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Abstract. Cryptographic schemes are often designed as a combination
of multiple component cryptographic modules. Such a combiner design is
tolerant for a (security) specification if it meets the specification, provided
that a sufficient subset of the components meet their specifications. A
‘classical’ combiner for encryption is cascade; we show that cascade is in-
deed a tolerant combiner for encryption schemes, under chosen plaintext
attack, non-adaptive chosen ciphertext attack (CCA1) and (adaptive)
replayable chosen ciphertext attack (rCCA). However, cascade is not
tolerant for adaptive CCA (CCA2), and we show it is also not tolerant
for generalized CCA (gCCA). This is an interesting difference between
rCCA and gCCA.
We also analyze few other basic, folklore tolerant combiners, including
the parallel combiner for one-way functions, and the copy combiner for
integrity tasks such as Message Authentication Codes (MAC) and signa-
ture schemes. Cascade is also tolerant for the hiding property of commit-
ment schemes, and the copy combiner is tolerant for the binding property,
but neither provides tolerant for both properties.
We present (new) tolerant combiners for commitment schemes; these new
combiners can be viewed as a composition of the cascade and the copy
combiners. We prove tolerance of the composite combiners via a general
Composition Lemma, possibly applicable for other tasks.
Our combiners are simple, efficient and practical. To ensure practical-
ity, we use concrete security analysis and definitions, in addition to the
simpler asymptotic analysis. Our definitions of security may be of inde-
pendent interest.

Keywords: applied cryptography, tolerant cryptography, foundations of cryp-
tography, concrete security

1 Introduction

Most cryptographic schemes do not have an unconditional proof of security.
The classical method to establish security is by cryptanalysis, i.e. accumulated
evidence of failure of experts to find weaknesses in the function. However, crypt-
analysis is an expensive, time-consuming and fallible process. In particular, since
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a seemingly-minor change in a cryptographic function may allow an attack which
was previously impossible, cryptanalysis allows only validation of specific func-
tions and development of engineering principles and attack methodologies and
tools, but does not provide a solid theory for designing cryptographic functions.
Indeed, it is impossible to precisely predict the rate of future cryptanalytical suc-
cesses. Prudent designers are usually able to ensure security by using sufficient
margins and conservative to allow for unexpected breakthroughs, e.g. [LV01];
however, there is often resistance to replace widely deployed standards which
were not broken yet, ‘just’ since the safety margins are eroded.

Hence, it is desirable to design cryptographic schemes to be tolerant of crypt-
analysis, failure of assumptions and other vulnerabilities, including trapdoors
known to the designers (but not to users). A tolerant combiner is a combiner
that combines several cryptographic modules, such that the combined mecha-
nisms is secure even if some of the modules turn out to be insecure. In particular,
the tolerant combiner remains secure following successful cryptanalysis of some
of its modules, refutation of one or few of the assumptions underlying its security
(e.g. the assumption that factoring is a hard problem), or attempts to exploit
a vulnerability in some of the modules, due to implementation error, design er-
rors, or an intentional trapdoor in the design or implementation. Tolerance does
not imply unconditional-security; however, it would hopefully provide sufficient
advanced-warning time to replace broken cryptographic modules.

Many cryptographic systems and combiners use redundant components in
the hope of achieving tolerance. The most familiar such combiner is cascade.
Cascading of cryptosystems is very natural; novices and experts alike believe
that the cascade E ◦ E ′ of two encryption schemes E , E ′ is at least as secure
as the more secure of the two, hopefully even more secure than both. Indeed,
cascading of cryptosystems has been a common practice in cryptography for
hundreds of years.

However, there are few publications, prior to this work1, analyzing tolerant
cryptographic combiners. In [1], Asmuth and Blakely present a simple ‘parallel’
combiner of a randomized cryptosystem from two component ciphers, with the
hope of achieving tolerance; proof of security was given only in [24]. A similar
‘parallel’ combiner for block ciphers appears in [31]. More attention was given
to cascading of block ciphers . Even and Goldreich showed that keyed cascade
ensures tolerance against message recovery attacks on block ciphers [18, Theo-
rem 5], and conjectured that the result holds for other specifications of ciphers.
Damgard and Knudsen [15] proved that it holds for security against key-recovery
under chosen-plaintext attacks. Maurer and Massey [35] claimed that the proof
in [18] holds only under the uninterestingly restrictive assumption that the en-
emy cannot exploit information about the plaintext statistics, but we disagree.
We extend the proof of [18] and show that, as expected intuitively and in [18],
keyed cascading provides tolerance to many confidentiality specifications, not
only of block ciphers but also of other schemes such as public key and shared
key cryptosystems.

1 This work was first posted in [29] (August 2002).
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Our proof of the tolerance of cascade encryption, holds for three definitions
of security under indistinguishability test: the well-known notions of plaintext
only attack and non-adaptive chosen ciphertext attack (CCA1), as well as the
recently proposed relaxed definition of Replayable CCA (rCCA) [13]. We note
that cascading does not provide tolerance for the well-known notion of adaptive
chosen ciphertext attack (CCA2). This demonstrates the importance of backing
intuition with analysis and proof.

Cascade and other combiners for encryption were also studied recently by
Zhang et al. [44]. However, they regard combined encryption scheme as a new
cryptographic primitive: ‘multiple encryption’, with a new definition of security.
Cascade of CCA2 encryption schemes is not ‘multiple-encryption CCA-secure’;
however, cascade of gCCA encryption schemes, as defined in [3], is ‘multiple-
encryption gCCA-secure’. Yet, we show that cascade is not tolerant for gCCA
security (i.e., a cascade of gCCA-secure encryption with a non-gCCA-secure
scheme may not be gCCA-secure). This motivates defining and analyzing tol-
erance as a property, rather than defining new security notions for combined
(‘multiple’) schemes.

Indeed, tolerance is relevant to any cryptographic scheme, not just for encryp-
tion. In particular, it is widely accepted that the parallel combiner g(x)‖f(x),
using the same input x to both functions, ensures tolerance for several integrity
properties, such as (several variants of) collision-resistant hashing as well as
Message Authentication Codes (MAC) and digital signatures. We prove that
the parallel combiner indeed provides tolerance for such integrity specifications.
The parallel combiner is used, for tolerance, in practical designs and standards,
e.g. in the W3C XML-DSIG specifications and in the TLS protocol [38].

We present few simple tolerant combiners for some basic cryptographic goals
(specifications); further research is required to find tolerant combiners for other
goals. In particular, Harnik et al. [27] recently investigated robust combiners for
oblivious transfer, and showed impossibility results for ‘black box‘ combiners, as
well as a robust combiner for oblivious transfer. We note that while they present
their combiner ‘from scratch’, it also follows from our Composition Lemma, using
composition structure E; see subsection 6.2. The Composition Lemma may be
a useful methodology for other tasks.

Efficiency is critical for practical tolerant combiners; implementors will rarely
be willing to tolerate non-negligible performance loss, ‘just’ in order to tolerate
potential vulnerabilities in a cryptographic function. In fact, ignoring efficiency,
we can ensure tolerance for many tasks, by using provable combiners of crypto-
graphic mechanisms from few ‘basic’ cryptographic mechanisms such as one-way
function, which have simple tolerant designs.

Specifically, the simple parallel combiner f ||f ′(< x, x′ >) = f(x)||f ′(x′) is
tolerant for the one-way function specification. Namely, it is sufficient that one
of {f, f ′} is a one-way function, to ensure that f ||f ′ is also a one-way function.
Furthermore, there are reductions, probably secure under asymptotic (poly-time)
definitions, of many cryptographic mechanisms from one-way functions and vice
verse, e.g. pseudo-random generators [20, 28] and signature schemes [37]. It there-
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fore follows that there are tolerant combiners for all of these tasks, albeit only
for asymptotic (poly-time) definitions and involving substantial degradation in
efficiency, including in the required security parameters (e.g., require absurd key
and/or block sizes) [20, 30]. To quantify loss in security and efficiency due to the
combiners, we use concrete security measures [7, 8].

