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Abstract 

We investigate how to construct secure cryptographic schemes, from few candidate schemes, some of 
which may be insecure. Namely, tolerant constructions tolerate the insecurity of some of the component 
schemes used in the construction. We define tolerant constructions, and investigate `folklore`, practical 
cascade and parallel constructions. We prove cascade of encryption schemes provide tolerance for 
indistinguishability under chosen ciphertext attacks, including a `weak adaptive` variant. Similarly, certain 
parallel constructions ensure tolerance for unforgeability of Signature/MAC schemes, OWF, ERF, AONT 
and certain collision-resistant hash functions. We present (new) tolerant constructions for (several variants 
of) commitment schemes. Our constructions are simple, efficient and practical. To ensure practicality, we 
use concrete security analysis (in addition to the simpler asymptotic analysis).  

1 Introduction 
Most cryptographic functions do not have an unconditional proof of security. The classical method to 

establish security is by cryptanalysis i.e. accumulated evidence of failure of experts to find weaknesses in 
the function. However, cryptanalysis is an expensive, time-consuming and fallible process. In particular, 
since a seemingly-minor change in a cryptographic function may allow an attack which was previously 
impossible, cryptanalysis allows only validation of specific functions and development of engineering 
principles and attack methodologies and tools, but does not provide a solid theory for designing 
cryptographic functions. Indeed, it is impossible to predict the rate or impact of future cryptanalysis efforts; 
a mechanism which was attacked unsuccessfully for years may abruptly be broken by a new attack1. Hence, 
it is desirable to design systems to be tolerant of cryptanalysis and vulnerabilities (including known 
trapdoors). A tolerant cryptographic system remains secure following successful cryptanalysis of one or 
more cryptographic subsystems it contains. Tolerance does not imply unconditional-security; however, it 
would hopefully provide sufficient advanced-warning time to replace broken cryptographic components.   

Many cryptographic systems and constructions use redundant components in the hope of achieving 
tolerance. The most familiar such construction is cascade. Cascading of cryptosystems is very natural; 
novices and experts alike believe that the cascade E�E’ of two cryptosystems E,E’  is at least as secure as 
the more secure of the two, hopefully even more secure than both. Indeed, cascading of cryptosystems has 
been a common practice in cryptography for hundreds of years.  

However, so far, there are few publications on tolerant cryptographic constructions. In [AB81], 
Asmuth and Blakely present a simple construction of a randomized cryptosystem from two component 
ciphers, with the hope of achieving tolerance; proof of security was given only in [GM84]; see variant for 
block ciphers in [HP86]. The highly related problem of cascading of block ciphers received some attention. 
Even and Goldreich showed that keyed cascade ensures tolerance against message recover attacks on block 
ciphers [EG85, Theorem 5], and conjectured that the result holds for other specifications of ciphers. 
Damgard and Knudsen [DK94] proved that it holds for security against key-recovery under chosen-
plaintext attacks. Maurer and Massey [MM93] claimed that the proof in [EG85] “holds only under the 
uninterestingly restrictive assumption that the enemy cannot exploit information about the plaintext 
statistics”, but we disagree. We extend the proof of [EG85] and show that, as expected intuitively and in 

                                                      
1 In practice, we try to use conservative estimates of progress in cryptanalysis, based on past progress and other factors; see 

e.g. [LV01].  
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[EG85], keyed cascading provides tolerance to many confidentiality specifications, not only of block 
ciphers but also of other schemes such as public key and shared key cryptosystems. Our proof uses a strong 
notion of security under indistinguishability test – under plaintext only and non-adaptive chosen ciphertext 
attack (CCA1), as well as weak version of adaptive chosen ciphertext attack (wCCA2). On the other hand, 
we note that cascading does not provide tolerance for adaptive chosen ciphertext attack (CCA2), or if the 
length of the output is not a fixed function of the length of the input. This shows the importance of backing 
the intuition with analysis and proof.  

Tolerance is relevant to any cryptographic scheme, not just for confidentiality. In particular, it is 
widely accepted that the parallel construction g(x)||f(x), using the same input x to both functions, ensures 
tolerance for several integrity properties, such as (several variants of) collision-resistant hashing as well as 
Message Authentication Codes (MAC) and digital signatures. We prove that the parallel construction 
indeed provide tolerance for such integrity specifications. The parallel construction is used, for tolerance, in 
practical designs and standards, e.g. in the W3C XML-DSIG specifications and in the TLS protocol 
[RFC2246].  

Once we realized the importance of using tolerant cryptographic designs, we began looking for 
tolerant constructions to different cryptographic goals (specifications). We present several results in this 
work, but this work is far from complete, and we speculate that some cryptographic specifications may 
simply not allow (efficient) tolerant constructions; in such cases, one may look for alternate specifications 
that provide the necessary functionality for most practical scenarios and applications, yet allow efficient 
tolerant constructions.  

We wish to stress that efficiency is very critical for tolerant constructions; implementers will rarely be 
willing to tolerate performance loss, `just` in order to tolerate potential vulnerabilities in a cryptographic 
function. In fact, if would ignore efficiency, then it may be possible to ensure tolerance by using provable 
constructions of cryptographic mechanisms from few `basic` cryptographic mechanisms, which have simple 
tolerant designs. For example, many cryptographic mechanisms can be constructed from one-way 
functions; and we observe that it is sufficient that one of {g , f} is a one-way function, to ensure that 
g(x)||f(x’) is also a one-way function. Provably-secure constructions based on one-way functions exist for 
many cryptographic mechanisms, e.g. pseudo-random generators [Go01,HILL99] and signature schemes 
[NY89]. Therefore, by using a tolerant construction of one way function (from multiple candidate one-way 
functions) as the basis of some cryptographic scheme, the scheme retains the proven security properties 
even if one of the candidate one-way functions is not secure. However, such constructions are often 
inefficient, and involve unacceptable degradation in security parameters (e.g., require absurd key and/or 
block sizes). To quantify loss in security and efficiency due to the constructions, we use concrete security 
measures, following [HL92, BKR94,BDJR97].  

Our contributions. We consider our main contribution in the identification and formalization of 
cryptographic tolerance as a criteria for cryptographic specifications, and goal for constructions. Some 
additional contributions include:  

� Precise analysis of the security of several `folklore` constructions. In particular, we show that 
cascade encryption indeed ensures tolerance – as long as each component encryption has fixed output 
length (for fixed length input), and for several variants of indistinguishability including a weak form of 
adaptive chosen ciphertext attack (weak CCA2), but not for the `regular` CCA2 specification. We note 
that the `multiple encryption` construction of [DK03] seems to ensure tolerant encryption for CCA2, 
but at significant overhead (ciphertext length more than doubles), which may be unacceptable for many 
applications. 

� Efficient, practical constructions for commitment schemes. To our knowledge, these are the first 
provably-secure tolerant constructions of general cryptographic functions, beyond the folklore 
constructions, and few additional cryptographic constructions proven secure based on validity of either 
of two (specific) `hardness` assumptions, e.g. [Sh00, O92]. 

� Compositions of constructions. We define compositions of multiple constructions, to combine the 
benefits of different constructions. We also present a generic composition based on a simple 
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combinatorial object (composition structure). Finally, we use these to compose the cascade and parallel 
constructions, creating two efficient composite constructions for commitment schemes.  

2 Notations and Definitions 
We first fix some notations and recall the (standard) cryptographic definitions, for schemes to which 

we present tolerant constructions. We then define the concept of tolerant constructions.  

