
 Page 1 6/1/2004

On Tolerant Cryptographic Constructions
draft – comments appreciated

Amir Herzberg

Computer Science Department

Bar Ilan University

http://www.cs.biu.ac.il/~herzbea/

Abstract

We investigate how to construct secure cryptographic schemes, from few candidate schemes, some of
which may be insecure. Namely, tolerant constructions tolerate the insecurity of some of the component
schemes used in the construction. We define tolerant constructions, and investigate `folklore`, practical
cascade and parallel constructions. We prove cascade of encryption schemes provide tolerance for
indistinguishability under chosen ciphertext attacks, including a `weak adaptive` variant. Similarly, certain
parallel constructions ensure tolerance for unforgeability of Signature/MAC schemes, OWF, ERF, AONT
and certain collision-resistant hash functions. We present (new) tolerant constructions for (several variants
of) commitment schemes. Our constructions are simple, efficient and practical. To ensure practicality, we
use concrete security analysis (in addition to the simpler asymptotic analysis).

1 Introduction
Most cryptographic functions do not have an unconditional proof of security. The classical method to

establish security is by cryptanalysis i.e. accumulated evidence of failure of experts to find weaknesses in
the function. However, cryptanalysis is an expensive, time-consuming and fallible process. In particular,
since a seemingly-minor change in a cryptographic function may allow an attack which was previously
impossible, cryptanalysis allows only validation of specific functions and development of engineering
principles and attack methodologies and tools, but does not provide a solid theory for designing
cryptographic functions. Indeed, it is impossible to predict the rate or impact of future cryptanalysis efforts;
a mechanism which was attacked unsuccessfully for years may abruptly be broken by a new attack1. Hence,
it is desirable to design systems to be tolerant of cryptanalysis and vulnerabilities (including known
trapdoors). A tolerant cryptographic system remains secure following successful cryptanalysis of one or
more cryptographic subsystems it contains. Tolerance does not imply unconditional-security; however, it
would hopefully provide sufficient advanced-warning time to replace broken cryptographic components.

Many cryptographic systems and constructions use redundant components in the hope of achieving
tolerance. The most familiar such construction is cascade. Cascading of cryptosystems is very natural;
novices and experts alike believe that the cascade E�E’ of two cryptosystems E,E’ is at least as secure as
the more secure of the two, hopefully even more secure than both. Indeed, cascading of cryptosystems has
been a common practice in cryptography for hundreds of years.

However, so far, there are few publications on tolerant cryptographic constructions. In [AB81],
Asmuth and Blakely present a simple construction of a randomized cryptosystem from two component
ciphers, with the hope of achieving tolerance; proof of security was given only in [GM84]; see variant for
block ciphers in [HP86]. The highly related problem of cascading of block ciphers received some attention.
Even and Goldreich showed that keyed cascade ensures tolerance against message recover attacks on block
ciphers [EG85, Theorem 5], and conjectured that the result holds for other specifications of ciphers.
Damgard and Knudsen [DK94] proved that it holds for security against key-recovery under chosen-
plaintext attacks. Maurer and Massey [MM93] claimed that the proof in [EG85] “holds only under the
uninterestingly restrictive assumption that the enemy cannot exploit information about the plaintext
statistics”, but we disagree. We extend the proof of [EG85] and show that, as expected intuitively and in

1 In practice, we try to use conservative estimates of progress in cryptanalysis, based on past progress and other factors; see

e.g. [LV01].

 Page 2 6/1/2004

[EG85], keyed cascading provides tolerance to many confidentiality specifications, not only of block
ciphers but also of other schemes such as public key and shared key cryptosystems. Our proof uses a strong
notion of security under indistinguishability test – under plaintext only and non-adaptive chosen ciphertext
attack (CCA1), as well as weak version of adaptive chosen ciphertext attack (wCCA2). On the other hand,
we note that cascading does not provide tolerance for adaptive chosen ciphertext attack (CCA2), or if the
length of the output is not a fixed function of the length of the input. This shows the importance of backing
the intuition with analysis and proof.

Tolerance is relevant to any cryptographic scheme, not just for confidentiality. In particular, it is
widely accepted that the parallel construction g(x)||f(x), using the same input x to both functions, ensures
tolerance for several integrity properties, such as (several variants of) collision-resistant hashing as well as
Message Authentication Codes (MAC) and digital signatures. We prove that the parallel construction
indeed provide tolerance for such integrity specifications. The parallel construction is used, for tolerance, in
practical designs and standards, e.g. in the W3C XML-DSIG specifications and in the TLS protocol
[RFC2246].

Once we realized the importance of using tolerant cryptographic designs, we began looking for
tolerant constructions to different cryptographic goals (specifications). We present several results in this
work, but this work is far from complete, and we speculate that some cryptographic specifications may
simply not allow (efficient) tolerant constructions; in such cases, one may look for alternate specifications
that provide the necessary functionality for most practical scenarios and applications, yet allow efficient
tolerant constructions.

We wish to stress that efficiency is very critical for tolerant constructions; implementers will rarely be
willing to tolerate performance loss, `just` in order to tolerate potential vulnerabilities in a cryptographic
function. In fact, if would ignore efficiency, then it may be possible to ensure tolerance by using provable
constructions of cryptographic mechanisms from few `basic` cryptographic mechanisms, which have simple
tolerant designs. For example, many cryptographic mechanisms can be constructed from one-way
functions; and we observe that it is sufficient that one of {g , f} is a one-way function, to ensure that
g(x)||f(x’) is also a one-way function. Provably-secure constructions based on one-way functions exist for
many cryptographic mechanisms, e.g. pseudo-random generators [Go01,HILL99] and signature schemes
[NY89]. Therefore, by using a tolerant construction of one way function (from multiple candidate one-way
functions) as the basis of some cryptographic scheme, the scheme retains the proven security properties
even if one of the candidate one-way functions is not secure. However, such constructions are often
inefficient, and involve unacceptable degradation in security parameters (e.g., require absurd key and/or
block sizes). To quantify loss in security and efficiency due to the constructions, we use concrete security
measures, following [HL92, BKR94,BDJR97].

Our contributions. We consider our main contribution in the identification and formalization of
cryptographic tolerance as a criteria for cryptographic specifications, and goal for constructions. Some
additional contributions include:

� Precise analysis of the security of several `folklore` constructions. In particular, we show that
cascade encryption indeed ensures tolerance – as long as each component encryption has fixed output
length (for fixed length input), and for several variants of indistinguishability including a weak form of
adaptive chosen ciphertext attack (weak CCA2), but not for the `regular` CCA2 specification. We note
that the `multiple encryption` construction of [DK03] seems to ensure tolerant encryption for CCA2,
but at significant overhead (ciphertext length more than doubles), which may be unacceptable for many
applications.

� Efficient, practical constructions for commitment schemes. To our knowledge, these are the first
provably-secure tolerant constructions of general cryptographic functions, beyond the folklore
constructions, and few additional cryptographic constructions proven secure based on validity of either
of two (specific) `hardness` assumptions, e.g. [Sh00, O92].

� Compositions of constructions. We define compositions of multiple constructions, to combine the
benefits of different constructions. We also present a generic composition based on a simple

 Page 3 6/1/2004

combinatorial object (composition structure). Finally, we use these to compose the cascade and parallel
constructions, creating two efficient composite constructions for commitment schemes.

2 Notations and Definitions
We first fix some notations and recall the (standard) cryptographic definitions, for schemes to which

we present tolerant constructions. We then define the concept of tolerant constructions.

2.1 Cryptographic Functions and Schemes

We find it convenient to define tolerant constructions for functions, taken from some general set F of
(cryptographic) functions. However, much of our results deal with (cryptographic) schemes2, which are
finite sets of functions; if a function is `randomized`, we write the randomization bits as explicit input, for
clarity and to facilitate concrete security analysis. We represent schemes by a single function, with an
additional input parameter � choosing one of the functions in the scheme. We refer to a specific function in
the scheme using dot notation, e.g. ��� refers to function of scheme �. We next define some cryptographic
functions and schemes, beginning with encryption.

