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Abstract 

We investigate how to construct secure cryptographic schemes, from candidate schemes, some of which 
may be insecure. Namely, tolerant constructions tolerate the insecurity of some of the component schemes 

used in the construction. Few tolerant cryptographic constructions are known, often widely used; we 
present the first general definition, prove security of basic, folklore constructions, and present new 
constructions. Our new constructions are obtained by composing the (known) cascade and parallel 

constructions; some use a general composition lemma we present. The new, composite constructions 
provide optimal tolerance for confidentiality and integrity schemes, including encryption, MAC, signatures,  
signcryption and authenticated encryption. Our constructions are efficient and practical; they may be used 
to combine several cryptographic schemes or to design new schemes. Our analysis of the concrete security 

of constructions, and definition of confidentiality and integrity schemes, may be of independent interest. 

Keywords: cryptography; signcryption; authenticated encryption; encryption schemes; digital 
signatures; public key; commitment schemes; TLS.  

1. Introduction 
Most cryptographic functions do not have an unconditional proof of security. The classical method 
to establish security is by cryptanalysis i.e. accumulated evidence of failure of experts to find 
weaknesses in the function. However, cryptanalysis is an expensive, time-consuming and fallible 
process. In particular, since a seemingly-minor change in a cryptographic function may allow an 
attack which was previously impossible, cryptanalysis allows only validation of specific functions 
and development of engineering principles and attack methodologies and tools, but does not 
provide a solid theory for designing cryptographic functions. Indeed, it is impossible to predict the 
rate or impact of future cryptanalysis efforts; a mechanism which was attacked unsuccessfully for 
years may abruptly be broken by a new attack1. Hence, it is desirable to design systems to be 
tolerant of cryptanalysis and vulnerabilities (including known trapdoors). A tolerant cryptographic 
system remains secure following successful cryptanalysis of one or more cryptographic 
subsystems it contains. Tolerance does not imply unconditional-security; however, it would 
hopefully provide sufficient advanced-warning time to replace broken cryptographic components.   

Many cryptographic systems and constructions use redundant components in the hope of achieving 
tolerance. The most familiar such construction is cascade. Cascading of cryptosystems is very 
natural; novices and experts alike believe that the cascade E�E’ of two cryptosystems E,E’  is at 
least as secure as the more secure of the two, hopefully even more secure than both. Indeed, 
cascading of cryptosystems has been a common practice in cryptography for hundreds of years.  

However, so far, there are few publications on tolerant cryptographic constructions. In [AB81], 
Asmuth and Blakely present a simple construction of a randomized cryptosystem from two 

                                                

1 In practice, we try to use conservative estimates of progress in cryptanalysis, based on past progress and other 
factors; see e.g. [LV01].  
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component ciphers, with the hope of achieving tolerance; proof of security was given only in 
[GM84]; see variant for block ciphers in [HP86]. The highly related problem of cascading of block 
ciphers received some attention. Even and Goldreich showed that keyed cascade ensures tolerance 
against message recover attacks on block ciphers [EG85, Theorem 5], and conjectured that the 
result holds for other specifications of ciphers. Damgard and Knudsen [DK94] proved that it holds 
for security against key-recovery under chosen-plaintext attacks. Maurer and Massey [MM93] 
claimed that the proof in [EG85] “holds only under the uninterestingly restrictive assumption that 
the enemy cannot exploit information about the plaintext statistics”, but we disagree. We extend 
the proof of [EG85] and show that, as expected intuitively and in [EG85], keyed cascading 
provides tolerance to many confidentiality specifications, not only of block ciphers but also of 
other schemes such as public key and shared key cryptosystems. Our proof uses a strong notion of 
security under indistinguishability test – under plaintext only and non-adaptive chosen ciphertext 
attack (CCA1). One the other hand, we note that cascading does not provide tolerance for adaptive 
chosen ciphertext attack (CCA2), or if the length of the output is not a fixed function of the length 
of the input. This shows the importance of backing the intuition with analysis and proof. 

Tolerance is applied in many practical cryptographic systems, not just for confidentiality. In 
particular, it is widely accepted that the parallel construction g(x)||g’(x), using the same input x to 
both functions, ensures tolerance for several integrity properties, such as (several variants of) 
collision-resistant hashing as well as Message Authentication Codes (MAC) and digital signatures. 
We prove that the parallel construction indeed provide tolerance for such integrity specification. 
The parallel construction is used, for tolerance, in practical designs and standards, e.g. in the W3C 
XML-DSIG specifications and in the TLS protocol [RFC2246].  

The TLS standard uses also parallel-XOR construction, to ensure security as long as at least one of 
two standard hash functions (MD5 and SHA-1) satisfies certain security properties. The parallel-
XOR construction of f,g is denoted f�g and defined as f�g(x)=f(x)�g(x), where � denotes bit-
wise exclusive OR. The parallel-XOR construction of fk , gk is denoted fk�gk’  (or simply by f�g), 
and defined as fk�gk’(x)= fk(x)�gk’(x). The parallel-XOR construction is used in the TLS standard, 
to provide cryptanalysis-tolerant construction of two pseudo-random functions (one based on MD5 
and the other based on SHA-1). This improves on the (older) SSL protocol, which also combined 
MD5 and SHA-1, but failed to ensure tolerance; see details of both TLS and SSL in [R00]. Our 
techniques can be used to analyze the tolerance of this construction.   

However, there are many important cryptographic mechanisms for which there is no known 
tolerant design (even without analysis). In particular, this holds for several important cryptographic 
primitives that combine confidentiality and integrity properties; these primitives are often critical 
for important applications and protocols.  

We present a general definition of confidentiality/integrity scheme (CIS), and appropriate 
confidentiality and integrity specifications, s.t. several important cryptographic primitives become 
a special case. These include confidentiality-only schemes (public and shared key encryption), 
integrity-only schemes (MAC and signatures), as well as schemes ensuring both integrity and 
confidentiality such as authenticated encryption [BN00, J01] and signcryption schemes [Z97, 
BSZ02, ADR02, GH04]. It also seems possible to provide additional specifications for 
commitment schemes [DPP94, DPP98, HM96], and committing encryption schemes [GH04]. By 
using the general CIS definition, we can prove tolerance properties for multiple schemes (e.g. 
encryption and signature); this general definition may be of independent interest.   

We analyze the tolerance of confidentiality/integrity schemes (CIS) under cascade and parallel 
constructions, and obtain concrete bounds on the security and tolerance of the constructions. Since 
our definition of CIS is general and includes public key and shared key encryption schemes as well 
as signatures and MAC schemes, our results are related, and generalize on, previous works which 
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focused on combining encryption and signatures/MAC, including informal design principles and 
specific attacks as in [AN95, AN96, B98] and analysis as in [BN00, K01, ADR02, GH04]. As 
expected, cascade ensures tolerance for confidentiality, while parallel construction ensures 
tolerance for integrity, but neither ensures tolerance for both confidentiality and integrity. 

We then show new constructions, which are compositions of cascade and parallel constructions, 
and ensure tolerance for both integrity and confidentiality specifications. This provides tolerance 
for authenticated encryption and signcryption schemes. The new constructions are practical, 
efficient and simple; yet they have not been proposed before and certainly not analyzed (as we do). 

Two of our constructions are obtained from a general composition lemma, allowing compositions 
of any two tolerant constructions; this may be useful for composing other basic constructions to 
provide tolerance for advanced specifications. The composition lemma allows us to compose a pair 
of constructions in many structures, defined by a simple combinatorial element which we call a 
composition-structure. We present two very simple composition structures, which we call D and E 
after their graphical structure, and use them to compose the cascade and parallel constructions, 
providing tolerance for both confidentiality and integrity specifications.  