2.1 Cryptographic Functions and Schemes 

We find it convenient to define tolerant constructions for functions, taken from some general set F of 
(cryptographic) functions. However, much of our results deal with (cryptographic) schemes2, which are 
finite sets of functions; if a function is `randomized`, we write the randomization bits as explicit input, for 
clarity and to facilitate concrete security analysis. We represent schemes by a single function, with an 
additional input parameter � choosing one of the functions in the scheme. We refer to a specific function in 
the scheme using dot notation, e.g. ��� refers to function of scheme �. We next define some cryptographic 
functions and schemes, beginning with encryption.  

��������	���An encryption scheme � consists of three functions <KG,E,D> (for key generation, 
encryption and decryption, respectively). The key generation function �.KG accepts as input a random 
string, and its output is a pair3 of keys: e, d for encryption and decryption, respectively. We again use dot 
notation to refer to particular key, e.g. e=�.KG.e(r) returns the encryption key returned by �.KG on input r. 
We use subscripts to denote keys, and the random input to the encryption function. Encryption of message 
m, where m�M for some message space M, using key e and randomness r, is simply �.Ee,r(m)�C, where C 
is the ciphertext space. The decryption function �.D accepts as input ciphertext c�C, and key d, and returns 
a message m’�M or a failure indicator �. The correctness requirement is �.Dd��.Ee,r(m))=m, for any m�M, 
r�{0,1}* and rKG such that  e=�.KG.e(rKG), d=�.KG.d(rKG).  

� �����	
����
���
�	���� To define security for encryption schemes, we use the standard 
`indistinguishability experiment` approach of [BDJR97, GM84], but extend their definitions as follows: 

� Since our results apply to both shared-key and public-key encryption, we use a flag ISPUB to signal 
when the encryption key is public.  

� For quantitative security analysis, we bound the capabilities of the adversary (the `attack model`), 
including the total running time t, random bits �A, the number of oracle queries (as an array q[phase, 
oracle], e.g. q[find, D]=0 disallows adaptive chosen-ciphertext queries) and the length of ciphertext (l) 
and plaintext (l-�) in queries. Previous definitions were asymptotic only or did not include all 
parameters.  

� Cascade encryption is insecure for adaptive chosen ciphertext attack (CCA2). Recently, [DK03] 
presented constructions for `multiple encryption` schemes that appear to be tolerant for CCA2, but have 
significant overhead; we believe that in many applied scenarios, this overhead would not be acceptable. 
We found that cascade encryption is secure under a weak-CCA2 attack model, where the attacker can 
chose ciphertext adaptively, but if the decrypted plaintext is one of the two chosen `test` plaintexts, then 
the oracle returns a special `bingo` signal, but does not identify the plaintext; we call this the `weak 
decrypt` oracle. Namely:  
�.wDd,p[0],p[1](c)={m:=��.Dd(c); if m=p[0] or m=p[1] return `bingo`; else return m;} 
Weak-CCA2 follows the criticism of [ADR02] on `regular` CCA2, but is even weaker than their 

                                                      
2 Some definitions of cryptographic schemes are not as a collection of functions, but as a collection of probabilistic 

algorithms or machines. Often we can view them as functions with additional inputs for randomness and/or state.  
3 Notice public and shared secret key schemes share the same syntax, i.e. e can be either public or secret, e.g. e=d. 
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gCCA2 notion4; still, it may be sufficient in practice, in particular it allows the practical `feedback only 
CCA` attacks of [B98,K01].  

 Definition �2-1 [Indistinguishability Experiment] Let ��be an encryption scheme and let k, l, t, �, �, 
�A � ����, ISPUB�{T/F} and q:{select,find}�{E,D,wD}�����. Let AO be an (adversarial) algorithm with access 
to oracle O. Let IndExpA,��ISPUB(k,q,l,�,t, �, �A) be the following experiment: 

(1) red�R{0,1}k ;  e=��.KG.e(red); d=�.KG.d(red) 

(2) Let O be an oracle to the functions: {�.Ee,r , �.Dd , �.wDd,p[0],p[1]} 

(3) If ISPUB=T then e’=e else e’=� 

(4) (p[0],p[1],state)� AO(“select”, e’, 1k); /* select phase */ 

(5) b�R{0,1}; 

(6) r�R{0,1}�; c=�.Ee,r(p[b]); 

(7) �= AO(“find”, c, state);  /* find phase */ 

(8) Return “win” only if all of the following conditions hold, otherwise return “loss”:   

a. �=b, and 

b. |p[1]|=|p[0]|� l-�, and  

c. total running time of AO is less than t, and 

d. AO makes at most q[�,f] calls to oracle �.f at phase ��{select, find}, and  

e. AO uses at most �A random bits, and  

f. AO does not make oracle query �.Dd(c) during select phase, and  

g. in its oracle queries, AO uses m, c s.t. |m|�l-� and |c|�l. 

The confidentiality specifications depend on the maximal advantage a for the adversary.   

Definition �2-2 ��satisfies specification INDISPUB(a,k,q,l,�,t,�,�A) if for every adversary A holds 
Pr[IndExpA,��ISPUB(k,q,l,�,t, �, �A)=”win”]< ½+a.  

We now also present asymptotic, polynomial-time complexities. Allowing polynomial number of 
each type of queries, possibly restricting queries to D for the `weaker` notions (cf. to CCA2), i.e. CPA, 
CCA1 and wCCA2.  

Definition �2-3 � satisfies specification CCA2-INDISPUB if ��PPT and for any strictly positive 
polynomials l, �, t, �, �A, a and positive polynomials q[�,f] for ��{select, find} and f�{E,D}, exists some 
integer k0 such that for every k�k0, holds: Pr[IndExpA,��ISPUB(k,q(k),l(k),�(k),t(k), �(k), 
�A(k))=”win”]<½+a(k). We say that � satisfies specifications wCCA2-INDISPUB, CCA1-INDISPUB , CPA-
INDISPUB, respectively,  if � satisfies CCA2-INDISPUB restricted to q[“find”,D]=0,  
q[“find”,D]=q[“find”,wD]=0, or also q[“select”,D]=0) 


	� � ��� ���. A (non-interactive) commitment scheme � consists of four functions <KG,C,D,O> 
(for key generation, commit, decommit and open, respectively). The key generation function �.KG accepts 
as input a random string, and its output is a public commitment key ck. The commitment and decommit 
functions �.C, �.D have both three inputs: a message m�M, a public commitment key ck and randomness r, 
and their respective outputs are: a commitment �.Cck,r(m) and a decommitment �.Dck,r(m). The open 

                                                      
4 Is cascade tolerant for gCCA? Is some comparably-efficient construction tolerant under CCA2 (or at least gCCA)? We 

think not, but have to leave these questions open at this time.  
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function �.O has the same inputs5, plus the commitment and decommitment values (c, d respectively), and 
its output is either a message m’�M or a failure indicator �. The correctness requirement is 
�.Ock�	��.Cck,r(m),��.Dck,r(m))=m, for any m�M, r and rKG such that ck=��KG(rKG), namely �.O (open), 
when given all necessary inputs (message, commitment and decommitment), returns the original message.  

� �����	
������� � �	� ��	� Commitment schemes have a confidentiality property, called hiding, and 
an integrity property, called binding. We only sketch the asymptotic definitions; the final version of this 
manuscript will contain complete (and concrete) definitions.  

� �����. No PPT adversary can distinguish the commitments of any two messages of its choice.  

�������. Given (random) ck, every PPT adversary A has negligible probability of finding a collision, 
i.e. values c,d,d’,m,m’ s.t. �.Ock�m,c,d))=m and �.Ock�m’,c,d’))=m’ (notice the commitment c is the same!). 