Our contributions. We identify and define cryptographic tolerance as a cri-
teria for cryptographic specifications, and define tolerant combiners. Additional
contributions include:

– Precise analysis of the security of several ‘folklore’ combiners. In particu-
lar, we show that cascade encryption indeed ensures tolerance as long as
each component encryption has fixed output length (for fixed length input),
and for several variants of indistinguishability including replayable chosen ci-
phertext attack (rCCA), but not for the ‘regular’ adaptive chosen ciphertext
attack (CCA2) specification, or even the weaker ‘generalized CCA’ (gCCA)
definition [3]. The ‘multiple encryption’ combiner of [16] is tolerant for CCA2,
but at significant overhead (ciphertext length more than doubles), which
may be unacceptable for many applications. Replayable CCA is weaker than
adaptive chosen ciphertext attack, but it is arguably a sufficient require-
ment for most applications, in particular it allows the practical ‘feedback
only CCA’ attacks of [11, 32]. One interpretation of our results may be as
an additional argument in favor of using the rCCA criteria, rather than the
(stronger or too strong) CCA2 or gCCA criteria.

– Efficient, practical combiners for commitment schemes. To our knowledge,
these are the first provably-secure tolerant combiners of general crypto-
graphic functions, beyond the folklore combiners, and few additional crypto-
graphic combiners proven secure based on validity of either of two (specific)
‘hardness’ assumptions, e.g. [42].

– Composition Lemma and Methodology. Cryptographic combiners are usually
studied in isolation; however, sometimes one combiner is good for ensuring
some properties, e.g. confidentiality, while another is good for other prop-
erties, e.g. integrity. We define compositions of combiners, to combine the
benefits of different combiners (when possible), and present a generic com-
position based on a simple combinatorial object (composition structure).
Finally, we use the generic composition and two simple composition objects
to compose the cascade and parallel combiners, creating two new efficient
composite combiners for commitment schemes. The composition lemma may
be useful for designing and analyzing tolerant combiners for other tasks; in
particular, the design of [27] can be viewed as application of our ‘composition
E’.

– Educational contribution. A final contribution of this paper is in providing
simple yet natural (and non-trivial) exercises in applied cryptography. Tol-
erance is a very natural goal, easily understood by students, and motivates
the study of definitions, constructions, proofs and counterexamples.
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2 Definitions of Tolerant Combiners

For simplicity and generality, we allow cryptographic schemes to be any function,
regardless of a specific computational model. To model cryptographic schemes
which consist of multiple functions, we simply view the choice of the particular
function as an additional input, specified using dot notation. For example, if E
is an encryption scheme, we let E .E and E .D denote the encryption and decryp-
tion functions of E , respectively. Similarly, to model randomized and/or stateful
mechanisms, we simply use additional inputs for random bits and/or state, re-
spectively. In particular, this allows us to model interactive cryptographic mech-
anisms, by specifying the complete transcript of the interaction as an input.

It is convenient to assume, without loss of generalization, that every crypto-
graphic scheme has a special input which we call the security parameter k ∈ N.
Intuitively, the security parameter selects the level of security desired; for ex-
ample, a larger security parameter implies longer keys and more computational
resources. Since the security parameter is input to every scheme (or every func-
tion in the scheme), we usually do not explicitly write it as an input. Some
definitions, e.g. One Way Functions [20], do not use a security parameter, but
use the length of the input, as an ‘implicit’ security parameter.

The security parameter is often used to bound the time complexity and other
resources. In particular, we say that scheme S is polynomial time, or simply
poly-time, if its computational time is bounded by a polynomial in the security
parameter k (using specific computation model). Similarly, we say that scheme
S has time complexity bound S.t : N → N if its computation time is bounded by
S.t(k), where k is the security parameter.

We define the time complexity predicate Time(T ) for scheme S as follows: let
Time(T )[S] = True when S.t(k) ≤ T (k). The function T : N → N is a bound on
the time complexity, as a function of the security parameter k. Namely, the time
complexity of scheme S is bounded by T (k). Given a set of schemes S1, . . .Sp,
let Time(T )[S1, . . .Sp] = 1 when for all i ∈ {1, . . . p} holds Time(T )[Si].

We are interested in specifications (properties) of cryptographic schemes, in-
cluding concrete security specifications and asymptotic security specifications.
We define specifications simply as binary predicates over the set of (crypto-
graphic) schemes. We say that scheme S satisfies specifications s when s(S) = 1.

We say that a mapping c of p schemes S1, . . .Sp into a single scheme (or
function) c(S1, . . .Sp) is a combiner of plurality p. Combiner c is tolerant if
c(S1, . . .Sp) satisfies some specification s′ as long as a sufficient subset of S1, . . .Sp

satisfy specifications s1, . . . sp , respectively. Often, all specifications are identi-
cal, i.e. s = s1 = · · · = sp and also often s = s′.

To complete this definition, we need to identify the sufficient subset of S1, . . .Sp.
Often, and in most of this paper, it is natural and convenient to define the suf-
ficient subset using a threshold t (0 ≤ t < p) of ‘good’ schemes. In addition, we
often require that all of the candidate schemes Si satisfy some minimal ‘prereq-
uisite’ specifications b, such as bounds on their complexities.
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Definition 1. Let c be a mapping of p functions (schemes) S1, . . .Sp into a sin-
gle function (scheme) c(S1, . . .Sp). Let s′, b, s1,
. . . , sp be predicates over functions (schemes).

Mapping c is a t-tolerant combiner from (s1, . . . sp) to s′, for (threshold) t < p,
if:

p∑
i=1

si(Si) ≥ p− t ⇒ s′(c(S1, . . .Sp))

Mapping c is a t-tolerant combiner from (s1, . . . sp) to s′ with prerequisite b if
it is a t-tolerant combiner from (s1, . . . sp) to s′, provided that b(s1, . . . sp) = 1.

If c is a 0-tolerant combiner from (s1, . . . sp) to s′ (with prerequisite b), then
we say that c is a preserving combiner from (s1, . . . sp) to s′ (with prerequisite b).

If c is a t-tolerant combiner from (s1, . . . sp) to s′ (with prerequisite b) and
s = s1 = . . . = sp, then we say that c is a (t, p)-tolerant combiner from s to s′

(with prerequisite b). If t = 0 then we say that c is a preserving combiner from s
to s′ (with prerequisite b). If s = s′ then we say that c is a (t, p)-tolerant combiner
(or, if t = 0, a preserving combiner) for s.

For completeness, we also present a definition of tolerance based on a general
access structure Λ ⊆ P ({1, . . . p}). Here, P ({1, . . . p}) is the set of subsets of
{1, . . . p} (‘power-set’).

Definition 2. Let c be a function (combiner) of plurality p, and let s′, b, s1,
. . . , sp be predicates over functions (cryptographic schemes). We say that c is a
Λ-tolerant combiner from (s1, . . . sp) to s′, with access structure Λ ⊆ P (1, . . . p),
if s′(c(S1, . . .Sp)) holds provided for some λ ∈ Λ holds (i ∈ λ) → si(Si) =
1. Function c is a Λ-tolerant combiner with prerequisite b if it is a Λ-tolerant
combiner, provided that b(s1, . . . sp) = 1.

3 Definitions of Cryptographic Schemes

In this work, we present and prove the tolerance of combiners for several cryp-
tographic schemes. We mostly use the ‘standard’ definitions of these schemes,
e.g. One-Way Functions and commitment schemes from [20], and encryption,
signature, and message authentication codes (MAC) schemes from [21].

The definitions in [20, 21] are all using the asymptotic, polynomial-time secu-
rity specifications. In the following two subsections, we extend the definitions for
encryption and commitment schemes in several ways. In particular, we allow the
(arguably more practical) ‘concrete security’ specifications. Our definitions gen-
eralize earlier concrete-security definitions, e.g. for encryption schemes in [7], by
considering different types of attacks, as well as both symmetric and asymmetric
schemes. Our definition also captures the ‘replayable CCA’ attack of [13].

3.1 Encryption Schemes.

An encryption scheme E consists of three functions <KG,E,D> (for key gen-
eration, encryption and decryption, respectively). We define encryption schemes
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with respect to four ensembles of domains: EK, DK, M and C, for the encryp-
tion keys, decryption keys, plaintext messages and ciphertexts, respectively. The
ensembles are indexed by the security parameter k ∈ N. We denote the ensembles
using bold font e.g. EK, and the kth member of the ensemble by the correspond-
ing letter and subscript e.g. EKk. Formally, the domains and their ensembles
are properties of the encryption scheme, and should be identified with respect to
it, e.g. E .M and E .Mk; however, we abuse notation and omit the identification
of the scheme, i.e. write simply M and Mk, when we discuss a single encryption
scheme (and therefore no confusion is possible).