We then present another composite construction, which we call the T construction. The T 
construction uses specific observations from the analysis of the cascade and parallel constructions, 
instead of using the general composition lemma. As a result, it provides optimal tolerance for 
confidentiality and integrity schemes, including signcryption and authenticated encryption 
schemes, from candidate signcryption and authenticated encryption schemes, or directly from 
encryption and signature/MAC schemes. The T construction is very simple and natural, as 
illustrated in Figure 1, showing the combination of three encrypt-and-sign functions of 
signcryption schemes ��, �� , ��; the resulting scheme is secure as long as at least one of the three 
component schemes is secure (this generalizes to any number of components). Notice that the T 
construction could be used to create tolerant signcryption (and authenticated encryption) schemes 
by connecting in parallel several signature (respectively MAC) schemes, and encrypting the result 
by cascade of encryption schemes.  
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Figure 1: T-construction of three encrypt-and-sign functions  

To our knowledge, the D, E and T constructions are the first provably-secure tolerant constructions 
of general cryptographic functions, beyond the simple, classical constructions mentioned above, 
and few additional cryptographic constructions proven secure based on validity of either of two 
(specific) `hardness` assumptions, e.g. [Sh00, O92].  We note that in theory, it may be possible to 
ensure tolerance by using provable constructions of cryptographic mechanisms from few `basic` 
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cryptographic mechanisms, which have simple tolerant designs. For example, many cryptographic 
mechanisms can be constructed from one-way functions; and (as we show) it is sufficient that one 
of {g , g’ } is a one-way function, to ensure their parallel construction f(x,x’)=g(x)||g’(x’) is also a 
one-way function. Provably-secure constructions based on one-way functions exist for many 
cryptographic mechanisms, e.g. pseudo-random generators [Go01,HILL99] and signature schemes 
[NY89]. Therefore, by using a tolerant construction of one way function (from multiple candidate 
one-way functions) as the basis of some cryptographic scheme, the scheme retains the proven 
security properties even if one of the candidate one-way functions is not secure. However, such 
constructions are often inefficient, and involve unacceptable degradation in security parameters 
(e.g., require absurd key and/or block sizes).  

In this work, we use concrete security measures, following [HL92, BKR94,BDJR97], to compute 
the exact loss in security due to construction. Our analysis is a bit more precise than prior works, in 
that we are explicit also about the overhead of using the component functions by the adversaries; 
this may be significant since some tolerant constructions may involve many applications, and 
possibly substantial increase in the length of the inputs (in previous works, these factors were often 
negligible). Using this precise analysis, we show that our constructions inherit almost the entire 
security of the `most secure` component. This precise concrete security analysis may be useful for 
other applications.   

Organization. In Section 2 we present specifications for confidentiality and integrity 
cryptographic schemes. In section 3 we present the general concept of tolerant constructions and 
present the cascade and parallel constructions, and their tolerance properties for confidentiality and 
integrity schemes. In section 4 we present compositions of constructions, including the 
composition lemma, and present the E and D compositions and constructions, as well as the T 
construction. We conclude with several open questions.  

2. Specifications of Confidentiality/Integrity Schemes 
In this section we define and present specification for confidentiality/integrity schemes, a general 
abstraction of cryptographic schemes with confidentiality and/or integrity properties including 
(symmetric and asymmetric) encryption schemes, signatures schemes, message authentication 
codes (MAC), authenticated encryption, committed encryption, and signcryption. Our definitions 
are concrete, namely we explicitly identify all the resources including randomness.  

In general, specifications are merely predicates over a set of functions F. Let S(F) be the set of all 
specifications (predicates) over F. We say that f�F satisfies s�S(F) if s(f)=True. For convenience, 
we often refer to the conjunction of the predicate for a set of functions; s(f1,…fn)=True iff for all 
i�{1,…n} holds s(fi)=True.  

Cryptographic specifications are often phrased in terms of experiments, representing attempts by 
an adversarial algorithm A to `break` the function. We now give an example: we use the following 
experiment OWF, with parms=<�A,�A>, to establish (concrete and poly-time) specifications for 
one-way functions.  

Definition ����2-1 Let A be an (adversarial) algorithm and let f�F({0,1}*}),  k, �A, �A � ����. Let 
OWFA,f(k,�A,�A) be the following experiment:  

(1) m�R{0,1}k; 

(2) m’=A(f(m)); 

(3) Return “win” if all of the following conditions hold, otherwise return “loss”: 

a. f(m’)=f(m), and  
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b. A uses at most �A random bits and at most �A computational steps.  

2.1. Confidentiality and Integrity Schemes  

Specifications can be applied also to finite sets of functions, which we call (cryptographic) 
schemes2. This is easily achieved by representing schemes by a single function, with an additional 
input parameter � choosing one of the functions in the scheme. For example, consider an 
encryption scheme �, defined by the three functions <KG,E,D> (for key generation, encryption 
and decryption, respectively). It is convenient to refer to a specific function in the scheme using 
dot notation, e.g. �.E is the encryption function. Therefore, we can view �.�(x) as one function, 
whose first parameter ��{KG, E, D} identifies the `member` function to be used. 

Our results apply to several important schemes, including shared and public key cryptosystems 
(encryption schemes), signature schemes, commitment schemes, committed-encryption schemes, 
message authentication codes (MAC), authenticated-encryption schemes and signcryption schemes 
(which combine signature and encryption schemes). The security specifications of these different 
schemes consist of confidentiality and/or integrity specifications, each of which is quite similar for 
the different schemes; we show constructions that ensure tolerance for the confidentiality and/or 
integrity specifications for all of the above schemes.  

Rather than restate the results for each type of scheme, we present them for the following general 
confidentiality/integrity cryptographic scheme, such that each of the schemes is a special case of it. 
Using a generalized scheme saves repetitions, but does introduce some added complexity; for 
simplicity, we exclude commitment schemes, which have slightly different syntax. The definitions 
and tolerant constructions of the general confidentiality/integrity scheme (CIS) are not much more 
complex than of signcryption and authenticated encryption schemes (whose tolerance is one of our 
major results).  

There is a trivial mapping of every (symmetric or asymmetric) encryption scheme, message 
authentication code, signature scheme, authenticated encryption and signcryption scheme to a 
corresponding confidentiality/integrity scheme, defined as follows.  

Definition ����2-2 A confidentiality/integrity scheme (CIS) ��������is a collection of functions 
(KG,ES,D,V) such that for every m, r, red , rsv , e=��.KG.e(red), d=�.KG.d(red), s=�.KG.s(rsv) and 
v=�.KG.v(rsv) holds �.D.Md��.ESe,s,r(m))=m and �.Vv,e�m,�.Dd��.ESe,s,r(m)))=True, where:  

1. The key generation function �.KG input is a random string, and its output is a set of four 
keys: e, d, s, v for encryption, decryption, signature and verification, respectively. We refer 
to particular key using dot notation, e.g. �.KG.e returns the encryption key.  

2. The encrypt and sign function �.ES inputs are the encryption key e, the signature key s, a 
message m and a random string r, and its output is ciphertext/signature c.  

3. The decrypt (message recovery) function �.D inputs are the decryption key d, the 
verification key v and ciphertext c, and its outputs are a message m and (optionally) a `hint` 
hint for verification. To refer only to the message (hint) output we write �.D.M 
(respectively, �.D.H). For simplicity we did not include random input (i.e. decryption is 
deterministic), since it is rarely (if ever) used.  

                                                
2 Some definitions of cryptographic schemes are not as a collection of functions, but as a collection of probabilistic 
algorithms or machines. Often we can view them as functions with additional inputs for randomness and/or state.  
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4. The (public) verification function �.V whose inputs are the verification key v, the 
encryption key e, a message m, ciphertext c and hint h, and whose output is Ok or Not. 

 

 

To allow concrete security analysis of constructions, we need concrete bounds on the complexities 
of the scheme, as follows.  

Definition ����2-3 [Concrete complexity bounds of CIS] Let k, k’, l, �, �, h�����, with l>�, and let  
�:{KG,ES,V,D}���������. Then for every confidentiality/integrity scheme � we define predicate 
bounds[k, k’, l, �, �, h, �](�	 as True if and only if:  

1. For inputs of length up to k,��.KG is computable by a deterministic machine in time �[KG], 
and its output are keys of length at most k’ bits each.  