 Following [ADR02], we also consider relaxed binding, where A has negligible probability of finding 
a message m s.t. when given c=�.Cck,r(m) and d=�.Dck,r(m), the PPT adversary A can find m’, d’ s.t. 
�.Ock�m’,c,d’))=m’. As motivated in [ADR02], known constructions for commitment schemes can use 
UOWHF for relaxed binding, but require the (strictly stronger) CRHF for (strict) binding. We show later a 
construction which is tolerant for both versions of binding (`strict` or relaxed).  

Our construction is also tolerant for trapdoor commitments [BCC88], or chameleon hash functions 
[KR00]. In these schemes, the key generation produces also a secret trapdoor key ��KG.t. The schemes also 
define a Switch algorithm, which uses the trapdoor key, to transform any valid commitment to any message 
m to an indistinguishable commitment to any other message m’ (adversary may chose both m and m’).  


 �������������� � 
 . A signature/MAC scheme6 � consists of three functions <KG,S,V> (for key 
generation, sign, and verify, respectively), where V returns a binary value (0 for false, 1 for Ok). The key 
generation function �.KG accepts as input a random string, and its output is a pair of keys: s, v for signature 
and verification, respectively. The correctness requirement is (�.Vv�Ss,r(m),m)=1), for any m�M, r and rKG 
such that  s=�.KG.s(rKG), v=�.KG.v(rKG). 

� �����	
����� ����	������ � �� As mentioned in the introduction, it is quite trivial, and known by 
`folklore`, that signature/MAC schemes are tolerant under parallel construction. More precisely, we prove 
that signature/MAC schemes are tolerant under `copy-concatenate` parallel construction, for the strong 
existential unforgeability under adaptive chosen message attack specification (but, the argument holds for 
most other notions of security for signature/MAC schemes).  

A signature/MAC scheme � ensures existential unforgeability under adaptive chosen message attack 
if a PPT adversary given oracle to � .Ss,r( ) has negligible probability of producing (	,m) s.t. Vv(	,m)=1, if 	 
was never returned by � .Ss,r(m). The probability is taken over the coin tosses of the adversary, and the 
random choice of r and rKG, and with s=�.KG.s(rKG), v=�.KG.v(rKG). In MAC schemes, v is secret, while in 
signature schemes, the adversary is also given v.  

� ������
	�����	������������� ����������	���A PPT computable function h:{0,1}*
�{0,1}k, is 

said to be weakly collision resistant hash function, or to maintain specification WCRHF, if for PPT 
adversary A holds Pr(A(x)=y| (y�x)
(h(x)=h(y))�0, where the probability is over the coin tosses of A and 
over random choice of y�R{0,1}l , for some sufficiently large l. �

���	���������������������	���A PPT computable function f:{0,1}n
�{0,1}k, is said to be t-ERF 

(Exposure-Resilient Function) if any PPT adversary cannot distinguish between the output of f applied to a 
random input, and a truly random k bit string, even if given any l bits from the input of f.  �

                                                      
5 Most definitions of open functions of commitment schemes do not include a message input, only commitment, 

decommitment and key. However, in practice, often the largest or only part of the decommitment is simply the message. By 
allowing the open funtion to depend also on the message, we can express the fact that practical commitment schemes usually output 
short commitments and empty or short decommitments; this is significant when designing tolerant constructions.  

6 Notice public and shared key schemes share the same syntax.  
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�  ! " . An All-Or-Nothing Transform (AONT) is a pair of PPT algorithms, T (the Transform) and I 
(the Inverter). The transform T  has two inputs, a k-bit message m and a random string r.  Its output consists 
of a pair (secret,public), called the secret part and public part, where the length of the secret part is usually 
fixed and denoted s. The inverter I has also two parameters, and its output is a message m or a special signal 
� indicating failure to invert. The correctness requirement is simply that for every m�{0,1}k, and every 
random r, holds: I(T(m,r))=r.  

We say that f satisfies the security specification AONT(k,s,l) if there are no messages m, m’ and some  
PPT adversary distinguisher, which can with significant probability distinguish between f(m) and f(m’), 
given all but l bits of the secret part.  

2.2 Performance specifications 

For asymptotic security analysis, it is sufficient to require all algorithms to be probabilistic 
polynomial time. However, to allow concrete security analysis of constructions, we need concrete bounds 
on the complexities of the schemes. In this version of the work, we present such bounds (and concrete 
analysis) only for encryption schemes, as follows.  

Definition �2-4 [Concrete complexity bounds for encryption schemes] Let k, k’, l, �, ������, with 
l>�, and let  
:{KG,E,D}���������. Then for every encryption scheme � we define predicate bounds[k, k’, l, �, �, 

](�� as True if and only if: 

1. For inputs of length up to k,��.KG(k) is computable in time 
[KG] and��.KG(k)|�k’. 

2. There is a deterministic algorithm that computes �.Ee,r(m) in time 
[E], for every e�{0,1}k’ and 
every m s.t. |m|�l-�, and reads up to the first  � bits of r; also, |�.fe,r(m)|�l. 

3. There is a deterministic algorithm that computes �.Dd(c) in time 
[D], for every d�{0,1}k’ and 
every c s.t. |c|�l; also, |�.Dd,r(c)|�l. 

2.3 Tolerant Constructions   

We are interested in specifications (properties) of functions, including concrete security specifications 
and asymptotic security specifications. We define specifications simply as binary predicates over the set of 
functions F. Let S(F) be the set of all specifications (predicates) over F. We say that f�F satisfies s�S(F) iff 
s(f)=1. 

We say that a mapping c of p functions f1,…fp into a single function c(f1,…,fp), i.e. c : Fp
�F , is a 

construction of plurality p over F.  Construction c is tolerant if c(f1,…,fp) satisfies some specification s’ as 
long as a sufficient subset of f1,…fp satisfy specifications s1,…sp , respectively (often, all specifications are 
identical, i.e. s=s1=…=sp and also often s=s’). To complete this definition, we need to identify the 
sufficient subset of f1,…fp; following the works on secret-sharing, we define two variants of tolerance: based 
on threshold t (0�t<p), and based on general access structure ��P({1,…p}) (� is a set of subsets of {1,…p}).  
In addition, we often require that all of the candidate functions fi satisfy some minimal specifications 
b�S(F), such as bounds on their complexities.  

Definition �2-5 Consider some set of functions F, integer p, predicates s’,b,s1,…sp�S(F) and 
construction c : Fp

�F of plurality p over F. Construction c is t-tolerant for (s1,…sp)�s’ , with threshold 

t<p, if s’(c(f1, …,fp)) holds provided tpfs
p

i ii 	
� �1
)( . Construction c is �-tolerant for (s1,…sp)�s’, with 

access structure ��P({1,…p}), if s’(c(f1, …,fp)) holds provided for some �� � holds (i� �)�si(fi)=1. 
Construction c is t-tolerant (�-tolerant) with prerequisite b if s’(c(f1, …,fp)) holds provided 


 � 
 �tpfspfb
p

i ii

p

i i 	
�� �� �� 11
)()(  (respectively, 
 � 
 �
 ���

�
������ �� �� i ii

p

i i fspfb )()(
1

).  If c 

is 0-tolerant for (s1,…sp)�s’ then we say that c preserves (s1,…sp)�s’ (with or without prerequisites). If c is 
t-tolerant for (s,…s)�s’, then we say that c is t-tolerant for s�s’; if t=0 then we say that c preserves s�s’. 
If s=s’ then we say that c is t-tolerant for (or preserves) s. Finally, if c is (p-1)-tolerant, then we simply say 
that c is tolerant. � 
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3 Cascade Constructions and their Tolerance 
The most basic tolerant construction of cryptographic functions is the cascade construction c�. We 

begin by discussing `simple cascading’, which is cascading of functions with a single input and output, such 
as hash functions, namely c�(f,g)[x]=f�g(x)=f(g(x)). In the following subsections we discuss cascading of 
keyed schemes.  