The key generation function E .KG accepts as input a random string rKG ∈
{0, 1}k, and its output is a pair of keys: < e, d >= E .KG(rKG) ∈ EKk×DKk for
encryption and decryption, respectively. For symmetric encryption, we simply
use e = d and EK=DK. We again use dot notation to refer to particular key,
i.e. < E .KG.e(rKG), E .KG.d(rKG) >= E .KG(rKG).

We use subscripts to denote keys, and the random input to the encryption
function. Encryption of message m, where m ∈ Mk, using encryption key e ∈
EKk and randomness r ∈ {0, 1}k, is E .Ee,r(m) ∈ Ck. The decryption function
E .D accepts as input ciphertext c ∈ Ck, and private decryption key d ∈ DKk,
and returns a message m′ ∈Mk or a failure indicator ⊥.

We require all encryption schemes to satisfy the correctness requirement (for
any k ∈ N): E .Dd(E .Ee,r(m)) = m, for any m ∈ Mk, r ∈ {0, 1}k and rKG ∈
{0, 1}k with e = E.KG.e(rKG), d = E.KG.d(rKG).

Security of Encryption: Indistinguishability Experiment. To define se-
curity for encryption schemes, we use (and extend) the quantitative ‘indistin-
guishability experiment’ approach of [7]. We first define the experiment. Our
definition extends the definition of [7] as follows:

– We define the experiment for both symmetric (shared-key) and asymmetric
(public-key) cryptosystems. The only required difference is a flag, denoted
φ; only when φ = asym, the adversary receives the (public) encryption key
e = E .KG.e(rKG).

– Most definitions, e.g. of [7], define the output of the experiment as a boolean
value (win or fail). However, we allow the use of multiple success criteria,
allowing both asymptotic, poly-time analysis and concrete security analysis.
Therefore, we define the output of the experiment as the entire execution
trace, EX(E , A, φ, k), which is a function of the given encryption scheme
E , adversary A, symmetric/asymmetric cryptosystem flag φ and security
parameter k. We later define success criteria.

– At the post-selection attack phase, we allow the adversary to request de-
cryption of every ciphertext except the challenge c∗, as in the ‘standard’
adaptive chosen ciphertext attack (by making request whose first parameter
is D). However, we also allow the adversary to ask for the weaker, ‘relaxed
decryption’ service, by making request whose first parameter is rD. The ‘re-
laxed decryption’ service returns the special value replay if the decrypted
plaintext is one of the two plaintexts selected by the adversary. This allows us
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to define criteria for the experiment, capturing the adaptive chosen cipher-
text attack (CCA2) definition of e.g. [7]), as well as the weaker ‘replayable
CCA’ attack of [13].

Definition 3 (Indistinguishability Experiment). Let E be an encryption
scheme, A (Adversary) be an interactive Turing machine, k ∈ N, and flag φ ∈
{sym, asym}. Then the φ-indistinguishability experiment of E with adversary A
and security parameter k, denoted EX(E , A, φ, k), is a random variable, produced
by tracing all events in the following execution:

Key Generation: rKG ∈R {0, 1}k ; e = E .KG.e(rKG) ; d = E .KG.d(rKG);
Expose public key: If φ = asym then send e to A
Select: Repeat:

1. If A outputs < E,m > where m ∈ Mk, then return c = E .Ee,r(m) to
A, where r ∈R {0, 1}k;

2. If A outputs < D, c > where c ∈ Ck, then return m = E .Dd(c) to A;
Until A outputs < select,m0,m1 > where m0, m1 ∈Mk.

Encrypt: Return c∗ = E .Ee,r(mb) to A, where r ∈R {0, 1}k and b ∈R {0, 1};
Guess: Repeat:

1. If A outputs < E,m > where m ∈ Mk, then return c = E .Ee,r(m) to
A, where r ∈R {0, 1}k;

2. If A outputs < D, c > and c ∈ Ck/c∗, then return m = E .Dd(c) to A;
3. If A outputs < rD, c > where c ∈ Ck, then let m = E .Dd(c). If

m ∈ {m0,m1} then return replay to A; else return m to A.
Until A outputs < guess, b′ > where b′ ∈ {0, 1}.

The experiment as defined above is quite general. It allows for both asymmet-
ric (public key) and symmetric (shared key) cryptosystems. It also allows multi-
ple variant of attacks, including: chosen-plaintext attack (CPA); ‘lunchtime’/non-
adaptive CCA (aka CCA1); adaptive chosen ciphertext attacks (aka CCA2); and
the weaker replayable CCA (rCCA) and generalized CCA (gCCA). Finally, the
experiment allows different measures of security, including the ‘classical’ asymp-
totic, poly-time security, as well as the more practical concrete security. We next
define appropriate definitions of security for encryption schemes.

The security definitions refer to different properties of the execution. We next
define these properties, referring to an execution X = EX(E , A, φ, k). We refer
to values of the variables used in execution X, e.g. the random choice b and
the adversary’s guess b′, using dot notation, i.e. X.b and X.b′, respectively. We
define other properties, also using dot notation, as follows:

– X.win = True if the execution terminates with a correct guess, i.e. X.b′ =
X.b, and False otherwise.

– X.t is the total time spent by adversary during X
– For stage ∈ {select,guess} and test ∈ {E,D,rD}, let X.q(stage, test) be

the number of outputs (tests) of the form < test,m > or < test, c > made
by A during stage stage.
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Asymptotic, Poly-Time Security of Encryption We now present the ‘clas-
sical’, asymptotic polynomial time secure encryption definitions, using the gen-
eral Indistinguishability experiment of Definition 3. Namely, the adversary is a
probabilistic polynomial time interactive Turing machine. We denote the set of
such machines by PPT . We allow the adversary to use polynomial time and to
use a polynomial number of each type of test queries, possibly restricting the
types of queries for the ‘weaker’ notions (cf. to CCA2), i.e. CPA, CCA1 and
rCCA.

Definition 4. Let ψ ∈ {CPA, CCA1, CCA2, rCCA} and φ ∈ {sym, asym}.
Encryption scheme E is an IND-ψ polytime secure φ-cryptosystem, if for every
polytime adversary A ∈ PPT and strictly positive polynomial ε : N → (0, 1

2 ], for
sufficiently large k ∈ N holds

Pr[X.win ∧ Ψ(X,ψ)|X = Ex(E , A, φ, k)] ≤ 1
2

+ ε(k)

Where Ψ(X,ψ) is defined as follows:

– Ψ(X,CPA) holds if X.q(stage, t) = 0 for stage ∈ {select,guess}, t ∈
{D, rD}

– Ψ(X,CCA1) holds if X.q(guess, t) = 0 for t ∈ {D, rD}
– Ψ(X,rCCA) holds if X.q(guess,D) = 0
– Ψ(X,CCA) is always True.

In [3], An et al. defined gCCA security, which is weaker than CCA2 yet
stronger than rCCA (and CCA1, CPA). The core of gCCA is a keyed decryption-
preserving relation R over pairs of ciphertexts. Keyed relation R is decryption-
preserving for encryption scheme E , if for every pair of ciphertexts c1, c2 ∈ E.C
and every key pair < e, d >= E .KG(rKG) generated by some rKG, holds:

Re(c1, c2) = TRUE ⇒ E .Dd(c1) = E .Dd(c2)

We next define IND-gCCA polytime secure cryptosystem. For simplicity we will
only define gCCA security for asymmetric cryptosystems (adaptation to sym-
metric case are trivial).

Definition 5. Let φ ∈ {sym, asym}. Encryption scheme E is an IND-gCCA
polytime secure asym-cryptosystem, if there exists some efficiently-computable
keyed relation R which is decryption-preserving for E, s.t. for every adversary
A ∈ PPT and strictly positive polynomial ε : N → (0, 1

2 ], for sufficiently large
k ∈ N holds

Pr[X.win ∧ Ψ(X)|X = Ex(E , A,asym, k)] ≤ 1
2

+ ε(k)

Where Ψ(X) holds if A never outputs < D, c > at the ‘guess’ phase, where
RX.e(c, c∗) = true and X.e is the public key used in execution X
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Concrete Security of Encryption Schemes We next define concrete secu-
rity for encryption schemes (cryptosystems). The definition is with respect to an
arbitrary set of adversaries A, e.g. the set of all interactive Turing machines.

