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Abstract 
Cryptographic mechanisms should be cryptanalysis-tolerant, i.e. , i.e. secure as long as one 

of multiple cryptographic assumptions (functions) resist cryptanalysis efforts. We present 
provably cryptanalysis-tolerant compositions of several cryptographic mechanisms. In 

particular, we present cryptanalysis-tolerant design for keyless hash functions with strong 
confidentiality, randomness-extraction and collision-resistance properties. The compositions 

or the hash functions can be used for cryptanalysis-tolerant commitment scheme. Our 
compositions are efficient and practical; they may be used with existing cryptographic 

functions or to design new functions. Our definitions of properties of keyless hash functions 
may be of independent interest.  

Keywords: cryptographic functions; hash functions; one-way functions; collision-resistance; 
collision-resistant hash functions; commitment schemes; pseudo-randomness; randomness 
extraction; extractors; t-resilient; exposure-resilient functions, min-entropy; MD5; SHA; 
RIPE-MD; TLS.  

1. Introduction 
Most cryptographic functions do not have an unconditional proof of security. The classical 
method to establish security is by cryptanalysis, i.e. accumulated evidence of failure of 
experts to find weaknesses in the function. However, cryptanalysis is an expensive, time-
consuming and fallible process. In particular, since a seemingly-minor change in a 
cryptographic function may allow an attack which was previously impossible, cryptanalysis 
allows only validation of specific functions and development of engineering principles, and 
does not provide a solid theory for designing cryptographic functions. Indeed, it is impossible 
to predict the rate or impact of future cryptanalysis efforts; a mechanism which was attacked 
unsuccessfully for years may abruptly be broken by a new attack1. Hence, it is desirable to 
design systems to be cryptanalysis tolerant, namely so the system remains secure following 
successful cryptanalysis of one or few cryptographic mechanisms. Cryptanalysis tolerance 
does not imply unconditional-security, since security still depends on the resistance of 
cryptographic mechanisms to cryptanalysis. However, cryptanalysis tolerance would 
hopefully provide sufficient time to replace the broken cryptographic functions.   
One way to ensure cryptanalysis-tolerance is to use provable constructions of cryptographic 
mechanisms from few `basic` cryptographic mechanisms, which have simple cryptanalysis-
tolerant designs. For example, many cryptographic mechanisms can be constructed from one-
way functions; and trivially it is sufficient that one of {g , g� } is a one-way function, to 
ensure their composition f(x,x�)=g(x)||g�(x�) is also a one-way function. Provably-secure 
constructions based on one-way functions exist for many cryptographic mechanisms, e.g. 
pseudo-random generators [Go01,HILL99] and signature schemes [NY89]. Therefore, by 
using as the one-way function a cryptanalysis-tolerant composition of multiple functions 
assumed to be one-way, the mechanisms retain the proven security properties even if one of 
the functions is not one-way. However, such constructions are often inefficient, and often also 
involve unacceptable degradation in security parameters (e.g., require absurd key and/or 
block sizes); see quantitative / concrete security analysis [HL92, BKR94].  
In this paper we focus on an alternative, direct approach for achieving (proven) cryptanalysis 
tolerance. Consider a design of a cryptographic function f satisfying some goal П, using m>1 
cryptographic functions f1,�fm. The design is cryptanalysis-tolerant for П if when m-1 of the 
                                                 
1 In practice, we try to use conservative estimates of progress in cryptanalysis, based on past progress 
and other factors.  
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functions satisfy П, then f also satisfies П. The design preserves П if when all m functions 
satisfy П, then f also satisfies П. Otherwise, the design does not preserve П. Cryptanalysis-
tolerance may be applied in the internal design of cryptographic functions, or by composing 
several functions.  
We are not aware of cryptanalysis-tolerance identified explicitly as a general goal (or given a 
term) in previous works. However, there are several known, simple compositions, widely 
used in applied cryptography for cryptanalysis-tolerance. We present most of these designs, 
and their impact for several important cryptographic mechanisms, in Table 1. In particular, 
the parallel composition, g(x)||g�(x), using the same input x to both functions, ensures 
cryptanalysis-tolerance for several integrity properties, such as (several variants of) collision-
resistant hashing as well as Message Authentication Codes (MAC) and digital signatures. The 
parallel composition is used in practical designs and standards, e.g. in the TLS protocol 
[RFC2246] and the XML-DSIG specifications [add citation]. The TLS standard contains 
additional cryptanalysis-tolerant compositions, to ensure security as long as at least one of 
two standard hash functions (MD5 and SHA-1) satisfies certain security properties. This 
improves on the (older) SSL protocol, which also combined MD5 and SHA-1, but clearly 
failed to ensure cryptanalysis-tolerance; see details of both TLS and SSL in [R00].  
Another simple and well known composition provides cryptanalysis-tolerance for several 
confidentiality properties (although not for one-way functions). This is the cascade or 
sequential composition, in which a number of cryptographic functions are applied 
sequentially. In particular, an ancient cryptographic technique is cascaded encryption, where 
a message m is encrypted using E1 and E2 by applying them sequentially, i.e. 
E[k1||k2](m)=E1[k1](E[k2](m)). The related problem of cascade of ciphers (pseudo-random 
permutations) was analyzed by [ABCV98, EG85, MM93]. Cascading is used in the internal 
design of most practical ciphers as well as in sensitive applications.  
However, there are many important cryptographic mechanisms for which there is no known 
cryptanalysis-tolerant design. In particular, this holds for several important cryptographic 
primitives that combine confidentiality and integrity properties; these primitives are often 
critical for important applications and protocols. Some examples include: 

! General-purpose, standard cryptographic hash functions such as MD5 [R92], SHA-1 
[FIP180] and RIPEMD-160 [PBD97] (assumed to be, among other things, collision 
resistant and one-way). 