��������	���An encryption scheme � consists of three functions <KG,E,D> (for key generation,
encryption and decryption, respectively). The key generation function �.KG accepts as input a random
string, and its output is a pair3 of keys: e, d for encryption and decryption, respectively. We again use dot
notation to refer to particular key, e.g. e=�.KG.e(r) returns the encryption key returned by �.KG on input r.
We use subscripts to denote keys, and the random input to the encryption function. Encryption of message
m, where m�M for some message space M, using key e and randomness r, is simply �.Ee,r(m)�C, where C
is the ciphertext space. The decryption function �.D accepts as input ciphertext c�C, and key d, and returns
a message m’�M or a failure indicator �. The correctness requirement is �.Dd��.Ee,r(m))=m, for any m�M,
r�{0,1}* and rKG such that e=�.KG.e(rKG), d=�.KG.d(rKG).

� �����	
����
���
�	���� To define security for encryption schemes, we use the standard
`indistinguishability experiment` approach of [BDJR97, GM84], but extend their definitions as follows:

� Since our results apply to both shared-key and public-key encryption, we use a flag ISPUB to signal
when the encryption key is public.

� For quantitative security analysis, we bound the capabilities of the adversary (the `attack model`),
including the total running time t, random bits �A, the number of oracle queries (as an array q[phase,
oracle], e.g. q[find, D]=0 disallows adaptive chosen-ciphertext queries) and the length of ciphertext (l)
and plaintext (l-�) in queries. Previous definitions were asymptotic only or did not include all
parameters.

� Cascade encryption is insecure for adaptive chosen ciphertext attack (CCA2). Recently, [DK03]
presented constructions for `multiple encryption` schemes that appear to be tolerant for CCA2, but have
significant overhead; we believe that in many applied scenarios, this overhead would not be acceptable.
We found that cascade encryption is secure under a weak-CCA2 attack model, where the attacker can
chose ciphertext adaptively, but if the decrypted plaintext is one of the two chosen `test` plaintexts, then
the oracle returns a special `bingo` signal, but does not identify the plaintext; we call this the `weak
decrypt` oracle. Namely:
�.wDd,p[0],p[1](c)={m:=��.Dd(c); if m=p[0] or m=p[1] return `bingo`; else return m;}
Weak-CCA2 follows the criticism of [ADR02] on `regular` CCA2, but is even weaker than their

2 Some definitions of cryptographic schemes are not as a collection of functions, but as a collection of probabilistic

algorithms or machines. Often we can view them as functions with additional inputs for randomness and/or state.
3 Notice public and shared secret key schemes share the same syntax, i.e. e can be either public or secret, e.g. e=d.

 Page 4 6/1/2004

gCCA2 notion4; still, it may be sufficient in practice, in particular it allows the practical `feedback only
CCA` attacks of [B98,K01].

 Definition �2-1 [Indistinguishability Experiment] Let ��be an encryption scheme and let k, l, t, �, �,
�A � ����, ISPUB�{T/F} and q:{select,find}�{E,D,wD}�����. Let AO be an (adversarial) algorithm with access
to oracle O. Let IndExpA,��ISPUB(k,q,l,�,t, �, �A) be the following experiment:

(1) red�R{0,1}k ; e=��.KG.e(red); d=�.KG.d(red)

(2) Let O be an oracle to the functions: {�.Ee,r , �.Dd , �.wDd,p[0],p[1]}

(3) If ISPUB=T then e’=e else e’=�

(4) (p[0],p[1],state)� AO(“select”, e’, 1k); /* select phase */

(5) b�R{0,1};

(6) r�R{0,1}�; c=�.Ee,r(p[b]);

(7) �= AO(“find”, c, state); /* find phase */

(8) Return “win” only if all of the following conditions hold, otherwise return “loss”:

a. �=b, and

b. |p[1]|=|p[0]|� l-�, and

c. total running time of AO is less than t, and

d. AO makes at most q[�,f] calls to oracle �.f at phase ��{select, find}, and

e. AO uses at most �A random bits, and

f. AO does not make oracle query �.Dd(c) during select phase, and

g. in its oracle queries, AO uses m, c s.t. |m|�l-� and |c|�l.

The confidentiality specifications depend on the maximal advantage a for the adversary.

Definition �2-2 ��satisfies specification INDISPUB(a,k,q,l,�,t,�,�A) if for every adversary A holds
Pr[IndExpA,��ISPUB(k,q,l,�,t, �, �A)=”win”]< ½+a.

We now also present asymptotic, polynomial-time complexities. Allowing polynomial number of
each type of queries, possibly restricting queries to D for the `weaker` notions (cf. to CCA2), i.e. CPA,
CCA1 and wCCA2.

Definition �2-3 � satisfies specification CCA2-INDISPUB if ��PPT and for any strictly positive
polynomials l, �, t, �, �A, a and positive polynomials q[�,f] for ��{select, find} and f�{E,D}, exists some
integer k0 such that for every k�k0, holds: Pr[IndExpA,��ISPUB(k,q(k),l(k),�(k),t(k), �(k),
�A(k))=”win”]<½+a(k). We say that � satisfies specifications wCCA2-INDISPUB, CCA1-INDISPUB , CPA-
INDISPUB, respectively, if � satisfies CCA2-INDISPUB restricted to q[“find”,D]=0,
q[“find”,D]=q[“find”,wD]=0, or also q[“select”,D]=0)

	� � ��� ���. A (non-interactive) commitment scheme � consists of four functions <KG,C,D,O>
(for key generation, commit, decommit and open, respectively). The key generation function �.KG accepts
as input a random string, and its output is a public commitment key ck. The commitment and decommit
functions �.C, �.D have both three inputs: a message m�M, a public commitment key ck and randomness r,
and their respective outputs are: a commitment �.Cck,r(m) and a decommitment �.Dck,r(m). The open

4 Is cascade tolerant for gCCA? Is some comparably-efficient construction tolerant under CCA2 (or at least gCCA)? We

think not, but have to leave these questions open at this time.

 Page 5 6/1/2004

function �.O has the same inputs5, plus the commitment and decommitment values (c, d respectively), and
its output is either a message m’�M or a failure indicator �. The correctness requirement is
�.Ock�	��.Cck,r(m),��.Dck,r(m))=m, for any m�M, r and rKG such that ck=��KG(rKG), namely �.O (open),
when given all necessary inputs (message, commitment and decommitment), returns the original message.

� �����	
������� � �	� ��	� Commitment schemes have a confidentiality property, called hiding, and
an integrity property, called binding. We only sketch the asymptotic definitions; the final version of this
manuscript will contain complete (and concrete) definitions.

� �����. No PPT adversary can distinguish the commitments of any two messages of its choice.

�������. Given (random) ck, every PPT adversary A has negligible probability of finding a collision,
i.e. values c,d,d’,m,m’ s.t. �.Ock�m,c,d))=m and �.Ock�m’,c,d’))=m’ (notice the commitment c is the same!).

 Following [ADR02], we also consider relaxed binding, where A has negligible probability of finding
a message m s.t. when given c=�.Cck,r(m) and d=�.Dck,r(m), the PPT adversary A can find m’, d’ s.t.
�.Ock�m’,c,d’))=m’. As motivated in [ADR02], known constructions for commitment schemes can use
UOWHF for relaxed binding, but require the (strictly stronger) CRHF for (strict) binding. We show later a
construction which is tolerant for both versions of binding (`strict` or relaxed).

Our construction is also tolerant for trapdoor commitments [BCC88], or chameleon hash functions
[KR00]. In these schemes, the key generation produces also a secret trapdoor key ��KG.t. The schemes also
define a Switch algorithm, which uses the trapdoor key, to transform any valid commitment to any message
m to an indistinguishable commitment to any other message m’ (adversary may chose both m and m’).

 �������������� �
 . A signature/MAC scheme6 � consists of three functions <KG,S,V> (for key
generation, sign, and verify, respectively), where V returns a binary value (0 for false, 1 for Ok). The key
generation function �.KG accepts as input a random string, and its output is a pair of keys: s, v for signature
and verification, respectively. The correctness requirement is (�.Vv�Ss,r(m),m)=1), for any m�M, r and rKG
such that s=�.KG.s(rKG), v=�.KG.v(rKG).

� �����	
����� ����	������ � �� As mentioned in the introduction, it is quite trivial, and known by
`folklore`, that signature/MAC schemes are tolerant under parallel construction. More precisely, we prove
that signature/MAC schemes are tolerant under `copy-concatenate` parallel construction, for the strong
existential unforgeability under adaptive chosen message attack specification (but, the argument holds for
most other notions of security for signature/MAC schemes).

A signature/MAC scheme � ensures existential unforgeability under adaptive chosen message attack
if a PPT adversary given oracle to � .Ss,r() has negligible probability of producing (,m) s.t. Vv(,m)=1, if 	
was never returned by � .Ss,r(m). The probability is taken over the coin tosses of the adversary, and the
random choice of r and rKG, and with s=�.KG.s(rKG), v=�.KG.v(rKG). In MAC schemes, v is secret, while in
signature schemes, the adversary is also given v.