Definition 6. Let φ ∈ {sym, asym}, Q = {{select,guess} × {E,D, rD} →
N} and ε : N× N×Q→ [0, 1

2 ].
Encryption scheme E is an ε−IND secure φ-cryptosystem, if for every adver-

sary A ∈ A and every k ∈ N, t ∈ N and q ∈ Q holds

Pr[X.win ∧X.q ≤ q ∧X.t ≤ t|X = Ex(E , A, φ, k)] ≤ 1
2

+ ε(k, t, q)

Where X.q ≤ q means that X.q[stage, test] ≤ q[stage, test] for every stage ∈
{select,guess} and test ∈ {E,D,rD}.

3.2 Commitment Schemes.

A (non-interactive) commitment scheme C consists of four functions2, denoted <
C.KG, C.C, C.D, C.V > (for Key Generation, Commit, Decommit and Validate,
respectively).

We define commitment schemes with respect to four ensembles: PK, M, CT
and DT, for the Public Keys, Messages, Commitment Tags and Decommitment
Tags, respectively. The ensembles are indexed by the security parameter k ∈ N,
e.g. PKk is the domain of public keys of the commitment scheme, for security
parameter k. Formally, the domains and their ensembles are properties of the
commitment scheme, and should be identified with respect to it, e.g. C.M and
C.Mk; however, we abuse notation and omit the identification of the scheme, i.e.
write simply M and Mk, when we discuss a single commitment scheme (and
therefore no confusion is possible).

The key generation function C.KG accepts as input a random string rKG ∈
{0, 1}k, and outputs a public commitment key pk ∈ PKk. The commit and
decommit functions C.C, C.D have three inputs each: a messagem ∈Mk, a public
commitment key pk ∈ PKk and randomness r ∈ {0, 1}k, and their respective
outputs are: a commitment tag c = C.Cpk,r(m) ∈ CTk and a decommitment tag
d = C.Dpk,r(m) ∈ DTk.

The validate function C.V has four inputs: message m ∈ Mk, public key
pk ∈ PKk, and the commitment and decommitment tags (c, d respectively). The
validation function outputs True if only if c, d are a correct commitment and
decommitment values for m. Namely, commitment schemes satisfy the following
correctness requirement: C.Vpk(m, C.Cpk,r(m), C.Dpk,r(m)) = True, for any k ∈
N, m ∈Mk, r, rKG ∈ {0, 1}k such that pk = C.KG(rKG) ∈ PKk.

2 Most existing definitions of commitment schemes, e.g. in [20] use a function to recover
the message, instead of our ‘validate’ function. However, as a result, the combiners
use long decommitment strings, which contain the original message. This may hide
inefficiency in the design of a combiner; by explicitly using the message as separate
input, we can compare the actual overhead of combiners.
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Commitment schemes have two main properties (specifications): a confiden-
tiality (indistinguishability) property, called hiding, and an integrity property,
called binding.

Hiding (Indistinguishability) Specification for Commitment Schemes.
We first define the hiding (indistinguishability) specifications for commitment
schemes, which is rather similar to the indistinguishability specifications pre-
sented earlier for encryption schemes. Intuitively, the (polytime) hiding specifi-
cation is that no probabilistic polynomial time (PPT) adversary can distinguish
between the commitments of any two messages of its choice. However notice
that, we allow the adversary to choose the public commitment key (but not the
public encryption key). In commitment schemes, confidentiality is protected by
the choice of the random input bits at the commit phase; the public key is crucial
for the binding property.

In order to turn this intuition into a definition, we first define an indistin-
guishability experiment for commitment schemes.

Definition 7 (Indistinguishability Experiment for Commitment schemes).
Let C be a commitment scheme, A (Adversary) be an interactive Turing machine
and k ∈ N. Then IndEx(C, A, k) is a random variable, produced by tracing all
events in the following execution:

Adversary Selects Public Key and Messages: Adversary A outputs public
key pk ∈ PKk and two messages, m0, m1 ∈Mk.

Experiment Selects Bit and Commit: Select b ∈r {0, 1} and r ∈ {0, 1}k.
Return c∗ = C.Cpk,r(mb) to A.

Adversary Guesses: A outputs b′ ∈ {0, 1}.

The security definitions refer to different properties of the execution. We
next define these properties, referring to an execution X = IndEx(C, A, k).
As for encryption, we refer to values of the variables used in execution X =
IndEx(C, A, k) using dot notation. We also define X.win as a flag to indicate an
execution X that terminates with X.b = X.b′, and X.t as the total time spent
by adversary during X.

We now present asymptotic, polynomial time ‘hiding’ specification for com-
mitment schemes, using the Indistinguishability experiment of Definition 7.

Definition 8. Commitment scheme C satisfies the polytime hiding specifications,
if for every polytime adversary A and positive polynomial ε : N → (0, 1

2 ], for
sufficiently large k ∈ N holds

Pr[X.win|X = IndEx(C, A, k)] ≤ 1
2

+ ε(k)

We next give concrete security specifications for the hiding (indistinguisha-
bility) property of commitment schemes.
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Definition 9. Let ε : N×N → [0, 1
2 ]. Commitment scheme C satisfies ε−Hiding

specifications, if for every adversary A and every k ∈ N, t ∈ N holds

Pr[X.win ∧X.t ≤ t|X = IndEx(C, A, k)] ≤ 1
2

+ ε(k, t)

Binding Specification for Commitment Schemes. We now define the bind-
ing, integrity specification for commitment schemes. Here is where we use the
public commitment key; this key is picked by the ‘recipient’ of the commitment,
and therefore the adversary, acting now as a potentially malicious ‘sender’ of the
commitment, has to use a random public commitment key, rather than choosing
the worst possible key.

Intuitively, given (random) public commitment key pk, every (PPT) adver-
sary A has negligible probability of finding a collision, i.e. values c, d, d′,m,m′

s.t. C.Vpk(m, c, d) = C.Vpk(m′, c, d′) = True (notice the commitment c is the
same!). In order to turn this intuition into a definition, we first define a collision
experiment for commitment schemes.

Definition 10 (Collision (Binding) Experiment for Commitment schemes).
Let C be a commitment scheme, A (Adversary) be an interactive Turing machine
and k ∈ N. Then ColEx(C, A, k) is a random variable, produced by tracing all
events in the following execution:

Select Public Key: Select rKG ∈R {0, 1}k and give to the adversary pk =
C.KG(rKG).

Adversary outputs collision: Adversary A outputs c, d, d′,m,m′. s.t. m 6=
m′.

We now present asymptotic, polynomial time ‘binding’ specification for com-
mitment schemes. Let X.collision be true if and only if X completes with adver-
sary outputting a valid collision, namely values c, d, d′,m,m′ s.t. C.VCK(m, c, d) =
C.VCK(m′, c, d′) = True.

Definition 11. Commitment scheme C is polytime binding, if for every polytime
adversary A and strictly positive polynomial ε : N → [0, 1

2 ], for sufficiently large
k ∈ N holds

Pr[X.collision|X = BindEx(C, A, k)] ≤ 1
2

+ ε(k)

We next give concrete security specifications for the binding (integrity) prop-
erty of commitment schemes. LetX.t be the total time spent by adversary during
X.

Definition 12. Let ε : N× N → [0, 1
2 ]. Commitment scheme C satisfies specifi-

cations ε−Binding, if for every adversary A and every k ∈ N, t ∈ N holds

Pr[X.collision ∧X.t ≤ t|X = BindEx(C, A, k)] ≤ 1
2

+ ε(k, t)

We conjecture that the combiner we present (later) is also tolerant for sev-
eral other variants of commitment schemes, such as the relaxed binding of [3],
trapdoor commitments [43], and chameleon hash functions [33].
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4 The Cascade Combiner and its Tolerance

The most basic tolerant combiner is probably cascade. We begin by discussing
cascading of functions with a single input and output, such as one-way func-
tions and (key-less) hash functions, namely f ◦ g(x) = f(g(x)). In the following
subsections we discuss cascading of keyed schemes.

4.1 Simple Cascade of Keyless Cryptographic Functions

Consider any two functions g : Dg → Rg, f : Df → Rf s.t. Rg ⊆ Df . The
simple cascade of f and g, denoted f ◦ g, is a combiner of plurality 2 defined as
c ◦ (f, g) = f ◦ g(x) = f(g(x)).

Unfortunately, simple cascade rarely ensures tolerance, and often does not
even preserve cryptographic specifications. So far, we found simple cascade en-
sures tolerance only to the one-way function (OWF ) specification as defined in
[20]. Even that is true only with a prerequisite requirement perm(f), which is
true only if f is a permutation when restricted to input domains {0, 1}l for any
length l.