! Rigor definitions of categories or properties of hash functions combining 
confidentiality and integrity, e.g. Perfectly One Way (POW) hashing2 [C97, CMR98].  

! Commitment schemes see e.g. [DPP94, DPP98, HM96].  
Cryptanalysis-tolerance is especially important for hash functions and commitment schemes, 
which are widely used in practice, but almost always using keyless designs, while known 
provably-secure constructions are keyed. Furthermore, we believe less cryptanalysis efforts 
were directed at hashing compared to ciphers and cryptosystems.  
We present cryptanalysis-tolerant compositions for keyed and keyless cryptographic hash 
functions, satisfying multiple security properties, including confidentiality, collision-
resistance and randomness extraction. These are the first provably-secure cryptanalysis-
tolerant compositions of general cryptographic functions, beyond the simple, classical 
compositions in Table 1. Few additional cryptographic constructions were proven secure 
based on validity of either of two (specific) `hardness` assumptions, see e.g. [Sh00, O92].   
Organization. In Section 2 we briefly recap definitions of standard cryptographic concepts 
and primitives. In Section 3 we present simple compositions of standard cryptographic 
functions, such as cascade and parallel compositions. In Section 4 we present the E-
composition, a combination of cascade and parallel compositions, that ensures cryptanalysis-
tolerance for multiple properties of hash functions, including collision-resistance and 
confidentiality properties. In Section 5 we present new definitions of properties of keyless 
cryptographic functions; these definitions are based on assuming minimal amount m of 
                                                 
2 Perfectly one-way hashing was referred to as Oracle hashing in [C97], and renamed as POW in 
[CMR98].  
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entropy to the input to the function (m-min-entropy). In Section 6 we present the EZ-
composition, extending the E-composition to provide cryptanalysis-tolerance for m-min-
entropy cryptographic hash functions. We conclude with open questions in Section 7.  

2. Standard Definitions 
We now present few conventions used in this paper, as well as standard definitions of 
cryptographic mechanisms; these definitions are included only for completeness and when 
significantly used in this paper. Definitions which are new to this paper are collected in the 
last subsection of this section.  
For simplicity, in the current version of the paper we adopt the asymptotic, polynomial-time 
definitions; namely, we assume that the adversary has the probabilistic polynomial time (PPT) 
computational abilities.  We believe that our results translate well to concrete definitions and 
analysis as in [BR97, BDJR97], and plan to extend them accordingly in the final version of 
this paper. We adopted several definitions and notations from [CMR98].  
Notations.  
We usually use n for the length of the input and k for the length of the output. For y∈ {0,1}n, 
let y[i] denote the ith bit of y, and y[i�j] denote the substring of y consisting of the ith to the jth 
bit. Therefore, y=y[1�n].  
Let p be a permutation over {1�n}; define p(y)∈ {0,1}n as p(y)[i]=y[p(i)].  
We use capital letters to denote random variables, sets and probability distributions. Let 
PR{X=x} denote the probability that random variable X will assume the value x. Let x∈ RX 
denote the choice of x according to distribution X, or uniformly from set X. Let Un denote the 
uniform distribution over {0,1}n. 
For a given random variable X over domain D, denote by ||X|| the infinity norm of X, which is 
the maximal probability for any element d∈ D; namely ||X||=max{Pr(X=d) : d∈ D}. The min-
entropy of X, denoted H∞(X), is H∞(X)=�log||X||. Namely, if the min-entropy of X is k=H∞(X), 
then the probability of any element in D is bounded by 2-k.  

2.1. Basic Cryptographic Definitions  
A function f(n) is negligible (up to a polynomial) if for every polynomial p there exists an 
integer N s.t. for all n>N holds |f(n)|<1/p(n). We denote f(n)≈p0. Two functions f, g for which 
[f(n)-g(n)]≈p0 are said to have polynomially-negligible difference, and we write f≈pg.  
A probability ensemble is a sequence {Xn} of random variables Xn over {0,1}n. Two 
probability ensembles {Xn}, {Yn} are computationally indistinguishable if for all 
probabilistic polynomial time predicates A holds Pr{A(Xn)}≈p Pr{A(Yn)}; we denote 
{Xn}≈p{Yn}.  
Most of our results concern cryptographic functions which use at least one key, often a public 
key known (also) to the adversary. In this work, we focus on functions computable by 
uniform PPT algorithms, whose keys and inputs chosen as arbitrary random bit strings; see 
[G01] for more general definitions. Since we use asymptotic, poly-time definitions, we 
consider arbitrary input length n and corresponding key length K(n) and output length λ(n). 
We say that f  is a keyed poly-time computable function with key length K(n) and output 
length λ(n), or simply that f is a keyed function, if for every x∈ {0,1}n and every k∈ {0,1}K(n), 
there is a PPT algorithm that computes fk(x)∈ {0,1} λ(n). If λ(n)<n, then f  is a keyed hash 
function, and if λ(n)=n then f  is keyed length-preserving function. If f is a keyed length-
preserving function and fk is a permutation for all n and all k∈ {0,1}K(n), then f  is a keyed 
permutation.. 

