooperation with the owner of the public key PubA. We call such a k-collision as a non-cooperatively
computable. Let us assume that the owner of the public key PubA had signed some message in a past and that
she/he had also timestamped it. This is a possible scenario, when the user A wants to prove its authorship of
her/his document later on. Let us assume that the time stamp does not cover the value of PubA and that there was
such a signature scheme used, which allows k-collisions to be non-cooperatively computed. In this case an
attacker (as the user B) may be able to compute its own public key PubB, which forms a k-collision with PubA on
this given message and its signature. In this way an attacker in fact steals A’s signature and perhaps also her/his
authorship. The claim, which this attack leads to, is: “It has been me, who has signed this message, not
her/him…”

In the following text we are going to show that in DSA scheme ([1]) it is trivially possible to find a k-
collision for an arbitrary chosen (m, S) and that this k-collision is non-cooperatively computable.

Definition: DSA instance. The DSA instance consists of the public parameters (p, q, g), the public key y and the
private key x.

Definition: Correct DSA instance. The DSA instance is said to be correct here if:

p, q are both primes,
21023 < p < 21024,
2159 < q < 2160, q | (p-1),
gq mod p = 1,
gx mod p = y.

Let us have (m, S), where S, S = (r, s), is a valid DSA signature of m with respect to the public key PubA, PubA =
yA, together with the public parameters (pA, qA, gA). What we want to do is to search for the second public key
PubB, PubB = yB, together with the public parameters (pB, qB, gB) and the private key xB, such that:

• the DSA instance (pB, qB, gB, yB, xB) is correct,
• the public keys yA and yB form the k-collision on the k-colliding signature S and the message m.

Algorithm: Computing a DSA k-collision. Let us denote h = SHA-1(m). We start by setting pB = pA = p,
qB = qA = q. Then we continue as follows:

i) Compute: α = gA
whyA

wr mod p, where w*s ≡ 1 (mod q)
• Note that α = gA

kA mod p, where kA is the unknown DSA ephemeral message key for (m, S).
Also note that α mod q = r.

ii) Choose an integer kB, 1 < kB < q, and compute z as z*kB ≡ 1 (mod q)
• Note that the attacker should keep the values of kB and z secret, eventually she/he may want

to discard them when the whole algorithm is done.
iii) Set gB = αz mod p

• Note that gB
kB ≡ α (mod p), (gB

kB mod p) mod q = r and that gB
q ≡ 1 (mod p).

• The kB becomes the DSA ephemeral message key for the user B.
• We may also test whether gB =? gA. In such an unlikely case it holds that kB ≡ kA (mod q), so the

user B knows A’s message key kA and the value of the private key xA can be computed easily.
iv) Finally we compute:

• xB = t(kBs – h) mod q, where r*t ≡ 1 (mod q)
• yB = gB

xB mod p
• Note that now s = (h + rxB)z mod q and r = (gB

kB mod p) mod q.
• Also note that xB = ht(β -1 – 1) + β -1xA mod q and yB = gA

ht(1-β)yA mod p,
where β ≡ kAz (mod q), β*β -1 ≡ 1 (mod q).

�

It can be easily shown that the DSA instance (pB, qB, gB, yB, xB) is correct and that the public keys (yA, yB)
form a k-collision on the k-colliding signature S (with the high probability). Note that the user A cannot
determine xB, while the user B cannot determine xA (both hold under the assumption that DSA is unbreakable).
For a sketch of proofs see notes commenting the algorithm above. Also there are no obvious marks of an attack:
It is allowed to share public parameters among many (EC)DSA instances (sometimes it is even recommended)
and except this partial sharing, there is nothing suspicious about the DSA instance of the user B. Because the
algorithm described above uses those algebraic properties, which are common for both DSA and ECDSA ([2]), it
can be trivially extended on ECDSA too. Finally we note that the algorithm uses the same operations as those
ones which are used during (EC)DSA signing/verification. Therefore this attack is feasible whenever a general
(EC)DSA usage is feasible.

Summary
The notion of k-collisions was introduced and possible attack scenarios based on this notion were discussed
briefly. Then an algorithm for a non-cooperatively computable k-collision finding was presented for (EC)DSA.
From here follows that (EC)DSA suffers from attacks based on these k-collisions. The main problem behind that
is the lack of restrictions on the generation of the subgroup generator g. Due to that it is possible to make a so
called partial inversion of the DSA instance generation process. If there were a mechanism for a certification of
g, similar to those ones used for values p, q ([1]), then this attack would not be possible. In addition to the article
[5] this is another motivation to change the standard [1] in that part. The same applies also for ECDSA
analogically.

As a temporary countermeasure we may suggest to include detailed public key information into the data to
be signed. For instance in PKCS formats ([4]) this option already exists (c.f. authenticatedAttributes
field in [4, PKCS#7]), but it has been used in a practice very seldom. However we note that it can still be broken
by a 2nd order k-collision attack, which can be illustrated by the following properties: different message, different
public keys and the same signature. These kinds of k-collisions are also trivially non-cooperatively computable
in (EC)DSA schemes. Therefore this countermeasure must be done with strong respect to a particular PKI
environment, which the (EC)DSA scheme will be applied in.

References
[1] FIPS PUB 186-2: Digital Signature Standard (DSS), National Institute of Standards and Technology,

January 27, 2000, http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf, update: October 5, 2001.

[2] Johnson, D., Menezes, A. and Vanstone, S.: The Elliptic Curve Digital Signature Algorithm (ECDSA),
International Journal of Information Security, Vol 1, Issue 1, pp. 36-63, Springer-Verlag, 2001.

[3] Landwehr, C.-E.: Computer Security, International Journal of Information Security, Vol 1, Issue 1, pp. 3-
13, Springer-Verlag, 2001.

[4] Public-Key Cryptography Standards (PKCS), RSA Security, available at
http://www.rsasecurity.com/rsalabs/pkcs/index.html.

[5] Vaudenay, S.: Hidden Collisions on DSS, in Proc. of CRYPTO ’96, pp. 83-88, Springer-Verlag, 1996.