� ������
	�����	������������� ����������	���A PPT computable function h:{0,1}*
�{0,1}k, is

said to be weakly collision resistant hash function, or to maintain specification WCRHF, if for PPT
adversary A holds Pr(A(x)=y| (y�x)
(h(x)=h(y))�0, where the probability is over the coin tosses of A and
over random choice of y�R{0,1}l , for some sufficiently large l. �

���	���������������������	���A PPT computable function f:{0,1}n
�{0,1}k, is said to be t-ERF

(Exposure-Resilient Function) if any PPT adversary cannot distinguish between the output of f applied to a
random input, and a truly random k bit string, even if given any l bits from the input of f. �

5 Most definitions of open functions of commitment schemes do not include a message input, only commitment,

decommitment and key. However, in practice, often the largest or only part of the decommitment is simply the message. By
allowing the open funtion to depend also on the message, we can express the fact that practical commitment schemes usually output
short commitments and empty or short decommitments; this is significant when designing tolerant constructions.

6 Notice public and shared key schemes share the same syntax.

 Page 6 6/1/2004

� ! " . An All-Or-Nothing Transform (AONT) is a pair of PPT algorithms, T (the Transform) and I
(the Inverter). The transform T has two inputs, a k-bit message m and a random string r. Its output consists
of a pair (secret,public), called the secret part and public part, where the length of the secret part is usually
fixed and denoted s. The inverter I has also two parameters, and its output is a message m or a special signal
� indicating failure to invert. The correctness requirement is simply that for every m�{0,1}k, and every
random r, holds: I(T(m,r))=r.

We say that f satisfies the security specification AONT(k,s,l) if there are no messages m, m’ and some
PPT adversary distinguisher, which can with significant probability distinguish between f(m) and f(m’),
given all but l bits of the secret part.

2.2 Performance specifications

For asymptotic security analysis, it is sufficient to require all algorithms to be probabilistic
polynomial time. However, to allow concrete security analysis of constructions, we need concrete bounds
on the complexities of the schemes. In this version of the work, we present such bounds (and concrete
analysis) only for encryption schemes, as follows.

Definition �2-4 [Concrete complexity bounds for encryption schemes] Let k, k’, l, �, ������, with
l>�, and let
:{KG,E,D}���������. Then for every encryption scheme � we define predicate bounds[k, k’, l, �, �,

](�� as True if and only if:

1. For inputs of length up to k,��.KG(k) is computable in time
[KG] and��.KG(k)|�k’.

2. There is a deterministic algorithm that computes �.Ee,r(m) in time
[E], for every e�{0,1}k’ and
every m s.t. |m|�l-�, and reads up to the first � bits of r; also, |�.fe,r(m)|�l.

3. There is a deterministic algorithm that computes �.Dd(c) in time
[D], for every d�{0,1}k’ and
every c s.t. |c|�l; also, |�.Dd,r(c)|�l.

2.3 Tolerant Constructions

We are interested in specifications (properties) of functions, including concrete security specifications
and asymptotic security specifications. We define specifications simply as binary predicates over the set of
functions F. Let S(F) be the set of all specifications (predicates) over F. We say that f�F satisfies s�S(F) iff
s(f)=1.

We say that a mapping c of p functions f1,…fp into a single function c(f1,…,fp), i.e. c : Fp
�F , is a

construction of plurality p over F. Construction c is tolerant if c(f1,…,fp) satisfies some specification s’ as
long as a sufficient subset of f1,…fp satisfy specifications s1,…sp , respectively (often, all specifications are
identical, i.e. s=s1=…=sp and also often s=s’). To complete this definition, we need to identify the
sufficient subset of f1,…fp; following the works on secret-sharing, we define two variants of tolerance: based
on threshold t (0�t<p), and based on general access structure ��P({1,…p}) (� is a set of subsets of {1,…p}).
In addition, we often require that all of the candidate functions fi satisfy some minimal specifications
b�S(F), such as bounds on their complexities.

Definition �2-5 Consider some set of functions F, integer p, predicates s’,b,s1,…sp�S(F) and
construction c : Fp

�F of plurality p over F. Construction c is t-tolerant for (s1,…sp)�s’ , with threshold

t<p, if s’(c(f1, …,fp)) holds provided tpfs
p

i ii 	
� �1
)(. Construction c is �-tolerant for (s1,…sp)�s’, with

access structure ��P({1,…p}), if s’(c(f1, …,fp)) holds provided for some �� � holds (i� �)�si(fi)=1.
Construction c is t-tolerant (�-tolerant) with prerequisite b if s’(c(f1, …,fp)) holds provided

 �
 �tpfspfb
p

i ii

p

i i 	
�� �� �� 11
)()((respectively,
 �
 �
 ���

�
������ �� �� i ii

p

i i fspfb)()(
1

). If c

is 0-tolerant for (s1,…sp)�s’ then we say that c preserves (s1,…sp)�s’ (with or without prerequisites). If c is
t-tolerant for (s,…s)�s’, then we say that c is t-tolerant for s�s’; if t=0 then we say that c preserves s�s’.
If s=s’ then we say that c is t-tolerant for (or preserves) s. Finally, if c is (p-1)-tolerant, then we simply say
that c is tolerant. �

 Page 7 6/1/2004

3 Cascade Constructions and their Tolerance
The most basic tolerant construction of cryptographic functions is the cascade construction c�. We

begin by discussing `simple cascading’, which is cascading of functions with a single input and output, such
as hash functions, namely c�(f,g)[x]=f�g(x)=f(g(x)). In the following subsections we discuss cascading of
keyed schemes.

3.1 Simple Cascade of Keyless Cryptographic Functions

Consider any two functions g:Dg�Rg, f:Df�Rf s.t. Rg�Df. The simple cascade of f and g, denoted f�g
or c�(f,g), is a construction of plurality 2 defined as c�(f,g)=f�g(x)=f(g(x)). Unfortunately, simple cascade
rarely ensures tolerance, and often does not even preserve cryptographic specifications. So far, we found
simple cascade ensures tolerance only to the one-way property, and that with a prerequisite requirement
perm(f), which is true only if f is a permutation when restricted to input domains {0,1}l for some length l.

Lemma �3-1 Keyless cascade of two functions is…

1. 1-tolerant for specifications OWF with prerequisite perm.

2. 1-tolerant with prerequisite perm for specifications:
concrete-OWFf(a,k,�A,
A)�[Time(f,k)�
F]� concrete-OWFf(a,k,�A,
A+
F)�[Time(f,k)� 2
F]

3. Preserves (0-tolerant), but not 1-tolerant, for specifications ERF (exposure resilient function) and
AONT (all or nothing transform).

4. Not (even) 0-tolerant for specifications OWF and WCRHF.

Proof: The negative claims (4 and part of 3) follow by simple exmples, e.g. to prove claim 4, let h be

a OWF and/or WCRHF. Let g(x)=h(x)||0|h(x)| and
�
�
� �

�
elsexh

0yxif0
xf

2x

)(
)(

/||

. Trivially, both f and g are

OWF and/or WCRHF, respectively, yet f�g is neither OWF not WCRHF; in fact, f�g(x)=0 for every x.

Claims 1 and 2 follow from a simple reduction argument; the proof of claim 2 is in the appendix (and
claim 1 immediately follows from claim 2). �

We believe that we can generalize claims 1 and 2 for an appropriate family of regular functions. It
would be interesting to find additional cryptographic specifications of keyless functions for which cascade
provides tolerance.

3.2 Cascade Encryption is Tolerant

The cascade encryption, i.e. cascade of two7 encryption schemes �, �
, is denoted cE(�,�
) or ���

and defined as follows. Notation: For convenience we explicitly write the inputs and outputs to the cascade
(or any composition) as a tuple of inputs or outputs when appropriate, e.g. <r,r’> to denote the pair of two
random inputs (r to � and r’ to �
).

� ���
.KG.e(<r,r’>)=<�.KG.e(r),�
.KG.e(r’)>, ���
.KG.d(<r,r’>)=<�.KG.d(r),�
.KG.d(r’)>.