2.2. Confidentiality and Randomness properties  
Let f be a keyed function. Assume that for every PPT predicate Ag  with oracle access to a 
function g:{0,1}n"{0,1}λ(n) holds )}1(A{Pr)}1(A{Pr ng
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the set of all functions from {0,1}n to {0,1}λ(n). Then f is a pseudo-random function (PRF). If 
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fk is a regular function for all k, and G(n) is the set of all regular functions from {0,1}n to 
{0,1}λ(n), then f is a pseudo-random regular function (PRRF).  Similarly if λ(n)=n and G(n) 
is the set of all permutations over {0,1}n , then f  is a pseudo-random permutation (PRP). 
We say that f  is a computationally-secure extractor for length n with min-entropy l, if for 
k∈ RUn and a random variable X with min-entropy at least l, the result of fk(X)≈pU λ(n) . An 
extractor is called strong if also <k,fk(X)>≈p <Uk(n) , U λ(n)}. Most of the work on extractors 
require the output distribution to be statistically-close to uniform (rather than 
computationally-indistinguishable as we do); our results apply also to the (stronger) 
statistically-close definition. We preferred to use the weaker notion since it could be assumed 
(and validated by cryptanalysis) for `practical` hash functions.  
ADD: definitions of one-way functions (OWF), one-way regular functions (OWRF), one-way 
permutations (OWP), and encryption schemes see literature, e.g. [BJDR97].  
ERF (define and add also chosen??) 
�Random oracle� 

2.3. Collision-resistance and Integrity properties 
We say that f  is (any) collision resistant (ACR) if for any PPT algorithm A, the probability 
of A finding a collision is negligible, i.e. Pr{A(k)=(x;x�):x≠x�, fk(x)=fk(x�)}≈p0, where the 
probability is taken over the keys k∈ Uk(n). We say that f  is target collision resistant (TCR) if 
for any PPT algorithm A and string x, the probability of A finding a collision x� to x is 
negligible, i.e. Pr{A(k)=x�:x≠x�, fk(x)=fk(x�)}≈p0, where the probability is taken over the keys 
k∈ UK(n).  If f  is also a keyed hash function, then we say that f  is Any (Target) collision 
resistant hash function, or simply that f  is Any-CRHF (respectively, Target-CRHF).  
A keyless function h is weakly collision resistant hash function (weakly CRHF) if for 
sufficiently long inputs, |h(x)|<|x|, and for any PPT algorithm A, the probability of A finding 
a collision to a randomly-selected input x is negligible, i.e. Pr{A(x)=x�:x≠x�, h(x)=h(x�)}≈p0, 
where the probability is taken over the input x∈ R Un . 
Add definitions for: MAC, Signature 

2.4. Commitment: Requiring Confidentiality and Collision resistance 
Several cryptographic mechanisms combine confidentiality properties with collision-
resistance properties. Possibly the most widely used primitive with both properties is a 
commitment scheme; we focus on non-interactive commitment schemes. Commitment 
schemes receive an input message x, and produce two outputs: a commitment c and a 
decommitment d, such that c and d together reveal x. The confidentiality property is that c by 
itself does not expose m. A collision is a commitment c together with two pairs: <x,d> and 
<x�,d�>,  such that <c,d> reveals x while <c,d�> reveals x�≠x.  
Like collision-resistant hash functions, rigor studies focus on keyed commitment schemes, to 
avoid adversaries which have `wired in` collisions. A non-interactive commitment scheme 
consists of three keyed functions: commit, decommit, and reveal, all of which with key length 
K(n) and with two input parameters (in addition to the key). The inputs to the commit and 
decommit functions are a message x of length n, and a random string r∈ RUR(n), and it holds 
that: x=revealk(commitk(x,r), decommitk(x,r)).  
A commitment scheme is hiding if commitk(x,r) exposes no information about x, i.e. for any 
two messages x, x� holds: <k,commitk(x,r)>≈p <k,commitk(x�,)>, for k∈ RUk(n). and r∈ RUR(n). A 
commitment scheme is binding if for any PPT algorithm A, the probability of A finding a 
collision is negligible, i.e. Pr{A(k)=(c;<x,d>;<x�,d�>):x≠x�, x=revealk(c,d), x�=reveal-
k(c,d�)}≈p0, for k∈ RUk(n). and r∈ RUR(n). A commitment scheme is secure if it is hiding and 
binding.  