2. For every m,e,r,s�{0,1} * s.t. |m|�l-�, the value of �.ESe,s,r(m) is computable by a 
deterministic machine in time �[ES]. Also, the machine reads up to � bits from the (random 
input) r, and |�.ESe,s,r(m)|�l. 

3. For every m, m’, e, s, r�{0,1}* , if |m|=|m’|�l-� holds |�.ESe,s,r(m)|=|�.ESe,s,r’(m’)|. 

4. For every c,d�{0,1}*  s.t. |c|�l, the value of �.Dd(c) is computable by a deterministic 
machine in time �[D]. Also, |�.D.Md(c)|�l-� and |�.D.Hd(c)|�h.  

5. For every m, c, hint, e, v�{0,1}* s.t. |m|�l-�, the value of �.Vv,e(m,c,hint) is computable by 
a deterministic machine in time �[V]. 

Notice that condition 3 above requires that for inputs of the same length, the outputs will also be of 
the same length. This is required to allow confidentiality definitions based on indistinguishability 
of ciphertext from any two inputs of the same length. Since this condition is kept by all practical 
CIS we are aware of, it seems best to require it as part of the complexity bounds of CIS.  

2.2. Confidentiality Specifications  

We first define an indistinguishability experiment IndExp, as a generalization of known two-phase 
indistinguishability experiments for shared and public key confidentiality primitives (e.g. 
cryptosystems). Specifically, for public encryption key e, use the experiment with input 
ISPUB(e)=True; similarly, for public verification key v, use ISPUB(v)=True. In the first phase of 
the experiment, the adversary chooses two plaintexts, and in the second phase the adversary tries to 
distinguish the encryption of one of two plaintexts. At each phase ��{1,2}, we allow the adversary 
up to q[�,f] queries to oracles for functions f�{ES,D,V}, corresponding to the functions3 of the 
scheme �.  

Definition ����2-4 [Indistinguishability Experiment for CIS] Let ��be a CIS and let k, l, t, �, �, �A � 
����, ISPUB:{e,v}�{T/F} and q:{select,find}�{ES,D,V}�����. Let AO be an (adversarial) algorithm 
with access to oracle O for the functions in �. Let IndExpA,�
ISPUB(k,q,l,�,t, �, �A) be the following 
experiment: 

(1) red , rsv�R{0,1}k ;  e=��.KG.e(red); d=�.KG.d(red); s=�.KG.s(rsv); v=�.KG.v(rsv);  

                                                
3 We did not include `feedback-only chosen ciphertext attacks` of the kind used in the attacks of [B98, K01]. It seems 
not difficult to extend the definition and results to cover this important type of attacks.   
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(2) Let O be an oracle to the functions: {�.ESe,s,r , �.Dd , �.Vv,e} 

(3) If ISPUB(e)=T then e’=e else e’=�; If ISPUB(v)=T then v’=v else v’=�; 

(4) (p[0],p[1],state)� AO(“select”,e’,v’,1k); /* select phase */ 

(5) b�R{0,1}; 

(6) r�R{0,1}�; c=�.ESe,s,r(p[b]); 

(7) �= AO(“find”,c,state);  /* find phase */ 

(8) Return “win” only if all of the following conditions hold, otherwise return “loss”:   

a. �=b, and 

b. |p[1]|=|p[0]|� l-�, and  

c. total running time of AO is less than t, and 

d. AO makes at most q[�,f] calls to oracle �.f at phase ��{select, find}, and  

e. AO uses at most �A random bits, and  

f. AO does not make oracle query �.Dd(c) during select phase, and  

g. in its oracle queries, AO uses m,c s.t. |m|�l-� and |c|�l. 

We can now derive the confidentiality specifications for CIS. First, concrete specifications.   

Definition ����2-5 We say that ��satisfies specification INDISPUB(a,k,q,l,�,t,�,�A) if for every 
adversary A holds Pr[IndExpA,�
ISPUB(k,q,l,�,t, �, �A)=”win”]< ½+a.  

We now also present asymptotic, polynomial-time complexities. Allowing polynomial number of 
each type of queries, including queries to D (chosen ciphertext) during the `find’ phase, 
corresponds to adaptive chosen ciphertext (CCA2) attacks; weaker notions (e.g. CCA1, CPA) must 
restrict the queries appropriately. We define only CCA2 and CCA1; other variants (e.g. CPA) are 
similar. 

Definition ����2-6 We say that � satisfies specification CCA2-INDISPUB if ��PPT and for any strictly 
positive polynomials l, �, t, �, �A, a and positive polynomials q[�,f] for ��{select, find} and 
f�{ES,D,V}, exists some integer k0 such that for every k	k0, holds: 
Pr[IndExpA,�
ISPUB(k,q(k),l(k),�(k),t(k), �(k), �A(k))=”win”]<½+a(t). We say that � satisfies 
specification CCA1-INDISPUB if � satisfies CCA2-INDISPUB restricted to q[“find”,D]=0. We say 
that � satisfies specification CPA-INDISPUB if � satisfies CCA1-INDISPUB restricted to 
q[“select”,D]=0. 

2.3. Integrity Specifications  

In this work we consider only the strongest and most common security notion for signature 
schemes, Existential Unforgeability. This is the “hardest” notion of security for signatures. 
Existential unforgeability means that any PPT adversary � should have a negligible probability of 
generating a valid signature of a “new" message. Notice, � is not required to “know” the message 
whose signature was obtained, so it may be random or nonsensical. 

We first define a forgery experiment ForExp, as a generalization of Existential Unforgeability 
experiment introduced by Goldwasser, Micali, and Rivest [GMR95]. Like for confidentiality, we 
again use parameter ISPUB to define whether we use for encryption and/or authentication a shared 
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secret key or a public/private key pair. We allow the adversary up to q[f] queries to oracles for 
functions f�{ES,D,V}, corresponding to the functions of �.  

In the integrity specifications we include a parameter SPOOF, to specify whether the attacker can 
perform key-spoofing attacks as in [AN95], namely present a forgery by using a different 
encryption key e than the one used in the encrypt and sign (ES) function.  

Definition ����2-7 [Forgery Experiment for CIS] Let ��be a CIS and let k, t, �A � ����, 
ISPUB:{e,v}�{T/F}, SPOOF�{T,F} and q:{ES,D,V}���������. Let AO be an (adversarial) algorithm 
with access to oracle O for the functions in �. Let ForExpA,�
ISPUB,SPOOF(k,q,l,�,t, �A) be the 
following experiment: 

(1) red , rsv�R{0,1}k ;  e=��.KG.e(red); d=�.KG.d(red); s=�.KG.s(rsv); v=�.KG.v(rsv);  

(2) Let O be an oracle to the functions: {�.ESe,s , �.Dd , �.Vv,e} 

(3) If ISPUB(e)=T then eA=e else eA= �; If ISPUB(v)=T then vA=v else vA= �; 

(4) (type,
)� AO(eA,vA,1k); 

(5) If type=’m’ then (m,c,h,es)=Parse(
) 
else { (c,es)=Parse(
); (m,h)=��.Dd(c) } ; 

(6) If SPOOF=T and es� � then e*=es else e*=e; 

(7) Return “win” only if all of the following conditions hold, otherwise return “loss”:   

a. �.Ve*,v(m,c,h)=Ok, and 

b. AO did not make oracle query �.ES�,s(m) for any encryption key �, and  

c. total running time of AO is less than t, and 

d. AO makes at most q[f] calls to oracle �.f, and  

e. AO uses at most �A random bits.  

f. in its oracle queries, AO uses inputs of size at most |m|�l-� and |c|�l. 

We can now derive the integrity specifications for CIS. Note that if q[ES]>0, this is a known 
message attack (KMA).   