� ���
.E<e,e’>,<r,r’>(m)=�.Ee,r(�
.Ee’,r’(m))

� ���
.D<d,d’>(c)=�
.Dd’(�.Dd(c))

Cascade encryption is a construction of plurality 2; the following lemma bounds the complexities:

Lemma �3-2 Let ����
 be a pair of encryption schemes�such that for s�{���
} holds bounds[k, k’, l, �,
�,
](s) =True with l>2�. Then ���
 is an encryption scheme with bounds[2k, 2k’, l, 2�, 2�,
2
](���
�=True. �

7 The definitions and proofs extend trivially to cascade of arbitrary number of schemes.

 Page 8 6/1/2004

We now investigate the security and tolerance of cascade encryption. As noted in the introduction,
cascade encryption is an ancient, widely-deployed technique, usually in the hope of improving security –
e.g., providing tolerance to weaknesses of one of the two cascaded encryption schemes. Is this secure? This
depends on the adversary capabilities (`attack model`). Cascade encryption is not tolerant for adaptive
chosen ciphertext attack (CCA2); simply consider �
 which ignores the least significant bit of the
ciphertext, allowing adversary to decrypt the challenge ciphertext (by flipping the LSb and invoking the
decryption oracle). Our answer is yes, but with some important restrictions. However, as [ADR02] argued,
this `attack` is so contrived, that it may indicate that CCA2 is overly restrictive, rather than a problem with
cascade encryption. In [ADR02], the authors present a slightly weaker definition, gCCA, but we do not
think cascade is tolerant under that definition, either; on the other hand, the following lemma shows that
cascade encryption is tolerant under a slightly more related definition, weak CCA (wCCA), as presented
above.

Also, note that the indistinguishability experiment restricted the adversary to select plaintexts of the
same length. Obviously, the length of the ciphertext should be indistinguishable between any two plaintexts
(of the same length). For simplicity, we define a predicate FixedExtra over encryption schemes, such that
FixedExtra(�
) hold if the length of the ciphertext depends only on the length of the plaintext and on the
security parameter; this holds for all practical cryptosystems. Clearly, if the length of the output of �
 differs
for two plaintexts of the same length, then cascading it with a secure ��may not be sufficient to ensure
indistinguishability. We therefore require FixedExtra(�
� to hold.

Lemma �3-3 Cascade encryption is 1-tolerant with prerequisite FixedExtra(�
�, for specifications
wCCA2-INDISPUB, CCA1-INDISPUB , CPA-INDISPUB. Furthermore, let k, k’, l, �, �, to, �o

A ��� s.t. l>2�,

:{KG,E,D}��, q:{select,find}�{E,D,wD}��� s.t. q[find,D]=0. Then, cE is also 1-tolerant with the
additional prerequisite bounds[k, k’, l, �, �,
], for specifications INDISPUB(a,k,q,l,�,t, �, �A)
�INDISPUB(a,k,q,l,2�,t0, �, �o

A), where �A=�o
A+2k+2� and

t=to+
[KG]+2
[E]+ � �
� �},{ },,{

][],[
selectfindj wDDEf

ffjq � .

Proof: The proof is by contradiction; namely assume that for some �, �
 holds so(���
)=False, and
we show that s(�)=s(�
�=False.

Since so(���
)=False, then there is some adversary Ao such that
po�Pr[IndExpA,��ISPUB(k,q,l,to,�,�o

A)=”win”]� ½+a. We next show that given such adversary Ao as a black
box, we can construct adversaries A, A’ such that p�Pr[IndExpA,��ISPUB(k,q,l0,t,�,�A)=”win”] �po � ½+a
and p’�Pr[IndExpA’,�
�ISPUB(k,q,l0,t,�,�A)=”win”] � po � ½+a, where l0=l+�.

Namely, we prove (in the appendix) the following claims A, A’:

Claim A (A’): given adversary Ao such that po� ½+a as a black box, we can construct adversary A
(respectively A’) such that p�po � ½+a (respectively p’�po � ½+a).

This completes the proof, by showing that indeed s(�)=s(�
�=False. �

Cascading is a natural candidate construction for many cryptographic mechanisms; we now define
and investigate tolerance of cascade of commitment and MAC/Signature schemes.

3.3 Cascade Commitment

We define cascade commitment cc(�,�
) (or ���
�), i.e. cascade of two commitment schemes �, �
 , as
follows. (The final version will also contain the simple extension to trapdoor commitment schemes.) We
again wrote inputs and outputs as tuples.

� ���
.KG(<r,r’>)=<�.KG(r),�
.KG(r’)>

� ���
.C<ck,ck’>,<r,r’>(m)=�.Cck,r(�
.Cck’,r’(m))

� ���
.D<ck,ck’>,<r,r’>(m)=<�.Dck,r(�
.Cck,r(m)) ,��
.Dck’,r’(m), �
.Cck’,r’(m)>

 Page 9 6/1/2004

� ���
.O<ck,ck’>(m,c,<d,d’,c’>)=�
.Ock’(m,c’,d’) if �.Ock(c’,c,d)=c’��, else �

As the following lemma shows, cascade ensures the privacy (hiding) property of commitment
schemes, but only preserves the integrity (binding) property.

Lemma �3-4 Cascade commitment is tolerant for the hiding specification, and preserves (but is not
tolerant for) the binding specification.�

We next show that cascade also preserves, but does not ensure tolerance, for other integrity properties,
specifically of MAC/Signature schemes.

3.4 Cascading preserves, but is not tolerant for, MAC/Signature Schemes

We define cascade MAC/Signature cMAC/Sign(�,�
) (or ���
�), i.e. cascade of two MAC/Signature
schemes �, �
 , as follows. We again write inputs and outputs as tuples.

� ���
.KG.e(<r,r’>)=<�.KG.e(r),�
.KG.e(r’)>; ���
.KG.e(<r,r’>)=<�.KG.e(r),�
.KG.e(r’)>

� ���
.S<s,s’>,<r,r’>(m)=<�.Ss,r(m),�
.Ss’,r’(m)>

� ���
.V<v,v’>(<	,	’>,m)=�.Vv(,m)
��
. Vv’(’,m)

Lemma �3-5 Cascade MAC/Signature is 0-tolerant for (i.e. preserves) the existential unforgeability
under adaptive chosen message attack specification.

4 Parallel Constructions and their Tolerance
We now consider another important family of constructions, which are parallel applications of two or

more cryptographic functions or schemes. Parallel constructions may use the same input to all functions,
use different parts of the input to each function, or use some combination of the inputs to create the input to
each function, often involving XOR or secret-sharing. Similarly, the output of some parallel constructions is
simply the concatenation of the outputs of each function, while others `merge` the outputs, by XOR or
secret–sharing.

4.1 Split-Parallel-Concat Construction for OWF

Possibly the simplest parallel construction `splits` the input among several functions, and concatenates
the result. In particular, the Split-parallel-Concat (sc) construction for two keyless functions f, f’ is defined
as sc(f,f’)[<x,x’>]=f||SC f’(<x,x’>)=<f(x),f(x’)>. This trivial construction is tolerant for One-Way
Functions specifications, using two or more functions.

Lemma �4-1 The Split-Parallel-Concet (sc) construction is tolerant for OWF specifications.

Proof: use argument for transforming a weak OWF into a strong OWF (see e.g. [Go01]). �

4.2 Copy-Parallel-Concat Construction for Integrity Specifications

The Copy-parallel-Concat (cc) construction is also trivial and well-known, but it is very practical and
widely deployed. Here, the input to the construction is `copied` and used as input to each of the
components; and the output is simply the concatenation of the output of all components. This simple,
folklore construction provides tolerance for the integrity properties of collision-resistant hash functions,
signature/MAC schemes and commitment schemes.

Let us first define the cc construction for keyless functions, e.g. (weakly collision resistant) hash
functions. The Copy-parallel-Concat (cc) parallel construction of single-input (keyless) functions f,g is
denoted as f||g or c||(f,g), and defined as c||(f,g)=f||g(x)=f(x)||g(x). When the functions have inputs for
random bits and/or keys, these are selected independently for the two functions, and the parallel
construction is fk,r||gk’,r’(x)= fk,r(x)||gk’,r’(x).

The Copy-parallel-Concat (cc) parallel construction of two Signature/MAC schemes �, �
, denoted
c||(�,�
)=�||�
, is defined as follows. The definitions and proofs extend trivially to arbitrary number of
schemes.

 Page 10 6/1/2004

� �||�
��������
��������������
�����
���

� �||�
������
������
��	����������	����
���
��
�	���

� �||�
�����
�	�����
���������	�����
���
���
�	���
���

Similarly, the Copy-parallel-Concat (cc) parallel construction of two commitment schemes �, �
,
denoted c||(�,�
)=�||�
, is defined as follows. The definition extends trivially to trapdoor commitment.