3. Basic Compositions 
In this section we explore several few basic, `classical` cryptanalysis-tolerant compositions of 
two cryptographic mechanisms. In this version of the paper we define the compositions only 
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for cryptographic properties of two keyless functions f,g or two keyed functions fk , gk. When 
composing keyed algorithms, we use different, independently-chosen keys for the two 
algorithms. Most compositions have natural extensions for more complex mechanisms, such 
as. 
We describe and define each composition in the following subsections. In Table 1, we list the 
results of using each of the compositions for the `standard` cryptographic properties of keyed 
and keyless functions presented in the previous section. The table also contains results of 
corresponding compositions for encryption, signature and commitment schemes, each being a 
set of related functions (e.g. encryption and decryption) rather than a single function  
The following lemma states the properties summarized in the table.   
Lemma 1 (Basic compositions of standard primitives): Let T[p,c] denote the entry of 
Table 1 at row with property p and column with composition c. Then:  

 If T[p,c]=Tolerant then composition c is cryptanalysis-tolerant for property p; 
namely the composition c[f,g] has the property p, if either f or g has the 
property p.  

 If T[p,c]=Ok if the composition c[f,g] preserves property p; namely it does not 
ensure cryptanalysis-tolerance, but on the other hand, if both f and g has the 
property p, then their composition c[f,g] will also have the property p.  

 If T[p,c]=X if there is a counterexample where f and g have the property p, but 
their composition c[f,g] does not have property p.  

 Otherwise, i.e. T[p,c]=? if we do not know whether property p is preserved 
under composition c.  

3.1. Cascade Composition 
The most basic cryptanalysis-tolerant composition of cryptographic functions is by cascade. 
Indeed it is very natural, even without precise analysis, to believe that the cascade of two 
cryptosystems E,E�  is at least as secure as the more secure of the two, and it seems 
reasonable to hope that it is even more secure than both. Indeed, cascading of cryptosystems 
has been a common practice in cryptography for hundreds of years.  
The cascade of keyless algorithms f,g is denoted f○g and defined as f○g(x)=f(g(x)). The 
cascade of keyed algorithms fk , gk is denoted fk○gk� and defined as fk○gk�(x)= fk(gk�(x)).  

3.2. Parallel (Same-Input Multiple-Outputs) Composition 
We now consider parallel compositions of cryptographic functions. We begin with a very 
useful composition: parallel application of two cryptographic functions to the same input, 
where the output is the concatenation of the outputs of both functions. We call this the Same-
Input, Multiple-Outputs (SIMO) Parallel Composition, or simply the parallel composition. 
The parallel composition of f,g is denoted as f||g, and defined as f||g(x)=f(x)||g(x). The 
parallel composition of two keyed functions fk , gk is denoted fk||gk� or simply as f||g, and 
defined as fk||gk�(x)= fk(x)||gk�(x).  
The parallel composition provides cryptanalysis-tolerance for most `integrity cryptographic 
primitives` such as collision-resistant hash functions, MAC and signature schemes. The 
parallel composition preserves most confidentiality primitives, such as OWF, PRF, and 
encryption schemes.   

3.3. Same-Input XOR-Output (XOR) Composition 
The output of the parallel composition is the concatenation of the outputs of the two 
functions; therefore if one of the two functions does not has weak privacy or randomness 
properties, the composition will also be weak in the corresponding property. For some 
applications, we do not need both outputs, and we can combine them to protect the secrecy of 
the input and improve the randomness of the output. A simple and natural way to combine the 
outputs is using XOR; this is the Same-Input, XOR-Output Parallel Composition, or simply 
the XOR composition.  We assume that the functions involved have the same (fixed) output 
length, to allow bitwise XOR of the outputs.  
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The XOR composition of f,g is denoted f⊕ g and defined as f⊕ g(x)=f(x)⊕ g(x), where ⊕  
denotes bit-wise exclusive OR. The XOR composition of fk , gk is denoted fk⊕ gk�  (or simply 
by f⊕ g), and defined as fk⊕ gk�(x)= fk(x)⊕ gk�(x).  
The XOR composition is applied in the TLS standard, to combine two pseudo-random 
functions (one based on MD5 and the other based on SHA-1). This provides cryptanalysis-
tolerance.  
A variant of the XOR composition is used in the internal design of the RIPE-MD 
cryptographic hash function. The compression function in RIPE-MD, RIPEmd, is the 
composition of two compression functions, cL and cR, with output of 160 bits each, as follows: 
RIPEmd(x)=cL+x[1�160]+cR . The + operator views each of its 160-bit operands as five 
words of 32 bits each; its result is also five words of 32 bits, where each word is the result of 
addition modulo 232 of the corresponding words from the two operands. Except for using this 
+ operand rather than XOR, this is the same as the XOR composition (for the two keyless 
compression functions cL and cR).  

So far we did not find security properties for keyless functions, where the XOR composition 
(or the variant in RIPE-MD) provides cryptanalysis-tolerance. For example, if f=g (for XOR) 
or f is chosen such that f(x)+g(x)=0  (for RIPE-MD), then finding (second) pre-images 
becomes trivial.  