Definition ����2-8 We say that ��satisfies specification INTISPUB,SPOOF(a,k,q,l,�,t,�A) if for every 
adversary A holds Pr[ForExpA,�
ISPUB,SPOOF(k,q,l,�,t,�A)=”win”]< ½+a. We say that � satisfies 
specification CMA-INTISPUB,SPOOF if ��PPT and for any strictly positive polynomials l, � , t, �A, a 
and positive polynomials q[f] for f�{ES,D,V}, exists some integer k0 such that for every k	k0, 
holds: Pr[ForExpA,�
ISPUB,SPOOF(k,q(k),l(k),�(k), t(k), �A(k))=”win”]<a(t).  

Comment: integrity does not ensure commitment. Notice that the integrity specification does 
not imply binding between the ciphertext and the plaintext, as required by commitment schemes 
[DPP94, DPP98, HM96] and committed-encryption schemes [GH04]. However, it seems that our 
techniques may yield similar results for commitment specifications.  

3. Tolerant Constructions 
In this section we introduce the concept of tolerant constructions, namely a mapping c of one or 
more `candidate functions` f1,…fp into a single `redundant` function c(f1,…,fp), such that c(f1,…,fp) 
satisfies some specification s’ as long as a sufficient number among f1,…fp satisfy specifications s 
(where possibly s=s’). We then present the cascade and parallel constructions, two of the most 
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important and basic constructions. We show that cascade preserves integrity and provides 
tolerance for confidentiality (indistinguishability), while parallel construction preserves 
confidentiality and provides tolerances for integrity.  

3.1. Constructions and Tolerant Constructions 

We first define the general concept of a construction. Given F and an integer p, let c be a mapping 
of ordered set <f1, … , fp> of functions in F to a function in F, i.e. c:Fp

�F. We say that c is a 
construction of plurality p over F.  

We now define tolerant constructions. A tolerant construction c accepts as input several candidate 
functions <f1, … , fp>, e.g. for specification s�S(F), and output a single function c(f1, … , fp) which 
satisfies specifications s’�S(F)  as long as ‘enough’ of the candidates satisfy s (optionally s=s’). In 
addition, we often require that all of the candidate functions fi satisfy some minimal specifications 
b�S(F), such as bounds on their complexities.  

Definition ����3-1 Consider some set of functions F and predicates s,s’,b�S(F). Construction c of 
plurality p over F is t -tolerant for s����s’ with prerequisite b, where t is an integer between 0 and 
p-1, if for every set {f1,…fp}�Fp s.t. b(f1,…fp)=T holds: 

� �� � � � TrueffcsTruefstpjjii pitp j
	
	���
� � ),...,(')()1:)(,...,( 11  

When (as often) b(f)=True for all f�F, we omit it, and say e.g. that c is t -tolerant for s�s’. If 
construction c of plurality p over F is 0-tolerant for s���� s’ then we say that c preserves s����s’. If c 
is t- tolerant for s�s, then we say simply that c is t-tolerant for s; if t=0 then we say that c 
preserves s.  

3.2. Cascade Constructions 

The most basic tolerant construction of cryptographic functions is the cascade construction c�. By 
cascading we mean applying in sequence. We begin by discussing `simple cascading’, which is 
cascading of functions with a single input and output, such as hash functions, namely 
c�(f,g)=f�g(x)=f(g(x)); some readers may skip this subsection as it is mostly as an exercise, since 
we can only show that cascading provides tolerance for very specialized specifications of keyless 
functions. In the following subsections we discuss cascading of keyed schemes.  

3.2.1. Cascading of Keyless Functions (may be skipped) 

The cascade of two (keyless) functions f and g, denoted f�g or c�(f,g), is defined as 
c�(f,g)=f�g(x)=f(g(x)). Keyless cascading is a construction of plurality 2 for functions whose 
domain D contains their range R, i.e. R�D. This holds for some cryptographic primitives such as 
One Way Functions (OWF), and some specifications of keyless hash functions. In the next 
subsection we discuss cascading of cryptographic primitives, e.g. cryptosystems, whose domain 
consists of multiple inputs such as data, key and random bits. 

We now show that cascade does not preserve either OWF or WCRHF. We also show that One-
Way Permutations (OWF property restricted to permutations) is tolerant under cascade; this may 
not be very useful but at least shows that cascading could be useful for some keyless functions.   

More precisely, we show that cascade ensures tolerance for the polytime-OWF specification, over 
the set P({0,1}*)�F( {0,1}*), which consists of polynomially-time computable permutations for any 
given input (and output) length, i.e. f� P({0,1}*)  if and only if f�PPT and 
(
k)(
x�{0,1}k)(|f(x)|=k)^( 
y�{0,1}k:y�x)(f(y)�f(x)). Similarly, cascade ensures tolerance for 
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concrete-OWFf(a,k,�A, �A) � [Time(f,k)� �F]� concrete-OWFf(a,k,�A, �A+�F) � [Time(f,k)�  2�F] 
over the set Pk, which consists of permutations over {0,1}k.  

Lemma ����3-1 Cascade of keyless functions is… �

1. 1-tolerant over P({0,1}*) for specifications polytime-OWF. 

2. 1-tolerant over Pk for specifications: 
concrete-OWFf(a,k,�A, �A)�[Time(f,k)� �F]� concrete-OWFf(a,k,�A, �A+�F)�[Time(f,k)�  
2�F]  

3. Not (even) 0-tolerant over F({0,1}*) for specifications polytime-OWF and polytime-
WCRHF.  

Proof: To prove claim 3, let h be a OWF and/or WCRHF. Let g(x)=h(x)||0|x| and 

f(x)=
�
�
� 	

	
elsexh

0yxif0
xf

2x

)(
)(

/||

. Trivially, both f and g are OWF and/or WCRHF, respectively, 

yet f�g is neither OWF not WCRHF; in fact, f�g(x)=0 for every x.  

It remains to prove claim 2 (from which claim 1 immediately follows). Trivially, if Time(f,k)� �F 
and Time(g,k)� �F then Time(f�g,k)� 2�F. Let s(f)= concrete-OWFf(a,k,�A, �A) � [Time(f,k)� �F], 
s’(f)= concrete-OWFf(a,k,�A, �A+�F). It remains to prove that s(f)�s’(f�g) and that s(g)�s’(f�g).   

Assume f, g�Pk and Time(f,k)� �F, Time(g,k)� �F. Trivially, f�g� Pk. Assume that s’(f�g)=False; 
we prove that both s(f)=False and s(g)=False.  

Since s’(f�g)=False, there is some (possibly probabilistic) algorithm A s.t. 

FA
k xgfAtime10x �� ���
 )))((()},{( o  and � � amgfmgfAgfk

R 10m
�	

�
)()))(((Pr

},{
ooo . 

Define algorithms Af , Ag as follows:  

 Af(y)=g(A(y)), Ag(y)=A(f(y)) 

We first show that the running time of Af and Ag over inputs of length k is bounded by t+�. 
Suppose Af is given input f(m) where |f(m)|=|m|=k (remember that f is a permutation for inputs of 
any length k). Therefore, Af  gives input of the same length k to A. WLOG, we can assume that the 
output of A  is also of length k (since otherwise clearly A loses). Therefore, the running time of Af 
on input of length k is at most t+� ; a similar argument holds for Ag.  

It remains to show that � � amfmfAf f10m k
R

�	
�

)()))(((Pr
},{

 and 

� � amgmgAg g10m k
R

�	
�

)()))(((Pr
},{

.  

Let X denote the k-bit strings x for whom A succeeds in inverting f�g, i.e. for every x�X holds 
f�g(A(f�g(x)))= f�g(x). Since � � axgfxgfAgfk

R 10x
�	

�
)()))(((Pr

},{
ooo , we know that 

|X|	a�2k. Similarly let � �� � � �� � � �� � � �� �xgxgAg10xXxfxfAf10xX g
k

gf
k

f 	��	�� )(},{,)(},{ . 

