
 Page 1 1/28/2004

On Tolerant Cryptographic Constructions
draft – comments appreciated

Amir Herzberg

Computer Science Department

Bar Ilan University

http://www.cs.biu.ac.il/~herzbea/

Abstract

We investigate how to construct secure cryptographic schemes, from candidate schemes, some of which
may be insecure. Namely, tolerant constructions tolerate the insecurity of some of the component schemes

used in the construction. Few tolerant cryptographic constructions are known, often widely used; we
present the first general definition, prove security of basic, folklore constructions, and present new
constructions. Our new constructions are obtained by composing the (known) cascade and parallel

constructions; some use a general composition lemma we present. The new, composite constructions
provide optimal tolerance for confidentiality and integrity schemes, including encryption, MAC, signatures,
signcryption and authenticated encryption. Our constructions are efficient and practical; they may be used
to combine several cryptographic schemes or to design new schemes. Our analysis of the concrete security

of constructions, and definition of confidentiality and integrity schemes, may be of independent interest.

Keywords: cryptography; signcryption; authenticated encryption; encryption schemes; digital
signatures; public key; commitment schemes; TLS.

1. Introduction
Most cryptographic functions do not have an unconditional proof of security. The classical method
to establish security is by cryptanalysis i.e. accumulated evidence of failure of experts to find
weaknesses in the function. However, cryptanalysis is an expensive, time-consuming and fallible
process. In particular, since a seemingly-minor change in a cryptographic function may allow an
attack which was previously impossible, cryptanalysis allows only validation of specific functions
and development of engineering principles and attack methodologies and tools, but does not
provide a solid theory for designing cryptographic functions. Indeed, it is impossible to predict the
rate or impact of future cryptanalysis efforts; a mechanism which was attacked unsuccessfully for
years may abruptly be broken by a new attack1. Hence, it is desirable to design systems to be
tolerant of cryptanalysis and vulnerabilities (including known trapdoors). A tolerant cryptographic
system remains secure following successful cryptanalysis of one or more cryptographic
subsystems it contains. Tolerance does not imply unconditional-security; however, it would
hopefully provide sufficient advanced-warning time to replace broken cryptographic components.

Many cryptographic systems and constructions use redundant components in the hope of achieving
tolerance. The most familiar such construction is cascade. Cascading of cryptosystems is very
natural; novices and experts alike believe that the cascade E�E’ of two cryptosystems E,E’ is at
least as secure as the more secure of the two, hopefully even more secure than both. Indeed,
cascading of cryptosystems has been a common practice in cryptography for hundreds of years.

However, so far, there are few publications on tolerant cryptographic constructions. In [AB81],
Asmuth and Blakely present a simple construction of a randomized cryptosystem from two

1 In practice, we try to use conservative estimates of progress in cryptanalysis, based on past progress and other
factors; see e.g. [LV01].

 Page 2 1/28/2004

component ciphers, with the hope of achieving tolerance; proof of security was given only in
[GM84]; see variant for block ciphers in [HP86]. The highly related problem of cascading of block
ciphers received some attention. Even and Goldreich showed that keyed cascade ensures tolerance
against message recover attacks on block ciphers [EG85, Theorem 5], and conjectured that the
result holds for other specifications of ciphers. Damgard and Knudsen [DK94] proved that it holds
for security against key-recovery under chosen-plaintext attacks. Maurer and Massey [MM93]
claimed that the proof in [EG85] “holds only under the uninterestingly restrictive assumption that
the enemy cannot exploit information about the plaintext statistics”, but we disagree. We extend
the proof of [EG85] and show that, as expected intuitively and in [EG85], keyed cascading
provides tolerance to many confidentiality specifications, not only of block ciphers but also of
other schemes such as public key and shared key cryptosystems. Our proof uses a strong notion of
security under indistinguishability test – under plaintext only and non-adaptive chosen ciphertext
attack (CCA1). One the other hand, we note that cascading does not provide tolerance for adaptive
chosen ciphertext attack (CCA2), or if the length of the output is not a fixed function of the length
of the input. This shows the importance of backing the intuition with analysis and proof.

Tolerance is applied in many practical cryptographic systems, not just for confidentiality. In
particular, it is widely accepted that the parallel construction g(x)||g’(x), using the same input x to
both functions, ensures tolerance for several integrity properties, such as (several variants of)
collision-resistant hashing as well as Message Authentication Codes (MAC) and digital signatures.
We prove that the parallel construction indeed provide tolerance for such integrity specification.
The parallel construction is used, for tolerance, in practical designs and standards, e.g. in the W3C
XML-DSIG specifications and in the TLS protocol [RFC2246].

The TLS standard uses also parallel-XOR construction, to ensure security as long as at least one of
two standard hash functions (MD5 and SHA-1) satisfies certain security properties. The parallel-
XOR construction of f,g is denoted f�g and defined as f�g(x)=f(x)�g(x), where � denotes bit-
wise exclusive OR. The parallel-XOR construction of fk , gk is denoted fk�gk’ (or simply by f�g),
and defined as fk�gk’(x)= fk(x)�gk’(x). The parallel-XOR construction is used in the TLS standard,
to provide cryptanalysis-tolerant construction of two pseudo-random functions (one based on MD5
and the other based on SHA-1). This improves on the (older) SSL protocol, which also combined
MD5 and SHA-1, but failed to ensure tolerance; see details of both TLS and SSL in [R00]. Our
techniques can be used to analyze the tolerance of this construction.

However, there are many important cryptographic mechanisms for which there is no known
tolerant design (even without analysis). In particular, this holds for several important cryptographic
primitives that combine confidentiality and integrity properties; these primitives are often critical
for important applications and protocols.

We present a general definition of confidentiality/integrity scheme (CIS), and appropriate
confidentiality and integrity specifications, s.t. several important cryptographic primitives become
a special case. These include confidentiality-only schemes (public and shared key encryption),
integrity-only schemes (MAC and signatures), as well as schemes ensuring both integrity and
confidentiality such as authenticated encryption [BN00, J01] and signcryption schemes [Z97,
BSZ02, ADR02, GH04]. It also seems possible to provide additional specifications for
commitment schemes [DPP94, DPP98, HM96], and committing encryption schemes [GH04]. By
using the general CIS definition, we can prove tolerance properties for multiple schemes (e.g.
encryption and signature); this general definition may be of independent interest.

We analyze the tolerance of confidentiality/integrity schemes (CIS) under cascade and parallel
constructions, and obtain concrete bounds on the security and tolerance of the constructions. Since
our definition of CIS is general and includes public key and shared key encryption schemes as well
as signatures and MAC schemes, our results are related, and generalize on, previous works which

 Page 3 1/28/2004

focused on combining encryption and signatures/MAC, including informal design principles and
specific attacks as in [AN95, AN96, B98] and analysis as in [BN00, K01, ADR02, GH04]. As
expected, cascade ensures tolerance for confidentiality, while parallel construction ensures
tolerance for integrity, but neither ensures tolerance for both confidentiality and integrity.

We then show new constructions, which are compositions of cascade and parallel constructions,
and ensure tolerance for both integrity and confidentiality specifications. This provides tolerance
for authenticated encryption and signcryption schemes. The new constructions are practical,
efficient and simple; yet they have not been proposed before and certainly not analyzed (as we do).

Two of our constructions are obtained from a general composition lemma, allowing compositions
of any two tolerant constructions; this may be useful for composing other basic constructions to
provide tolerance for advanced specifications. The composition lemma allows us to compose a pair
of constructions in many structures, defined by a simple combinatorial element which we call a
composition-structure. We present two very simple composition structures, which we call D and E
after their graphical structure, and use them to compose the cascade and parallel constructions,
providing tolerance for both confidentiality and integrity specifications.

We then present another composite construction, which we call the T construction. The T
construction uses specific observations from the analysis of the cascade and parallel constructions,
instead of using the general composition lemma. As a result, it provides optimal tolerance for
confidentiality and integrity schemes, including signcryption and authenticated encryption
schemes, from candidate signcryption and authenticated encryption schemes, or directly from
encryption and signature/MAC schemes. The T construction is very simple and natural, as
illustrated in Figure 1, showing the combination of three encrypt-and-sign functions of
signcryption schemes ��, �� , ��; the resulting scheme is secure as long as at least one of the three
component schemes is secure (this generalizes to any number of components). Notice that the T
construction could be used to create tolerant signcryption (and authenticated encryption) schemes
by connecting in parallel several signature (respectively MAC) schemes, and encrypting the result
by cascade of encryption schemes.