Lemma 1. Simple cascade of two functions is. . .

1. 1-tolerant with prerequisite perm for specifications OWF .
2. Not (even) 0-tolerant for specifications OWF and WCRHF , as defined in

[20].

Proof: Claim 1 follows from a trivial reduction argument.
To prove claim 2, let h be a OWF and/or WCRHF . Let g(x) = h(x)||0|h(x)|

and f(x) =
{

0 if x = y0|x|/2

h(x) otherwise
. Trivially, both f and g are OWF and/or

WCRHF , respectively, yet f◦g is neither OWF notWCRHF ; in fact, f◦g(x) =
0 for every x. ut

4.2 Cascade Encryption Is Tolerant

The cascade encryption, i.e. cascade of two3 encryption schemes E ′, E ′′, is de-
noted E ′ ◦ E ′′ and defined as follows. Notation: For convenience we explicitly
write the inputs and outputs to the cascade (or any combiner) as a tuple of
inputs or outputs when appropriate, e.g. < r′, r′′ > to denote the pair of two
random inputs (r′ to E ′ and r′′ to E ′′).

– E ′ ◦ E ′′.KG. < e′, e′′ > (< r′, r′′ >) =< E ′.KG.e(r′), E ′′.KG.e(r′′) >
– E ′ ◦ E ′′.KG. < d′, d′′ > (< r′, r′′ >) =< E ′.KG.d(r′), E ′′.KG.d(r′′) >
– E ′ ◦ E ′′.E<e′,e′′>,<r′,r′′>(m) = E ′.Ee′,r′(E ′′.Ee′′,r′′(m))
– E ′ ◦ E ′′.D<d′,d′′>(c) = E ′′.Dd′′(E ′.Dd′(c))

3 Extension to arbitrary number of schemes is trivial.
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For simplicity, we require that the domains of E ′ and of E ′′ are compatible,
i.e. that E ′′.Ck ⊆ E ′.Mk. We define the predicate compatible to be true when
applied to a pair of compatible encryption schemes. This is sufficient to cap
the time complexity of the cascade, as the sum of the time complexity of the
two component cryptosystems. This trivial observation is stated in the following
lemma.

Lemma 2. Let E ′, E ′′ be a pair of encryption schemes such that E ′′.Ck ⊆ E ′.Mk.
Then E ′ ◦ E ′′.t(k) ≤ E ′.t(k) + E ′′.t(k). ut

We now investigate the security and tolerance of cascade encryption. As noted
in the introduction, cascade encryption is an ancient, widely-deployed technique,
usually in the hope of improving security - e.g., providing tolerance to weaknesses
of one of the two cascaded encryption schemes. Is this secure?

The answer depends on the adversary capabilities (‘attack model’). Cascade
encryption is not tolerant for adaptive chosen ciphertext attack (CCA2); simply
consider E ′′ which ignores the least significant bit of the ciphertext, allowing
adversary to decrypt the challenge ciphertext (by flipping the LSb and invoking
the decryption oracle).

This ‘attack’ is was already mentioned by [3], who further argued that this
‘attack’ is so contrived, that it may indicate that CCA2 is overly restrictive;
cascading with such E ′′ should not impact security. This motivates [3] to de-
fine ‘generalized CCA’ (gCCA) (Definition 5), which is weaker than CCA2 (but
robust e.g. to cascading with E ′ as above).

However, as we next show, cascade is tolerant for CPA, CCA1 and rCCA,
but not for gCCA (and of course also not for CCA2). This shows an interesting
difference between gCCA and (the weaker notion) rCCA.

Lemma 3. Cascade encryption is a (1, 2)-tolerant combiner for specifications
IND-ψ polytime secure φ-cryptosystem, for ψ ∈ {CPA, CCA1, rCCA} and φ ∈
{ sym, asym}, but not for ψ ∈ {CCA2, gCCA}.

Proof: The positive claim (for ψ ∈ {CPA, CCA1, rCCA}) follows immediately
from Lemma 4 below. The negative claim for ψ = CCA2 follows from the simple
argument above, with E ′′ which ignores the least significant bit of the ciphertext.
It remains to consider the case ψ = gCCA. We focus on the case φ = asym
since this is the only one we formally defined (in Definition 5), the proof extends
trivially to the symmetric encryption case.

Assume E ′ satisfies specifications IND-gCCA polytime secure asym-cryptosystem.
For simplicity, but without loss of generality, assume E ′.DKk = {0, 1}k.

We choose E ′′.EKk = E ′.EKk, E ′′.DKk = E ′.DKk and E ′′.Mk = E ′.Mk, yet
E ′′.Ck = 0, 1×E ′.Ck×(E ′.Ck∪{⊥})×{1, . . . , k,⊥}. Intuitively, we will construct
E ′′ so that by specially crafted chosen cipher text query to E ′ ◦ E ′′.D<d′,d′′>, we
will expose the value of each bit of d′′. Specifically, by a query E ′ ◦ E ′′.D<d′,d′′>(<
1, c0, c1, i >), where c0 6= c1 ∈ E ′.Ck are encryptions of two different known
plaintexts m0 6= m1 respectively, we receive as response mb s.t. b = d′′[i].

In more details, define E ′′ as follows:
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– E ′′.KG(r) = E ′.KG(r)
– E ′′.Ee,r(m) =< 0, E ′.Ee,r(m),⊥,⊥ >

– E ′′.Dd(< b, c0, c1, i >) =
{
E ′.Dd(c0) if b = 0
E ′.Dd(cd[i]) otherwise

Clearly, within at most k chosen-ciphertext queries to E ′ ◦ E ′′, we learn the
value of the decryption key d′′ of E ′′. Now, given the challenge c∗ = E ′ ◦ E ′′.Ee′,e′′(mb),
we can use d′′ to compute the intermediate value xb = E ′′.Dd′′(c∗). We can now
re-apply E ′′.Ee′′ to receive a valid encryption of mb which is not related to c∗,
for any efficient relation R<e′,e′′> (otherwise we could have applied this relation
to efficiently identify the ciphertext to begin with). ut

We next show that cascade encryption is tolerant under our ‘concrete secu-
rity’ specification, as in Definition 6. Our proof uses essentially the same (simple)
reduction argument as in [18].

Lemma 4. Cascade encryption is a (1, 2)-tolerant combiner from specifications
ε−IND secure φ−cryptosystem to specifications ε∗−IND secure φ−cryptosystem,
with prerequisites Time(T ) and compatible, where:

ε(k, t, q) = ε∗(k, t+ T (k) ·
∑

t∈{E,D,rD},stage∈{select,guess}

q(stage, t), q)

Proof: Let E ′, E ′′ be a pair of encryption schemes such that Time(T ) and compatible
hold, i.e. E ′′.Ck ⊆ E ′.Mk. Suppose to the contrary that there exists adversary
A, security parameter k and time complexity t such that

Pr[X.win ∧X.t ≤ t|X = EX(E ′ ◦ E ′′, A, φ, k)] > 1
2

+ ε∗(k, t, q)

We use A as a subroutine of adversaries A′ and A′′, showing that E ′ and E ′′,
respectively, are not ε−IND secure φ−cryptosystem. The design of A′ and A′′ is
similar; we therefore only present A′.

Adversary A′ is trying to ‘win’ the indistinguishability experiment for E ′, by
running the indistinguishability experiment for A, but using E ′ as a ‘black box’.
Specifically, A′ operates as follows, following the steps in Definition 3:

Key Generation: A′ generates keys for E ′′, i.e.:
rKG ∈R {0, 1}k ; e′′ = E ′′.KG.e(rKG) ; d′′ = E ′′.KG.d(rKG);

Expose public key: If φ = asym then send < e′, e′′ >, 1k to A, else send 1k

to A
Select and Guess phases: During these phases, A′ needs to respond to the

encryption and decryption requests of A. However, this is easy to do using
the corresponding services of E ′, and of course E ′′ (for which A′ has selected
the keys). For example, when A outputs < encrypt,m > where m ∈ Mk,
then A′ asks for encryption c′ of m by E ′, i.e. c′ = E ′.Ee′,r(m), and then
computes and returns its encryption by E ′′.



XVI

Encrypt: When A outputs, after select phase, the choice < select,m0,m1 >
where m0, m1 ∈ Mk, then A′ simply outputs the same choice. When re-
ceiving the response (c∗ = E ′.Ee,r(mb)), then A′ encrypts this by E′′ and
returns the result to A.