We show that XXXX gf �� ,  and since |X|	a�2k, the claim follows.  

Let x�X. Hence f�g(A(f�g(x)))= f�g(x), namely f(g(Ag(g(x)))=f(g(x)). Since f is a permutation, it 
follows that g(Ag(g(x)))=g(x), namely x�Xg.  

Similarly, let xf=g(x). Since x�X, then f�g(A(f�g(x)))= f�g(x), namely f(Af(f(xf)))=f(xf), i.e. xf�Xf . 
Since g is a permutation, it follows that |Xf|	|X|.   � 

We believe that the positive parts of the Lemma (claims 1 and 2) could be generalized for an 
appropriate family of regular functions. It would be interesting to find other cryptographic 
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specifications of keyless functions for which cascading provides tolerance, or any tolerant 
construction for some useful specifications for keyless hash functions.  

3.2.2. Cascading of Confidentiality/Integrity Schemes (CIS) 

We next consider cascading of keyed cryptographic schemes, specifically of confidentiality and 
integrity schemes (CIS).  

The keyed cascade of two CISs �, ��, denoted c�(�,��) or ����, is defined as follows (see simplified 
illustration in Figure 2). The definitions and proofs extend trivially to cascade of arbitrary number 
of CISs.    

1. ����.KG(r,r’)=�.KG(r)||��.KG(r’).  

2. ����.ESe,e’,s,s’,r,r’(m)=�.ESe,s,r(��.ESe’,s’,r’(m)) 

3. ����.D.Md,d’(c)=��.D.Md’(�.D.M.cd(c)) 

4. ����.D.Hd,d’(c)=��.D.Hd’(�.D.Md(c)) || �.Dd(c) 

5. ����.Ve,e’,v,v’(m,c,<h’,h,c’>)= �.Ve,v(c’,c,h) ^ ���.Ve’,v’(m,c’,h’)  

�’.ES

�.ES

m

���’.ESe,e’,s,e’,r,r’(m)=
�.ESe,s,r(�’.ESe’,s’,r’(m))

�’.D

�.D

c

���’.D.Md,d’(c)=
�’.D.Md’(�.D.Md(c))

�.KG �’.KG

r r’

<e,d,s,v>=�.KG(r) <e’,d’,s’,v’>=�’.KG(r’)

d’

r

r’

��
�’

.D
.H

d,
d’

(c
)=

…e’,s’

e,s

d

�’.V

�.V
v,e

v’,e’

h’

m,c’

c’,c
h

 
Figure 2: Keyed Cascade of CISs 

Clearly, keyed cascade is a construction of plurality 2 of CISs (namely, if �
����are both CIS, then 
���� is also a CIS). We can also easily cap the complexities of the construction, and the results 
extend to cascade of more than 2 schemes; we summarize these observations as follows:  

Lemma ����3-2 Let �
��� be a pair of CISs�such that bounds[k, k’, l, �, �, h, �](�
��	=True with l>2�.  
Then co(�
��	
���� is also a CIS and bounds[2k, 2k’, l, 2�, 2�, 2h+l, 2�](����	=True. Let ��
����n 
be n CISs�such that bounds[k, k’, l, �, �, h, �](���
����n	=True with l>n�.  Then co(��
����n	
�����
���n is also a CIS and bounds[nk, nk’, l, n�, n�, nh+(n-1)l, n�](�������n	=True.  � 
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3.2.3. Cascading provides Tolerance for Confidentiality Specifications 

Trivially, cascading does not ensure tolerance under CCA2, adaptive chosen ciphertext attack; see 
other issues with CCA2, and an alternative definition (gCCA), in [ADR02]. We now show that 
cascade is a 1-tolerant construction for the indistinguishability confidentiality specification, when 
not allowing adaptive chosen ciphertext queries (i.e. with q[find,D]=0).  

Lemma ����3-3 Let ISPUB:{e,v}�{T,F}. Then:  

1. The cascade construction �� is 1-tolerant for CCA1-INDISPUB and for CPA-INDISPUB. 

2. Let k, k’, l, �, �, h, to, �o
A �N s.t. l>2�, �:{KG,ES,V,D}�N, q:{select,find}�{ES,D,V}�N 

s.t. q[find,D]=0. Then co is 1-tolerant for s�so with prerequisite bounds[k, k’, l, �, �, h, 
�], where so=INDISPUB(a,k,q,l,2�,t0, �,�o

A), s=INDISPUB(a,k,q,l,�,t, �,�A) with 
t=to+�[KG]+2�[E]+ � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq �  , �A=�o
A+2k+2�. 

3. For any n>1, the cascade of n schemes co is (n-1)-tolerant for s�so with prerequisite 
bounds[k, k’, l, �, �, h, �], where so=INDISPUB(a,k,q,l,n�,t0, �,�o

A), s=INDISPUB(a,k,q,l,�,t, 
�,�A) with t=to+(n-1)�[KG]+n�[E]+(n-1) � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq �  , �A=�o
A+2k+2�. 

Proof: We prove only claim 2 (claim 3 follows similarly, and claim 1 follows from claim 2). The 
proof is by contradiction; namely assume that for some �, �� holds so(����)=False, and we show 
that s(�)=s(��	=False. 

Since so(����)=False, then there is some adversary Ao such that 
po�Pr[IndExpA,�
ISPUB(k,q,l,to,�,�o

A)=”win”]� ½+a. We next show that given such adversary Ao as 
a black box,  we can construct adversaries A, A’ such that 
p�Pr[IndExpA,�
ISPUB(k,q,l0,t,�,�A)=”win”] �po � ½+a and 
p’�Pr[IndExpA’,��
ISPUB(k,q,l0,t,�,�A)=”win”] � po � ½+a, where l0=l+�.  

Namely, we prove (below) the following claims A, A’:  

Claim A (A’): given adversary Ao such that po� ½+a as a black box,  we can construct adversary A 
(respectively A’) such that p�po � ½+a (respectively p’�po � ½+a).  

This completes the proof, by showing that indeed s(�)=s(��	=False. � 

Proof of Claim A: We construct adversary A as follows. In the “select” phase, A selects randomly 
r’ed, r’sv�{0,1}k, and then uses �’.KG to compute the keys e’=�’.KG.e(r’ed), d’=��’.KG.d(r’ed), s’=�
�’.KG.s(r’sv), v’=��’.KG.v(r’sv).  

Next, A invokes the “select” phase of Ao which returns plaintexts po[0], po[1] and state so. In its 
operation, Ao may invoke the oracles for functions {ES,D,V} of �o; trivially, A can answer these 
queries by using the corresponding oracle for �
�and computing the corresponding function of ���
(using keys e’, d’, s’ and v’ ). For example, to answer query of ��.Dd,d’(c), we first invoke the oracle 
�.Dd on input c; denote the result as x. We now compute ��.Dd,d’(c)=��’.Dd’(�.Dd(c))=��’.Dd’(x), 
which is possible since A knows d’.  

To complete the “select” phase, A computes p[j]=��’.ESe’,s’,r’[j](po[j]) for j�{0,1} and r’[j]�R{0,1}* 

(for public key encryption, i.e. if ISPUB[e]=F, then concatenate e’ to p[0] and p[1]).  It then 
returns p[0], p[1] and s=<so,e,e’,d’,s’,v’>. We later show that using r’[j]�R{0,1}� suffices. 

In the “find” phase, A receives ciphertext c and state s=<so,e,e’,d’,s’,v’>. It simply invokes the 
“find” phase of Ao on c and so, and returns the bit x returned by Ao.  
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We now show that po �p. The probabilities are taken over the coin tosses by A, by the `black-box` 
algorithm Ao, and by the experiment (for key-generation, encryption and b). Denote the coin tosses 
as follows:  

o ro
A : coins used by the `black-box` adversary Ao (provided by and known to A ) 

o Coins tossed by the experiment (unknown to A): for key generation (red, rsv), to select 
the challenge plaintext p[b] (coin b), and for encrypting p[b] (bits r).  

o Coins tossed by A for its own use, namely: for key generation (r’ed, r’sv) and to compute 
the encryptions of the plaintexts S’.ESe’,s’,r’[j](po[j]) (bits r’[0], r’[1]).     