Furthermore, the XOR composition is bad also for (keyed) collision-resistant hash functions. 
For example, let {fk:{0,1}*"{0,1}L} be an ACR hash function family. 

Define


 ∈=

=
Otherwise)x(f1

}1,0{zwhere,z0xforz0
)x(g

k

L*

k  ; clearly gk is also ACR but the 

XOR composition of two instances of gk (with independently chosen keys) is obviously not 
ACR (or even TCR).  
Practitioners may protest that this example is artificial, since in practice f and g would be 
different and `independent` (the functions used in RIPE-MD are indeed different, although 
they share many details to simplify implementation). Indeed, if we restrict ourselves to 
analysis in the `random oracle model`, we find that the XOR composition does provide 
cryptanalysis-tolerance. Of course, this is not provable security, which should be preferred 
when feasible.  
Claim: Assume protocol Π is secure when function h is implemented by a random oracle. 
Then Π is secure also when h=f⊕ g, where either f or g is implemented by a random oracle.  

3.4. Multiple-Inputs XOR-Output (MIXOR) Composition 
Assume f provides pseudo-random output given inputs from a certain distribution; the XOR 
composition of f may yet be easily distinguishable from random. For example, by composing 
f with itself (i.e. with g=f ), we get f(x)⊕ f(x)=0. One way to fix this is by computing each of 
the functions f, g on different parts of the input. We call this the Multiple-Inputs XOR-Output 
(MIXOR) Parallel Composition, or simply the MIXOR composition.  We assume both 
functions have the same (fixed) input length n and output length l. The composition has 
double input length 2n, and the same output length l.  
The MIXOR composition of f,g is denoted ⊕ [f||g] and defined as 
⊕ [f||g](x)=f(x[1�n])⊕ g(x[n+1�2n]), where ⊕  denotes bit-wise exclusive OR. The XOR 
composition of fk , gk is denoted ⊕ [fk||gk�] and defined as ⊕ [fk||gk�](x)= fk(x[1�n])⊕ g-
k�(x[n+1�2n]).  

3.5. Multiple-Inputs Multiple-Outputs (MIMO) Composition 
The parallel composition applied both cryptographic functions to the same input. We can 
simplify it further and apply each of the two functions to a different part of the input string; 
this is the Multiple-Inputs, Multiple-Outputs (SIMO) Parallel Composition, or simply the 
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MIMO composition. We focus on MIMO compositions of keyless functions with fixed input 
length n and output length l. The composition has double input and output lengths.  
The MIMO composition of f,g:{0,1}n"{0,1}l maps x∈ {0,1}2n to f(x[1�n])||g(x[n+1�2n])∈  
{0,1}2l . The MIMO composition of fk , gk� is fk(x[1�n])||gk�(x[n+1�2n]).  

4. The E Composition: Cryptanalysis-Tolerant 
Confidentiality and Integrity 

In the previous sections we saw simple compositions (cascade, parallel) ensuring 
cryptanalysis-tolerance for integrity (collision resistance), randomness extraction or 
confidentiality properties. However, many applications require more than one of these 
properties. In particular, multiple properties are required to develop standard, `multipurpose` 
hash functions. In particular, none of the simple compositions seems to work well for 
functions with both confidentiality and collision resistance properties. In fact, we did not (yet) 
find a composition ensuring both confidentiality and collision-resistance properties using only 
two candidate/component functions. However, we found a composition that provides 
cryptanalysis-tolerance for several properties, by composing three candidate functions {h0 ,h1 
,h2} (two of which must have each desired property). This is the E-composition, which is 
illustrated in Figure 1, for composing keyed as well as keyless functions, and defined as 
follows:  

 For keyless functions, the E-composition is:  
E[h1,h2,h3](x)= h0(h1(x))||h1(h2(x))||h2(h0(x)). 

 For keyed functions: similar, except that E also has a key,  k=k[i,j] for 
i=0,1,2 and j=1,2, which is split to each of the functions. Namely, the E-
composition is:  
E[h1,h2,h3]k(x)=h0,k[0,2](h1,k[1,1](x))||h1,k[1,2](h2,k[2,1](x))||h2,k[2,2](h0,k[0,1](x)).  

h1 h0

h0

h1

h2

x ||h2

k[1,1]

h1 h0

h0

h1

h2

x ||h2

k[0,2]

k[2,1] k[1,2]

k[0,1] k[2.2]