� �||�
.KG(<r,r’>)=<�.KG(r),�
.KG(r’)>

� �||�
.C<ck,ck’>,<r,r’>(m)= <�.Cck,r(m), �
.Cck’,r’(m)>

� �||�
.D<ck,ck’>,<r,r’>(m)=<�.Dck,r(m) ,��
.Dck’,r’(m)>

� �||�
.O<ck,ck’>(m,<c,c’>,<d,d’>)=�.Ock(m,c,d) if �.Ock(m,c,d)=�
.Ock’(m,c’,d’)��, else �

As the following lemma shows, the parallel construction ensures tolerance for many integrity
properties / specifications, but clearly is quite bad for privacy.

Lemma �4-2 The Copy-parallel-Concat (cc) construction is…

1. Tolerant for the `integrity ` specifications WCRHF of keyless functions.

2. Tolerant for the existential unforgeability under adaptive chosen message attack specification of
Signature/MAC schemes.

3. Tolerant for the Binding and Relaxed-Binding specifications of commitment schemes.

4. Preserving, but NOT tolerant, for the `confidentiality` specifications Hiding of commitment
schemes, CCA1-IND , CPA-IND, CCA2-IND and wCCA-IND, of encryption schemes, and ERF.

5. NOT tolerant (preserving??), for the `confidentiality` specifications OWF of keyless functions.

6. NOT even preserving for the `confidentiality` specifications AONT of keyless functions.

The quantitative versions of the claims and the (simple) proofs will be included in the final version.

4.3 XOR-Parallel-Concat Construction for Encryption and AONT

Another classical tolerant construction, originally proposed in [AB81] for encryption schemes, takes
two inputs: a message (plaintext) and a random bit string of the same length, and applies one function to the
random string, and the other function to the exclusive-OR of the message with the random string. Namely,
the simple XOR-parallel-Concat (xc) construction for two keyless functions f, f’ is defined as
xc(f,f’)[<m,x>]=f||XCf’(<m,x>)=<f(m�x),f’(x)>; generalization to more than two functions is trivial.

The definition for xc construction for encryption schemes �, �
, is similar:

� �||XC��
.KG.e(<r,r’>)=<�.KG.e(r),�
.KG.e(r’)>, ���
.KG.d(<r,r’>)=<�.KG.d(r),�
.KG.d(r’)>.

� �||XC��
.E<e,e’>,<r,r’,x>(m)=<�.Ee,r(x) , ��
.Ee’,r’(x�m)>

� �||XC��
.D<d,d’>(<c,c’>)=�
.Dd’(c’) � �.Dd(c)

Lemma �4-3 The xc construction of encryption schemes is tolerant for specifications CCA1-INDISPUB
and CPA-INDISPUB, but does not even preserve wCCA2-INDISPUB (or CCA2-INDISPUB). The simple xc
construction is tolerant for specifications AONT(k,s,l)�AONT(k,2s,s+l).

Comment. The xc construction seems unacceptable for AONT, as the number of bits in the secret part
doubles, and the number of bits which the adversary can expose does not increase (remain s-l); however we
didn’t find a better tolerant construction for AONT.

4.4 Share-Parallel-Concat Construction for Tolerant Commitment

In the Share-Parallel-Concat construction, the inputs to each component commitment scheme are
shares of the input to the construction. A secret sharing scheme is a pair of algorithms <Share,

 Page 11 6/1/2004

Reconstruct>. Share accepts a message m as input, and outputs n secret values s1, … , sn which we call
shares; it is randomized, i.e. also accepts some random input r. For convenience, let Sharei,r(m) denote the
ith output of Share on input m with randomness r. Reconstruct is a deterministic algorithm which takes n
shares, s1’,…,sn’, some of which may have the special value � (for a missing share), and outputs a message
m’. The correctness property is that for every message m holds m=Reconstruct(Share(m)).

Furthermore, secret sharing schemes support different thresholds, for tolerating exposure or
corruption of shares. In particular, in our case, we are interested in the following two thresholds. First,
secret sharing schemes have a privacy threshold, tp, which determines the maximum number of shares
which reveal `no information` about the message m. Second, they have a soundness threshold ts, which
determines the minimum number of correct shares which ensures it is impossible to recover an incorrect
message m’�m (and m’��).

For simplicity, we present the share-parallel-concat (sc) construction for ensuring tolerance from
three candidate commitment schemes, ������ and ��, and using an arbitrary unconditionally secure secret
sharing scheme <Share, Reconstruct> with n=3, tp=1, ts=2, e.g. Shamir’s scheme [S79]. Generalizations
allowing threshold to t>1 insecure components (by using 2t+1 components and shares) are straightforward.

� sc���������������).KG(<r1,r2,r3>)=<���.KG(r1),���.KG(r2),���.KG(r3)>

� sc���������������).C<ck1,ck2,ck3>,<r,r1,r2,r3>(m)= <��.Cck1,r1(Share1,r(m)), ��.Cck2,r2(Share2,r(m)),
��.Cck3,r3(Share3,r(m))>

� sc���������������).D<ck1,ck2,ck3>,<r,r1,r2,r3>(m)= <��.Dck1,r1(Share1,r(m)), ��.Dck2,r2(Share2,r(m)),
��.Dck3,r3(Share3,r(m)), Share1,r(m), Share2,r(m), Share3,r(m)>

� sc���������������).O<ck1,ck2,ck3>(m,<c1,c2,c3>,<d1,d2,d3,s1,s2,s3>)=Reconstruct(��.Ock(s1,c1,d1),
��.Ock(s2,c2,d2) , ��.Ock(s3,c3,d3))

The tolerance of the share-parallel-concat scheme follows easily from the properties of the secret
sharing scheme. Essentially, the shared-parallel-concat is a hybrid or generalization of the copy-parallel-
concat and the XOR-parallel-concat constructions. The construction and lemma extend trivially to trapdoor
commitment schemes.

Lemma �4-4 The Share-parallel-Concat (sc) construction of 2t+1 commitment schemes is t-tolerant
for Binding, relaxed-Binding and Hiding specifications, for every t�1. �

Comment. In most practical commitment schemes, decommitment requires mainly the original
message, and the additional decommitment strings di are quite short. However, the Share-parallel-Concat
construction uses long decommitment string; specifically, the decommitment includes <d1,d2,d3,s1,s2,s3>.
The shares s1,s2,s3 are at least as long as the message; using [S79], each share is as long as the message;
namely the decommit string is three times as long as the message. This may be substantial overhead for
some applications. The scheme we present in the next section avoids this overhead.

Comment. By using robust secret sharing and other tools, [DK03] achieve tolerant construction for
the CCA2-IND specification of encryption schemes. However, their construction is very wasteful in the
length of the ciphertext, which may rule it unacceptable in most applications; we expect cascade would
remain the preferred tolerant construction for encryption (although it `only` ensures wCCA2-IND).

5 Composing Constructions, and Tolerant Commitment
Often, we may want to combine multiple constructions, e.g. to ensure tolerance to multiple

specifications. We restrict our attention to compositions of two constructions. In the first subsection we
present two ways to compose the cascade construction (tolerant for hiding) and the copy-parallel-concat
(cc) construction (tolerant for binding), resulting in efficient tolerant constructions for commitment schemes
(ensuring both hiding and binding specifications). In the second subsection, we generalize these results, by
defining a composition as a mapping of (two) constructions, presenting a generic composition based on a
combinatorial `composition structure` variable, and showing that the compositions for commitment
schemes are a special case. In particular, we use the general lemmas of the second subsection, to prove the
tolerance of the constructions for commitment in the first subsection.

 Page 12 6/1/2004

5.1 `Composite` Tolerant Constructions for Commitment Scheme

The Share-parallel-Concat (sc) construction provides tolerant design for commitment schemes, but
results in a long decommitment string (more than twice the original message), which may be problematic
for many applications. Can we construct efficient tolerant commitment schemes, with short decommitment
(and commitment) strings? In this sub-section we show two such constructions, with different tradeoffs,
both of which are compositions of the cascade and copy-parallel-concat (cc) constructions. This builds on
the fact that cascade is tolerant for the hiding specification, and copy-parallel-concat (cc) is tolerant for the
binding specifications.