Let rA=ro
A||r’ed||r’sv||r’[0]||r’[1] denote all the random bits tossed by algorithm A. Let w(rA, red, rsv, 

r, b)=true if and only if IndExpA,�,ISPUB(k,q,l,t,�,�A)=”win” with the corresponding coin tosses.  

Let ro
ed=red||r’ed,  ro

sv=rsv||r’sv , ro=r||r’. Let wo(ro
A, ro

ed, ro
sv, ro, b)=true if and only if  

IndExpA˚,�˚,ISPUB(k,q,l,to,�,�o
A)=”win” with the corresponding coin tosses.  

The claim follows by showing that wo(ro
A, ro

ed, ro
sv, ro, b)� w(rA, red, rsv, r, b). We show this holds, 

by showing that all conditions of step 8 of experiment E= IndExpA,�,ISPUB(k,q,l,t,�,�A)[rA, red, rsv, r, 
b] hold if they (conditions of step 8) hold in experiment Eo= IndExpA˚,�˚,ISPUB(k,q,l,to,�,�o

A)[ro
A, 

ro
ed, ro

sv, ro, b].  

We use the following notation: let x@E (x@Eo) denote the value of variable x during experiment E 
(respectively Eo). We omit the @ notation when the value is clearly identical in the two 
experiments. Also, let c8�@E (c8�@Eo), where ��{a,b,…,f}, be true if claim � of step 8 holds 
during experiment E (respectively Eo).  

Algorithm A returns the same bit � as returned by Ao, namely �@E= �@Eo. Hence if c8a@Eo is 
true, i.e. �@Eo=b, then also �@E=b and c8a@E=true.  

By design of A above, for j={0,1} holds p[j]@E=�’.ESe’,s’,r’[j](po[j]@E). If c8b@Eo=true, then 
|po[1]@E|=|po[0]@E|�l-2�. Since bounds[k, k’, l, �, �, h, �](��’)=True, we have 
|p[1]@E|=|p[0]@E’|�l-�. Hence, c8b@Eo

�c8b@E.  

For c8c, we note that the running time of A consists of the running time of Ao in the corresponding 
experiment, plus the additional work by A. This extra work consists essentially of invoking the key 
generation algorithm once, doing two encryptions (to compute p[0] and p[1]), and answering the 
oracle queries of Ao. Each oracle query �o.f requires A to compute �’.f; it follows that if the running 
time of Ao at Eo is bounded by to, then the running time of A at E is bounded by 
t=to+�[KG]+2�[E]+ � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq � .  Hence, c8c@Eo
�c8c@E. 

We note that A involves oracle ��f only to answer oracle call �o.f of Ao. Hence, c8d@Eo
�c8d@E, 

c8g@Eo
�c8g@E and c8f holds since q[find,D]=0. 

It remains to show that c8e@Eo
�c8e@E. Adversary A users random bits 

rA=ro
A||r’ed||r’sv||r’[0]||r’[1] (including the random bits ro

A for running Ao internally). Both r’ed 
and r’sv are k bit long. Bits r’[0], r’[1] are used by A (only) to compute p[0],p[1]. Assume that c8b 
holds at Eo, i.e. |p[1]@Eo|=|p[0]@Eo|�l-2�. Since  bounds[k, k’, l, �, �, h, �](��	=True, we use at 
most � bits from r’[j], for j={0,1}, in computing p[j]@E=�’.ESe’,s’,r’[j](po[j]@E). It follows that the 
total number of random bits used by A is at most |ro

A|+2k+2�. If c8e@Eo holds, i.e. |ro
A|� �o

A, it 
follows that A uses at most |rA|� �o

A+2k+2�= �A random bits. Hence c8e@Eo^ c8b@Eo
�c8e@E. 

� 

It remains to prove: 
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Claim A’: given adversary Ao such that po� ½+a as a black box, we can construct adversary A’ 
such that p’�po � ½+a.  

Proof of Claim A’: We construct adversary A’ as follows. In the “select” phase, A’ selects 
randomly red, rsv�{0,1}k, and then uses �.KG to compute the keys e=�’.KG.e(red), d=��.KG.d(red), 
s=��.KG.s(rsv), v=��.KG.v(rsv).  

Next, A’ invokes the “select” phase of Ao which returns plaintexts p[0], p[1] and state so. In its 
operation, Ao may invoke the oracles for functions {ES,D,V} of �o; trivially, A’ can answer these 
queries by using the corresponding oracle for ��
�and computing the corresponding function of �. 
Finally, A’ returns p[0], p[1] and s=<so,e’,e,d,s,v>. We later show that using r[j]�R{0,1}� suffices. 

In the “find” phase, A’ receives ciphertext c and state s=<so,e’,e,d,s,v>. It computes c’=�.ESe,s,r(c) 
and invokes the “find” phase of Ao on c’ and so, and returns the bit x returned by Ao.  

The rest of the proof follows exactly like in claim A. � 

3.2.4. Cascading Preserves Integrity Specifications 

We now show that cascading is 0-tolerant (i.e. preserves) for the integrity specifications we 
presented for confidentiality/integrity schemes (CIS). In fact, it is sufficient that the first scheme 
applied to the message satisfies integrity, as we show in the next lemma. Integrity of the second 
scheme is not sufficient to ensure integrity of the cascade (however, it suffices e.g. if the first 
scheme satisfies the (weaker) integrity requirements of committed encryption; see in [GH04]).  

Lemma ����3-4 For any ISPUB:{e,v}�{T,F}, SPOOF�{T,F} holds:  

1. The cascade construction co is 0-tolerant for CMA-INTISPUB,SPOOF. 

2. For any {��
��n} holds CMA-INTISPUB,SPOOF(�n)�CMA-INTISPUB,SPOOF(������n) 

3. For any {��
��n}, a�[0,1],k, q, n, �,to,�o
A�����, l>n�, and q:{ES,D,V}�����



 let  

t=to+�[KG]+n�[E]+(n-1) �
� },,{

][][
VDESf

ffq �  , �A=�o
A+nk, 

so=INTISPUB,SPOOF(a,k,q,l,n�,t0,�o
A), and s=INDISPUB,SPOOF(a,k,q,l,�,t,�A).  

Then s(�n)� so(������n). 

Proof: Claims 1,2 follows immediately from claim 3. We prove claim 3 by contradiction, and for 
simplicity, only for n=2. Namely assume that so(����)=False and we show that s(��	=False. 
Namely, assume that there is some adversary Ao such that 
po�Pr[ForExpA,�
ISPUB,SPOOF(k,q,l,2�,to,�o

A)=”win”]�a. Using Ao as a black box,  we construct 
adversary A’ such that p’�Pr[IndExpA’,��
ISPUB(k,q,l,�,t,�A)=”win”] � po � a.  

We construct adversary A’ as follows. In the “select” phase, A’ selects randomly red, rsv�{0,1}k, 
and then uses �.KG to compute the keys e,d,s and v. Next, A’ invokes Ao which returns (type, 
o). 
We answer oracle queries of Ao like in Lemma �3-3.  

We now follow step (5) of the Forgery experiment (Definition �2-7) to compute m,co,ho,eo
s. If 

type=’m’ then we simply let (m,co,ho,eo
s)=Parse(
o). Let c’=�.D.M.cd(co), <h’,h,c’>=Parse(ho) and 

<es, e’s>=Parse(eo
s); adversary A’ returns (‘m’,(m,c’,h’,e’s)).  