Output: When A outputs < guess, b′ >, then A′ outputs the same guess.

Obviously, if A wins, then A′ also wins. Since A′ only performs one more com-
putation of E ′′ for each of the

∑
t∈{E,D,rD},stage∈{select,guess} q(stage, t) queries,

the claim follows. ut
Comment. By using robust secret sharing and other tools, [16] achieve toler-

ant combiner for the IND-CCA2 specification of encryption schemes. However,
their combiner is wasteful, in particular in the length of the ciphertext. This may
be unacceptable for many applications. We expect that cascade would remain
the preferred tolerant combiner for encryption in practice, in spite of it not being
tolerant (or even preserving) for CCA2 and gCCA specifications.

Cascading is a natural candidate combiner for many cryptographic mecha-
nisms; we now define and investigate tolerance of cascade of commitment schemes.

4.3 Cascade Commitment

We define cascade commitment C′ ◦ C′′, i.e. cascade of two commitment schemes
C′, C′′, as follows. We again wrote inputs and outputs as tuples.

– C′ ◦ C′′.KG(< r′, r′′ >) =< C′.KG(r′), C′′.KG(r′′) >
– C′ ◦ C′′.C<pk′,pk′′>,<r′,r′′>(m) = C′.Cpk′,r′(C′′.Cpk′′,r′′(m))
– C′ ◦ C′′.D<pk′,pk′′>,<r′,r′′>(m)

=< C′.Dpk′,r′(C′′.Cpk′′,r′′(m)), C′′.Dpk′′,r′′(m), C′′.Cpk′′,r′′(m) >
– C′ ◦ C′′.V<pk′,pk′′>(m, c′, < d′, d′′, c′′ >) =
C′′.Vpk′′(m, c′′, d′′) ∧ C′.Vpk′(c′′, c′, d′).

Similarly to cascade encryption, we require that the domains of C′ and of C′′
are compatible, i.e. that C′′.CTk ⊆ C′.Mk. The predicate compatible is true when
applied to a pair of compatible commitment schemes. This is sufficient to cap
the time complexity of the cascade, as the sum of the time complexity of the
two component commitments, however note that in a single application of the
cascade decommit function, we need to apply both the C′′ commit and decommit
functions. This trivial observation is stated in the following lemma.

Lemma 5. Let C′, C′′ be a pair of compatible commitment schemes. Then:
C′ ◦ C′′.t(k) ≤ C′.t(k) + 2 · C′′.t(k). ut

The following lemma states that cascade ensures the privacy (hiding) prop-
erty of commitment schemes.

Lemma 6. Cascade commitment is a (1, 2)-tolerant combiner for specification
polytime hiding. Cascade commitment is a (1, 2)-tolerant combiner from speci-
fications ε−Hiding to specifications ε∗−Hiding, with prerequisites Time(T ) and
compatible, for ε(k, t) = ε∗(k, t+ T (k)).
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Proof: A simplified version of the proof of Lemma 4. ut
Finally, the following lemma shows that cascade only preserves the binding

specification of commitment schemes.

Lemma 7. Cascade commitment is a preserving (but not tolerant) combiner
for specifications polytime binding. Cascade commitment is also a preserving
combiner from specifications ε−Binding to specifications ε∗−Bindgin, with pre-
requisites Time(T ) and compatible, for ε(k, t) = ε∗(k, t+ T (k)).

Proof (sketch): Every collision of C′ ◦ C′′, gives a collision of (at least) one of
C′, C′′. ut

We can also explore cascading of other functions; e.g., of Message Authenti-
cation Code (MAC) functions, as defined e.g. in [21] (compute first MAC on the
message, and second MAC on the output of the first MAC, possibly concatenated
with the message). We note (omitting the trivial construction and proof), that
such cascade preserves, but is not tolerant for, the MAC security specifications
(see e.g. [21]). However, we do not see a natural extension to signature schemes,
which has any advantage compared to the ‘copy combiner’ (see in next section).

5 Parallel and Copy Combiners and their Tolerance

We now consider another important family of combiners, which are parallel ap-
plications of two or more cryptographic functions or schemes. Parallel combiners
may use the same input to all functions, use different parts of the input to each
function, or use some combination of the inputs to create the input to each
function, often involving XOR or secret-sharing. Similarly, the output of some
parallel combiners is simply the concatenation of the outputs of each function,
while others ‘merge’ the outputs, by XOR or secret-sharing.

5.1 Parallel Combiner for OWF

Possibly the simplest parallel combiner ‘splits’ the input among several functions,
and concatenates the result. In particular, the Parallel combiner for two keyless
functions f, f ′ is defined as f ||pf ′(< x, x′ >) =< f(x), f(x′) >. This trivial
combiner is tolerant for One-Way Functions specifications.

Lemma 8. The Parallel combiner f ||pf ′(< x, x′ >) =< f(x), f(x′) > is toler-
ant for the OWF specifications.

Proof Sketch: Suppose that for some < x, x′ >, there is a non-negligible proba-
bility that the adversary is able to find preimage < y, y′ > given only f ||pf ′(<
x, x′ >). Since < y, y′ > are preimages, it follows that f(y) = f(x), f ′(y′) =
f ′(x′). Hence, this gives a preimage also to x (and x′), i.e. there is a non-negligible
probability that the adversary is also able to invert f and f ′. ut
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5.2 Copy Combiner for Integrity Specifications of Hash Functions,
Commitment, MAC and Signature Schemes

The Copy combiner is also trivial, practical and widely deployed. Here, the in-
put to the combiner is ‘copied’ and used as input to each of the components;
and the output is simply the concatenation of the output of all components.
This simple, folklore combiner provides tolerance for the integrity properties of
collision-resistant hash functions, signature and MAC schemes and commitment
schemes.

Let us first define the copy combiner for keyless functions, e.g. One Way
Functions (OWF) and (weakly collision resistant) keyless hash functions. The
copy combiner of single-input (keyless) functions f, g is denoted as f ||g, and
defined as f ||g(x) =< f(x), g(x) >. When the functions have inputs for random
bits and/or keys, these are selected independently for the two functions, and the
parallel combiner is f ||g<k,k′>,<r,r′>(x) =< fk,r(x), gk′,r′(x) >.

The copy combiner of two Signature or MAC schemes S,S ′, denoted S||S ′,
is defined as follows. The definitions and proofs extend trivially to arbitrary
number of schemes. For definitions of Signature and MAC schemes, see e.g. [21].

– S||S ′
.KG. << v, s >,< v′, s′ >> (< r, r′ >) =< S.KG(r),S ′.KG(r′) >

– S||S ′
.S<s,s′>,<r,r′>(m) =< S.Ss,r(m),S ′.Ss′,r′(m) >

– S||S ′
.Vv,v′(m,< σ, σ′ >) = S.Vv(m,σ) ∧ S ′.Vv′(m,σ′)

Similarly, the copy combiner of two commitment schemes C, C′, denoted C||C′,
is defined as follows.

– C||C′.KG. < pk, pk′ > (< r, r′ >) =< C.KG(r), C′.KG(r′) >
– C||C′.C<pk,pk′>,<r,r′>(m) =< C.Cpk,r(m), C′.Cpk′,r′(m) >
– C||C′.D<pk,pk′>,<r,r′>(m) =< C.Dpk,r(m), C′.Dpk′,r′(m) >
– C||C′.V<pk,pk′>(m,< c, c′ >,< d, d′ >) = C.Vpk(m, c, d) ∧ C.Vpk′(m, c′, d′)

As the following lemma states, the copy combiner ensures tolerance for many
integrity properties / specifications, but clearly is quite bad for privacy. We omit
the trivial proof. We use the standard definitions of WCRHF, MAC and signature
schemes and their security (see e.g. [21]).

Lemma 9. The copy combiner as defined above is:

1. Tolerant for the ‘integrity’ specifications WCRHF .
2. Tolerant for the existential unforgeability under adaptive chosen message

attack specification of Signature and MAC schemes.
3. Tolerant for the polytime binding specifications of commitment schemes.
4. Preserving, but not tolerant, for the ‘confidentiality’ specifications polytime

hiding of commitment schemes, and the IND-CCA1 , IND-CPA, IND-CCA2
and IND-rCCA polytime secure specifications, of (symmetric and asymmet-
ric) encryption schemes.