3.1 Simple Cascade of Keyless Cryptographic Functions 

Consider any two functions g:Dg�Rg, f:Df�Rf s.t. Rg�Df. The simple cascade of f and g, denoted f�g 
or c�(f,g), is a construction of plurality 2 defined as c�(f,g)=f�g(x)=f(g(x)). Unfortunately, simple cascade 
rarely ensures tolerance, and often does not even preserve cryptographic specifications. So far, we found 
simple cascade ensures tolerance only to the one-way property, and that with a prerequisite requirement 
perm(f), which is true only if f is a permutation when restricted to input domains {0,1}l for some length l.  

Lemma �3-1 Keyless cascade of two functions is…  

1. 1-tolerant for specifications OWF with prerequisite perm.  

2. 1-tolerant with prerequisite perm for specifications: 
concrete-OWFf(a,k,�A, 
A)�[Time(f,k)� 
F]� concrete-OWFf(a,k,�A, 
A+
F)�[Time(f,k)�  2
F]  

3. Preserves (0-tolerant), but not 1-tolerant, for specifications ERF (exposure resilient function) and 
AONT (all or nothing transform).  

4. Not (even) 0-tolerant for specifications OWF and WCRHF.  

Proof: The negative claims (4 and part of 3) follow by simple exmples, e.g. to prove claim 4, let h be 

a OWF and/or WCRHF. Let g(x)=h(x)||0|h(x)| and
�
�
� �

�
elsexh

0yxif0
xf

2x

)(
)(

/||

. Trivially, both f and g are 

OWF and/or WCRHF, respectively, yet f�g is neither OWF not WCRHF; in fact, f�g(x)=0 for every x.  

Claims 1 and 2 follow from a simple reduction argument; the proof of claim 2 is in the appendix (and 
claim 1 immediately follows from claim 2). � 

We believe that we can generalize claims 1 and 2 for an appropriate family of regular functions. It 
would be interesting to find additional cryptographic specifications of keyless functions for which cascade 
provides tolerance.  

3.2 Cascade Encryption is Tolerant  

The cascade encryption, i.e. cascade of two7 encryption schemes �, �
, is denoted cE(�,�
) or ���
 
and defined as follows. Notation: For convenience we explicitly write the inputs and outputs to the cascade 
(or any composition) as a tuple of inputs or outputs when appropriate, e.g. <r,r’> to denote the pair of two 
random inputs (r to � and r’ to �
).  

� ���
.KG.e(<r,r’>)=<�.KG.e(r),�
.KG.e(r’)>, ���
.KG.d(<r,r’>)=<�.KG.d(r),�
.KG.d(r’)>.  

� ���
.E<e,e’>,<r,r’>(m)=�.Ee,r(�
.Ee’,r’(m)) 

� ���
.D<d,d’>(c)=�
.Dd’(�.Dd(c)) 

Cascade encryption is a construction of plurality 2; the following lemma bounds the complexities:  

Lemma �3-2 Let ����
 be a pair of encryption schemes�such that for s�{���
} holds bounds[k, k’, l, �, 
�, 
](s) =True with l>2�.  Then ���
 is an encryption scheme with bounds[2k, 2k’, l, 2�, 2�,  
2
](���
�=True.  � 

                                                      
7 The definitions and proofs extend trivially to cascade of arbitrary number of schemes. 
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We now investigate the security and tolerance of cascade encryption. As noted in the introduction, 
cascade encryption is an ancient, widely-deployed technique, usually in the hope of improving security – 
e.g., providing tolerance to weaknesses of one of the two cascaded encryption schemes. Is this secure? This 
depends on the adversary capabilities (`attack model`). Cascade encryption is not tolerant for adaptive 
chosen ciphertext attack (CCA2); simply consider �
 which ignores the least significant bit of the 
ciphertext, allowing adversary to decrypt the challenge ciphertext (by flipping the LSb and invoking the 
decryption oracle). Our answer is yes, but with some important restrictions. However, as [ADR02] argued, 
this `attack` is so contrived, that it may indicate that CCA2 is overly restrictive, rather than a problem with 
cascade encryption. In [ADR02], the authors present a slightly weaker definition, gCCA, but we do not 
think cascade is tolerant under that definition, either; on the other hand, the following lemma shows that 
cascade encryption is tolerant under a slightly more related definition, weak CCA (wCCA), as presented 
above.  

Also, note that the indistinguishability experiment restricted the adversary to select plaintexts of the 
same length. Obviously, the length of the ciphertext should be indistinguishable between any two plaintexts 
(of the same length). For simplicity, we define a predicate FixedExtra over encryption schemes, such that 
FixedExtra(�
) hold if the length of the ciphertext depends only on the length of the plaintext and on the 
security parameter; this holds for all practical cryptosystems. Clearly, if the length of the output of �
 differs 
for two plaintexts of the same length, then cascading it with a secure ��may not be sufficient to ensure 
indistinguishability. We therefore require FixedExtra(�
�  to hold.     

Lemma �3-3 Cascade encryption is 1-tolerant with prerequisite FixedExtra(�
�, for specifications 
wCCA2-INDISPUB, CCA1-INDISPUB , CPA-INDISPUB. Furthermore, let k, k’, l, �, �,  to, �o

A ��� s.t. l>2�, 

:{KG,E,D}��, q:{select,find}�{E,D,wD}��� s.t. q[find,D]=0. Then, cE is also 1-tolerant with the 
additional prerequisite bounds[k, k’, l, �, �, 
], for specifications INDISPUB(a,k,q,l,�,t, �, �A) 
�INDISPUB(a,k,q,l,2�,t0, �, �o

A), where �A=�o
A+2k+2� and  

t=to+
[KG]+2
[E]+ � �
� �},{ },,{

][],[
selectfindj wDDEf

ffjq � . 

Proof: The proof is by contradiction; namely assume that for some �, �
 holds so(���
)=False, and 
we show that s(�)=s(�
�=False. 

Since so(���
)=False, then there is some adversary Ao such that 
po�Pr[IndExpA,��ISPUB(k,q,l,to,�,�o

A)=”win”]� ½+a. We next show that given such adversary Ao as a black 
box,  we can construct adversaries A, A’ such that p�Pr[IndExpA,��ISPUB(k,q,l0,t,�,�A)=”win”] �po � ½+a 
and p’�Pr[IndExpA’,�
�ISPUB(k,q,l0,t,�,�A)=”win”] � po � ½+a, where l0=l+�.  

Namely, we prove (in the appendix) the following claims A, A’:  

Claim A (A’): given adversary Ao such that po� ½+a as a black box,  we can construct adversary A 
(respectively A’) such that p�po � ½+a (respectively p’�po � ½+a).  

This completes the proof, by showing that indeed s(�)=s(�
�=False. � 

Cascading is a natural candidate construction for many cryptographic mechanisms; we now define 
and investigate tolerance of cascade of commitment and MAC/Signature schemes.   

3.3 Cascade Commitment 

We define cascade commitment cc(�,�
) (or ���
�), i.e. cascade of two commitment schemes �, �
 , as 
follows. (The final version will also contain the simple extension to trapdoor commitment schemes.) We 
again wrote inputs and outputs as tuples.   