 
Figure 1: The E-Composition for keyed (left) and keyless (right) functions 

The E-composition combines the cascade and parallel compositions: in fact, it is the parallel 
composition of three cascades, each of them of one of the three possible pairs of two of the 
three candidate functions. It is based on the following observation (which can be generalized 
for other combinations and/or compositions):  
Lemma 2: Let p be a property of keyed or keyless functions, which is preserved under both 
cascade and parallel composition, and cryptanalysis-tolerant under either cascade or parallel 
composition. Then p is cryptanalysis-tolerant under the E-composition.  
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The only property of keyless functions which satisfies the conditions in Lemma 2 is the One-
Way Regular Function (OWRF) property. This, by itself, is not very useful, as we could 
simply use the cascade composition to achieve cryptanalysis-tolerant composition of OWRFs.  
In the next section we present alternative confidentiality, collision-resistance and randomness 
properties for keyless functions; and in Section  6 we present the EZ-composition, providing 
cryptanalysis-tolerance for these properties.  
We get some more results by applying Lemma 2 to keyed functions. It follows immediately 
from Table 1 and Lemma 1 that:  
Lemma 3: The E-composition ensures cryptanalysis-tolerance for the PRRF, Any CRHF, 
Target CRHF, and MAC properties of keyed functions.  
Most of these are integrity properties, which are tolerant also under the simpler parallel 
composition; PRRF is the only exception (a confidentiality property, tolerant under cascade). 
Therefore, we can use the E-composition to ensure cryptanalysis-tolerance to functions which 
are both collision-resistant or MAC, and PRRF.  

4.1. E-composition of commitment schemes 
A more interesting application of the E-composition is for commitment schemes. We define 
the E-composition of non-interactive commitment schemes. Such schemes consist of three 
keyed functions: commit, decommit, and reveal. Both commit and decommit are probabilistic, 
i.e. have random input in addition to the message. The reveal function is deterministic, but it 
also has two input parameters – the results of the commit and the decommit functions: 
x=revealk(commitk(x,r),decommitk(x,r)). The multiple functions in the scheme and the 
multiple parameters make the definition more hairy, but the principle is the same as of the E-
composition of keyed functions as in Figure 1.  
The E-composition for three commitment schemes Ci=<ci ,di ,ri>, for i=0,1,2, is the triplet 
E[C1, C2, C3]=<C,D,R> defined as follows (see illustration of C,D in Figure 2). Each of the 
functions <C,D,R> has a key k, which consists of six sub-keys: k=k[i,j] for i=0,1,2 and 
j=1,2. Similarly, functions C and D have a random input string r, which also consists of six 
sub-strings: r=r[i,j] for i=0,1,2 and j=1,2. Each of the functions is defined as follows:   

 Ck(x,r)= c0,k[0,2](c1,k[1,1](x,r[1,1]),r[0,2]) ||   c1,k[1,2](c2,k[2,1](x,r[2,1]),r[1,2]) || 
c2,k[2,2](c0,k[0,1](x,r[0,1]),r[2,2]).  

 Dk(x,r)= d0,k[0,2](c1,k[1,1](x,r[1,1]),r[0,2]) ||  d1,k[1,1](x,r[1,1]) || 
d1,k[1,2](c2,k[2,1](x,r[2,1]),r[1,2]) || d2,k[2,1](x,r[2,1]) || 
d2,k[2,2](c0,k[0,1](x,r[0,1]),r[2,2]) || d0,k[0,1](x,r[0,1]) 

 Let the input to Rk be c=<c1,c2,c0> and d=<d1,1,d2,1,d0,1,d1,2,d2,2,d0,2>.  For 
i=0,1,2, let j=i-1 mod 3. Then xi=ri,k[i,1](rj,k[j,2](cj,2,dj,2),di,1). If x0=x1=x2, then 
Rk(c,d)=x0 ; otherwise, Rk(c,d) returns error indication.  
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Figure 2: The E-Composition for non-interactive, keyed commitment schemes 
It follows from Table 1 and Lemma 1 that:  
Lemma 4: The E-composition ensures cryptanalysis-tolerance for both binding and hiding 
properties of non-interactive commitment schemes.  
Therefore, the E-composition provides a cryptanalysis-tolerant design for secure (binding and 
hiding) non-interactive, keyed commitment schemes.  

5. Min-Entropy-Properties for Keyless Functions 
All standard hash functions (SHA, MD5, RIPEMD, etc.) are keyless, however most of the 
rigor work so far focused on keyed functions (or ensembles). We believe it is important to 
investigate formally keyless cryptographic functions. As a first step, we now define strong 
properties for keyless hash functions. Additional work will be required to refine these 
definitions and verify whether they are meaningful and feasible. We focused on properties 
which compose well, to ensure cryptanalysis-tolerance.  