5. Not preserving, for (the ‘confidentiality’ specifications) OWF.

Comment: the last claim, i.e. that copy combiner is not preserving for OWF
specifications, is a good example of an applied cryptography exercise, using the
tolerant combiners concepts.
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5.3 The XOR Combiner for Encryption

Another classical tolerant combiner, originally proposed in [1] for encryption
schemes, takes two inputs: a message (plaintext) and a random bit string of
the same length, and applies one function to the random string, and the other
function to the exclusive-OR of the message with the random string. Namely,
the simple XOR combiner for two keyless functions f, f ′ is defined as f ⊕ f ′(<
m,x >) =< f(m ⊕ x), f ′(x) >; generalization to more than two functions is
trivial.

The definition for XOR combiner for encryption schemes E , E ′, is similar:

– E ⊕ E ′.KG.e(< r, r′ >) =< E .KG.e(r), E ′.KG.e(r′) >
– E ⊕ E ′.KG.d(< r, r′ >) =< E .KG.d(r), E ′.KG.d(r′) >
– E ⊕ E ′.E<e,e′>,<r,r′,x>(m) =< E .Ee,r(x), E ′.Ee′,r′(x⊕m) >
– E ⊕ E ′.D<d,d′>(< c, c′ >) = E ′.Dd′(c′)⊕ E .Dd(c)

The XOR combiner provides tolerance for the (relatively weak) notions of
CPA and CCA1, but (trivially) not even preserving for the stronger notions
of CCA2, gCCA or even rCCA. (The negative claims are more examples of
exercises.)

Lemma 10. The XOR combiner of encryption schemes is (1, 2)-tolerant for
specifications IND-ψ polytime secure φ-cryptosystem, for ψ ∈ {CPA,CCA1} and
φ ∈ {SYM, ASYM}. .

Proof: Let E , E ′ be two encryption schemes, both accepting any plaintext mes-
sage, i.e. E .Mk = E ′.M ′

k = {0, 1}∗. Given an adversary A⊕ that can distinguish
E ⊕ E ′, we construct adversaries A,A′ to distinguish E and E ′, respectively. The
design of A,A′ is simple, since we deal with only CPA and CCA1 attacks; namely,
encryption and decryption done only before the messages m0, m1 are selected.
Therefore, at the select phase, A and A′ can easily answer all the queries of A⊕,
by selecting arbitrary key pair for E ′ or E , respectively.

When A⊕ selects the messages m0, m1, the adversaries A and A′ simply pro-
vide the same messages in their experiments. When A (A′) receives ciphertext c∗

to distinguish in its experiment, it gives to A⊕ the ciphertext < c∗, E ′.Ee′,r(0) >
(respectively, < E .Ee,r(0), c∗ >). By outputing the guess of A⊕, the adversaries
A and A′ have the same chance of winning as A⊕. ut

5.4 Sharing Combiner for Tolerant Commitment

In the sharing combiner, the inputs to each component commitment scheme are
shares of the input to the combiner. A secret sharing scheme is a pair of algo-
rithms < Share,Reconstruct >. The Share algorithm accepts a message m as
input, and outputs n secret values s1, . . . , sn which we call shares; it is random-
ized, i.e. it also accepts some random input r. For convenience, let Sharei,r(m,n)
denote the ith output of Share on input m, number of shares n and randomness
r. Reconstruct is a deterministic algorithm which takes n shares, s′1, . . . , s

′
n, some
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of which may have the special value ⊥ (for a missing share), and outputs a mes-
sage m′ (or ⊥ for failure). The correctness property is that for every message m
and randomness r holds m = Reconstruct(Share1,r(m,n), . . . , Sharen,r(m,n)).

Secret sharing schemes support different thresholds, for tolerating exposure or
corruption of shares. In particular, in our case, we are interested in the following
two thresholds. First, secret sharing schemes have a privacy threshold, tp, which
determines the maximum number of shares which reveal ‘no information’ about
the message m. Second, they have a soundness threshold ts, which determines
the minimum number of correct shares which ensures it is impossible to recover
an incorrect message m′ 6= m (and m′ 6= ⊥).

For simplicity, we present the sharing combiner (sc) for ensuring tolerance
from three candidate commitment schemes, C1, C2 and C3, and using an arbitrary
secret sharing scheme < Share,Reconstruct > with n = 3, tp = 1, ts = 2,
e.g. Shamir’s scheme [40]. Generalizations allowing threshold to tp > 1 insecure
components (by using 2tp + 1 components and shares) are straightforward. In
specifying the combiner (of plurality n = 3), we use the notation si,r(m) =
Sharei,r(m, 3).

sc(C1, C2, C3).KG. < pk1, pk2, pk3 > (< r1, r2, r3 >) =
=< C1.KG(r1), C2.KG(r2), C3.KG(r3) >

sc(C1, C2, C3).C<pk1,pk2,pk3>,<r,r1,r2,r3>(m) =
=< C1.Cpk1,r1(s1,r(m)), C2.Cpk2,r2(s2,r(m)), C3.Cpk3,r3(s3,r(m)) >

sc(C1, C2, C3).D<pk1,pk2,pk3>,<r,r1,r2,r3>(m) =
=< C1.Dpk1,r1(s1,r(m)), C2.Dpk2,r2,r(m)(s2), C3.Dpk3,r3(s3,r(m)),
, s1,r(m), s2,r(m), s3,r(m) >

sc(C1, C2, C3).V<pk1,pk2,pk3>(m,< c1, c2, c3 >,< d1, d2, d3, s1, s2, s3 >) =
= {True iff (m = Reconstruct(s1, s2, s3)) ∧ ((∀i=1,2,3) Ci.Vpki(si, ci, di))}

The tolerance of the sharing combiner follows easily from the properties of
secret sharing schemes. Essentially, the sharing combiner is a hybrid or general-
ization of the copy combiner and of the XOR combiner.

Lemma 11. The sharing combiner (sc) of 2t + 1 commitment schemes is t-
tolerant for both the Binding and the Hiding specifications, for every t ≥ 1. ut

Comment. In most practical commitment schemes, the additional decommit-
ment strings di are quite short, compared to the message. However, the sharing
combiner uses long decommitment string; specifically, the decommitment in-
cludes < d1, d2, d3, Share1,r(m, 3), Share2,r(m, 3), Share3,r(m, 3) >. Typically,
e.g. using Shamir’s secret sharing scheme [40], each share is as long as the mes-
sage; namely the decommitment string of the sharing combiner is three times
as long as the original message. This may be substantial overhead for many
applications. The scheme we present in the next section avoids this overhead.

6 Composition of Combiners

Often, we may want to combine multiple combiners, e.g. to ensure tolerance to
multiple specifications. We restrict our attention to simple compositions of two
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combiners. In the first subsection we present two ways to compose the cascade
combiner (tolerant for hiding) and the copy combiner (tolerant for binding), re-
sulting in efficient tolerant combiners for commitment schemes (ensuring both
hiding and binding specifications). In the second subsection, we generalize these
results, by defining a composition as a mapping of (two) combiners, and present-
ing a general Composition Lemma, deriving the compositions for commitment
schemes, which we presented in the first subsection, as a special case.

6.1 ‘Composite’ Combiners for Tolerant yet Efficient Commitments

The sharing combiner provides tolerant design for commitment schemes, but
results in a long decommitment string (three times the original message), which
may be problematic for many applications. Can we construct efficient tolerant
commitment schemes, with short decommitment (and commitment) strings? In
this subsection we show two such combiners, with different tradeoffs. Both of
these combiners are compositions of the cascade and copy combiners. This builds
on the following key properties:

– Cascade is tolerant for hiding and preserves binding
– Copy is tolerant for the binding and preserves hiding.

It therefore makes sense to create a combiner which applies both cascade and hid-
ing. In particular, we can use four candidate commitment schemes, C11, C12, C21,
and C22, cascading C11 and C12 and connecting this in parallel to the cascade of
C21 and C22. We call the result the D combiner, after its ‘shape’. Namely:

D(C11, C12, C21, C22) = (C11 ◦ C12)||(C21 ◦ C22)

TheD combiner is efficient in computation times (each operation requires one
operation from each of the four candidate commitment schemes), and in the size
of the commit and decommit strings (commit size is twice that of the candidate
commitment schemes, and decommit size consist of four decommitments plus
two commitments). In particular, it substantially improves upon the sharing
combiner, in the size of the commit and decommit strings; this is important for
many applications.