� ���
.KG(<r,r’>)=<�.KG(r),�
.KG(r’)> 

� ���
.C<ck,ck’>,<r,r’>(m)=�.Cck,r(�
.Cck’,r’(m)) 

� ���
.D<ck,ck’>,<r,r’>(m)=<�.Dck,r(�
.Cck,r(m)) ,��
.Dck’,r’(m), �
.Cck’,r’(m)> 
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� ���
.O<ck,ck’>(m,c,<d,d’,c’>)=�
.Ock’(m,c’,d’) if �.Ock(c’,c,d)=c’��, else � 

As the following lemma shows, cascade ensures the privacy (hiding) property of commitment 
schemes, but only preserves the integrity (binding) property.  

Lemma �3-4 Cascade commitment is tolerant for the hiding specification, and preserves (but is not 
tolerant for) the binding specification.� 

We next show that cascade also preserves, but does not ensure tolerance, for other integrity properties, 
specifically of MAC/Signature schemes. 

3.4 Cascading preserves, but is not tolerant for, MAC/Signature Schemes 

We define cascade MAC/Signature cMAC/Sign(�,�
) (or ���
�), i.e. cascade of two MAC/Signature 
schemes �, �
 , as follows. We again write inputs and outputs as tuples.   

� ���
.KG.e(<r,r’>)=<�.KG.e(r),�
.KG.e(r’)>; ���
.KG.e(<r,r’>)=<�.KG.e(r),�
.KG.e(r’)> 

� ���
.S<s,s’>,<r,r’>(m)=<�.Ss,r(m),�
.Ss’,r’(m)> 

� ���
.V<v,v’>(<	,	’>,m)=�.Vv(	,m) 
��
. Vv’(	’,m) 

Lemma �3-5 Cascade MAC/Signature is 0-tolerant for (i.e. preserves) the existential unforgeability 
under adaptive chosen message attack specification.  

4 Parallel Constructions and their Tolerance 
We now consider another important family of constructions, which are parallel applications of two or 

more cryptographic functions or schemes. Parallel constructions may use the same input to all functions, 
use different parts of the input to each function, or use some combination of the inputs to create the input to 
each function, often involving XOR or secret-sharing. Similarly, the output of some parallel constructions is 
simply the concatenation of the outputs of each function, while others `merge` the outputs, by XOR or 
secret–sharing.  

4.1 Split-Parallel-Concat Construction for OWF 

Possibly the simplest parallel construction `splits` the input among several functions, and concatenates 
the result. In particular, the Split-parallel-Concat (sc) construction for two keyless functions f, f’ is defined 
as sc(f,f’)[<x,x’>]=f||SC f’(<x,x’>)=<f(x),f(x’)>. This trivial construction is tolerant for One-Way 
Functions specifications, using two or more functions.  

Lemma �4-1 The Split-Parallel-Concet (sc) construction is tolerant for OWF specifications.  

Proof: use argument for transforming a weak OWF into a strong OWF (see e.g. [Go01]). � 

4.2 Copy-Parallel-Concat Construction for Integrity Specifications 

The Copy-parallel-Concat (cc) construction is also trivial and well-known, but it is very practical and 
widely deployed. Here, the input to the construction is `copied` and used as input to each of the 
components; and the output is simply the concatenation of the output of all components. This simple, 
folklore construction provides tolerance for the integrity properties of collision-resistant hash functions, 
signature/MAC schemes and commitment schemes.  

Let us first define the cc construction for keyless functions, e.g. (weakly collision resistant) hash 
functions. The Copy-parallel-Concat (cc) parallel construction of single-input (keyless) functions f,g is 
denoted as f||g or c||(f,g), and defined as c||(f,g)=f||g(x)=f(x)||g(x). When the functions have inputs for 
random bits and/or keys, these are selected independently for the two functions, and the parallel 
construction is fk,r||gk’,r’(x)= fk,r(x)||gk’,r’(x).  

The Copy-parallel-Concat (cc) parallel construction of two Signature/MAC schemes �, �
, denoted 
c||(�,�
)=�||�
, is defined as follows. The definitions and proofs extend trivially to arbitrary number of 
schemes.    
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� �||�
��������
��������������
�����
���

� �||�
������
������
��	����������	����
���
��
�	���

� �||�
�����
�	�����
���������	�����
���
���
�	���
���

Similarly, the Copy-parallel-Concat (cc) parallel construction of two commitment schemes �, �
, 
denoted c||(�,�
)=�||�
, is defined as follows. The definition extends trivially to trapdoor commitment.  

� �||�
.KG(<r,r’>)=<�.KG(r),�
.KG(r’)> 

� �||�
.C<ck,ck’>,<r,r’>(m)= <�.Cck,r(m), �
.Cck’,r’(m)> 

� �||�
.D<ck,ck’>,<r,r’>(m)=<�.Dck,r(m) ,��
.Dck’,r’(m)> 

� �||�
.O<ck,ck’>(m,<c,c’>,<d,d’>)=�.Ock(m,c,d) if �.Ock(m,c,d)=�
.Ock’(m,c’,d’)��, else � 

As the following lemma shows, the parallel construction ensures tolerance for many integrity 
properties / specifications, but clearly is quite bad for privacy.  

Lemma �4-2 The Copy-parallel-Concat (cc) construction is…  

1. Tolerant for the `integrity ` specifications WCRHF of keyless functions.  

2. Tolerant for the existential unforgeability under adaptive chosen message attack specification of 
Signature/MAC schemes. 

3. Tolerant for the Binding and Relaxed-Binding specifications of commitment schemes. 

4. Preserving, but NOT tolerant, for the `confidentiality` specifications Hiding of commitment 
schemes, CCA1-IND , CPA-IND, CCA2-IND and wCCA-IND, of encryption schemes, and ERF. 

5. NOT tolerant (preserving??), for the `confidentiality` specifications OWF of keyless functions. 

6. NOT even preserving for the `confidentiality` specifications AONT of keyless functions.   

The quantitative versions of the claims and the (simple) proofs will be included in the final version.  

4.3 XOR-Parallel-Concat Construction for Encryption and AONT 

Another classical tolerant construction, originally proposed in [AB81] for encryption schemes, takes 
two inputs: a message (plaintext) and a random bit string of the same length, and applies one function to the 
random string, and the other function to the exclusive-OR of the message with the random string. Namely, 
the simple  XOR-parallel-Concat (xc) construction for two keyless functions f, f’ is defined as 
xc(f,f’)[<m,x>]=f||XCf’(<m,x>)=<f(m�x),f’(x)>; generalization to more than two functions is trivial.  

The definition for xc construction for encryption schemes �, �
, is similar:  

� �||XC��
.KG.e(<r,r’>)=<�.KG.e(r),�
.KG.e(r’)>, ���
.KG.d(<r,r’>)=<�.KG.d(r),�
.KG.d(r’)>.  

� �||XC��
.E<e,e’>,<r,r’,x>(m)=<�.Ee,r(x) , ��
.Ee’,r’(x�m)> 

� �||XC��
.D<d,d’>(<c,c’>)=�
.Dd’(c’) � �.Dd(c) 

Lemma �4-3 The xc construction of encryption schemes is tolerant for specifications CCA1-INDISPUB 
and CPA-INDISPUB, but does not even preserve wCCA2-INDISPUB (or CCA2-INDISPUB). The simple xc 
construction is tolerant for specifications AONT(k,s,l)�AONT(k,2s,s+l). 
 

Comment. The xc construction seems unacceptable for AONT, as the number of bits in the secret part 
doubles, and the number of bits which the adversary can expose does not increase (remain s-l); however we 
didn’t find a better tolerant construction for AONT.  