5.1. Definitions of Min-Entropy-Based Properties 
We begin with the randomness property. Exposure-resilient functions already provide a 
strong randomness property for keyless functions. However, we did not find any 
cryptanalysis-tolerant composition for exposure-resilient functions; the existence of such 
compositions remains an open question.   
We define a different randomness property for keyless functions: min-entropy preserving. 
Intuitively, we require that if the input to the function has at least some minimal entropy, then 
the output of the function will also have this entropy. By itself, this property is trivial to 
achieve, e.g. by using h(x)=x. However when combined with other properties, the min-
entropy preserving property becomes meaningful.  
An efficiently-computable function h is m-min-entropy extracting if for every efficiently-
generated input distribution X s.t. H∞(X)>m , holds H∞(h(X))> m. Suppose that the range of h 
is {0,1}2k, with k>m. If H∞(h(X)[1�k])> m and H∞(h(X)[k+1�2k])> m, then h is double m-
min-entropy extracting.  
The double min-entropy preserving property allows us to use only half of the bits of h, which 
is very useful. It can be extended to other subsets of the output of h, however for our purposes 
the simple `double` property suffices.  
Notice that exposure-resilient functions ensure that the output is indistinguishable from 
uniform, while the output of min-entropy extracting functions may be easily distinguishable 
from uniform, e.g. the least significant bit may always be zero. On the other hand, exposure-
resilient functions require that the input is uniformly random. Min-entropy extracting 
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functions relax this by allowing non-uniform input (as long as it has min-entropy at least m). 
This allows the adversary to choose3 most of the input bits.  
The min-entropy extracting property is cryptanalysis-tolerant under the parallel composition, 
and preserved under cascade, as stated in the following lemmas.  
Lemma 5: Given f, g"{0,1}k ,one of which is (double) m-min-entropy extracting , then 
h(x)=f(x)||g(x) is (double) m-min-entropy extracting. 
Lemma 6: Given two (double) m-min-entropy extracting functions f, g, such that the range of 
g is in the domain of f. Then h(x)=f(g(x)) is (double) m-min-entropy extracting hash function. 
We now define a min-entropy based confidentiality, one-way property for keyless functions. 
Our definition extends the usual definition of one-way functions, by allowing the adversary to 
specify the input distribution, as long as it has min-entropy of at least m.  
An efficiently-computable function h is m-min-entropy one-way if for every efficiently-
generated input distribution X s.t. H∞(X)>m, and for every PPT adversary A, holds: 
Prob[h(A(h(x)))=h(x)]≈p0 .  
The m-min-entropy one-way property seems substantially stronger than the `regular` one-way 
function property.  
We now define a min-entropy based collision-resistance (integrity) property for keyless 
functions. Like for weak collision-resistance, the adversary will need to find a collision to a 
randomly-selected input. However, like for m-min-entropy one-way, we allow the adversary 
to select any input distribution with min-entropy at least m. In particular the adversary can 
chose an input distribution where part of the input is fixed. If we allowed the adversary to 
choose the entire input, this becomes `strong collision resistance`, which is impossible to 
achieve for keyless hash functions.  
We say that hash function h:{0,1}*"{0,1}k is m-min-entropy Collision Resistant if for every 
efficiently-generated input distributions X s.t. H∞(X)>m and every PPT adversary A, holds 
Pr{A(x)=x� s.t. x≠x� and h(x)=h(x�)}≈p0, where the probability is taken over x∈ RX.  
Sometimes, an application requires resistance not to `regular` collisions but to other variant; 
see e.g. in [A93]. In particular, we define resistance to `half collisions`, i.e. inputs x≠x� s.t. 
h(x)[1�k/2]=h(x�)[1�k/2] or h(x)[k/2�k]=h(x�)[k/2�k]. If the definition holds also for 
half-collisions, we say that h is m-min-entropy Half-Collision Resistant.  
In many cases, an application requires multiple properties. An m-min-entropy 
Cryptographic Hash, or simply a cryptographic hash function, is a function 
h:{0,1}*"{0,1}k  which is double m-min-entropy extracting, m-min-entropy hiding and m-
min-entropy Half-Collision Resistant. Cryptographic hash functions are useful for many 
purposes. In particular, the trivial construction of commitment scheme from hash function, 
widely-adopted by practitioners [Sc96], is Ck(x,r)=h(x,k,r), Dk(x,r)=(x,r), Rk(c,d)={x if 
d=(x,r) and c=h(x,k,r), otherwise error indication}. We observe that:  
Lemma 7: Let h be an m-min-entropy Cryptographic Hash function. Let, Then C=<C,D,R> 
is a secure (binding and hiding) commitment scheme.  
Therefore, we can achieve a cryptanalysis-tolerant commitment scheme either by using the E-
composition of candidate commitment schemes, as in Lemma 4, or by using the trivial 
construction above, using a cryptanalysis-tolerant m-min-entropy Cryptographic Hash 
function. The latter design seems to offer several advantages, in particular, reduced amount of 
keying and randomization material. Indeed, we present a cryptanalysis-tolerant composition 
for cryptographic hash functions in the next section. We now explain why we cannot simply 
use the E-composition for this.    
In Table 2 we summarize the results of composing functions with different m-min-entropy 
properties, using the cascade, parallel and XOR compositions. Notice that the `multiple-input` 

                                                 
3 In t-resilient functions [CG*85], which are the same as perfect exposure resilient functions, the 
adversary is also allowed to choose (up to t) of the input bits.  
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compositions (MI-XOR, MIMO) do not work well for these properties, since each part of the 
input may contain less than m entropy4.   
Unfortunately, we find that neither the one-way nor the collision-resistant properties persist 
under both the cascade and parallel compositions. Therefore, we cannot apply the E-
composition, using Lemma 2, to provide cryptanalysis-tolerant min-entropy cryptographic 
hash (with confidentiality and collision-resistance properties). In the next section we present 
the EZ-composition, an extension of the E-composition which provides cryptanalysis-
tolerance for min-entropy based properties of keyless functions.  