Otherwise, i.e. when type�‘m’, let (co, eo
s)=Parse(
o). Let c’=�.D.M(co), <es, e’s>=Parse(eo

s); 
adversary A’ returns (type,(c’,e’s)). 
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We now show that indeed, when A’ is defined as above, then p’� po � a.  The probabilities are 
taken over the coin tosses by A’, Ao, and the experiment (for key-generation). Denote the coin 
tosses as follows:  

o ro
A : coins used by the `black-box` adversary Ao (provided by and known to A’) 

o r’ed, r’sv: coins tossed by the experiment (unknown to A’), for key generation.   
o red, rsv: coins tossed by A’ to generate keys for �.     

Let r’A=ro
A||red||rsv denote all the random bits tossed by A’. Let w’(r’A, r’ed, r’sv)=true if and only if 

ForExpA’,�,ISPUB,SPOOF(k,q,l,�,t,�A)=”win” with the corresponding coin tosses.  

Let ro
ed=red||r’ed,  ro

sv=rsv||r’sv . Let wo(ro
A, ro

ed, ro
sv)=true if and only if  

ForExpA˚,�˚,ISPUB,SPOOF(k,q,to,�o
A)=”win” with the corresponding coin tosses.  

The claim follows since wo(ro
A, ro

ed, ro
sv)� w’(r’A, r’ed, r’sv). This holds, since (trivially) all 

conditions of step 7 of experiment E’= ForExpA’,�,ISPUB,SPOOF(k,q,t,�A)[r’A, r’ed, r’sv] hold if they 
(conditions of step 7) hold in experiment Eo= ForExpA˚,�˚,ISPUB,SPOOF(k,q,to,�o

A)[ro
A, ro

ed, ro
sv]. � 

3.2.5. Relations to `Sign-then-Encrypt` and `Authenticate-then-Encrypt` 

While our work is the first to analyze cascading of confidentiality and integrity schemes, including 
encryption, signature and MAC schemes, it is related to works which analyze how to achieve 
confidentiality and integrity by a cascade of an encryption scheme and a signature or MAC scheme 
(since all of these are special cases of confidentiality and integrity scheme). Indeed, from Lemma 
�3-3 and Lemma �3-4 it follows trivially that sign-then-encrypt as well as MAC-then-encrypt ensure 
both confidentiality (against CCA1) and integrity (i.e., a secure signcryption or authenticated 
encryption scheme). This provides a new proof for several corresponding theorems in [K01,BN00] 
(for MAC-then-encrypt) and [ADR02] (for sign-then-encrypt).  

We note that sign-then-encrypt (and MAC-then-encrypt) does not provide IND-CCA2 security, as 
shown by [B98], [BN00] and [K01]. Notice these attacks require only `feedback only CCA2`, i.e. 
the adversary does not receive the plaintext but only the result of the verification. Also, proposition 
4.6 of [BN00] shows that cascading does not ensure tolerance for non-malleable encryption. 
Cascading or other tolerant constructions under feedback-only CCA2 attacks, for non-malleable 
encryption, and for commitment schemes require additional investigation.   

3.3. Parallel Construction 

We now consider another basic construction: the parallel application of two cryptographic 
functions to the same input, where the output is the concatenation of the outputs of both functions. 
We call this the Same-Input, Multiple-Outputs (SIMO) Parallel Construction, or simply the 
parallel construction. The parallel construction of single-input (keyless) functions f,g is denoted 
as f||g or c||(f,g), and defined as c||(f,g)=f||g(x)=f(x)||g(x). When the functions have inputs for 
random bits and/or keys, these are selected independently for the two functions, and the parallel 
construction is fk,r||gk’,r’(x)= fk,r(x)||gk’,r’(x). We next define the parallel construction of 
confidentiality/integrity schemes.  

The parallel construction of two CISs �, ��, denoted c||(�,��)=�||��, is defined as follows. The 
definitions and proofs extend trivially to parallel construction of arbitrary number of CISs.   

1. �||��.KG(r,r’)=�.KG(r)||��.KG(r’).  

2. �||��.ESe,e’,s,s’,r,r’(m)=�.ESe,s,r(m) ||��.ESe’,s’,r’(m) 

3. �||��.D.Md,d’(c)=��.D.Md(c) 
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4. �||��.D.Hd,d’(c)=��.D.Hd’(c) || �.D.Hd(c) 

5. �||��.Ve,e’,v,v’(m,c,<h’,h>)= �.Ve,v(m,c,h) ^ ���.Ve’,v’(m,c,h’) ^����.D.Md’(c)=�.D.Md(c)] 

Using two schemes in parallel provides tolerance for integrity but not for confidentiality. However, 
it does preserve confidentiality. We state these facts in the following lemma. The proof is a trivial 
adaptation of the lemmas for cascade, and omitted. Note also that this lemma is an extension of 
Theorem 4.3 of [BN00] (which considered only shared key encryption and MAC).   

Lemma ����3-5 For any ISPUB:{e,v}�{T,F}, SPOOF�{T,F} holds:  

1. The parallel construction c|| of n>1 CIS schemes is (n-1)-tolerant for CMA-INTISPUB,SPOOF 
and 0-tolerant for CCA1-INDISPUB and CPA-INDISPUB 

2. The parallel construction c|| of n>1 CIS schemes is 0-tolerant for s�so with prerequisite 
bounds[k, k’, l, �, �, h, �], where so=INDISPUB(a,k,q,nl,n�,t0, �,�o

A), s=INDISPUB(a,k,q,l,�,t, 
�,�A) with t=to+(n-1)�[KG]+n�[E]+(n-1) � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq �  , �A=�o
A+nk+n�.  

3. The parallel construction c|| of n>1 CIS schemes is (n-1)-tolerant for s�so with 
prerequisite bounds[k, k’, l, �, �, h, �], where so= INTISPUB,SPOOF(a,k,q,nl,n�,t0, �,�o

A), s= 
INTISPUB,SPOOF(a,k,q,l,�,t, �,�A), t=to+(n-1)�[KG]+n�[E]+(n-1) � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq �  

and �A=�o
A+nk+n�. 

4. Composite Tolerant Constructions 
Often, neither cascade nor parallel construction provides tolerance for the desired specifications, 
e.g. for signcryption and authenticated encryption, which require both confidentiality and integrity. 
In such cases, we need a new construction. Often we can build the new construction by composing 
known constructions. In this section, we first define compositions of constructions, and prove a 
general composition lemma. We then present three composite constructions: D, E and T, which are 
all `serial-parallel` constructions, i.e. combination of cascade and parallel constructions. 
Constructions D and E are applications of the composition lemma, while T uses more specific 
details from the analysis of cascade and parallel constructions in the previous section.  

4.1. Compositions of Arbitrary Constructions 

While in general one could consider compositions of many constructions, we restrict our attention 
to compositions of two constructions. Such compositions accept as input two constructions c and 
c’ and produce a composed construction denoted c’�I c, where I is a mapping of the `candidate 
functions` to the constructions. Our definitions and results in this subsection refer to arbitrary 
specifications, including both concrete security specifications and asymptotic security 
specifications, as well as specifications which are not security related at all.  

Let c be a construction of plurality p over <D,R> which is t-tolerant for s�s’, and let c’ be a 
construction of plurality p’ over <D, R> which is t’-tolerant for s’�s”. Let p� denote the plurality 
of the composition of c and c’; namely the input to the composite construction is a set f of p� 
functions, f[i]�F(D�R). The composite construction first applies c to p’ sets of p functions each, 
and then applies c’ to the p’ resulting functions. The composition is defined by the selection of the 
p functions input to each of the p’ applications of the c construction, namely by a mapping 
I:{1,…,p}�{1,…,p’}�{1,…, p�}, where Ii[j] identifies the jth function input to the ith c construction. 
Given I, the I-composition of c’ and c, denoted c’�I c, is 
 � � � � � �� �� � � � � �� �)(,...,)(,...,)(,...,)('][],...,[' '' pIf1IfcpIf1Ifccpf1fcc pp11I 	o�  
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The following lemma shows that the security of the I-composition depends on a simple 
combinatorial property of mappings I. Consider mapping I:{1,…,p}�{1,…,p’}�{1,…, p�} and 
some set T�{1,…, p�} (of `weak inputs`). Let Gi(I,T)={ Ii[j] | j=1,…,p } - T, i.e. values Ii[j], for 
some j, which are not in T; think of Gi(I,T) as the `good selections` of Ii. We say that I  is a (good) 
(t,t’,t�)-composition-structure if for every T�{1,…, p�} s.t. |T|� t� 

holds: � � ''),(' tptpTIGpi1 i ������ .   