��.ES ��.ES ��.ES

m

��.ES

��.ES

��.ES

c

Figure 1: T-construction of three encrypt-and-sign functions

To our knowledge, the D, E and T constructions are the first provably-secure tolerant constructions
of general cryptographic functions, beyond the simple, classical constructions mentioned above,
and few additional cryptographic constructions proven secure based on validity of either of two
(specific) `hardness` assumptions, e.g. [Sh00, O92]. We note that in theory, it may be possible to
ensure tolerance by using provable constructions of cryptographic mechanisms from few `basic`

 Page 4 1/28/2004

cryptographic mechanisms, which have simple tolerant designs. For example, many cryptographic
mechanisms can be constructed from one-way functions; and (as we show) it is sufficient that one
of {g , g’ } is a one-way function, to ensure their parallel construction f(x,x’)=g(x)||g’(x’) is also a
one-way function. Provably-secure constructions based on one-way functions exist for many
cryptographic mechanisms, e.g. pseudo-random generators [Go01,HILL99] and signature schemes
[NY89]. Therefore, by using a tolerant construction of one way function (from multiple candidate
one-way functions) as the basis of some cryptographic scheme, the scheme retains the proven
security properties even if one of the candidate one-way functions is not secure. However, such
constructions are often inefficient, and involve unacceptable degradation in security parameters
(e.g., require absurd key and/or block sizes).

In this work, we use concrete security measures, following [HL92, BKR94,BDJR97], to compute
the exact loss in security due to construction. Our analysis is a bit more precise than prior works, in
that we are explicit also about the overhead of using the component functions by the adversaries;
this may be significant since some tolerant constructions may involve many applications, and
possibly substantial increase in the length of the inputs (in previous works, these factors were often
negligible). Using this precise analysis, we show that our constructions inherit almost the entire
security of the `most secure` component. This precise concrete security analysis may be useful for
other applications.

Organization. In Section 2 we present specifications for confidentiality and integrity
cryptographic schemes. In section 3 we present the general concept of tolerant constructions and
present the cascade and parallel constructions, and their tolerance properties for confidentiality and
integrity schemes. In section 4 we present compositions of constructions, including the
composition lemma, and present the E and D compositions and constructions, as well as the T
construction. We conclude with several open questions.

2. Specifications of Confidentiality/Integrity Schemes
In this section we define and present specification for confidentiality/integrity schemes, a general
abstraction of cryptographic schemes with confidentiality and/or integrity properties including
(symmetric and asymmetric) encryption schemes, signatures schemes, message authentication
codes (MAC), authenticated encryption, committed encryption, and signcryption. Our definitions
are concrete, namely we explicitly identify all the resources including randomness.

In general, specifications are merely predicates over a set of functions F. Let S(F) be the set of all
specifications (predicates) over F. We say that f�F satisfies s�S(F) if s(f)=True. For convenience,
we often refer to the conjunction of the predicate for a set of functions; s(f1,…fn)=True iff for all
i�{1,…n} holds s(fi)=True.

Cryptographic specifications are often phrased in terms of experiments, representing attempts by
an adversarial algorithm A to `break` the function. We now give an example: we use the following
experiment OWF, with parms=<�A,�A>, to establish (concrete and poly-time) specifications for
one-way functions.

Definition ����2-1 Let A be an (adversarial) algorithm and let f�F({0,1}*}), k, �A, �A � ����. Let
OWFA,f(k,�A,�A) be the following experiment:

(1) m�R{0,1}k;

(2) m’=A(f(m));

(3) Return “win” if all of the following conditions hold, otherwise return “loss”:

a. f(m’)=f(m), and

 Page 5 1/28/2004

b. A uses at most �A random bits and at most �A computational steps.

2.1. Confidentiality and Integrity Schemes

Specifications can be applied also to finite sets of functions, which we call (cryptographic)
schemes2. This is easily achieved by representing schemes by a single function, with an additional
input parameter � choosing one of the functions in the scheme. For example, consider an
encryption scheme �, defined by the three functions <KG,E,D> (for key generation, encryption
and decryption, respectively). It is convenient to refer to a specific function in the scheme using
dot notation, e.g. �.E is the encryption function. Therefore, we can view �.�(x) as one function,
whose first parameter ��{KG, E, D} identifies the `member` function to be used.

Our results apply to several important schemes, including shared and public key cryptosystems
(encryption schemes), signature schemes, commitment schemes, committed-encryption schemes,
message authentication codes (MAC), authenticated-encryption schemes and signcryption schemes
(which combine signature and encryption schemes). The security specifications of these different
schemes consist of confidentiality and/or integrity specifications, each of which is quite similar for
the different schemes; we show constructions that ensure tolerance for the confidentiality and/or
integrity specifications for all of the above schemes.

Rather than restate the results for each type of scheme, we present them for the following general
confidentiality/integrity cryptographic scheme, such that each of the schemes is a special case of it.
Using a generalized scheme saves repetitions, but does introduce some added complexity; for
simplicity, we exclude commitment schemes, which have slightly different syntax. The definitions
and tolerant constructions of the general confidentiality/integrity scheme (CIS) are not much more
complex than of signcryption and authenticated encryption schemes (whose tolerance is one of our
major results).

There is a trivial mapping of every (symmetric or asymmetric) encryption scheme, message
authentication code, signature scheme, authenticated encryption and signcryption scheme to a
corresponding confidentiality/integrity scheme, defined as follows.

Definition ����2-2 A confidentiality/integrity scheme (CIS) ��������is a collection of functions
(KG,ES,D,V) such that for every m, r, red , rsv , e=��.KG.e(red), d=�.KG.d(red), s=�.KG.s(rsv) and
v=�.KG.v(rsv) holds �.D.Md��.ESe,s,r(m))=m and �.Vv,e�m,�.Dd��.ESe,s,r(m)))=True, where:

1. The key generation function �.KG input is a random string, and its output is a set of four
keys: e, d, s, v for encryption, decryption, signature and verification, respectively. We refer
to particular key using dot notation, e.g. �.KG.e returns the encryption key.

2. The encrypt and sign function �.ES inputs are the encryption key e, the signature key s, a
message m and a random string r, and its output is ciphertext/signature c.

3. The decrypt (message recovery) function �.D inputs are the decryption key d, the
verification key v and ciphertext c, and its outputs are a message m and (optionally) a `hint`
hint for verification. To refer only to the message (hint) output we write �.D.M
(respectively, �.D.H). For simplicity we did not include random input (i.e. decryption is
deterministic), since it is rarely (if ever) used.

2 Some definitions of cryptographic schemes are not as a collection of functions, but as a collection of probabilistic
algorithms or machines. Often we can view them as functions with additional inputs for randomness and/or state.

 Page 6 1/28/2004

4. The (public) verification function �.V whose inputs are the verification key v, the
encryption key e, a message m, ciphertext c and hint h, and whose output is Ok or Not.

To allow concrete security analysis of constructions, we need concrete bounds on the complexities
of the scheme, as follows.

Definition ����2-3 [Concrete complexity bounds of CIS] Let k, k’, l, �, �, h�����, with l>�, and let
�:{KG,ES,V,D}���������. Then for every confidentiality/integrity scheme � we define predicate
bounds[k, k’, l, �, �, h, �](�	 as True if and only if:

1. For inputs of length up to k,��.KG is computable by a deterministic machine in time �[KG],
and its output are keys of length at most k’ bits each.

2. For every m,e,r,s�{0,1} * s.t. |m|�l-�, the value of �.ESe,s,r(m) is computable by a
deterministic machine in time �[ES]. Also, the machine reads up to � bits from the (random
input) r, and |�.ESe,s,r(m)|�l.

3. For every m, m’, e, s, r�{0,1}* , if |m|=|m’|�l-� holds |�.ESe,s,r(m)|=|�.ESe,s,r’(m’)|.

4. For every c,d�{0,1}* s.t. |c|�l, the value of �.Dd(c) is computable by a deterministic
machine in time �[D]. Also, |�.D.Md(c)|�l-� and |�.D.Hd(c)|�h.

5. For every m, c, hint, e, v�{0,1}* s.t. |m|�l-�, the value of �.Vv,e(m,c,hint) is computable by
a deterministic machine in time �[V].

Notice that condition 3 above requires that for inputs of the same length, the outputs will also be of
the same length. This is required to allow confidentiality definitions based on indistinguishability
of ciphertext from any two inputs of the same length. Since this condition is kept by all practical
CIS we are aware of, it seems best to require it as part of the complexity bounds of CIS.

2.2. Confidentiality Specifications

We first define an indistinguishability experiment IndExp, as a generalization of known two-phase
indistinguishability experiments for shared and public key confidentiality primitives (e.g.
cryptosystems). Specifically, for public encryption key e, use the experiment with input
ISPUB(e)=True; similarly, for public verification key v, use ISPUB(v)=True. In the first phase of
the experiment, the adversary chooses two plaintexts, and in the second phase the adversary tries to
distinguish the encryption of one of two plaintexts. At each phase ��{1,2}, we allow the adversary
up to q[�,f] queries to oracles for functions f�{ES,D,V}, corresponding to the functions3 of the
scheme �.