6. The EZ-Composition 
In Figure 3 we present the EZ-composition5 of three keyless functions, {h0 ,h1 ,h2}. Let xi=hi(x) 
and Hi=hi(xi+1 mod 3||xi-1 mod 3[1�L/2]). Then EZ[h1,h2,h3](x)= H0||H1||H2.  

 

h1 h0

h0

h1

h2

x EZ[h0,h1,h2]
||h2

 
Figure 3: The EZ-Composition for Keyless Functions 

The min-entropy is preserved in the `intermediate values` xi and xi[1�L/2].  
Lemma 8: If hi is m-min-entropy double extracting, and x∈ RX s.t. H∞(X)>m, then the min-
entropy of mi and mi[1�L/2] is at least m. 
We obtain our main result:  
Theorem 1 The EZ-composition ensures cryptanalysis-tolerance for cryptographic hash 
functions.  

7. Conclusions and Open Questions 
In this work we presented new definitions for keyless cryptographic hash functions, which 
appear useful for many applications, as well as cryptanalysis-tolerant compositions. We 
believe these definitions allow rigorous research of practical hash functions and their 
applications. There are many directions for further research based on the current work, 
including: 

1. Further research of keyless cryptographic functions. In particular, is there a 
cryptanalysis-tolerant composition for Exposure-resilient functions? Are 
there provably-secure constructions of min-entropy cryptographic hash 
functions, from established cryptographic primitives, such as pseudo-random 
function families and one-way functions?  

2. Can we define variants of the E and/or EZ compositions which will provide 
cryptanalysis-tolerance for stronger definitions of commitment schemes, in 

                                                 
4 An extension of the definitions, e.g. requiring min-entropy from each half of the input, may allow 
`multiple-input` compositions.   
5 The name EZ was chosen since graphical representation of the EZ-composition `contains` the letters E 
and Z (in purple). 
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particular non-malleable commitment schemes [DDN91] and Universally 
Composable commitment schemes [CF01]? Is there another composition that 
provides cryptanalysis-tolerance for such commitment schemes? Similar 
questions can be posed for other `advanced` cryptographic primitives.  

3. Can we provide better cryptanalysis-tolerant compositions for hash functions 
and commitment schemes? Of particular interest is whether it is possible to 
create compositions of a family of p functions, which tolerates cryptanalysis 
of  p/2 or more functions (especially for p=2).  

4. There are many applications of hash functions, where there may be 
advantages to using m-min-entropy cryptographic hash functions. In 
particular, security is often established only in the random oracle model. It 
seems that some of these designs may be provably secure, possibly after 
modifications, using m-min-entropy cryptographic hash functions.  

5. Our definitions can be used as criteria for cryptanalysis of standard hash 
functions, e.g. MD5, SHA-1. Considering that m-min-entropy cryptographic 
hash functions can trivially be used to implement block ciphers (pseudo-
random permutations), it is highly conceivable that it would  be possible to 
demonstrate that (some) standard hash functions are vulnerable to 
cryptanalysis (cf. to this strong definition). This may help in the choice of 
hash functions as well as in the design of new functions.  
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Cascade Parallel XOR MI-XOR MIMO Design: 

 
f(g(x)) f(x)||g(x) 

 
f(x)⊕ g(x) 

 
f(x1)⊕ g(x2) 

 
f(x1)||g(x2) 

OWF X X X ? Tolerant 

OWRF Tolerant Ok X ? Tolerant 

OWP Tolerant X X X X 

PRF Ok Ok Tolerant Tolerant X 

PRRF Tolerant Ok Tolerant Tolerant X 

PRP Tolerant6 ?  Tolerant X X 

Encryption Tolerant Ok X X Ok 

Weak CRHF X Tolerant X X Ok 

Any CRHF Ok Tolerant X X Ok 

TargetCRHF Ok Tolerant X X Ok 

MAC Ok Tolerant X X Ok 

Signature Ok Tolerant X X Ok 

ERF, PRG Ok X X Tolerant Ok 

(Strong) 
Extractor 

Ok X Tolerant 
(add k bits) 

Tolerant Ok 

“Random 
Oracle” 

Ok Ok Tolerant Ok Ok 

Commit. scheme 
Hiding 

Tolerant  Ok Tolerant Ok Ok 

Commit. scheme 
Binding 

Ok Tolerant X X X 

Table 1: Cascade and Parallel Composition of `Standard` Cryptographic Primitives 

Design: Cascade Parallel XOR 

                                                 
6 The cascade of two permutation ensembles is a pseudo-random permutation ensemble, provided (at 
least) one of the two is a pseudo-random permutation ensemble. Of course, cascading a PRP with a 
function which is not a permutation will not result in a PRP.  
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Schematic: 

 
 

 

Output f(g(x)) f(x)||g(x) f(x)⊕ g(x) 

Extracting Ok Tolerant X 

One-way X X  X  

Hiding and 
Extracting 

Ok X X 

Collision-
Resistant 

X Tolerant X 

Crypto Hash 
(all 
properties) 

X X X 

Table 2: Cascade and Parallel Composition of m-Min-Entropy Properties 
 