4.4 Share-Parallel-Concat Construction for Tolerant Commitment  

In the Share-Parallel-Concat construction, the inputs to each component commitment scheme are 
shares of the input to the construction. A secret sharing scheme is a pair of algorithms <Share, 
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Reconstruct>. Share accepts a message m as input, and outputs n secret values s1, … , sn which we call 
shares; it is randomized, i.e. also accepts some random input r. For convenience, let Sharei,r(m) denote the 
ith output of Share on input m with randomness r. Reconstruct is a deterministic algorithm which takes n 
shares, s1’,…,sn’, some of which may have the special value � (for a missing share), and outputs a message 
m’. The correctness property is that for every message m holds m=Reconstruct(Share(m)).  

Furthermore, secret sharing schemes support different thresholds, for tolerating exposure or 
corruption of shares. In particular, in our case, we are interested in the following two thresholds. First, 
secret sharing schemes have a privacy threshold, tp, which determines the maximum number of shares 
which reveal `no information` about the message m. Second, they have a soundness threshold ts, which 
determines the minimum number of correct shares which ensures it is impossible to recover an incorrect 
message m’�m (and m’��).  

For simplicity, we present the share-parallel-concat (sc) construction for ensuring tolerance from 
three candidate commitment schemes, ������ and ��, and using an arbitrary unconditionally secure secret 
sharing scheme <Share, Reconstruct> with n=3, tp=1, ts=2, e.g. Shamir’s scheme [S79]. Generalizations 
allowing threshold to t>1 insecure components (by using 2t+1 components and shares) are straightforward.  

� sc���������������).KG(<r1,r2,r3>)=<���.KG(r1),���.KG(r2),���.KG(r3)> 

� sc���������������).C<ck1,ck2,ck3>,<r,r1,r2,r3>(m)= <��.Cck1,r1(Share1,r(m)), ��.Cck2,r2(Share2,r(m)), 
��.Cck3,r3(Share3,r(m))> 

� sc���������������).D<ck1,ck2,ck3>,<r,r1,r2,r3>(m)= <��.Dck1,r1(Share1,r(m)), ��.Dck2,r2(Share2,r(m)), 
��.Dck3,r3(Share3,r(m)), Share1,r(m), Share2,r(m), Share3,r(m)> 

� sc���������������).O<ck1,ck2,ck3>(m,<c1,c2,c3>,<d1,d2,d3,s1,s2,s3>)=Reconstruct(��.Ock(s1,c1,d1), 
��.Ock(s2,c2,d2) , ��.Ock(s3,c3,d3)) 

The tolerance of the share-parallel-concat scheme follows easily from the properties of the secret 
sharing scheme. Essentially, the shared-parallel-concat is a hybrid or generalization of the copy-parallel-
concat and the XOR-parallel-concat constructions. The construction and lemma extend trivially to trapdoor 
commitment schemes.   

Lemma �4-4 The Share-parallel-Concat (sc) construction of 2t+1 commitment schemes is t-tolerant 
for Binding, relaxed-Binding and Hiding specifications, for every t�1.  � 

Comment. In most practical commitment schemes, decommitment requires mainly the original 
message, and the additional decommitment strings di are quite short. However, the Share-parallel-Concat 
construction uses long decommitment string; specifically, the decommitment includes <d1,d2,d3,s1,s2,s3>. 
The shares s1,s2,s3 are at least as long as the message; using [S79], each share is as long as the message; 
namely the decommit string is three times as long as the message. This may be substantial overhead for 
some applications. The scheme we present in the next section avoids this overhead.  

Comment. By using robust secret sharing and other tools, [DK03] achieve tolerant construction for 
the CCA2-IND specification of encryption schemes. However, their construction is very wasteful in the 
length of the ciphertext, which may rule it unacceptable in most applications; we expect cascade would 
remain the preferred tolerant construction for encryption (although it `only` ensures wCCA2-IND).   

5 Composing Constructions, and Tolerant Commitment 
Often, we may want to combine multiple constructions, e.g. to ensure tolerance to multiple 

specifications. We restrict our attention to compositions of two constructions. In the first subsection we 
present two ways to compose the cascade construction (tolerant for hiding) and the copy-parallel-concat 
(cc) construction (tolerant for binding), resulting in efficient tolerant constructions for commitment schemes 
(ensuring both hiding and binding specifications). In the second subsection, we generalize these results, by 
defining a composition as a mapping of (two) constructions, presenting a generic composition based on a 
combinatorial `composition structure` variable, and showing that the compositions for commitment 
schemes are a special case. In particular, we use the general lemmas of the second subsection, to prove the 
tolerance of the constructions for commitment in the first subsection.  
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5.1 `Composite` Tolerant Constructions for Commitment Scheme 

The Share-parallel-Concat (sc) construction provides tolerant design for commitment schemes, but 
results in a long decommitment string (more than twice the original message), which may be problematic 
for many applications. Can we construct efficient tolerant commitment schemes, with short decommitment 
(and commitment) strings? In this sub-section we show two such constructions, with different tradeoffs, 
both of which are compositions of the cascade and copy-parallel-concat (cc) constructions. This builds on 
the fact that cascade is tolerant for the hiding specification, and copy-parallel-concat (cc) is tolerant for the 
binding specifications.  

It therefore makes sense to combine them, e.g. use four candidate commitment schemes, ����������,�����, 
and ��� , cascading �����and������and connecting this in parallel to the cascade of ���� and ��� . We call the 
result the D construction, after its `shape`, as follows. We use the notation �ij(m)=���.Ckij,rij(m), 
�ij(m)=���.Dkij,rij(m), �ij(m)=���.Okij(m,cij,dij), �=<r11,r12,r21,r22>, �=<k11,k12,k21,k22>.  

� D.KG(�)=<���.KG(r11),���.KG(r12),���.KG(r21),���.KG(r22)> 

� D.C���(m)= <��12(��11(m)), �22(�21((m))>  

� D.D���(m)=<�11(m),��11(m), �12(��11(m)), �21(m), �21(m), �22(�21(m))>  

� D.O�(m,<c12,c22>,<d11,c11,d12,d21,c21,d22>)= 
         = {m if (m=�11(m)=�11(m)) � (c11=�12(c11)) � (c21=�22(c21)), otherwise �} 

The D construction is quite efficient in computation times (each operation requires one operation from 
each of the four candidate commitment schemes), and in the size of the commit and decommit strings 
(commit size is twice that of the candidate commitment schemes, and decommit size consist of four 
decommitments plus two commitments). In particular, in the size of the commit and decommit strings, it 
substantially improves upon the sc construction; this may be important for many applications.  

However, the D construction has one significant drawback: it uses four component commitment 
schemes for 1-tolerance, while sc requires only three candidate schemes for 1-tolerance. However, we can 
fix this by using only three commitment schemes, but using each of them twice, by connecting in parallel 
three cascades of two schemes each; we call this the E construction. The definition is omitted for lack of 
space (and since it should be obvious – especially after reading the next subsection).  

We next state the tolerance of the D and E constructions. The proof is given in the next section.  

Lemma �5-1 Both D (E) construction of 2t+2 (respectively, 2t+1) commitment schemes is t-tolerant 
for Binding, relaxed-Binding and Hiding specifications.  � 

5.2 Composing Arbitrary Constructions  

We now generalize the idea of combining multiple constructions, as in the previous subsection, to 
arbitrary constructions and specifications. We still limit our attention to compositions of two constructions. 
Such compositions accept as input two constructions c and c’ and produce a composite construction denoted 
c’�I c, where I is a mapping of the `candidate functions` to the constructions. We present few simple, and 
useful, compositions. First, we need to define the relevant mappings I and the composition for given I. 