It therefore makes sense to combine them, e.g. use four candidate commitment schemes, ����������,�����,
and ��� , cascading �����and������and connecting this in parallel to the cascade of ���� and ��� . We call the
result the D construction, after its `shape`, as follows. We use the notation �ij(m)=���.Ckij,rij(m),
�ij(m)=���.Dkij,rij(m), �ij(m)=���.Okij(m,cij,dij), �=<r11,r12,r21,r22>, �=<k11,k12,k21,k22>.

� D.KG(�)=<���.KG(r11),���.KG(r12),���.KG(r21),���.KG(r22)>

� D.C���(m)= <��12(��11(m)), �22(�21((m))>

� D.D���(m)=<�11(m),��11(m), �12(��11(m)), �21(m), �21(m), �22(�21(m))>

� D.O�(m,<c12,c22>,<d11,c11,d12,d21,c21,d22>)=
 = {m if (m=�11(m)=�11(m)) � (c11=�12(c11)) � (c21=�22(c21)), otherwise �}

The D construction is quite efficient in computation times (each operation requires one operation from
each of the four candidate commitment schemes), and in the size of the commit and decommit strings
(commit size is twice that of the candidate commitment schemes, and decommit size consist of four
decommitments plus two commitments). In particular, in the size of the commit and decommit strings, it
substantially improves upon the sc construction; this may be important for many applications.

However, the D construction has one significant drawback: it uses four component commitment
schemes for 1-tolerance, while sc requires only three candidate schemes for 1-tolerance. However, we can
fix this by using only three commitment schemes, but using each of them twice, by connecting in parallel
three cascades of two schemes each; we call this the E construction. The definition is omitted for lack of
space (and since it should be obvious – especially after reading the next subsection).

We next state the tolerance of the D and E constructions. The proof is given in the next section.

Lemma �5-1 Both D (E) construction of 2t+2 (respectively, 2t+1) commitment schemes is t-tolerant
for Binding, relaxed-Binding and Hiding specifications. �

5.2 Composing Arbitrary Constructions

We now generalize the idea of combining multiple constructions, as in the previous subsection, to
arbitrary constructions and specifications. We still limit our attention to compositions of two constructions.
Such compositions accept as input two constructions c and c’ and produce a composite construction denoted
c’�I c, where I is a mapping of the `candidate functions` to the constructions. We present few simple, and
useful, compositions. First, we need to define the relevant mappings I and the composition for given I.

Let c be a construction of plurality p over F which is t-tolerant for s�s’, and let c’ be a construction
of plurality p’ over F which is t’-tolerant for s’�s”. Let p� denote the plurality of the composition of c and
c’; namely the input to the composite construction is an ordered set f of p� functions, f[i]�F. The composite
construction c’�I c first applies c to p’ sets of p functions each, and then applies c’ to the p’ resulting
functions. The composition is defined by the selection of the p functions input to each of the p’ applications
of the c construction, namely by a mapping I:{1,…,p}�{1,…,p’}�{1,…, p�}, where Ii[j] identifies the jth
function input to the ith c construction. Given I, the I-composition of c’ and c, denoted c’�I c, is

 � � � � �
 �
 � � � � �
 �)(,...,)(,...,)(,...,)('][],...,[' '' pIf1IfcpIf1Ifccpf1fcc pp11I �o�

 Page 13 6/1/2004

Consider cascade compositions of threshold-tolerant constructions. The following lemma shows that
the security of the I-composition of two threshold-tolerant constructions, depends on a simple combinatorial
property of mappings I. Consider mapping I:{1,…,p}�{1,…,p’}�{1,…, p�} and some set T�{1,…, p�} (of
`weak input functions`). Let Gi(I,T)={ Ii[j] | j=1,…,p } - T, i.e. values Ii[j], for some j, which are not in T;
think of Gi(I,T) as the `good selections` of Ii. Let G(I,T)[t]={i s.t. |Gi(I,T)|�p-t}. We say that I is a (good)
(t,t’,t�)-threshold-composition-structure if for every T�{1,…, p�} s.t. |T|� t� holds: |G(I,T)[t]|�p’-t’.

Lemma �5-2 Let I:{1,…,p}�{1,…,p’}�{1,…, p�} be a (good) (t,t’,t�)-threshold-composition-structure.
Let c be a construction of plurality p over F which is t-tolerant for s�s’. Let c’ be a construction of
plurality p’ over F which is t’-tolerant for s’�s”. Then c’�I c, is a construction of plurality p� over F which
is t�-tolerant for s� s”.

Proof: Consider any set f of p� functions, f[i]�F, and assume that p�-t of them satisfy specification s.
Namely, for some set {ij} of p�-t indexes holds s(f[ij])=1. We need to prove that for every choice T�{1,…,
p�} of up to t� functions in f which do not satisfy s, the function resulting from applying composed
construction c�I c’ to {f[1],…,f[p�]} satisfies s” . Namely, we need to prove that s”(c’�I
c(f[1],…,f[p�]))=1. Let f’[1],…,f’[p’] denote the p’ intermediate functions, i.e. f’[i]=c(f[Ii(1)],…,f[Ii(p)]);
hence c’�Ic(f[1],…,f[p�])=c’(f’[1],…,f’[p’]).

If i�G(I,T)[t], namely |Gi(I,T)|�p-t, then for at least p-t of the functions f[Ii(1)],…,f[Ii(p)] holds
s(f[Ii(j)])=True. Since c is t-tolerant for s�s’ it follows that s’(f’[i])=True, for every i�G(I,T). Since c’ is
t’-tolerant for s’�s”, it follows that:�s”(c’�Ic(f[1],…,f[p�]))=s”(c’(f’[1],…,f’[p’]))=1. �

We now present two simple threshold cascade compositions derived from the above lemma, by
presenting two simple composition structures:

� Composition structure D:{0,1}�{0,1}�{0,1,2,3} defined as Di[j]=2i+j for i,j�{0,1}
� Composition structure E:{0,1}�{0,1,2}�{0,1,2} defined as Ei[j]=i+j mod 3 for i�{0,1}, j�{0,1,2}

By simply checking the combinatorial definition of (t,t’,t�)-threshold-composition-structure we get:

Lemma �5-3 D and E are both (good) (0,1,1) and (1,0,1) threshold-composition-structures.

From the two Lemmas, we get:

Lemma �5-4 Let c, cD’, cE’ be constructions of plurality 2, 2 and 3 respectively. If c is t-tolerant for
s�s’ where t�{0,1}, and cD’ , cE’ are (1-t)-tolerant for s’�s”, then cD’�D c and cE’�E c are both 1-tolerant
for s�s”.

We can now prove Lemma �5-1, for t=1 (proof for t>1 is similar).

Proof of Lemma �5-1: Let c be cc, i.e. c is the cascade construction; and let cD’, cE’ be c||, i.e. the
copy-parallel-concat construction, both for commitment schemes. Notice that D= cD’�D c, E= cE’�E c. The
claim therefore follows immediately from Lemma �4-2, Lemma �3-4 and Lemma �5-4. �

6 Conclusions and Open Questions
In this work we presented simple, efficient and practical tolerant constructions for some of the most

important and practical cryptographic mechanisms, including encryption, signature/MAC and commitment
schemes. For encryption and MAC/signature schemes, we simply proved the security of the (very efficient)
`folklore` constructions; for commitment schemes, we present new constructions which are compositions of
the folklore cascade and parallel (specifically, copy-parallel-concat) constructions. We also present
definitions for tolerant constructions and compositions, and some simple yet useful results regarding
compositions of constructions.

We believe that efficient tolerant constructions are an important requirement from practical
cryptographic primitives; put differently, we should prefer specifications with an efficient tolerant
construction. We presented efficient tolerant constructions for several of the important primitives (and
specifications) of modern cryptography. However, for others, we did not find (yet?) a (reasonably efficient)

 Page 14 6/1/2004

tolerant construction. This calls for additional research, to distinguish between specifications with efficient
tolerant design, vs. specifications that do not have an efficient tolerant design (and possibly, to find alternate
specifications which are sufficient for most applications/scenarios). For example, XOR-parallel-concat is
tolerant for AONT, but has substantial loss in parameters (instead of s secret bits out of which l must remain
secret, we need 2s secret bits out of which s+l must remain secret). We hope follow-up works will
investigate efficient tolerant constructions for AONT, and for other mechanisms not covered by our results.

Acknowledgements
I wish to thank Mihir Bellare, Ran Canetti, Shai Halevi, Kath Knobe, Boaz Patt-Shamir, Avi

Wigderson and anonymous referees for helpful comments and discussions. This work is supported by ISF
grant.