Lemma ����4-1 Let I:{1,…,p}�{1,…,p’}�{1,…, p�}  be a (good) (t,t’,t�)-composition-structure. Let c 
be a construction of plurality p over <D,R> which is t-tolerant for s�s’, and let c’ be a 
construction of plurality p’ over <D, R> which is t’-tolerant for s’�s”. Then c’�I c, is a 
construction of plurality p� over <D, R> which is t�-tolerant for s� s”. 

Proof:  Consider any set f of p� functions, f[i]�F(D,R), and assume that p�-t of them satisfy 
specification s. Namely, for some set {ij} of p�-t indexes holds s(f[ij])=True. We need to prove that 
for every choice T�{1,…, p�} of up to t� functions in f which do not satisfy s, the function resulting 
from applying composed construction c�I c’ to f satisfies s” . Namely, we need to prove that s”( 
c’�I c(f[1],…,f[p�]))=True. Let f’[1],…,f’[p’] denote the p’  intermediate functions, i.e. 
f’[i]=c(f[Ii(1)],…,f[Ii(p)]); hence c’�Ic(f[1],…,f[p�])=c’(f’[1],…,f’[p’]). Let G(I,T)={i s.t. 
|Gi(I,T)|	p-t}. By definition of I holds: |G(I,T)|	p’-t’.  

If i�G(I,T), namely |Gi(I,T)|	p-t, then for at least p-t of the functions f[Ii(1)],…,f[Ii(p)] holds 
s(f[Ii(j)])=True. Since c is t-tolerant for s�s’ it follows that s’(f’[i])=True, for every i�G(I,T). 
Since c’ is t’-tolerant for s’�s”, it follows that:�
s”(c’�Ic(f[1],…,f[p�]))=s”(c’(f’[1],…,f’[p’]))=True. � 

4.2. Serial-Parallel Compositions (E and D)  

Serial-parallel constructions are composed of several cascading and parallel constructions, e.g. 
using composition structures. In particular, consider the following simple composition structures:  

� Composition structure D:{0,1}�{0,1}�{0,1,2,3} defined as Di[j]=2i+j 
� Composition structure E:{0,1}�{0,1,2}�{0,1,2} defined as Ei[j]=i+j mod 3 

These two structures allow us to compose construction c which is 1-tolerant for specifications 
x�x’ and 0-tolerant for specifications y�y’, with construction c’ which is 0-tolerant for 
specifications x’�x” and 1-tolerant for specifications y’�y”, resulting in constructions c’�I c and 
c’�I c which are both 1-tolerant for both x�x” and y�y”. Namely, 

Lemma ����4-2 D and E are both (good) (0,1,1) and (1,0,1) composition-structures.  

From the two Lemmas, we get:  

Lemma ����4-3 Let c, cD’, cE’  be constructions of plurality 2, 2 and 3 respectively. If c is t-tolerant for 
s�s’ where t�{0,1}, and cD’ , cE’ are (1-t)-tolerant for s’�s”, then cD’�D c and cE’�E c are both 1-
tolerant for s�s”. 

Let c|| denote the parallel construction of plurality 2, and c||| denote the parallel construction of 
plurality 3. Define constructions cD= cD’�D c||, cE=cE’�E c|||. From Lemma �4-3 together with 
Lemma �3-3, 3-4 and 3-5, we get:  

Lemma ����4-4 For any ISPUB:{e,v}�{T,F}, SPOOF�{T,F} holds:  

1. The D and E constructions cD, cE are 1-tolerant for both CMA-INTISPUB,SPOOF and CCA1-
INDISPUB and CPA-INDISPUB 
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2. The E construction cE is 1-tolerant with prerequisite bounds[k, k’, l, �, �, h, �] for both 
IND�INDo and INT�INTo, where: 

a. INDo=INDISPUB(a,k,q,3l,6�,t0, �,�o
A),  

b. IND=INDISPUB(a,k,q,l,�,t, �,�A)  

c. INTo= INTISPUB,SPOOF(a,k,q,3l,6�,t0, �,�o
A) 

d. INT= INTISPUB,SPOOF(a,k,q,l,�,t, �,�A) 

e. t=to+2�[KG]+5�[E]+5 � �
� �},{ },,{

][],[
selectfindj VDESf

ffjq �  ,  

f. �A=�o
A+3k+5�.  

3. The D construction cD is 1-tolerant with prerequisite bounds[k, k’, l, �, �, h, �] for both 
IND�INDo and INT�INTo, where: 

a. INDo=INDISPUB(a,k,q,2l,4�,t0, �,�o
A),  

b. IND=INDISPUB(a,k,q,l,�,t, �,�A)  

c. INTo= INTISPUB,SPOOF(a,k,q,2l,4�,t0, �,�o
A) 

d. INT= INTISPUB,SPOOF(a,k,q,l,�,t, �,�A) 

e. t=to+3�[KG]+4�[E]+3 � �
� �},{ },,{

][],[
selectfindj VDESf

ffjq �  ,  

f. �A=�o
A+3k+3�.  

4.3. The T construction 

The D and E constructions are efficient and practical, and provide tolerant design for any pair of 
specifications when one if tolerant under cascade and the other is tolerant under parallel 
construction. However, in the special case of confidentiality and integrity schemes (CIS), there is 
an even better construction – the T construction. This construction takes advantage of the 
observation that if scheme ���satisfies integrity specifications, then ���� also preserves integrity, for 
any scheme �.  

The T construction of �1,…�n, denoted T(�1,…�n), is defined as T(�1,…�n)= �1�…��n�(�1||…||�n).  

Lemma ����4-5 For any ISPUB:{e,v}�{T,F}, SPOOF�{T,F} holds:  

1. The T construction of n>1 CIS schemes is (n-1)-tolerant for both CMA-INTISPUB,SPOOF and 
CCA1-INDISPUB and CPA-INDISPUB 

2. The T construction of n>1 CIS schemes is (n-1)-tolerant with prerequisite bounds[k, k’, l, 
�, �, h, �] for both IND�INDo and INT�INTo, where: 

a. INDo=INDISPUB(a,k,q,nl,2n�,t0, �,�o
A),  

b. IND=INDISPUB(a,k,q,l,�,t, �,�A)  

c. INTo= INTISPUB,SPOOF(a,k,q,nl,2n�,t0, �,�o
A) 

d. INT= INTISPUB,SPOOF(a,k,q,l,�,t, �,�A) 

e. t=to+(n-1)�[KG]+2n�[E]+(n-1) � �
� �},{ },,{

][],[
selectfindj VDESf

ffjq �  ,  

f. �A=�o
A+(n-1)k+(2n-1)�.  
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Proof: immediate from Lemma �3-3, 3-4 and 3-5. � 

5. Conclusions and Open Questions 
In this work we presented tolerant constructions and compositions for some of the most important 
and practical cryptographic mechanisms, including cryptosystems, signature/MAC schemes, 
signcryption and authenticated encryption. The constructions are very efficient and practical.  

An obvious challenge is to find tolerant constructions for additional cryptographic primitives. In 
particular, we believe it should be feasible to extend our results for commitment and committing-
encryption schemes. A harder challenge is to find a tolerant construction for keyless hash 
functions, which are widely deployed in practice. Other primitives which are related to the current 
work include non-malleable commitment schemes and cryptosystems [DDN91], Universally 
Composable commitment schemes [CF01] and Perfectly one-way hash functions [C97,CMR98].  
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