Definition ����2-4 [Indistinguishability Experiment for CIS] Let ��be a CIS and let k, l, t, �, �, �A �
����, ISPUB:{e,v}�{T/F} and q:{select,find}�{ES,D,V}�����. Let AO be an (adversarial) algorithm
with access to oracle O for the functions in �. Let IndExpA,�
ISPUB(k,q,l,�,t, �, �A) be the following
experiment:

(1) red , rsv�R{0,1}k ; e=��.KG.e(red); d=�.KG.d(red); s=�.KG.s(rsv); v=�.KG.v(rsv);

3 We did not include `feedback-only chosen ciphertext attacks` of the kind used in the attacks of [B98, K01]. It seems
not difficult to extend the definition and results to cover this important type of attacks.

 Page 7 1/28/2004

(2) Let O be an oracle to the functions: {�.ESe,s,r , �.Dd , �.Vv,e}

(3) If ISPUB(e)=T then e’=e else e’=�; If ISPUB(v)=T then v’=v else v’=�;

(4) (p[0],p[1],state)� AO(“select”,e’,v’,1k); /* select phase */

(5) b�R{0,1};

(6) r�R{0,1}�; c=�.ESe,s,r(p[b]);

(7) �= AO(“find”,c,state); /* find phase */

(8) Return “win” only if all of the following conditions hold, otherwise return “loss”:

a. �=b, and

b. |p[1]|=|p[0]|� l-�, and

c. total running time of AO is less than t, and

d. AO makes at most q[�,f] calls to oracle �.f at phase ��{select, find}, and

e. AO uses at most �A random bits, and

f. AO does not make oracle query �.Dd(c) during select phase, and

g. in its oracle queries, AO uses m,c s.t. |m|�l-� and |c|�l.

We can now derive the confidentiality specifications for CIS. First, concrete specifications.

Definition ����2-5 We say that ��satisfies specification INDISPUB(a,k,q,l,�,t,�,�A) if for every
adversary A holds Pr[IndExpA,�
ISPUB(k,q,l,�,t, �, �A)=”win”]< ½+a.

We now also present asymptotic, polynomial-time complexities. Allowing polynomial number of
each type of queries, including queries to D (chosen ciphertext) during the `find’ phase,
corresponds to adaptive chosen ciphertext (CCA2) attacks; weaker notions (e.g. CCA1, CPA) must
restrict the queries appropriately. We define only CCA2 and CCA1; other variants (e.g. CPA) are
similar.

Definition ����2-6 We say that � satisfies specification CCA2-INDISPUB if ��PPT and for any strictly
positive polynomials l, �, t, �, �A, a and positive polynomials q[�,f] for ��{select, find} and
f�{ES,D,V}, exists some integer k0 such that for every k	k0, holds:
Pr[IndExpA,�
ISPUB(k,q(k),l(k),�(k),t(k), �(k), �A(k))=”win”]<½+a(t). We say that � satisfies
specification CCA1-INDISPUB if � satisfies CCA2-INDISPUB restricted to q[“find”,D]=0. We say
that � satisfies specification CPA-INDISPUB if � satisfies CCA1-INDISPUB restricted to
q[“select”,D]=0.

2.3. Integrity Specifications

In this work we consider only the strongest and most common security notion for signature
schemes, Existential Unforgeability. This is the “hardest” notion of security for signatures.
Existential unforgeability means that any PPT adversary � should have a negligible probability of
generating a valid signature of a “new" message. Notice, � is not required to “know” the message
whose signature was obtained, so it may be random or nonsensical.

We first define a forgery experiment ForExp, as a generalization of Existential Unforgeability
experiment introduced by Goldwasser, Micali, and Rivest [GMR95]. Like for confidentiality, we
again use parameter ISPUB to define whether we use for encryption and/or authentication a shared

 Page 8 1/28/2004

secret key or a public/private key pair. We allow the adversary up to q[f] queries to oracles for
functions f�{ES,D,V}, corresponding to the functions of �.

In the integrity specifications we include a parameter SPOOF, to specify whether the attacker can
perform key-spoofing attacks as in [AN95], namely present a forgery by using a different
encryption key e than the one used in the encrypt and sign (ES) function.

Definition ����2-7 [Forgery Experiment for CIS] Let ��be a CIS and let k, t, �A � ����,
ISPUB:{e,v}�{T/F}, SPOOF�{T,F} and q:{ES,D,V}���������. Let AO be an (adversarial) algorithm
with access to oracle O for the functions in �. Let ForExpA,�
ISPUB,SPOOF(k,q,l,�,t, �A) be the
following experiment:

(1) red , rsv�R{0,1}k ; e=��.KG.e(red); d=�.KG.d(red); s=�.KG.s(rsv); v=�.KG.v(rsv);

(2) Let O be an oracle to the functions: {�.ESe,s , �.Dd , �.Vv,e}

(3) If ISPUB(e)=T then eA=e else eA= �; If ISPUB(v)=T then vA=v else vA= �;

(4) (type,
)� AO(eA,vA,1k);

(5) If type=’m’ then (m,c,h,es)=Parse(
)
else { (c,es)=Parse(
); (m,h)=��.Dd(c) } ;

(6) If SPOOF=T and es� � then e*=es else e*=e;

(7) Return “win” only if all of the following conditions hold, otherwise return “loss”:

a. �.Ve*,v(m,c,h)=Ok, and

b. AO did not make oracle query �.ES�,s(m) for any encryption key �, and

c. total running time of AO is less than t, and

d. AO makes at most q[f] calls to oracle �.f, and

e. AO uses at most �A random bits.

f. in its oracle queries, AO uses inputs of size at most |m|�l-� and |c|�l.

We can now derive the integrity specifications for CIS. Note that if q[ES]>0, this is a known
message attack (KMA).

Definition ����2-8 We say that ��satisfies specification INTISPUB,SPOOF(a,k,q,l,�,t,�A) if for every
adversary A holds Pr[ForExpA,�
ISPUB,SPOOF(k,q,l,�,t,�A)=”win”]< ½+a. We say that � satisfies
specification CMA-INTISPUB,SPOOF if ��PPT and for any strictly positive polynomials l, � , t, �A, a
and positive polynomials q[f] for f�{ES,D,V}, exists some integer k0 such that for every k	k0,
holds: Pr[ForExpA,�
ISPUB,SPOOF(k,q(k),l(k),�(k), t(k), �A(k))=”win”]<a(t).

Comment: integrity does not ensure commitment. Notice that the integrity specification does
not imply binding between the ciphertext and the plaintext, as required by commitment schemes
[DPP94, DPP98, HM96] and committed-encryption schemes [GH04]. However, it seems that our
techniques may yield similar results for commitment specifications.

3. Tolerant Constructions
In this section we introduce the concept of tolerant constructions, namely a mapping c of one or
more `candidate functions` f1,…fp into a single `redundant` function c(f1,…,fp), such that c(f1,…,fp)
satisfies some specification s’ as long as a sufficient number among f1,…fp satisfy specifications s
(where possibly s=s’). We then present the cascade and parallel constructions, two of the most

 Page 9 1/28/2004

important and basic constructions. We show that cascade preserves integrity and provides
tolerance for confidentiality (indistinguishability), while parallel construction preserves
confidentiality and provides tolerances for integrity.

3.1. Constructions and Tolerant Constructions

We first define the general concept of a construction. Given F and an integer p, let c be a mapping
of ordered set <f1, … , fp> of functions in F to a function in F, i.e. c:Fp

�F. We say that c is a
construction of plurality p over F.

We now define tolerant constructions. A tolerant construction c accepts as input several candidate
functions <f1, … , fp>, e.g. for specification s�S(F), and output a single function c(f1, … , fp) which
satisfies specifications s’�S(F) as long as ‘enough’ of the candidates satisfy s (optionally s=s’). In
addition, we often require that all of the candidate functions fi satisfy some minimal specifications
b�S(F), such as bounds on their complexities.

Definition ����3-1 Consider some set of functions F and predicates s,s’,b�S(F). Construction c of
plurality p over F is t -tolerant for s����s’ with prerequisite b, where t is an integer between 0 and
p-1, if for every set {f1,…fp}�Fp s.t. b(f1,…fp)=T holds:

� �� � � � TrueffcsTruefstpjjii pitp j
	
	���
� �),...,(')()1:)(,...,(11

When (as often) b(f)=True for all f�F, we omit it, and say e.g. that c is t -tolerant for s�s’. If
construction c of plurality p over F is 0-tolerant for s���� s’ then we say that c preserves s����s’. If c
is t- tolerant for s�s, then we say simply that c is t-tolerant for s; if t=0 then we say that c
preserves s.