However, the D combiner has one significant drawback: it uses four compo-
nent commitment schemes for 1-tolerance, while the sharing combiner requires
only three candidate schemes for 1-tolerance. We can fix this by using only three
commitment schemes, but using each of them twice, by connecting in parallel
three cascades of two schemes each; we call this the E combiner.

The E combiner uses only three candidate commitment schemes, C0, C1 and
C2. Specifically, the E combiner is the copy combiner applied to three cascades
of pairs of candidate schemes:

E(C0, C1, C2) = (C0 ◦ C1)||(C1 ◦ C2)||(C2 ◦ C0)

We next state the tolerance of the D and E combiners. The proof is given in
the next subsection.



XXII

Lemma 12. The D (E) combiner of 2t + 2 (respectively, 2t + 1) commitment
schemes is t-tolerant for the polytime Binding and Hiding specifications. ut

6.2 The Composition Lemma for Combiners

We now generalize the idea of combining multiple combiners, as in the previous
subsection, to arbitrary combiners and specifications. We still limit our atten-
tion to compositions of two combiners. Such compositions accept as input two
combiners c and c′ and produce a composite combiner denoted c′ ◦I c, where I is
a mapping of the ‘candidate functions’ to the combiners. We present few simple
and useful compositions. First, we need to define the relevant mappings I and
the composition for given I.

Let c be a function of plurality p over F which is t-tolerant combiner from
specifications s to specifications s′, and let c′ be a function of plurality p′ over
F which is a t′-tolerant combiner from specifications s′ to specifications s”. Let
p◦ denote the plurality of the composition of c and c′; namely the input to the
composite combiner is an ordered set f of p◦ functions, f [i] ∈ F . The composite
combiner c′ ◦I c first applies c to p′ sets of p functions each, and then applies c′

to the p′ resulting functions. The composition is defined by the selection of the
p functions input to each of the p′ applications of the c combiner, namely by a
mapping I : {1, . . . , p} × {1, . . . , p′} → {1, . . . , p◦}, where Ii[j] identifies the jth

function input to the ith instance of combiner c. Given I, the I-composition of
c′ and c, denoted c′ ◦I c, is

c′ ◦I c (f [1], ..., f [p◦]) = c′ (c (f [I1(1)], ..., f [I1(p)]) , ..., c (f [Ip′(1)], ..., f [Ip′(p)]))

The following lemma shows that the security of the I-composition of two
threshold-tolerant combiners, depends on a simple combinatorial property of
mapping I. Consider set T ⊆ {1, . . . , p◦} (of ‘weak input functions’). LetGi(I, T ) =
{Ii[j]|j = 1, . . . , p} − T , i.e. values Ii[j], for some j, which are not in T ; think
of Gi(I, T ) as the ‘good selections’ of Ii. Let G(I, T )[t] = {i s.t. |Gi(I, T )| ≥
p − t}. We say that I is a (t, t′, t◦)-threshold-composition-structure if for every
T ⊆ 1, . . . , p◦ s.t. |T | ≤ t◦ holds: |G(I, T )[t]| ≥ p′ − t′.

Lemma 13 (Composition of combiners). Let I : {1, . . . , p} × {1, . . . , p′} →
{1, . . . , p◦} be a (t, t′, t◦)-threshold-composition-structure. Let c be a function of
plurality p over F which is a t-tolerant combiner from specification s to spec-
ification s′. Let c′ be a function of plurality p′ over F which is a t′-tolerant
combiner from s′ to s”. Then c′ ◦I c, is a combiner of plurality p◦ over F which
is t◦-tolerant from specifications s to specifications s”.

Proof: Consider any set f of p◦ functions, f [i] ∈ F , and assume that p◦ −
t of them satisfy specification s. Namely, for some set {ij} of p◦ − t indexes
holds s(f [ij ]) = 1. We need to prove that for every choice T ⊆ {1, . . . , p◦}
of up to t◦ functions in f which do not satisfy s, the function resulting from
applying composed combiner c ◦I c

′ to {f [1], . . . , f [p◦]} satisfies s”. Namely, we
need to prove that s”(c′ ◦I c(f [1], . . . , f [p◦])) = 1. Let f ′[1], . . . , f ′[p′] denote
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the p′ intermediate functions, i.e. f ′[i] = c(f [Ii(1)], . . . , f [Ii(p)]); hence c′ ◦I

c(f [1], . . . , f [p◦]) = c′(f ′[1], . . . , f ′[p′]).
If i ∈ G(I, T )[t], namely |Gi(I, T )| ≥ p − t, then for at least p − t of the

functions f [Ii(1)], . . . , f [Ii(p)] holds s(f [Ii(j)]) = True. Since c is t-tolerant
from specifications s to specifications s′, it follows that s′(f ′[i]) = True, for
every i ∈ G(I, T ). Since c′ is a t′-tolerant combiner from s′ to s”, it follows that:
s”(c′ ◦I c(f [1], . . . , f [p◦])) = s”(c′(f ′[1], . . . , f ′[p′])) = 1. ut

We now present two simple threshold cascade compositions derived from the
above lemma, by presenting two simple composition structures:

– Composition structure D : 0, 1× 0, 1 → 0, 1, 2, 3 defined as Di[j] = 2i+ j for
i, j ∈ 0, 1.

– Composition structure E : 0, 1 × 0, 1, 2 → 0, 1, 2 defined as Ei[j] = i + j
(mod 3) for i ∈ 0, 1, j ∈ 0, 1, 2.

From the combinatorial definition of (t, t′, t◦)-threshold-composition-structure
we get:

Lemma 14. D and E are both (0, 1, 1) and (1, 0, 1) threshold-composition-structures.
ut

From the two Lemmas, we get:

Lemma 15. Let c, c′D, c
′
E be functions of plurality 2, 2 and 3 respectively. If c

is a t-tolerant combiner from specification s to specification s′, where t ∈ 0, 1,
and c′D, c

′
E are (1− t)-tolerant combiners from s′ to s”, then c′D ◦D c and c′E ◦E c

are both 1-tolerant combiners from s to s”. ut

We can now prove Lemma 12. We present the proof for t = 1; the composition
structures and proofs for t > 1 are similar.

Proof of Lemma 12: Let c be the cascade commitment combiner; and let
c′D = c′E be the copy combiner for commitment schemes. Notice that D =
cD′ ◦D c, E = cE′ ◦E c. The claim follows from Lemmas 6, 9 and 15. ut

We note that the same Composition Lemma and structures can also be used,
in a very similar manner, to derive the (1, 3)-Tolerant combiner for Oblivious
Transfer from [27]; furthermore, from the composition, we can clearly also extend
this result to derive (t, 2t+ 1)-Tolerant combiner for Oblivious Transfer, for any
t ∈ N.

7 Conclusions and Open Questions

We presented simple, efficient and practical tolerant combiners for several im-
portant cryptographic mechanisms, including encryption, signature/MAC and
commitment schemes. For encryption, MAC and signature schemes, we simply
proved the security of the (very efficient) ‘folklore’ combiners; for commitment
schemes, we present new combiners which are simple compositions of the folklore
cascade and copy combiners. We also present definitions for tolerant combiners
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and compositions, and some basic yet useful results regarding compositions of
combiners.

We believe that efficient tolerant combiners are an important requirement
from practical cryptographic primitives; put differently, we should prefer spec-
ifications with an efficient tolerant combiner. We presented efficient tolerant
combiners for several of the important primitives (and specifications) of modern
cryptography. However, for others, we did not find (yet?) a (reasonably efficient)
tolerant combiner. This calls for additional research, to distinguish between spec-
ifications with efficient tolerant design, vs. specifications that do not have an
efficient tolerant design (and possibly, to find alternate specifications which are
sufficient for most applications/scenarios). In particular, following earlier ver-
sions of this work [29], tolerant combiners were found for Oblivious Transfer and
Key Agreement in [27], and for IND-CCA2 encryption in [16]. However, there
are still many open questions. Some of the most interesting questions include:

1. Can we improve the tolerance ratio for commitment and oblivious transfer,
from p ≥ 2t+ 1 to say p = 2t?

2. Is there an efficient combiner for IND-CCA2 encryption, e.g. with no (or
minimal) length increase?

3. Can we find (efficient) tolerant combiners for other tasks? For example, our
early efforts for finding a tolerant combiner for AONT [12] resulted in sub-
stantial loss in parameters (instead of s secret bits out of which l must remain
secret, we need 2s secret bits out of which s+ l must remain secret).
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