References
[AB81] C. A. Asmuth and G. R. Blakley. An efficient algorithm for constructing a cryptosystem

which is harder to break than two other cryptosystems. Comp. and Maths. with Appls., 7:447-450, 1981.

[ABCV98] B. Aiello, M. Bellare, G. Di Crescenzo, and R. Venkatesan, Security amplification by
construction: the case of doubly-iterated, ideal ciphers, Proc. of CRYPTO 98.

[ADR02] Jee Hea An, Yevgeniy Dodis and Tal Rabin, On the Security of Joint Signature and
Encryption, in Theory and Application of Cryptographic Techniques, pp. 83-107, 2002. Also in Advances
in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 83-107.
Springer-Verlag, 2002.

[AN95] Ross Anderson, Roger Needham. Robustness Principles for Public Key Protocols. In
Proceedings of Int'l. Conference on Advances in Cryptology (CRYPTO 95), Vol. 963 of Lecture Notes in
Computer Science, pp. 236-247, Springer-Verlag, 1995.

[AN96] Martin Abadi, Roger Needham. Prudent Engineering Practice for Cryptographic Protocols.
IEEE Transactions on Software Engineering, 22, 1 (Jan.), 1996, pp. 6-15.

[B98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS#1. In Advances in Cryptology - CRYPTO '98, LNCS 1462, pages 1-12.
Springer, 1998.

[BDJR97] M.Bellare, A.Desai, E.Jokipii, P.Rogaway: A Concrete Security Treatment of Symmetric
Encryption, Proceedings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp.
394-403, 1997. Revised version at http://www-cse.ucsd.edu/users/mihir/papers/sym-enc.html.

[BKR94] Mihir Bellare, Joe Kilian and Phil Rogaway, “The security of cipher block chaining”,
Journal of Computer and System Sciences, Vol. 61, No. 3, Dec 2000, pp. 362-399. Extended abstract in
Advances in Cryptology - Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839, Y.
Desmedt ed, Springer-Verlag, 1994.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic construction paradigm. In T. Okamoto, editor, Asiacrypt 2000, volume
1976 of LNCS, pages 531-545. Springer-Verlag, Berlin Germany, Dec. 2000.

[BR97] Mihir Bellare and Phillip Rogaway, Collision-Resistant Hashing: Towards Making UOWHFs
Practical, Extended abstract was in Advances in Cryptology- Crypto 97 Proceedings, Lecture Notes in
Computer Science Vol. 1294, B. Kaliski ed, Springer-Verlag, 1997. Full paper available at
http://www.cs.ucsd.edu/users/mihir/papers/tcr-hash.html.

[BSZ02] Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security of
signcryption. In David Naccache and Pascal Pailler, editors, 5th International Workshop on Practice and
Theory in Public Key Cryptosystems - PKC 2002, pp. 80-98, LNCS Vol. 2274, 2002.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In
Proceedings of the 23rd Symposium on Theory of Computing, ACM STOC, 1991.

 Page 15 6/1/2004

[DK94] Ivan B. Damgård, Lars Ramkilde Knudsen. Enhancing the Strength of Conventional
Cryptosystems, BRICS report RS-94-38, November 1994.

[DK03] Yevgeniy Dodis and Jonathan Katz, Chosen Ciphertext Security of Multiple Encryption,
Manuscript, December 2003.

[DPP94] Ivan B. Damgård, Torben P. Pedersen, Birgit Pfitzmann: On the Existence of Statistically
Hiding Bit Commitment Schemes and Fail-Stop Signatures; Crypto '93, LNCS 773, Springer-Verlag, Berlin
1994, 250-265.

[DPP98] Ivan B. Damgård, Torben P. Pedersen, Birgit Pfitzmann: Statistical Secrecy and Multi-Bit
Commitments; IEEE Transactions on Information Theory 44/3 (1998) 1143-1151.

[EG85] S. Even and O. Goldreich, On the Power of Cascade Ciphers, ACM Transactions on
Computer Systems, Vol. 3, 1985, pp. 108-116.

[FIP180] National Institute of Standards and Technology, Federal Information Processing Standards
Publication, FIPS Pub 180-1: Secure Hash Standard (SHA-1), April 17, (1995), 14 pages.

[Go01] Oded Goldreich, The Foundations of Cryptography, Volume 1 (Basic Tools), ISBN 0-521-
79172-3, Cambridge University Press, June 2001.

[Go02] Oded Goldreich, Fragments of a Chapter on Encryptions Schemes, Extracts from working
drafts of Volume 2, The Foundations of Cryptography.

 [GGM84] Oded Goldreich and Shafi Goldwasser and Silvio Micali "How to Construct Random
Functions" Journal of the ACM, 33(4), 1984, 792-807.

[GIL*90] Oded Goldreich, R. Impagliazzo, L. Levin, R. Venkatesen, D. Zuckerman. "Security
preserving amplification of randomness", 31st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, (1990), 318-326.

[GM84] Shafi Goldwasser and Silvio Micali. "Probabilistic Encryption," JCSS (28), 1984, 270-299.

[HILL99] Johan Hastad, Rudich Impagliazzo, Leonid A. Levin, and Mike Luby, Construction of a
Pseudorandom Generator from any One-Way Function. SIAM Journal on Computing, Vol. 28, No. 4, pp.
1364-1396, 1999.

[HL92] Amir Herzberg and Mike Luby, "Public Randomness in Cryptography", proceedings of
CRYPTO 1992, ICSI technical report TR-92-068, October, 1992.

[HM96] Shai Halevi and Silvio Micali, "Practical and Provably-Secure Commitment Schemes from
Collision Free Hashing", in Advances in Cryptology - CRYPTO96, Lecture Notes in Computer Science
1109, Springer-Verlag, 1996, pp. 201-215.

[HP86] Amir Herzberg and Shlomit Pinter, “Composite Ciphers”, EE Pub. no. 576, Dept of Electrical
Engineering, Technion, Haifa, Israel, Feb. 1986.

[K01] Hugo Krawczyk, "The Order of Encryption and Authentication for Protecting Communications
(or: How Secure Is SSL?)," In Crypto '01, pp. 310-331, LNCS Vol. 2139, J. Kilian ed., Springer-Verlag,
2001.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. Journal of
Cryptology: The Journal of the International Association for Cryptologic Research, 14(4):255--293,
September 2001.

[MM93] U.M. Maurer and J.L. Massey, Cascade ciphers: the importance of being first, Journal of
Cryptology, Vol. 6, No. 1, pp. 55-61, 1993.

[MOV96] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of Applied
Cryptography, Section 9.2.6, CRC Press, ISBN 0-8493-8523-7, October 1996. Available online at
http://www.cacr.math.uwaterloo.ca/hac/.

[RFC2246] T. Dierks, C. Allen, The TLS Protocol: Version 1.0, Network Working Group, Internet
Engineering Task Force (IETF). Available online at http://www.ietf.org/rfc/rfc2246.txt.

 Page 16 6/1/2004

[R00] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley, 2000.

[S79] Adi Shamir, How to share a secret, Comm. of the ACM, 22(11):612-613, 1979.

[Sc96] Bruce Schneier, Applied Cryptography, John Wiley & Sons, 1996.

[Sh00] Victor Shoup, Using hash functions as a hedge against chosen ciphertext attacks, Adv. in
Cryptology -- Proc. of Eurocrypt '2000, LNCS 1807, pp. 275-288.

[Z97] Yuliang Zheng, Digital signcryption or how to achieve cost(signature+encryption) <<
cost(signature)+cost(encryption), in Advances in Cryptology - CRYPTO'97, Berlin, New York, Tokyo,
1997, vol. 1294 of Lecture Notes in Computer Science, pp. 165--179, Springer-Verlag.

Appendix
Proof of claim 2 of Lemma �3-1: Trivially, if Time(f,k)�
F and Time(g,k)�
F then Time(f�g,k)� 2
F.

Let s(f)= concrete-OWFf(a,k,�A,
A) � [Time(f,k)�
F], s’(f)= concrete-OWFf(a,k,�A,
A+
F). It remains to
prove that s(f)�s’(f�g) and that s(g)�s’(f�g).

Assume f, g�Pk and Time(f,k)�
F, Time(g,k)�
F. Trivially, f�g� Pk. Assume that s’(f�g)=False; we
prove that both s(f)=False and s(g)=False.

Since s’(f�g)=False, there is some (possibly probabilistic) algorithm A s.t.