3.2. Cascade Constructions

The most basic tolerant construction of cryptographic functions is the cascade construction c�. By
cascading we mean applying in sequence. We begin by discussing `simple cascading’, which is
cascading of functions with a single input and output, such as hash functions, namely
c�(f,g)=f�g(x)=f(g(x)); some readers may skip this subsection as it is mostly as an exercise, since
we can only show that cascading provides tolerance for very specialized specifications of keyless
functions. In the following subsections we discuss cascading of keyed schemes.

3.2.1. Cascading of Keyless Functions (may be skipped)

The cascade of two (keyless) functions f and g, denoted f�g or c�(f,g), is defined as
c�(f,g)=f�g(x)=f(g(x)). Keyless cascading is a construction of plurality 2 for functions whose
domain D contains their range R, i.e. R�D. This holds for some cryptographic primitives such as
One Way Functions (OWF), and some specifications of keyless hash functions. In the next
subsection we discuss cascading of cryptographic primitives, e.g. cryptosystems, whose domain
consists of multiple inputs such as data, key and random bits.

We now show that cascade does not preserve either OWF or WCRHF. We also show that One-
Way Permutations (OWF property restricted to permutations) is tolerant under cascade; this may
not be very useful but at least shows that cascading could be useful for some keyless functions.

More precisely, we show that cascade ensures tolerance for the polytime-OWF specification, over
the set P({0,1}*)�F({0,1}*), which consists of polynomially-time computable permutations for any
given input (and output) length, i.e. f� P({0,1}*) if and only if f�PPT and
(
k)(
x�{0,1}k)(|f(x)|=k)^(
y�{0,1}k:y�x)(f(y)�f(x)). Similarly, cascade ensures tolerance for

 Page 10 1/28/2004

concrete-OWFf(a,k,�A, �A) � [Time(f,k)� �F]� concrete-OWFf(a,k,�A, �A+�F) � [Time(f,k)� 2�F]
over the set Pk, which consists of permutations over {0,1}k.

Lemma ����3-1 Cascade of keyless functions is… �

1. 1-tolerant over P({0,1}*) for specifications polytime-OWF.

2. 1-tolerant over Pk for specifications:
concrete-OWFf(a,k,�A, �A)�[Time(f,k)� �F]� concrete-OWFf(a,k,�A, �A+�F)�[Time(f,k)�
2�F]

3. Not (even) 0-tolerant over F({0,1}*) for specifications polytime-OWF and polytime-
WCRHF.

Proof: To prove claim 3, let h be a OWF and/or WCRHF. Let g(x)=h(x)||0|x| and

f(x)=
�
�
� 	

	
elsexh

0yxif0
xf

2x

)(
)(

/||

. Trivially, both f and g are OWF and/or WCRHF, respectively,

yet f�g is neither OWF not WCRHF; in fact, f�g(x)=0 for every x.

It remains to prove claim 2 (from which claim 1 immediately follows). Trivially, if Time(f,k)� �F
and Time(g,k)� �F then Time(f�g,k)� 2�F. Let s(f)= concrete-OWFf(a,k,�A, �A) � [Time(f,k)� �F],
s’(f)= concrete-OWFf(a,k,�A, �A+�F). It remains to prove that s(f)�s’(f�g) and that s(g)�s’(f�g).

Assume f, g�Pk and Time(f,k)� �F, Time(g,k)� �F. Trivially, f�g� Pk. Assume that s’(f�g)=False;
we prove that both s(f)=False and s(g)=False.

Since s’(f�g)=False, there is some (possibly probabilistic) algorithm A s.t.

FA
k xgfAtime10x �� ���
)))((()},{(o and � � amgfmgfAgfk

R 10m
�	

�
)()))(((Pr

},{
ooo .

Define algorithms Af , Ag as follows:

 Af(y)=g(A(y)), Ag(y)=A(f(y))

We first show that the running time of Af and Ag over inputs of length k is bounded by t+�.
Suppose Af is given input f(m) where |f(m)|=|m|=k (remember that f is a permutation for inputs of
any length k). Therefore, Af gives input of the same length k to A. WLOG, we can assume that the
output of A is also of length k (since otherwise clearly A loses). Therefore, the running time of Af
on input of length k is at most t+� ; a similar argument holds for Ag.

It remains to show that � � amfmfAf f10m k
R

�	
�

)()))(((Pr
},{

 and

� � amgmgAg g10m k
R

�	
�

)()))(((Pr
},{

.

Let X denote the k-bit strings x for whom A succeeds in inverting f�g, i.e. for every x�X holds
f�g(A(f�g(x)))= f�g(x). Since � � axgfxgfAgfk

R 10x
�	

�
)()))(((Pr

},{
ooo , we know that

|X|	a�2k. Similarly let � �� � � �� � � �� � � �� �xgxgAg10xXxfxfAf10xX g
k

gf
k

f 	��	��)(},{,)(},{ .

We show that XXXX gf �� , and since |X|	a�2k, the claim follows.

Let x�X. Hence f�g(A(f�g(x)))= f�g(x), namely f(g(Ag(g(x)))=f(g(x)). Since f is a permutation, it
follows that g(Ag(g(x)))=g(x), namely x�Xg.

Similarly, let xf=g(x). Since x�X, then f�g(A(f�g(x)))= f�g(x), namely f(Af(f(xf)))=f(xf), i.e. xf�Xf .
Since g is a permutation, it follows that |Xf|	|X|. �

We believe that the positive parts of the Lemma (claims 1 and 2) could be generalized for an
appropriate family of regular functions. It would be interesting to find other cryptographic

 Page 11 1/28/2004

specifications of keyless functions for which cascading provides tolerance, or any tolerant
construction for some useful specifications for keyless hash functions.

3.2.2. Cascading of Confidentiality/Integrity Schemes (CIS)

We next consider cascading of keyed cryptographic schemes, specifically of confidentiality and
integrity schemes (CIS).

The keyed cascade of two CISs �, ��, denoted c�(�,��) or ����, is defined as follows (see simplified
illustration in Figure 2). The definitions and proofs extend trivially to cascade of arbitrary number
of CISs.

1. ����.KG(r,r’)=�.KG(r)||��.KG(r’).

2. ����.ESe,e’,s,s’,r,r’(m)=�.ESe,s,r(��.ESe’,s’,r’(m))

3. ����.D.Md,d’(c)=��.D.Md’(�.D.M.cd(c))

4. ����.D.Hd,d’(c)=��.D.Hd’(�.D.Md(c)) || �.Dd(c)

5. ����.Ve,e’,v,v’(m,c,<h’,h,c’>)= �.Ve,v(c’,c,h) ^ ���.Ve’,v’(m,c’,h’)

�’.ES

�.ES

m

���’.ESe,e’,s,e’,r,r’(m)=
�.ESe,s,r(�’.ESe’,s’,r’(m))

�’.D

�.D

c

���’.D.Md,d’(c)=
�’.D.Md’(�.D.Md(c))

�.KG �’.KG

r r’

<e,d,s,v>=�.KG(r) <e’,d’,s’,v’>=�’.KG(r’)

d’

r

r’

��
�’

.D
.H

d,
d’

(c
)=

…e’,s’

e,s

d

�’.V

�.V
v,e

v’,e’

h’

m,c’

c’,c
h

Figure 2: Keyed Cascade of CISs

Clearly, keyed cascade is a construction of plurality 2 of CISs (namely, if �
����are both CIS, then
���� is also a CIS). We can also easily cap the complexities of the construction, and the results
extend to cascade of more than 2 schemes; we summarize these observations as follows:

Lemma ����3-2 Let �
��� be a pair of CISs�such that bounds[k, k’, l, �, �, h, �](�
��	=True with l>2�.
Then co(�
��	
���� is also a CIS and bounds[2k, 2k’, l, 2�, 2�, 2h+l, 2�](����	=True. Let ��
����n
be n CISs�such that bounds[k, k’, l, �, �, h, �](���
����n	=True with l>n�. Then co(��
����n	
�����
���n is also a CIS and bounds[nk, nk’, l, n�, n�, nh+(n-1)l, n�](�������n	=True. �

 Page 12 1/28/2004

3.2.3. Cascading provides Tolerance for Confidentiality Specifications

Trivially, cascading does not ensure tolerance under CCA2, adaptive chosen ciphertext attack; see
other issues with CCA2, and an alternative definition (gCCA), in [ADR02]. We now show that
cascade is a 1-tolerant construction for the indistinguishability confidentiality specification, when
not allowing adaptive chosen ciphertext queries (i.e. with q[find,D]=0).

Lemma ����3-3 Let ISPUB:{e,v}�{T,F}. Then:

1. The cascade construction �� is 1-tolerant for CCA1-INDISPUB and for CPA-INDISPUB.

2. Let k, k’, l, �, �, h, to, �o
A �N s.t. l>2�, �:{KG,ES,V,D}�N, q:{select,find}�{ES,D,V}�N

s.t. q[find,D]=0. Then co is 1-tolerant for s�so with prerequisite bounds[k, k’, l, �, �, h,
�], where so=INDISPUB(a,k,q,l,2�,t0, �,�o

A), s=INDISPUB(a,k,q,l,�,t, �,�A) with
t=to+�[KG]+2�[E]+ � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq � , �A=�o
A+2k+2�.

3. For any n>1, the cascade of n schemes co is (n-1)-tolerant for s�so with prerequisite
bounds[k, k’, l, �, �, h, �], where so=INDISPUB(a,k,q,l,n�,t0, �,�o

A), s=INDISPUB(a,k,q,l,�,t,
�,�A) with t=to+(n-1)�[KG]+n�[E]+(n-1) � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq � , �A=�o
A+2k+2�.

Proof: We prove only claim 2 (claim 3 follows similarly, and claim 1 follows from claim 2). The
proof is by contradiction; namely assume that for some �, �� holds so(����)=False, and we show
that s(�)=s(��	=False.

Since so(����)=False, then there is some adversary Ao such that
po�Pr[IndExpA,�
ISPUB(k,q,l,to,�,�o

A)=”win”]� ½+a. We next show that given such adversary Ao as
a black box, we can construct adversaries A, A’ such that
p�Pr[IndExpA,�
ISPUB(k,q,l0,t,�,�A)=”win”] �po � ½+a and
p’�Pr[IndExpA’,��
ISPUB(k,q,l0,t,�,�A)=”win”] � po � ½+a, where l0=l+�.

Namely, we prove (below) the following claims A, A’:

Claim A (A’): given adversary Ao such that po� ½+a as a black box, we can construct adversary A
(respectively A’) such that p�po � ½+a (respectively p’�po � ½+a).

This completes the proof, by showing that indeed s(�)=s(��	=False. �

Proof of Claim A: We construct adversary A as follows. In the “select” phase, A selects randomly
r’ed, r’sv�{0,1}k, and then uses �’.KG to compute the keys e’=�’.KG.e(r’ed), d’=��’.KG.d(r’ed), s’=�
�’.KG.s(r’sv), v’=��’.KG.v(r’sv).

Next, A invokes the “select” phase of Ao which returns plaintexts po[0], po[1] and state so. In its
operation, Ao may invoke the oracles for functions {ES,D,V} of �o; trivially, A can answer these
queries by using the corresponding oracle for �
�and computing the corresponding function of ���
(using keys e’, d’, s’ and v’). For example, to answer query of ��.Dd,d’(c), we first invoke the oracle
�.Dd on input c; denote the result as x. We now compute ��.Dd,d’(c)=��’.Dd’(�.Dd(c))=��’.Dd’(x),
which is possible since A knows d’.

To complete the “select” phase, A computes p[j]=��’.ESe’,s’,r’[j](po[j]) for j�{0,1} and r’[j]�R{0,1}*

(for public key encryption, i.e. if ISPUB[e]=F, then concatenate e’ to p[0] and p[1]). It then
returns p[0], p[1] and s=<so,e,e’,d’,s’,v’>. We later show that using r’[j]�R{0,1}� suffices.

In the “find” phase, A receives ciphertext c and state s=<so,e,e’,d’,s’,v’>. It simply invokes the
“find” phase of Ao on c and so, and returns the bit x returned by Ao.

 Page 13 1/28/2004

We now show that po �p. The probabilities are taken over the coin tosses by A, by the `black-box`
algorithm Ao, and by the experiment (for key-generation, encryption and b). Denote the coin tosses
as follows:

o ro
A : coins used by the `black-box` adversary Ao (provided by and known to A)

o Coins tossed by the experiment (unknown to A): for key generation (red, rsv), to select
the challenge plaintext p[b] (coin b), and for encrypting p[b] (bits r).

o Coins tossed by A for its own use, namely: for key generation (r’ed, r’sv) and to compute
the encryptions of the plaintexts S’.ESe’,s’,r’[j](po[j]) (bits r’[0], r’[1]).

Let rA=ro
A||r’ed||r’sv||r’[0]||r’[1] denote all the random bits tossed by algorithm A. Let w(rA, red, rsv,

r, b)=true if and only if IndExpA,�,ISPUB(k,q,l,t,�,�A)=”win” with the corresponding coin tosses.

Let ro
ed=red||r’ed, ro

sv=rsv||r’sv , ro=r||r’. Let wo(ro
A, ro

ed, ro
sv, ro, b)=true if and only if

IndExpA˚,�˚,ISPUB(k,q,l,to,�,�o
A)=”win” with the corresponding coin tosses.

The claim follows by showing that wo(ro
A, ro

ed, ro
sv, ro, b)� w(rA, red, rsv, r, b). We show this holds,

by showing that all conditions of step 8 of experiment E= IndExpA,�,ISPUB(k,q,l,t,�,�A)[rA, red, rsv, r,
b] hold if they (conditions of step 8) hold in experiment Eo= IndExpA˚,�˚,ISPUB(k,q,l,to,�,�o

A)[ro
A,

ro
ed, ro

sv, ro, b].

We use the following notation: let x@E (x@Eo) denote the value of variable x during experiment E
(respectively Eo). We omit the @ notation when the value is clearly identical in the two
experiments. Also, let c8�@E (c8�@Eo), where ��{a,b,…,f}, be true if claim � of step 8 holds
during experiment E (respectively Eo).

Algorithm A returns the same bit � as returned by Ao, namely �@E= �@Eo. Hence if c8a@Eo is
true, i.e. �@Eo=b, then also �@E=b and c8a@E=true.

By design of A above, for j={0,1} holds p[j]@E=�’.ESe’,s’,r’[j](po[j]@E). If c8b@Eo=true, then
|po[1]@E|=|po[0]@E|�l-2�. Since bounds[k, k’, l, �, �, h, �](��’)=True, we have
|p[1]@E|=|p[0]@E’|�l-�. Hence, c8b@Eo

�c8b@E.

For c8c, we note that the running time of A consists of the running time of Ao in the corresponding
experiment, plus the additional work by A. This extra work consists essentially of invoking the key
generation algorithm once, doing two encryptions (to compute p[0] and p[1]), and answering the
oracle queries of Ao. Each oracle query �o.f requires A to compute �’.f; it follows that if the running
time of Ao at Eo is bounded by to, then the running time of A at E is bounded by
t=to+�[KG]+2�[E]+ � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq � . Hence, c8c@Eo
�c8c@E.

We note that A involves oracle ��f only to answer oracle call �o.f of Ao. Hence, c8d@Eo
�c8d@E,

c8g@Eo
�c8g@E and c8f holds since q[find,D]=0.

It remains to show that c8e@Eo
�c8e@E. Adversary A users random bits

rA=ro
A||r’ed||r’sv||r’[0]||r’[1] (including the random bits ro

A for running Ao internally). Both r’ed
and r’sv are k bit long. Bits r’[0], r’[1] are used by A (only) to compute p[0],p[1]. Assume that c8b
holds at Eo, i.e. |p[1]@Eo|=|p[0]@Eo|�l-2�. Since bounds[k, k’, l, �, �, h, �](��	=True, we use at
most � bits from r’[j], for j={0,1}, in computing p[j]@E=�’.ESe’,s’,r’[j](po[j]@E). It follows that the
total number of random bits used by A is at most |ro

A|+2k+2�. If c8e@Eo holds, i.e. |ro
A|� �o

A, it
follows that A uses at most |rA|� �o

A+2k+2�= �A random bits. Hence c8e@Eo^ c8b@Eo
�c8e@E.

�

It remains to prove:

 Page 14 1/28/2004

Claim A’: given adversary Ao such that po� ½+a as a black box, we can construct adversary A’
such that p’�po � ½+a.

Proof of Claim A’: We construct adversary A’ as follows. In the “select” phase, A’ selects
randomly red, rsv�{0,1}k, and then uses �.KG to compute the keys e=�’.KG.e(red), d=��.KG.d(red),
s=��.KG.s(rsv), v=��.KG.v(rsv).

Next, A’ invokes the “select” phase of Ao which returns plaintexts p[0], p[1] and state so. In its
operation, Ao may invoke the oracles for functions {ES,D,V} of �o; trivially, A’ can answer these
queries by using the corresponding oracle for ��
�and computing the corresponding function of �.
Finally, A’ returns p[0], p[1] and s=<so,e’,e,d,s,v>. We later show that using r[j]�R{0,1}� suffices.

In the “find” phase, A’ receives ciphertext c and state s=<so,e’,e,d,s,v>. It computes c’=�.ESe,s,r(c)
and invokes the “find” phase of Ao on c’ and so, and returns the bit x returned by Ao.

The rest of the proof follows exactly like in claim A. �

3.2.4. Cascading Preserves Integrity Specifications

We now show that cascading is 0-tolerant (i.e. preserves) for the integrity specifications we
presented for confidentiality/integrity schemes (CIS). In fact, it is sufficient that the first scheme
applied to the message satisfies integrity, as we show in the next lemma. Integrity of the second
scheme is not sufficient to ensure integrity of the cascade (however, it suffices e.g. if the first
scheme satisfies the (weaker) integrity requirements of committed encryption; see in [GH04]).

Lemma ����3-4 For any ISPUB:{e,v}�{T,F}, SPOOF�{T,F} holds:

1. The cascade construction co is 0-tolerant for CMA-INTISPUB,SPOOF.

2. For any {��
��n} holds CMA-INTISPUB,SPOOF(�n)�CMA-INTISPUB,SPOOF(������n)

3. For any {��
��n}, a�[0,1],k, q, n, �,to,�o
A�����, l>n�, and q:{ES,D,V}�����

 let

t=to+�[KG]+n�[E]+(n-1) �
� },,{

][][
VDESf

ffq � , �A=�o
A+nk,

so=INTISPUB,SPOOF(a,k,q,l,n�,t0,�o
A), and s=INDISPUB,SPOOF(a,k,q,l,�,t,�A).

Then s(�n)� so(������n).

Proof: Claims 1,2 follows immediately from claim 3. We prove claim 3 by contradiction, and for
simplicity, only for n=2. Namely assume that so(����)=False and we show that s(��	=False.
Namely, assume that there is some adversary Ao such that
po�Pr[ForExpA,�
ISPUB,SPOOF(k,q,l,2�,to,�o

A)=”win”]�a. Using Ao as a black box, we construct
adversary A’ such that p’�Pr[IndExpA’,��
ISPUB(k,q,l,�,t,�A)=”win”] � po � a.

We construct adversary A’ as follows. In the “select” phase, A’ selects randomly red, rsv�{0,1}k,
and then uses �.KG to compute the keys e,d,s and v. Next, A’ invokes Ao which returns (type,
o).
We answer oracle queries of Ao like in Lemma �3-3.

We now follow step (5) of the Forgery experiment (Definition �2-7) to compute m,co,ho,eo
s. If

type=’m’ then we simply let (m,co,ho,eo
s)=Parse(
o). Let c’=�.D.M.cd(co), <h’,h,c’>=Parse(ho) and

<es, e’s>=Parse(eo
s); adversary A’ returns (‘m’,(m,c’,h’,e’s)).

Otherwise, i.e. when type�‘m’, let (co, eo
s)=Parse(
o). Let c’=�.D.M(co), <es, e’s>=Parse(eo

s);
adversary A’ returns (type,(c’,e’s)).

 Page 15 1/28/2004

We now show that indeed, when A’ is defined as above, then p’� po � a. The probabilities are
taken over the coin tosses by A’, Ao, and the experiment (for key-generation). Denote the coin
tosses as follows:

o ro
A : coins used by the `black-box` adversary Ao (provided by and known to A’)

o r’ed, r’sv: coins tossed by the experiment (unknown to A’), for key generation.
o red, rsv: coins tossed by A’ to generate keys for �.

Let r’A=ro
A||red||rsv denote all the random bits tossed by A’. Let w’(r’A, r’ed, r’sv)=true if and only if

ForExpA’,�,ISPUB,SPOOF(k,q,l,�,t,�A)=”win” with the corresponding coin tosses.

Let ro
ed=red||r’ed, ro

sv=rsv||r’sv . Let wo(ro
A, ro

ed, ro
sv)=true if and only if

ForExpA˚,�˚,ISPUB,SPOOF(k,q,to,�o
A)=”win” with the corresponding coin tosses.

The claim follows since wo(ro
A, ro

ed, ro
sv)� w’(r’A, r’ed, r’sv). This holds, since (trivially) all

conditions of step 7 of experiment E’= ForExpA’,�,ISPUB,SPOOF(k,q,t,�A)[r’A, r’ed, r’sv] hold if they
(conditions of step 7) hold in experiment Eo= ForExpA˚,�˚,ISPUB,SPOOF(k,q,to,�o

A)[ro
A, ro

ed, ro
sv]. �

3.2.5. Relations to `Sign-then-Encrypt` and `Authenticate-then-Encrypt`

While our work is the first to analyze cascading of confidentiality and integrity schemes, including
encryption, signature and MAC schemes, it is related to works which analyze how to achieve
confidentiality and integrity by a cascade of an encryption scheme and a signature or MAC scheme
(since all of these are special cases of confidentiality and integrity scheme). Indeed, from Lemma
�3-3 and Lemma �3-4 it follows trivially that sign-then-encrypt as well as MAC-then-encrypt ensure
both confidentiality (against CCA1) and integrity (i.e., a secure signcryption or authenticated
encryption scheme). This provides a new proof for several corresponding theorems in [K01,BN00]
(for MAC-then-encrypt) and [ADR02] (for sign-then-encrypt).

We note that sign-then-encrypt (and MAC-then-encrypt) does not provide IND-CCA2 security, as
shown by [B98], [BN00] and [K01]. Notice these attacks require only `feedback only CCA2`, i.e.
the adversary does not receive the plaintext but only the result of the verification. Also, proposition
4.6 of [BN00] shows that cascading does not ensure tolerance for non-malleable encryption.
Cascading or other tolerant constructions under feedback-only CCA2 attacks, for non-malleable
encryption, and for commitment schemes require additional investigation.

3.3. Parallel Construction

We now consider another basic construction: the parallel application of two cryptographic
functions to the same input, where the output is the concatenation of the outputs of both functions.
We call this the Same-Input, Multiple-Outputs (SIMO) Parallel Construction, or simply the
parallel construction. The parallel construction of single-input (keyless) functions f,g is denoted
as f||g or c||(f,g), and defined as c||(f,g)=f||g(x)=f(x)||g(x). When the functions have inputs for
random bits and/or keys, these are selected independently for the two functions, and the parallel
construction is fk,r||gk’,r’(x)= fk,r(x)||gk’,r’(x). We next define the parallel construction of
confidentiality/integrity schemes.

The parallel construction of two CISs �, ��, denoted c||(�,��)=�||��, is defined as follows. The
definitions and proofs extend trivially to parallel construction of arbitrary number of CISs.

1. �||��.KG(r,r’)=�.KG(r)||��.KG(r’).

2. �||��.ESe,e’,s,s’,r,r’(m)=�.ESe,s,r(m) ||��.ESe’,s’,r’(m)

3. �||��.D.Md,d’(c)=��.D.Md(c)

 Page 16 1/28/2004

4. �||��.D.Hd,d’(c)=��.D.Hd’(c) || �.D.Hd(c)

5. �||��.Ve,e’,v,v’(m,c,<h’,h>)= �.Ve,v(m,c,h) ^ ���.Ve’,v’(m,c,h’) ^����.D.Md’(c)=�.D.Md(c)]

Using two schemes in parallel provides tolerance for integrity but not for confidentiality. However,
it does preserve confidentiality. We state these facts in the following lemma. The proof is a trivial
adaptation of the lemmas for cascade, and omitted. Note also that this lemma is an extension of
Theorem 4.3 of [BN00] (which considered only shared key encryption and MAC).

Lemma ����3-5 For any ISPUB:{e,v}�{T,F}, SPOOF�{T,F} holds:

1. The parallel construction c|| of n>1 CIS schemes is (n-1)-tolerant for CMA-INTISPUB,SPOOF
and 0-tolerant for CCA1-INDISPUB and CPA-INDISPUB

2. The parallel construction c|| of n>1 CIS schemes is 0-tolerant for s�so with prerequisite
bounds[k, k’, l, �, �, h, �], where so=INDISPUB(a,k,q,nl,n�,t0, �,�o

A), s=INDISPUB(a,k,q,l,�,t,
�,�A) with t=to+(n-1)�[KG]+n�[E]+(n-1) � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq � , �A=�o
A+nk+n�.

3. The parallel construction c|| of n>1 CIS schemes is (n-1)-tolerant for s�so with
prerequisite bounds[k, k’, l, �, �, h, �], where so= INTISPUB,SPOOF(a,k,q,nl,n�,t0, �,�o

A), s=
INTISPUB,SPOOF(a,k,q,l,�,t, �,�A), t=to+(n-1)�[KG]+n�[E]+(n-1) � �

� �},{ },,{

][],[
selectfindj VDESf

ffjq �

and �A=�o
A+nk+n�.

4. Composite Tolerant Constructions
Often, neither cascade nor parallel construction provides tolerance for the desired specifications,
e.g. for signcryption and authenticated encryption, which require both confidentiality and integrity.
In such cases, we need a new construction. Often we can build the new construction by composing
known constructions. In this section, we first define compositions of constructions, and prove a
general composition lemma. We then present three composite constructions: D, E and T, which are
all `serial-parallel` constructions, i.e. combination of cascade and parallel constructions.
Constructions D and E are applications of the composition lemma, while T uses more specific
details from the analysis of cascade and parallel constructions in the previous section.

4.1. Compositions of Arbitrary Constructions

While in general one could consider compositions of many constructions, we restrict our attention
to compositions of two constructions. Such compositions accept as input two constructions c and
c’ and produce a composed construction denoted c’�I c, where I is a mapping of the `candidate
functions` to the constructions. Our definitions and results in this subsection refer to arbitrary
specifications, including both concrete security specifications and asymptotic security
specifications, as well as specifications which are not security related at all.

Let c be a construction of plurality p over <D,R> which is t-tolerant for s�s’, and let c’ be a
construction of plurality p’ over <D, R> which is t’-tolerant for s’�s”. Let p� denote the plurality
of the composition of c and c’; namely the input to the composite construction is a set f of p�
functions, f[i]�F(D�R). The composite construction first applies c to p’ sets of p functions each,
and then applies c’ to the p’ resulting functions. The composition is defined by the selection of the
p functions input to each of the p’ applications of the c construction, namely by a mapping
I:{1,…,p}�{1,…,p’}�{1,…, p�}, where Ii[j] identifies the jth function input to the ith c construction.
Given I, the I-composition of c’ and c, denoted c’�I c, is
 � � � � � �� �� � � � � �� �)(,...,)(,...,)(,...,)('][],...,[' '' pIf1IfcpIf1Ifccpf1fcc pp11I 	o�

 Page 17 1/28/2004

The following lemma shows that the security of the I-composition depends on a simple
combinatorial property of mappings I. Consider mapping I:{1,…,p}�{1,…,p’}�{1,…, p�} and
some set T�{1,…, p�} (of `weak inputs`). Let Gi(I,T)={ Ii[j] | j=1,…,p } - T, i.e. values Ii[j], for
some j, which are not in T; think of Gi(I,T) as the `good selections` of Ii. We say that I is a (good)
(t,t’,t�)-composition-structure if for every T�{1,…, p�} s.t. |T|� t�

holds: � � ''),(' tptpTIGpi1 i ������ .

Lemma ����4-1 Let I:{1,…,p}�{1,…,p’}�{1,…, p�} be a (good) (t,t’,t�)-composition-structure. Let c
be a construction of plurality p over <D,R> which is t-tolerant for s�s’, and let c’ be a
construction of plurality p’ over <D, R> which is t’-tolerant for s’�s”. Then c’�I c, is a
construction of plurality p� over <D, R> which is t�-tolerant for s� s”.

Proof: Consider any set f of p� functions, f[i]�F(D,R), and assume that p�-t of them satisfy
specification s. Namely, for some set {ij} of p�-t indexes holds s(f[ij])=True. We need to prove that
for every choice T�{1,…, p�} of up to t� functions in f which do not satisfy s, the function resulting
from applying composed construction c�I c’ to f satisfies s” . Namely, we need to prove that s”(
c’�I c(f[1],…,f[p�]))=True. Let f’[1],…,f’[p’] denote the p’ intermediate functions, i.e.
f’[i]=c(f[Ii(1)],…,f[Ii(p)]); hence c’�Ic(f[1],…,f[p�])=c’(f’[1],…,f’[p’]). Let G(I,T)={i s.t.
|Gi(I,T)|	p-t}. By definition of I holds: |G(I,T)|	p’-t’.

If i�G(I,T), namely |Gi(I,T)|	p-t, then for at least p-t of the functions f[Ii(1)],…,f[Ii(p)] holds
s(f[Ii(j)])=True. Since c is t-tolerant for s�s’ it follows that s’(f’[i])=True, for every i�G(I,T).
Since c’ is t’-tolerant for s’�s”, it follows that:�
s”(c’�Ic(f[1],…,f[p�]))=s”(c’(f’[1],…,f’[p’]))=True. �

4.2. Serial-Parallel Compositions (E and D)

Serial-parallel constructions are composed of several cascading and parallel constructions, e.g.
using composition structures. In particular, consider the following simple composition structures:

� Composition structure D:{0,1}�{0,1}�{0,1,2,3} defined as Di[j]=2i+j
� Composition structure E:{0,1}�{0,1,2}�{0,1,2} defined as Ei[j]=i+j mod 3

These two structures allow us to compose construction c which is 1-tolerant for specifications
x�x’ and 0-tolerant for specifications y�y’, with construction c’ which is 0-tolerant for
specifications x’�x” and 1-tolerant for specifications y’�y”, resulting in constructions c’�I c and
c’�I c which are both 1-tolerant for both x�x” and y�y”. Namely,

Lemma ����4-2 D and E are both (good) (0,1,1) and (1,0,1) composition-structures.

From the two Lemmas, we get:

Lemma ����4-3 Let c, cD’, cE’ be constructions of plurality 2, 2 and 3 respectively. If c is t-tolerant for
s�s’ where t�{0,1}, and cD’ , cE’ are (1-t)-tolerant for s’�s”, then cD’�D c and cE’�E c are both 1-
tolerant for s�s”.

Let c|| denote the parallel construction of plurality 2, and c||| denote the parallel construction of
plurality 3. Define constructions cD= cD’�D c||, cE=cE’�E c|||. From Lemma �4-3 together with
Lemma �3-3, 3-4 and 3-5, we get:

Lemma ����4-4 For any ISPUB:{e,v}�{T,F}, SPOOF�{T,F} holds:

1. The D and E constructions cD, cE are 1-tolerant for both CMA-INTISPUB,SPOOF and CCA1-
INDISPUB and CPA-INDISPUB

 Page 18 1/28/2004

2. The E construction cE is 1-tolerant with prerequisite bounds[k, k’, l, �, �, h, �] for both
IND�INDo and INT�INTo, where:

a. INDo=INDISPUB(a,k,q,3l,6�,t0, �,�o
A),

b. IND=INDISPUB(a,k,q,l,�,t, �,�A)

c. INTo= INTISPUB,SPOOF(a,k,q,3l,6�,t0, �,�o
A)

d. INT= INTISPUB,SPOOF(a,k,q,l,�,t, �,�A)

e. t=to+2�[KG]+5�[E]+5 � �
� �},{ },,{

][],[
selectfindj VDESf

ffjq � ,

f. �A=�o
A+3k+5�.

3. The D construction cD is 1-tolerant with prerequisite bounds[k, k’, l, �, �, h, �] for both
IND�INDo and INT�INTo, where:

a. INDo=INDISPUB(a,k,q,2l,4�,t0, �,�o
A),

b. IND=INDISPUB(a,k,q,l,�,t, �,�A)

c. INTo= INTISPUB,SPOOF(a,k,q,2l,4�,t0, �,�o
A)

d. INT= INTISPUB,SPOOF(a,k,q,l,�,t, �,�A)

e. t=to+3�[KG]+4�[E]+3 � �
� �},{ },,{

][],[
selectfindj VDESf

ffjq � ,

f. �A=�o
A+3k+3�.

4.3. The T construction

The D and E constructions are efficient and practical, and provide tolerant design for any pair of
specifications when one if tolerant under cascade and the other is tolerant under parallel
construction. However, in the special case of confidentiality and integrity schemes (CIS), there is
an even better construction – the T construction. This construction takes advantage of the
observation that if scheme ���satisfies integrity specifications, then ���� also preserves integrity, for
any scheme �.

The T construction of �1,…�n, denoted T(�1,…�n), is defined as T(�1,…�n)= �1�…��n�(�1||…||�n).

Lemma ����4-5 For any ISPUB:{e,v}�{T,F}, SPOOF�{T,F} holds:

1. The T construction of n>1 CIS schemes is (n-1)-tolerant for both CMA-INTISPUB,SPOOF and
CCA1-INDISPUB and CPA-INDISPUB

2. The T construction of n>1 CIS schemes is (n-1)-tolerant with prerequisite bounds[k, k’, l,
�, �, h, �] for both IND�INDo and INT�INTo, where:

a. INDo=INDISPUB(a,k,q,nl,2n�,t0, �,�o
A),

b. IND=INDISPUB(a,k,q,l,�,t, �,�A)

c. INTo= INTISPUB,SPOOF(a,k,q,nl,2n�,t0, �,�o
A)

d. INT= INTISPUB,SPOOF(a,k,q,l,�,t, �,�A)

e. t=to+(n-1)�[KG]+2n�[E]+(n-1) � �
� �},{ },,{

][],[
selectfindj VDESf

ffjq � ,

f. �A=�o
A+(n-1)k+(2n-1)�.

 Page 19 1/28/2004

Proof: immediate from Lemma �3-3, 3-4 and 3-5. �

5. Conclusions and Open Questions
In this work we presented tolerant constructions and compositions for some of the most important
and practical cryptographic mechanisms, including cryptosystems, signature/MAC schemes,
signcryption and authenticated encryption. The constructions are very efficient and practical.

An obvious challenge is to find tolerant constructions for additional cryptographic primitives. In
particular, we believe it should be feasible to extend our results for commitment and committing-
encryption schemes. A harder challenge is to find a tolerant construction for keyless hash
functions, which are widely deployed in practice. Other primitives which are related to the current
work include non-malleable commitment schemes and cryptosystems [DDN91], Universally
Composable commitment schemes [CF01] and Perfectly one-way hash functions [C97,CMR98].

Acknowledgements
I wish to thank Mihir Bellare, Ran Canetti, Shai Halevi, Boaz Patt-Shamir, Avi Wigderson and
anonymous referees for helpful comments and discussions. This work is supported by ISF grant.

References
[AB81] C. A. Asmuth and G. R. Blakley. An efficient algorithm for constructing a cryptosystem
which is harder to break than two other cryptosystems. Comp. and Maths. with Appls., 7:447-450,
1981.

[ABCV98] B. Aiello, M. Bellare, G. Di Crescenzo, and R. Venkatesan, Security amplification by
construction: the case of doubly-iterated, ideal ciphers, Proc. of CRYPTO 98.

[ADR02] Jee Hea An, Yevgeniy Dodis and Tal Rabin, On the Security of Joint Signature and
Encryption, in Theory and Application of Cryptographic Techniques, pp. 83-107, 2002. Also in
Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 83-107. Springer-Verlag, 2002.

[AN95] Ross Anderson, Roger Needham. Robustness Principles for Public Key Protocols. In
Proceedings of Int'l. Conference on Advances in Cryptology (CRYPTO 95), Vol. 963 of Lecture
Notes in Computer Science, pp. 236-247, Springer-Verlag, 1995.

[AN96] Martin Abadi, Roger Needham. Prudent Engineering Practice for Cryptographic
Protocols. IEEE Transactions on Software Engineering, 22, 1 (Jan.), 1996, pp. 6-15.

[B98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS#1. In Advances in Cryptology - CRYPTO '98, LNCS 1462, pages 1-
12. Springer, 1998.

[BDJR97] M.Bellare, A.Desai, E.Jokipii, P.Rogaway: A Concrete Security Treatment of
Symmetric Encryption, Proceedings of the 38th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 394-403, 1997. Revised version at http://www-
cse.ucsd.edu/users/mihir/papers/sym-enc.html.

[BKR94] Mihir Bellare, Joe Kilian and Phil Rogaway, “The security of cipher block chaining”,
Journal of Computer and System Sciences, Vol. 61, No. 3, Dec 2000, pp. 362-399. Extended
abstract in Advances in Cryptology - Crypto 94 Proceedings, Lecture Notes in Computer Science
Vol. 839, Y. Desmedt ed, Springer-Verlag, 1994.

 Page 20 1/28/2004

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic construction paradigm. In T. Okamoto, editor, Asiacrypt 2000,
volume 1976 of LNCS, pages 531-545. Springer-Verlag, Berlin Germany, Dec. 2000.

[BR97] Mihir Bellare and Phillip Rogaway, Collision-Resistant Hashing: Towards Making
UOWHFs Practical, Extended abstract was in Advances in Cryptology- Crypto 97 Proceedings,
Lecture Notes in Computer Science Vol. 1294, B. Kaliski ed, Springer-Verlag, 1997. Full paper
available at http://www.cs.ucsd.edu/users/mihir/papers/tcr-hash.html.

[BSZ02] Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security of
signcryption. In David Naccache and Pascal Pailler, editors, 5th International Workshop on
Practice and Theory in Public Key Cryptosystems - PKC 2002, pp. 80-98, LNCS Vol. 2274, 2002.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In
Proceedings of the 23rd Symposium on Theory of Computing, ACM STOC, 1991.

[DK94] Ivan B. Damgård, Lars Ramkilde Knudsen. Enhancing the Strength of Conventional
Cryptosystems, BRICS report RS-94-38, November 1994.

[DPP94] Ivan B. Damgård, Torben P. Pedersen, Birgit Pfitzmann: On the Existence of Statistically
Hiding Bit Commitment Schemes and Fail-Stop Signatures; Crypto '93, LNCS 773, Springer-
Verlag, Berlin 1994, 250-265.

[DPP98] Ivan B. Damgård, Torben P. Pedersen, Birgit Pfitzmann: Statistical Secrecy and Multi-
Bit Commitments; IEEE Transactions on Information Theory 44/3 (1998) 1143-1151.

[EG85] S. Even and O. Goldreich, On the Power of Cascade Ciphers, ACM Transactions on
Computer Systems, Vol. 3, 1985, pp. 108-116.

[FIP180] National Institute of Standards and Technology, Federal Information Processing
Standards Publication, FIPS Pub 180-1: Secure Hash Standard (SHA-1), April 17, (1995), 14
pages.

[Go01] Oded Goldreich, The Foundations of Cryptography, Volume 1 (Basic Tools), ISBN 0-521-
79172-3, Cambridge University Press, June 2001.

[Go02] Oded Goldreich, Fragments of a Chapter on Encryptions Schemes, Extracts from working
drafts of Volume 2, The Foundations of Cryptography.

 [GGM84] Oded Goldreich and Shafi Goldwasser and Silvio Micali "How to Construct Random
Functions" Journal of the ACM, 33(4), 1984, 792-807.

[GH04] Yitchak Gertner and Amir Herzberg, “Committed encryption and publicly verifiable
signcryption”, submitted for publication, 2004.

[GIL*90] Oded Goldreich, R. Impagliazzo, L. Levin, R. Venkatesen, D. Zuckerman. "Security
preserving amplification of randomness", 31st Annual Symposium on Foundations of Computer
Science, IEEE Computer Society Press, (1990), 318-326.

[GM84] Shafi Goldwasser and Silvio Micali. "Probabilistic Encryption," JCSS (28), 1984, 270-
299.

[HILL99] Johan Hastad, Rudich Impagliazzo, Leonid A. Levin, and Mike Luby, Construction of a
Pseudorandom Generator from any One-Way Function. SIAM Journal on Computing, Vol. 28, No.
4, pp. 1364-1396, 1999.

[HL92] Amir Herzberg and Mike Luby, "Public Randomness in Cryptography", proceedings of
CRYPTO 1992, ICSI technical report TR-92-068, October, 1992.

 Page 21 1/28/2004

[HM96] Shai Halevi and Silvio Micali, "Practical and Provably-Secure Commitment Schemes
from Collision Free Hashing", in Advances in Cryptology - CRYPTO96, Lecture Notes in
Computer Science 1109, Springer-Verlag, 1996, pp. 201-215.

[HP86] Amir Herzberg and Shlomit Pinter, “Composite Ciphers”, EE Pub. no. 576, Dept of
Electrical Engineering, Technion, Haifa, Israel, Feb. 1986.

[K01] Hugo Krawczyk, "The Order of Encryption and Authentication for Protecting
Communications (or: How Secure Is SSL?)," In Crypto '01, pp. 310-331, LNCS Vol. 2139, J.
Kilian ed., Springer-Verlag, 2001.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. Journal of
Cryptology: The Journal of the International Association for Cryptologic Research, 14(4):255--
293, September 2001.

[MM93] U.M. Maurer and J.L. Massey, Cascade ciphers: the importance of being first, Journal of
Cryptology, Vol. 6, No. 1, pp. 55-61, 1993.

[MOV96] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of Applied
Cryptography, Section 9.2.6, CRC Press, ISBN 0-8493-8523-7, October 1996. Available online at
http://www.cacr.math.uwaterloo.ca/hac/.

[RFC2246] T. Dierks, C. Allen, The TLS Protocol: Version 1.0, Network Working Group, Internet
Engineering Task Force (IETF). Available online at http://www.ietf.org/rfc/rfc2246.txt.

[R00] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley,
2000.

[Sc96] Bruce Schneier, Applied Cryptography, John Wiley & Sons, 1996.

[Sh00] Victor Shoup, Using hash functions as a hedge against chosen ciphertext attacks, Adv. in
Cryptology -- Proc. of Eurocrypt '2000, LNCS 1807, pp. 275-288.

[Z97] Yuliang Zheng, Digital signcryption or how to achieve cost(signature+encryption) <<
cost(signature)+cost(encryption), in Advances in Cryptology - CRYPTO'97, Berlin, New York,
Tokyo, 1997, vol. 1294 of Lecture Notes in Computer Science, pp. 165--179, Springer-Verlag.