Let c be a construction of plurality p over F which is t-tolerant for s�s’, and let c’ be a construction 
of plurality p’ over F which is t’-tolerant for s’�s”.  Let p� denote the plurality of the composition of c and 
c’; namely the input to the composite construction is an ordered set f of p� functions, f[i]�F. The composite 
construction c’�I c first applies c to p’ sets of p functions each, and then applies c’ to the p’ resulting 
functions. The composition is defined by the selection of the p functions input to each of the p’ applications 
of the c construction, namely by a mapping I:{1,…,p}�{1,…,p’}�{1,…, p�}, where Ii[j] identifies the jth 
function input to the ith c construction. Given I, the I-composition of c’ and c, denoted c’�I c, is 


 � � � � �
 �
 � � � � �
 �)(,...,)(,...,)(,...,)('][],...,[' '' pIf1IfcpIf1Ifccpf1fcc pp11I �o�  
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Consider cascade compositions of threshold-tolerant constructions. The following lemma shows that 
the security of the I-composition of two threshold-tolerant constructions, depends on a simple combinatorial 
property of mappings I. Consider mapping I:{1,…,p}�{1,…,p’}�{1,…, p�} and some set T�{1,…, p�} (of 
`weak input functions`). Let Gi(I,T)={ Ii[j] | j=1,…,p } - T, i.e. values Ii[j], for some j, which are not in T; 
think of Gi(I,T) as the `good selections` of Ii. Let G(I,T)[t]={i s.t. |Gi(I,T)|�p-t}. We say that I is a (good) 
(t,t’,t�)-threshold-composition-structure if for every T�{1,…, p�} s.t. |T|� t� holds: |G(I,T)[t]|�p’-t’.   

Lemma �5-2 Let I:{1,…,p}�{1,…,p’}�{1,…, p�}  be a (good) (t,t’,t�)-threshold-composition-structure. 
Let c be a construction of plurality p over F which is t-tolerant for s�s’. Let c’ be a construction of 
plurality p’ over F which is t’-tolerant for s’�s”. Then c’�I c, is a construction of plurality p� over F which 
is t�-tolerant for s� s”. 

Proof:  Consider any set f of p� functions, f[i]�F, and assume that p�-t of them satisfy specification s. 
Namely, for some set {ij} of p�-t indexes holds s(f[ij])=1. We need to prove that for every choice T�{1,…, 
p�} of up to t� functions in f which do not satisfy s, the function resulting from applying composed 
construction c�I c’ to {f[1],…,f[p�]} satisfies s” . Namely, we need to prove that s”( c’�I 
c(f[1],…,f[p�]))=1. Let f’[1],…,f’[p’] denote the p’  intermediate functions, i.e. f’[i]=c(f[Ii(1)],…,f[Ii(p)]); 
hence c’�Ic(f[1],…,f[p�])=c’(f’[1],…,f’[p’]).  

If i�G(I,T)[t], namely |Gi(I,T)|�p-t, then for at least p-t of the functions f[Ii(1)],…,f[Ii(p)] holds 
s(f[Ii(j)])=True. Since c is t-tolerant for s�s’ it follows that s’(f’[i])=True, for every i�G(I,T). Since c’ is 
t’-tolerant for s’�s”, it follows that:�s”(c’�Ic(f[1],…,f[p�]))=s”(c’(f’[1],…,f’[p’]))=1. � 

 

We now present two simple threshold cascade compositions derived from the above lemma, by 
presenting two simple composition structures: 
 
� Composition structure D:{0,1}�{0,1}�{0,1,2,3} defined as Di[j]=2i+j for i,j�{0,1} 
� Composition structure E:{0,1}�{0,1,2}�{0,1,2} defined as Ei[j]=i+j mod 3 for i�{0,1}, j�{0,1,2} 

By simply checking the combinatorial definition of (t,t’,t�)-threshold-composition-structure we get: 

Lemma �5-3 D and E are both (good) (0,1,1) and (1,0,1) threshold-composition-structures.  

From the two Lemmas, we get:  

Lemma �5-4 Let c, cD’, cE’  be constructions of plurality 2, 2 and 3 respectively. If c is t-tolerant for 
s�s’ where t�{0,1}, and cD’ , cE’ are (1-t)-tolerant for s’�s”, then cD’�D c and cE’�E c are both 1-tolerant 
for s�s”. 

We can now prove Lemma �5-1, for t=1 (proof for t>1 is similar).  

Proof of Lemma �5-1: Let c be cc, i.e. c is the cascade construction; and let cD’, cE’ be c||, i.e. the 
copy-parallel-concat construction, both for commitment schemes. Notice that D= cD’�D c, E= cE’�E c. The 
claim therefore follows immediately from Lemma �4-2, Lemma �3-4 and Lemma �5-4. � 

6 Conclusions and Open Questions 
In this work we presented simple, efficient and practical tolerant constructions for some of the most 

important and practical cryptographic mechanisms, including encryption, signature/MAC and commitment 
schemes. For encryption and MAC/signature schemes, we simply proved the security of the (very efficient) 
`folklore` constructions; for commitment schemes, we present new constructions which are compositions of 
the folklore cascade and parallel (specifically, copy-parallel-concat) constructions. We also present 
definitions for tolerant constructions and compositions, and some simple yet useful results regarding 
compositions of constructions.   

We believe that efficient tolerant constructions are an important requirement from practical 
cryptographic primitives; put differently, we should prefer specifications with an efficient tolerant 
construction. We presented efficient tolerant constructions for several of the important primitives (and 
specifications) of modern cryptography. However, for others, we did not find (yet?) a (reasonably efficient) 
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tolerant construction. This calls for additional research, to distinguish between specifications with efficient 
tolerant design, vs. specifications that do not have an efficient tolerant design (and possibly, to find alternate 
specifications which are sufficient for most applications/scenarios). For example, XOR-parallel-concat is 
tolerant for AONT, but has substantial loss in parameters (instead of s secret bits out of which l must remain 
secret, we need 2s secret bits out of which s+l must remain secret). We hope follow-up works will 
investigate efficient tolerant constructions for AONT, and for other mechanisms not covered by our results.  
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Appendix 
Proof of claim 2 of Lemma �3-1: Trivially, if Time(f,k)� 
F and Time(g,k)� 
F then Time(f�g,k)� 2
F. 

Let s(f)= concrete-OWFf(a,k,�A, 
A) � [Time(f,k)� 
F], s’(f)= concrete-OWFf(a,k,�A, 
A+
F). It remains to 
prove that s(f)�s’(f�g) and that s(g)�s’(f�g).   

Assume f, g�Pk and Time(f,k)� 
F, Time(g,k)� 
F. Trivially, f�g� Pk. Assume that s’(f�g)=False; we 
prove that both s(f)=False and s(g)=False.  

Since s’(f�g)=False, there is some (possibly probabilistic) algorithm A s.t. 

FA
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R 10m
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)()))(((Pr
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ooo . 

Define algorithms Af , Ag as follows:  

 Af(y)=g(A(y)), Ag(y)=A(f(y)) 

We first show that the running time of Af and Ag over inputs of length k is bounded by t+
. Suppose Af 
is given input f(m) where |f(m)|=|m|=k (remember that f is a permutation for inputs of any length k). 
Therefore, Af  gives input of the same length k to A. WLOG, we can assume that the output of A  is also of 
length k (since otherwise clearly A loses). Therefore, the running time of Af on input of length k is at most 
t+
 ; a similar argument holds for Ag.  

It remains to show that � � amfmfAf f10m k
R


�
�

)()))(((Pr
},{

 and 

� � amgmgAg g10m k
R


�
�

)()))(((Pr
},{

.  

Let X denote the k-bit strings x for whom A succeeds in inverting f�g, i.e. for every x�X holds 
f�g(A(f�g(x)))= f�g(x). Since � � axgfxgfAgfk

R 10x

�

�
)()))(((Pr

},{
ooo , we know that |X|�a�2k. 

Similarly let 
 �
 � 
 ��  
 �
 � 
 ��  xgxgAg10xXxfxfAf10xX g
k

gf
k

f ������ )(},{,)(},{ . We show 

that XXXX gf 

 ,  and since |X|�a�2k, the claim follows.  

Let x�X. Hence f�g(A(f�g(x)))= f�g(x), namely f(g(Ag(g(x)))=f(g(x)). Since f is a permutation, it 
follows that g(Ag(g(x)))=g(x), namely x�Xg.  

Similarly, let xf=g(x). Since x�X, then f�g(A(f�g(x)))= f�g(x), namely f(Af(f(xf)))=f(xf), i.e. xf�Xf . 
Since g is a permutation, it follows that |Xf|�|X|.   � 

Proof of Claim A, Lemma �3-3: We construct adversary A as follows. In the “select” phase, A selects 
randomly r’ed�{0,1}k, and then uses �’.KG to compute the keys e’=�’.KG.e(r’ed), d’=��’.KG.d(r’ed).  

Next, A invokes the “select” phase of Ao which returns plaintexts po[0], po[1] and state so. In its 
operation, Ao may invoke the oracles for functions {E,D,wD} of �o; trivially, A can answer these queries by 
using the corresponding oracle for ���and computing the corresponding function of �
�(using keys e’, d’). 
For example, to answer query of ��.Dd,d’(c), we first invoke the oracle �.Dd on input c; denote the result as 
x. We now compute ��.D<d,d’>(c)=��’.Dd’(�.Dd(c))=��’.Dd’(x), which is possible since A knows d’.  
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To complete the “select” phase, A computes p[j]=��’.Ee’,,r’[j](p
o[j]) for j�{0,1} and r’[j]�R{0,1}* (for 

public key encryption, i.e. if ISPUB=F, then concatenate e’ to p[0] and p[1]).  It then returns p[0], p[1] 
and s=<so,e,e’,d’>. We later show that using r’[j]�R{0,1}� suffices. 

In the “find” phase, A receives ciphertext c and state s=<so,e,e’,d’ >. It simply invokes the “find” 
phase of Ao on c and so, and returns the bit x returned by Ao.  

We now show that po �p. The probabilities are taken over the coin tosses by A, by the `black-box` 
algorithm Ao, and by the experiment (for key-generation, encryption and b). Denote the coin tosses as 
follows:  
o ro

A : coins used by the `black-box` adversary Ao (provided by and known to A ) 
o Coins tossed by the experiment (unknown to A): for key generation (red), to select the challenge 

plaintext p[b] (coin b), and for encrypting p[b] (bits r).  
o Coins tossed by A for its own use, namely: for key generation (r’ed) and to compute the 

encryptions of the plaintexts E’.Ee’,,r’[j](po[j]) (bits r’[0], r’[1]).     

Let rA=ro
A||r’ed||r’[0]||r’[1] denote all the random bits tossed by algorithm A. Let w(rA, red,  r, b)=true 

if and only if IndExpA,�,ISPUB(k,q,l,t,�,�A)=”win” with the corresponding coin tosses.  

Let ro
ed=red||r’ed,  r

o=r||r’. Let wo(ro
A, ro

ed, r
o, b)=true if and only if  

IndExpA˚,�˚,ISPUB(k,q,l,to,�,�o
A)=”win” with the corresponding coin tosses.  

The claim follows by showing that wo(ro
A, ro

ed, ro, b)� w(rA, red, r, b). We show this holds, by 
showing that all conditions of step 8 of experiment E= IndExpA,�,ISPUB(k,q,l,t,�,�A)[rA, red, r, b] hold if they 
(conditions of step 8) hold in experiment Eo= IndExpA˚,�˚,ISPUB(k,q,l,to,�,�o

A)[ro
A, ro

ed, r
o, b].  

We use the following notation: let x@E (x@Eo) denote the value of variable x during experiment E 
(respectively Eo). We omit the @ notation when the value is clearly identical in the two experiments. Also, 
let c8�@E (c8�@Eo), where ��{a,b,…,f}, be true if claim � of step 8 holds during experiment E 
(respectively Eo).  

Algorithm A returns the same bit � as returned by Ao, namely �@E= �@Eo. Hence if c8a@Eo is true, 
i.e. �@Eo=b, then also �@E=b and c8a@E=true.  

By design of A above, for j={0,1} holds p[j]@E=�’.Ee’,r’[j](p
o[j]@E). If c8b@Eo=true, then 

|po[1]@E|=|po[0]@E|�l-2�. Since bounds[k, k’, l, �, �,  
](��’)=True, we have |p[1]@E|=|p[0]@E’|�l-�. 
Hence, c8b@Eo

�c8b@E.  

For c8c, we note that the running time of A consists of the running time of Ao in the corresponding 
experiment, plus the additional work by A. This extra work consists essentially of invoking the key 
generation algorithm once, doing two encryptions (to compute p[0] and p[1]), and answering the oracle 
queries of Ao. Each oracle query �o.f requires A to compute �’.f; it follows that if the running time of Ao at 
Eo is bounded by to, then the running time of A at E is bounded by 
t=to+
[KG]+2
[E]+ � �

� �},{ },,{

][],[
selectfindj wDDEf

ffjq � .  Hence, c8c@Eo
�c8c@E. 

We note that A involves oracle ��f only to answer oracle call �o.f of Ao. Hence, c8d@Eo
�c8d@E, 

c8g@Eo
�c8g@E and c8f holds since q[find,D]=0. 

It remains to show that c8e@Eo
�c8e@E. Adversary A users random bits rA=ro

A||r’ed ||r’[0]||r’[1] 
(including the random bits ro

A for running Ao internally). r’ed is k bit long. Bits r’[0], r’[1] are used by A 
(only) to compute p[0],p[1]. Assume that c8b holds at Eo, i.e. |p[1]@Eo|=|p[0]@Eo|�l-2�. Since  
bounds[k, k’, l, �, �, 
](�
�=True, we use at most � bits from r’[j], for j={0,1}, in computing 
p[j]@E=�’.Ee’r’[j](p

o[j]@E). It follows that the total number of random bits used by A is at most 
|ro

A|+2k+2�. If c8e@Eo holds, i.e. |ro
A|� �o

A, it follows that A uses at most |rA|� �o
A+2k+2�= �A random 

bits. Hence c8e@Eo^ c8b@Eo
�c8e@E. � 

Claim A’, Lemma �3-3: given adversary Ao such that po� ½+a as a black box, we can construct 
adversary A’ such that p’�po � ½+a.  
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Proof of Claim A’, Lemma �3-3: We construct adversary A’ as follows. In the “select” phase, A’ 
selects randomly red �{0,1}k, and then uses �.KG to compute the keys e=�’.KG.e(red), d=��.KG.d(red), s=�
�.KG.s(rsv), v=��.KG.v(rsv).  

Next, A’ invokes the “select” phase of Ao which returns plaintexts p[0], p[1] and state so. In its 
operation, Ao may invoke the oracles for functions {ES,D,V} of �o; trivially, A’ can answer these queries by 
using the corresponding oracle for �
��and computing the corresponding function of �. Finally, A’ returns 
p[0], p[1] and s=<so,e’,e,d,s,v>. We later show that using r[j]�R{0,1}� suffices. 

In the “find” phase, A’ receives ciphertext c and state s=<so,e’,e,d>. It computes c’=�.Ee,r(c) and 
invokes the “find” phase of Ao on c’ and so, and returns the bit x returned by Ao.  

The rest of the proof follows exactly like in claim A. � 