FA
k xgfAtime10x �� ����)))((()},{(o and � � amgfmgfAgfk

R 10m

�

�
)()))(((Pr

},{
ooo .

Define algorithms Af , Ag as follows:

 Af(y)=g(A(y)), Ag(y)=A(f(y))

We first show that the running time of Af and Ag over inputs of length k is bounded by t+
. Suppose Af
is given input f(m) where |f(m)|=|m|=k (remember that f is a permutation for inputs of any length k).
Therefore, Af gives input of the same length k to A. WLOG, we can assume that the output of A is also of
length k (since otherwise clearly A loses). Therefore, the running time of Af on input of length k is at most
t+
 ; a similar argument holds for Ag.

It remains to show that � � amfmfAf f10m k
R

�
�

)()))(((Pr
},{

 and

� � amgmgAg g10m k
R

�
�

)()))(((Pr
},{

.

Let X denote the k-bit strings x for whom A succeeds in inverting f�g, i.e. for every x�X holds
f�g(A(f�g(x)))= f�g(x). Since � � axgfxgfAgfk

R 10x

�

�
)()))(((Pr

},{
ooo , we know that |X|�a�2k.

Similarly let
 �
 �
 ��
 �
 �
 �� xgxgAg10xXxfxfAf10xX g
k

gf
k

f ������)(},{,)(},{ . We show

that XXXX gf

 , and since |X|�a�2k, the claim follows.

Let x�X. Hence f�g(A(f�g(x)))= f�g(x), namely f(g(Ag(g(x)))=f(g(x)). Since f is a permutation, it
follows that g(Ag(g(x)))=g(x), namely x�Xg.

Similarly, let xf=g(x). Since x�X, then f�g(A(f�g(x)))= f�g(x), namely f(Af(f(xf)))=f(xf), i.e. xf�Xf .
Since g is a permutation, it follows that |Xf|�|X|. �

Proof of Claim A, Lemma �3-3: We construct adversary A as follows. In the “select” phase, A selects
randomly r’ed�{0,1}k, and then uses �’.KG to compute the keys e’=�’.KG.e(r’ed), d’=��’.KG.d(r’ed).

Next, A invokes the “select” phase of Ao which returns plaintexts po[0], po[1] and state so. In its
operation, Ao may invoke the oracles for functions {E,D,wD} of �o; trivially, A can answer these queries by
using the corresponding oracle for ���and computing the corresponding function of �
�(using keys e’, d’).
For example, to answer query of ��.Dd,d’(c), we first invoke the oracle �.Dd on input c; denote the result as
x. We now compute ��.D<d,d’>(c)=��’.Dd’(�.Dd(c))=��’.Dd’(x), which is possible since A knows d’.

 Page 17 6/1/2004

To complete the “select” phase, A computes p[j]=��’.Ee’,,r’[j](p
o[j]) for j�{0,1} and r’[j]�R{0,1}* (for

public key encryption, i.e. if ISPUB=F, then concatenate e’ to p[0] and p[1]). It then returns p[0], p[1]
and s=<so,e,e’,d’>. We later show that using r’[j]�R{0,1}� suffices.

In the “find” phase, A receives ciphertext c and state s=<so,e,e’,d’ >. It simply invokes the “find”
phase of Ao on c and so, and returns the bit x returned by Ao.

We now show that po �p. The probabilities are taken over the coin tosses by A, by the `black-box`
algorithm Ao, and by the experiment (for key-generation, encryption and b). Denote the coin tosses as
follows:
o ro

A : coins used by the `black-box` adversary Ao (provided by and known to A)
o Coins tossed by the experiment (unknown to A): for key generation (red), to select the challenge

plaintext p[b] (coin b), and for encrypting p[b] (bits r).
o Coins tossed by A for its own use, namely: for key generation (r’ed) and to compute the

encryptions of the plaintexts E’.Ee’,,r’[j](po[j]) (bits r’[0], r’[1]).

Let rA=ro
A||r’ed||r’[0]||r’[1] denote all the random bits tossed by algorithm A. Let w(rA, red, r, b)=true

if and only if IndExpA,�,ISPUB(k,q,l,t,�,�A)=”win” with the corresponding coin tosses.

Let ro
ed=red||r’ed, r

o=r||r’. Let wo(ro
A, ro

ed, r
o, b)=true if and only if

IndExpA˚,�˚,ISPUB(k,q,l,to,�,�o
A)=”win” with the corresponding coin tosses.

The claim follows by showing that wo(ro
A, ro

ed, ro, b)� w(rA, red, r, b). We show this holds, by
showing that all conditions of step 8 of experiment E= IndExpA,�,ISPUB(k,q,l,t,�,�A)[rA, red, r, b] hold if they
(conditions of step 8) hold in experiment Eo= IndExpA˚,�˚,ISPUB(k,q,l,to,�,�o

A)[ro
A, ro

ed, r
o, b].

We use the following notation: let x@E (x@Eo) denote the value of variable x during experiment E
(respectively Eo). We omit the @ notation when the value is clearly identical in the two experiments. Also,
let c8�@E (c8�@Eo), where ��{a,b,…,f}, be true if claim � of step 8 holds during experiment E
(respectively Eo).

Algorithm A returns the same bit � as returned by Ao, namely �@E= �@Eo. Hence if c8a@Eo is true,
i.e. �@Eo=b, then also �@E=b and c8a@E=true.

By design of A above, for j={0,1} holds p[j]@E=�’.Ee’,r’[j](p
o[j]@E). If c8b@Eo=true, then

|po[1]@E|=|po[0]@E|�l-2�. Since bounds[k, k’, l, �, �,
](��’)=True, we have |p[1]@E|=|p[0]@E’|�l-�.
Hence, c8b@Eo

�c8b@E.

For c8c, we note that the running time of A consists of the running time of Ao in the corresponding
experiment, plus the additional work by A. This extra work consists essentially of invoking the key
generation algorithm once, doing two encryptions (to compute p[0] and p[1]), and answering the oracle
queries of Ao. Each oracle query �o.f requires A to compute �’.f; it follows that if the running time of Ao at
Eo is bounded by to, then the running time of A at E is bounded by
t=to+
[KG]+2
[E]+ � �

� �},{ },,{

][],[
selectfindj wDDEf

ffjq � . Hence, c8c@Eo
�c8c@E.

We note that A involves oracle ��f only to answer oracle call �o.f of Ao. Hence, c8d@Eo
�c8d@E,

c8g@Eo
�c8g@E and c8f holds since q[find,D]=0.

It remains to show that c8e@Eo
�c8e@E. Adversary A users random bits rA=ro

A||r’ed ||r’[0]||r’[1]
(including the random bits ro

A for running Ao internally). r’ed is k bit long. Bits r’[0], r’[1] are used by A
(only) to compute p[0],p[1]. Assume that c8b holds at Eo, i.e. |p[1]@Eo|=|p[0]@Eo|�l-2�. Since
bounds[k, k’, l, �, �,
](�
�=True, we use at most � bits from r’[j], for j={0,1}, in computing
p[j]@E=�’.Ee’r’[j](p

o[j]@E). It follows that the total number of random bits used by A is at most
|ro

A|+2k+2�. If c8e@Eo holds, i.e. |ro
A|� �o

A, it follows that A uses at most |rA|� �o
A+2k+2�= �A random

bits. Hence c8e@Eo^ c8b@Eo
�c8e@E. �

Claim A’, Lemma �3-3: given adversary Ao such that po� ½+a as a black box, we can construct
adversary A’ such that p’�po � ½+a.

 Page 18 6/1/2004

Proof of Claim A’, Lemma �3-3: We construct adversary A’ as follows. In the “select” phase, A’
selects randomly red �{0,1}k, and then uses �.KG to compute the keys e=�’.KG.e(red), d=��.KG.d(red), s=�
�.KG.s(rsv), v=��.KG.v(rsv).

Next, A’ invokes the “select” phase of Ao which returns plaintexts p[0], p[1] and state so. In its
operation, Ao may invoke the oracles for functions {ES,D,V} of �o; trivially, A’ can answer these queries by
using the corresponding oracle for �
��and computing the corresponding function of �. Finally, A’ returns
p[0], p[1] and s=<so,e’,e,d,s,v>. We later show that using r[j]�R{0,1}� suffices.

In the “find” phase, A’ receives ciphertext c and state s=<so,e’,e,d>. It computes c’=�.Ee,r(c) and
invokes the “find” phase of Ao on c’ and so, and returns the bit x returned by Ao.

The rest of the proof follows exactly like in claim A. �

