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Abstract

Alice studies computer science at BYU. Her friend Bob is only 17 years old. The local movie theater
gives discounts to CS students and minors. This paper describes how Alice can obtain a digital credential
from BYU and use it to prove to the theater that she’s a computer science student. She doesn’t have to
reveal anything else to the theater about her identity, and the theater can’t discover anything additional
even with BYU’s help.

Most significantly, Alice and Bob won’t be able to pool their credentials to make it look as if Alice is both
a CS student and under 18. Revocable anonynimity is also (optionally) available, such that a quorum of
authorities can later work with the theater to discover Alice’s identity if the need arises.

To implement credential sets, we present several useful primitives. First, we describe a non-interactive form
of the cut and choose protocol. Second, we present a method whereby documents can be blindly signed by
different signers, and later proved to belong together in a set.

It may be possible to implement credential sets without violating the patents on blind signatures.

Keywords: digital credentials, selective disclosure, credential pooling, blind signatures.

1 Overview

Alice wishes to obtain a service from Steve, a server.
Steve will only provide the service if Alice can demon-
strate certain attributes about herself as attested by
credential issuers. Alice is willing to prove these at-
tributes, but doesn’t want Steve to get any additional
information about her, even if Steve works together

∗With special thanks to Ben Laurie, Hilarie Orman, Rich
Schroeppel, Robert Sherwood, Mike Stay, Ting Yu, sci.crypt
and the Cypherpunks. This research was supported by
DARPA through AFRL contract number F33615-01-C-0336
and through Space and Naval Warfare Systems Center San
Diego grant number N66001-01-18908.

with the credential issuers. Steve wants to make sure
that the attributes Alice displays all belong to the
same person, and weren’t accumulated by Alice and
Bob pooling their credentials.

To this end, Alice first creates a Credential Set Re-
quest, which contains a matrix of blinded documents.
Each row of the matrix contains documents to be
signed by the same issuer, and the documents in each
column all share a common credential ID which Alice
will use to prove to Steve that the documents in the
matrix belong together. To prove that she’s honest,
Alice includes information about certain columns of
the matrix and sends the Credential Set Request to
each of the issuers of her credentials. Each issuer in-
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spects the request then blindly signs the unrevealed
columns of his row in the matrix. Alice then removes
the blinding factors, leaving her with a valid set of
credentials (where each row constitutes an individual
credential).

Credentials in credential sets are built from selective-
disclosure certificates. These are certificates in which
the normal attribute values have been replaced with
a bit commitment of the true value. If Alice doesn’t
choose to reveal the value of a selective disclosure
field, Steve doesn’t learn anything about that value.
But if she does choose to reveal such a field, Steve
can verify that she isn’t lying about its value.

When Alice shows some subset of the credentials to
Steve, Steve checks that all the IDs match, ensuring
that all the credentials were in fact issued to the same
person. Alice also reveals the preimages of the selec-
tive disclosure attributes in each credential which she
wishes to show to Steve.

If Alice later shows credentials from the same set to
someone else, that person could collude with Steve
and determine that they both were dealing with
the same person. Thus for maximum privacy Alice
should obtain many instances of her credential set,
and use each instance in only one transaction.

Revocable anonynimity can optionally be obtained
by including a uniquely identifying document in the
certificate which can only be decrypted by the coop-
eration of a quorum of auditing authorities.

2 Related work

Chaum’s blind signature techniques [6, 7] made it
possible to obtain a certified value from an issuer
and show it to a server without the possibility of
the server and issuer correlating the issuing and
showing events. Chaum presented a credential sys-
tem based on blind signatures [5] in which users es-
tablish a different pseudonym with each potential
server and issuer, and can transfer credentials is-
sued under one pseudonym to other pseudonyms they
hold. In his system, the exponent used in signing a

pseudonym defines the type and value of the creden-
tial. His system allows demonstration of mathemat-
ical relationships between attributes (such as AND,
OR and GREATER THAN). One awkward require-
ment of Chaum’s proposal is that a trusted author-
ity is needed to facilitate the relationship between
issuers, users and servers. A particular server and is-
suer would have to establish a relationship with this
authority before users could even obtain credentials
from the issuer to show to the server.

Brands [1, 2] presented a system with many of the
features Chaum introduced. In his system, an issuer
establishes a set of bases (g1...gn) which are anal-
ogous to the fields of a certificate. The bases are
raised to a power signifying the value of the field.
(gx1

1 gx2

2 ...gxn
n ) would comprise (part of) a credential

in Brands’ system, where xk is the value for the at-
tribute represented by gk. Credential holders can re-
veal exponents or properties of combinations of ex-
ponents through proofs of knowledge relative to the
credential. Unlike Chaum’s system, credentials can
be shown to arbitrary servers, and issuers need not
have any relationship with a central authority. How-
ever, Brands does not address the problem of users
pooling credentials together to obtain services no one
of them could obtain alone.

Camenisch and Lysyanskaya [3] proposed a system al-
lowing a credential to be shown multiple times with-
out allowing showing instances to be linked. Their
system focuses on limiting the information revealed
to servers during the showing protocol rather than
restricting what information the issuer gets during
the signing process. Revocable anonymity is possi-
ble along with several other desirable features. Their
system provides many of the features of previous sys-
tems without using blinding a la Chaum, but also
relies heavily on proofs of knowledge. Credentials
are issued to a user relative to their public key, so
like ours, their system prevents users from pooling
credentials.

Credential sets are more related to the current X.509
certificate infrastructure than the exponent-based
systems listed here. That is, credential sets use
signed documents containing multiple name-value
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pairs, rather than using separate signing exponents
for each attribute.

3 Preliminaries

3.1 Credentials and Certificates

A certificate is a document containing various at-
tributes and their values. Certificates are issued by
issuers (often called certificate authorities) to users
(often called subjects). X.509v3 certificates have a
number of standard fields such as the issuer and sub-
ject names, and ”extensions” which can specify arbi-
trary other kinds of information about the user.

A user typically creates a certificate to be signed,
called a certificate request, and sends it to the issuer.
The issuer signs the request by hashing the document
with a collision-resistant one-way function and sign-
ing the hash with his private key. Later the user can
show the signed certificate to a verifier, who verifies
that the certificate is valid. In an ”on-line” system,
this verification takes place with the help of a cen-
tral authority. In an ”off-line” system, the server can
verify a certificate (or more generally, a credential)
without outside help.

We use the term “credential” when we wish to speak
of attribute-demonstrating information in general. A
credential is something which establishes one or more
attributes of its owner. Credential sets use multi-
ple X.509v3-like certificates together to form a single
credential. Proper X.509v3 certificates signed in the
traditional way could also be considered credentials.

3.1.1 Selective disclosure credentials

A selective disclosure credential has several at-
tributes. When the user shows the credential to a
verifier, she can choose to reveal only some of the
attributes to the verifier.

Credential sets accomplish this with the help of bit
commitment. Bit commitment allows our user, Alice,
to commit to a value without revealing it. One way

to do this is with the help of collision-resistant one-
way functions. Alice’s commitment c is the output of
a one-way function oneway() operating on her secret
value s and a random string r:

c = commit(s) = oneway(s.r)

(. denotes concatenation). Alice first sends c to Vic-
tor the verifier. If she chooses not to reveal the value,
Victor can’t determine what the value was. If she
does choose to reveal her secret, she sends Victor s
and r, who runs them through oneway() and checks
that the result equals c. If oneway() is collision-
resistant, Alice can’t easily find any other values for
s and r which will produce c as output.

A normal certificate can easily be made into a se-
lective disclosure certificate by replacing actual at-
tribute values with commitments to those values.
Victor can verify that the certificate is valid in the
usual way, but gains no information about the selec-
tive disclosure values unless Alice reveals the value
and random string used in the commitment function.

Selective disclosure credentials are even more power-
ful when used in conjunction with blind signatures.
If Izzy (a credential issuer) blindly signs a credential
for Alice, she can show it to Steve without revealing
all the selective disclosure fields. Steve can pass the
credential back to Izzy, but unless Alice has revealed
enough information to uniquely identify herself, Izzy
won’t be able to determine what the unrevealed fields
were, even though he signed the credential.

3.2 Blind signatures

Chaum introduced the idea of blind signatures. Blind
signatures allow Izzy, the issuer, to sign a document
without knowing its contents. To accomplish this,
Alice applies a blinding factor to her document be-
fore submitting it to Izzy for signing. Izzy signs the
blinded document and returns it to Alice. Alice can
then remove the blinding factor without invalidating
the signature. Anyone can verify that the signature
is valid, but Izzy can’t prove any association between
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the blinded document he signed and the one Alice
presents unless he knows the blinding factor Alice
used.

Since Chaum has a patent on blind signatures un-
til 2005, we’ll later mention an alternative which
might not be covered by his patents. Camenisch
[4] described blind signature systems based on other
public-key cryptosystems which might also be useful
for implementing credential sets.

3.2.1 Cut and choose

Since Izzy is unwilling to sign documents without
knowing what they contain, Alice uses a cut and
choose protocol to demonstrate that the credentials
she wants signed are valid1. Alice will create n
blinded copies of a certificate, and allow Izzy to ex-
amine some of them. In a simple implementation,
Izzy examines n-1 of the certificates, and signs the
remaining one unexamined. Alice has a 1 in n chance
of successfully cheating by guessing which certificate
he won’t examine. This implementation can be useful
if there are strong penalties for trying to cheat, but
isn’t suitable for the non-interactive version of the
protocol we present in the next section, since Alice
can attempt to cheat without communicating with
any other parties.

So instead, Alice will allow Izzy to examine n/2 of the
certificates. He’ll sign the other n/2 copies. Alice can
unblind them and show them to Steve, who will ex-
amine them to ensure that they’re all consistent. Al-
ice can only cheat by guessing which n/2 copies Izzy
won’t examine, and falsifying exactly those. Now she
has a 1 in (n choose n/2) chance of successfully cheat-
ing.

To begin, Alice creates n equivalent copies of the
certificate and hashes each one with oneway(). She
blinds each hash with a different blinding factor. If
the documents were normal certificates, each copy
would be completely identical (and blinding wouldn’t
serve any useful purpose – the issuer would know that
the documents revealed were byte-for-byte identical

1See Applied Cryptography[9], pp.113-115.

to the unrevealed documents). If we use selective
disclosure certificates, however, each certificate will
have the same actual attribute values, but the com-
mitments to those values which go into the certificate
will be different because of the random strings used in
commit(). Since Izzy won’t know the random strings,
he won’t know what the actual attribute values are
if he later sees the signed documents.

Alice makes all n blinded hashes available to Izzy,
and n/2 of them are selected at random. In order for
Izzy to verify that the corresponding n/2 certificates
are correct, Alice reveals the blinding factors for the
n/2 selected hashes, as well as the random strings
used in the commit() function when constructing the
selective disclosure fields Izzy needs to see. Izzy uses
oneway() on the values and random strings to ver-
ify the selective disclosure fields. Then he hashes the
certificates and blinds them with the supplied blind-
ing factors to see if they match the blinded values. If
Alice hasn’t tried to cheat, he multiplies the remain-
ing n/2 hashes together, signs the result and returns
it to Alice.

Alice unblinds the signed product, and can show it
to Victor as the signature for the certificates. To re-
veal a selective disclosure attribute to Victor, Alice
must send the true attribute value along with the
random string used by commit() in each of the n/2
certificates. Victor verifies that the oneway() func-
tion returns the proper value for each copy of the
certificate. If any of the values are different, Victor
knows Alice was trying to cheat.

Alice has only a 1 in (n choose n/2) chance that she
can successfully defeat the cut and choose mecha-
nism. To do this, she must get Izzy to sign n/2 docu-
ments all consistent with each other and all different
from the n/2 valid documents which he inspects.

3.2.2 Non-interactive cut-and-choose

Borrowing a concept from non-interactive zero knowl-
edge proofs 2, we can use a collision-resistant one way
function to select the n/2 documents to be revealed

2Applied Cryptography[9], pp.106-107.
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in the cut-and-choose protocol. The oneway() func-
tion is called on the concatenation of the n blinded
documents described above, and its output it used to
select which n/2 documents Alice must reveal. Izzy
can also hash the n documents to verify that Alice
properly applied oneway().

The following algorithm can be used to select the
n/2 columns: Use the output of oneway() to seed
a suitable PRNG. Divide the PRNG’s output into
strings which are each ceil(log2n) bits long and use
each string as the index of an ID to reveal, until n/2
IDs have been selected.

3.2.3 Chaum blinding

Chaum’s blinding is simple. Here’s how we can
blindly compute an RSA signature using Izzy’s RSA
secret key d, public key e and public modulus n. Alice
chooses a random blinding value b, raises it to Izzy’s
public exponent and multiplies it with her document
h (h since we typically sign the hash of a message,
not the message itself):

r = hbe (mod n)

Izzy signs r by raising it to his secret exponent d and
returns rd (mod n) to Alice. Alice can now remove
the blinding factor to obtain hd, the signature for her
document. Note that (be)d is equivalent to encrypting
then decrypting b: (be)d = b (mod n).

rd = hdbed (mod n)

= hdb (mod n)

hd = hdb
b (mod n)

Alice is left with a normal RSA signature on h
which anyone can verify if they know Izzy’s public
key. Thus, if credential sets are implemented using
Chaum’s scheme, verifiers will be able to verify the
validity of credentials off-line, without Izzy’s help.

This technique works with our cut-and-choose algo-
rithm. In this case, Alice has a collection of hashed
certificates h1...hn, and chooses corresponding blind-
ing factors b1...bn.

rk = hkbe
k (mod n)

Izzy signs the product of r1..rn, and Alice unblinds
as before:

(h1h2...)
d =

hd
1b

ed
1 hd

2b
ed
2 ...

b1b2...
(mod n)

Alice is left with the product of the signatures of the
hashes.

3.2.4 Laurie blinding

Laurie [8] proposed an alternative to Chaum’s blind-
ing technique in an effort to avoid the patent on blind
signatures. Since the end result is not a signature
which can be verified by a third party, it might not
be covered by Chaum’s patent. Laurie’s technique
isn’t as well established or tested as Chaum’s tech-
nique.

One implementation using Laurie’s system requires
the issuer to help in the credential verification pro-
cess. Such an implementation must be an on-line sys-
tem so that the verifier and issuer can work together
to verify credentials.

Another option 3 involves Alice returning her blindly
signed credentials to the issuer at a later time. He
checks that the signature is valid (but, like any other
person she could show credentials to, doesn’t learn
anything about the selective disclosure attributes).
Then he signs the document with his RSA key. Now
Alice has a traditionally signed credential, just as she
would have obtained had she used Chaum’s blinding
technique. Thus, this approach may not be as im-
mune to Chaum’s patents.

3Suggested in an anonymous post to the Coderpunks e-mail
list on 14 Dec 1999.
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To use Laurie’s blinding techniques (as described in
sections 2.1 and 4.1 of his paper), Izzy creates public
values p, g and gk (mod p) such that:

p is prime
p− 1

2
is prime

g2 6= 1 (mod p)

g(p−1)/2 ≡ 1 (mod p)

k lies in [2, (p− 1)/2)

k is Izzy’s secret exponent.

To blind a value h, Alice chooses a blinding exponent
b to use with the generator g:

r = hgb (mod p)

For completeness, we also specify that:

r(p−1)/2 ≡ 1 (mod p)

When Alice sends r to Izzy for signing, Izzy chooses
a random integer x such that

x lies in [(loggp) + 1, (p− 1)/2− (loggp)− 1]

He also calculates:

t = k
x (mod

p− 1

2
)

c = rx (mod p)

d = gx (mod p)

He sends the values c and d to Alice. Alice requests
x or t at random, and Izzy sends it to her. If she
requested x, she checks that:

c = rx (mod p)

and

d = gx (mod p)

If she requested t, she verifies that:

dt = gxt = gk (mod p)

and

ct = rxt = rk (mod p)

They repeat this protocol n times to show that Izzy
has a probability of cheating of 1 in 2n. When the
protocol terminates, Alice takes one of the values:

ct = rk (mod p)

= (hgb)k (mod p)

and unblinds it to produce hk (mod p):

(hgb)k = hkgbk (mod p)

= hkgkb (mod p)

hk = hkgkb

gkb (mod p)

Since gk is a public value, it’s easy for her to compute
gkb. Working with the product of hashes works just
as in Chaum’s system:

(r1r2r3...)
k = hk

1gb1khk
2gb2k... (mod p)

hk
1hk

2 ... =
hk

1gb1khk
2gb2k...

gkb1gkb2 ...
(mod p)

Note that only Izzy can verify if his signature is cor-
rect, since only he knows k.
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4 Credential Sets

Alice may have several credentials issued by differ-
ent issuers. In certain circumstances she may have to
show attributes about herself that reside on different
credentials. To prevent Alice and Bob from pool-
ing their credentials to obtain services neither could
obtain alone, we require that certificates shown to-
gether must have been issued as part of a Credential
Set. Credentials in a set can be issued by different
issuers, but will all be provably linked. As long as the
issuers are trustworthy in following the issuing pro-
tocol, proof of set membership is sufficient to show
that the credentials were issued to the same person.

Alice will build a credential set request (CSR) to show
to the issuers of each of her credentials. Issuers sign
the portions of the CSR that correspond to the cre-
dentials they issue. Alice can then unblind the cre-
dentials and show them to obtain services. The CSR
and the showing protocol provide probabilistic evi-
dence that Alice has properly created the credentials
she wishes to have signed, and that the credentials
were issued to the same person.

4.1 The Credential Set Request

Alice first obtains an identity document, defined as
any document sufficient to identify Alice to all her is-
suers. This could be a selective disclosure certificate,
but there’s no reason to have it signed blindly since
its purpose is to identify its owner. The purpose of
the credential set is to prove that all the elements of
the set were issued to the person owning the identity
document. The identity document might include dif-
ferent forms of identification - for example, a social
security number as well as a driver’s licence num-
ber. Different issuers can use different elements of
the identity document to verify Alice’s identity, so
it’s important that the issuer of the identity docu-
ment ensure that Alice can’t get Bob’s SSN included
in her identity document.

She also generates a random value, and obtains a
random value from each of her issuers. The output
of oneway() given the identity document and random

values becomes the Master ID for the credential set.
The random values ensure that the Master ID is dif-
ferent for every CSR she creates. This is necessary
to prevent attacks which would allow Alice to de-
feat the credential set mechanism. Later, each issuer
will check that Alice used the random value that is-
suer gave her. Since the issuer doesn’t reuse random
values, he knows that at least part of the input to
oneway() was unique, and therefore that the Master
ID is also (with overwhelming probability) unique.

Alice uses commit() with the Master ID and n differ-
ent random strings to produce credential IDs. That
is, Alice generates id1...idn such that every idk =
commit(master id).

She then calls commit() again to commit to the cre-
dentil IDs. That is, she calculates vk such that
vk = commit(idk) = commit(commit(master id)).
The first call to commit() prevents anyone seeing a
credential ID from knowing what Master ID it de-
scends. The second call prevents the issuer from be-
ing able to associate credential IDs Alice reveals dur-
ing the showing protocol with the unrevealed com-
mitments in her CSR.

Next she creates n certificates (which are actually
more closely related to the common notion of certifi-
cate requests) which will be used together to create
a single credential, just as we described in the cut-
and-choose protocol. The certificates 1...n include
the credential IDs 1...n.

Alice repeats the process for each of the m creden-
tials she wishes to have in her credential set. The
mxn blinded certificates can be thought of as an m
by n matrix, where each row represents a single cre-
dential. Each column consists of one element of each
credential, all with the same credential ID. Alice uses
the same blinding factor for each certificate in a col-
umn.

The identity document, random values, Master ID,
obscured credential IDs and blinded certificates are
combined to form the proof material of a Credential
Set Request. Alice uses this proof material as input
to the one-way function used in the non-interactive
cut and choose protocol.
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Notes:

1. The identity document is the

basis for membership in the

credential set.  The session

random values make the master

ID unique for each issuing session.

2. Credential IDs descend from

the master ID.  Commitments to

the IDs are included in the proof

material.  The credential ID appears

in each certificate in a column.

3. Half of the columns in the

certificate matrix are used to

prove the accuracy of the CSR.

The other half will be signed by

the issuers.  A real certificate matrix

would have many more columns than

are shown here.

4. All the proof material together

feeds oneway(), just as in a

noninteractive zero knowledge proof,

to determine which columns Alice

must reveal.

5. Alice includes the certificates and

blinding factors used to create the

columns of the certificate matrix to be

revealed.

6. Alice must also reveal the selective

disclosure values for each certificate

and the random strings used in

commit() so that the issuers can

verify the attributes in each certificate.

oneway()

Name: Alice
SSN: 123-45-6789
Address: 123 Maple...
...

CA

Identity Document

Alice random: a4v80vw2...
Issuer 1 random: 1va39v...
Issuer 2 random: 18vd02...
...

Master ID: 3le37...

Obscured Credential
ID: b92jh...

Obscured Credential
ID: mn2f9...

Obscured Credential
ID: ee82h...

Credential ID:
23ffx...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
23ffx...

Age: XX
...

NRA Member
Credential ID:

23ffx...
Class: XXXX
...

Credential ID:
bj028...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
bj028...

Age: XX
...

NRA Member
Credential ID:

bj028...
Class: XXXX
...

Credential ID:
0jg88b...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
0jg88b...

Age: XX
...

NRA Member
Credential ID:

0jg88b...
Class: XXXX
...

Credential ID:
ib93g...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
ib93g...

Age: XX
...

NRA Member
Credential ID:

ib93g...
Class: XXXX
...

Session Random Values

credential_id = commit(3le37...)
/* Credential ID is 23ffx... */
obscured_credential_id =

commit(credential_id)

Obscured Credential
ID: 2d20d...

Credential IDs: bj028..., 0jg88b., ...
Blinding factors: 9318...,1386..., ...

Revealed Columns: 2,3,...

Credential ID:
bj028...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
bj028...

Age: XX
...

NRA Member
Credential ID:

bj028...
Class: XXXX
...

Credential ID:
0jg88b...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
0jg88b...

Age: XX
...

NRA Member
Credential ID:

0jg88b...
Class: XXXX
...

Selective Disclosure Values

Major: {CS, 20v92...}, Major: {CS,e8r8b...}
...

Age: {19,28b2l...}, Age: {19,b892x...}
...

Class: {Gold,z0893...}, Class: {Gold,09gn3...}
...

oneway()

Proof Material

Proof

Key:

Procedure

Data

Blinded data

1

6

2

3

4

5

The Credential Set Request

Cert i f icate

Ma t r i x

a y b a b t u
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The output of the one-way function selects n/2 of the
columns of the matrix which Alice must reveal. To
wit, she appends the credential IDs for each column
and the commit() preimages which prove that they
descend from the Master ID and produce the values
in the proof material, and the blinding factors for
the columns of the matrix to be revealed. All of this
information forms a complete Credential Set Request.

4.2 Issuing

In the issuing protocol, Alice sends her CSR to each
of the issuers of her credentials. Each issuer will ex-
amine the CSR to verify its accuracy, then sign his
row(s) of the certificate matrix. Alice can then un-
blind the signature and use it along with the corre-
sponding certificates as a valid, signed credential.

Alice sends the following to each issuer:

• the Credential Set Request

• the certificates which form the preimages of the
blinded hashes in the revealed columns and row
corresponding to the credential to be issued

• the preimages of the selective disclosure fields in
each revealed certificate which the server needs
to verify

The issuer verifies the following:

• the random value Alice included was actually is-
sued by that issuer for the current transaction

• the revealed credential IDs were properly gener-
ated

• the certificates are of the proper form (ie., each
attribute value is accurate, and the ID in each
certificate matches the credential ID for that
row)

• the certificates hash to the value obtained by un-
blinding the corresponding element of the matrix

It then multiplies the remaining blinded hashes in the
row together, signs the product and returns the sig-
nature to Alice. Alice can then divide the blinding
factors out of the issuer’s signature to obtain the sig-
nature for the product of hashes of the certificates.
The certificates and signature together form a proper
credential.

Alice repeats the process for each issuer.

Each issuer has now signed documents it has never
seen, but whose values are almost certainly (for large
enough n) either:

• correct, or

• inconsistent among the elements of the row(and
the showing protocol states that any such incon-
sistency invalidates the credential.)

4.3 Proving ownership of credentials

Traditionally, certificates contain a public key whose
corresponding private key is known to the rightful
certificate owner. This allows Alice to show a certifi-
cate to Steve and prove her ownership of it. Steve
can keep a copy of the certificate, but can’t claim
ownership unless he can discover Alice’s secret key.

With credential sets, Alice still needs to prove own-
ership of her credentials, but doesn’t want to reveal
uniquely identifying information about herself in the
process. She can do this by creating a new key pair
whose public key will be included in each credential
in her set. She stores it as a selective disclosure value
in her credentials so that Izzy doesn’t see it when
signing them. Later she’ll reveal it to Steve when he
demands that she prove ownership of her credentials.

4.4 Showing

Alice now has a signed credential set, and can show
a subset of these credentials to Steve in order to ob-
tain a service. She sends the credentials to Steve,
who verifies the issuer signatures on them, possibly
with the issuers’ help. She also may choose to reveal
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CA

US Citizen

Credential ID: 23ffx...
Name: e20g8...
Age: m029f...
DOB: o398g...
...

US Citizen

Credential ID: ib93g...
Name: v93kh...
Age: p9hj4...
DOB: l29fm...
...

Us Citizen:
Age: {19,t092g...}          Age: {19,nl82g...}           Age: {19,uzlq8...}           Age: {19,t38gb...}  ...

BYU Student:
Major: {CS,2i09g...}       Major: {CS, 10vj3...}      Major: {CS,g81lg...}       Major: {CS,10g93j...}  ...
Year: {Senior,r209h...}   Year: {Senior,x83hg...}   Year: {Senior,pk91k...}   Year: {Senior,01kvb...}  ...

Selective Disclosure Values
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CA

BYU Student

Credential ID: 23ffx...
Name: w821jg...
Major: q81kv...
Year: ce83m...
...

BYU Student

Credential ID: ib93g...
Name: y28bk...
Major: y82hb...
Year: 9wkv8...
...

Notes:

After the issuers sign Alice's credentials, she removes the
blinding factors on the signature.  She sends Steve the
unblinded signature, the certificates which were signed, and
the values for the selective disclosure fields she wishes to
reveal (along with the random strings used in commit()).

Steve checks to make sure that the Credential IDs match for
all the credentials Alice presents.  In this example, the ID for
the first column is 23ffx... and the ID for the second column
(originally the 4th column in the CSR) is ib93g....

For each certificate, Steve runs the actual value and random
string provided for each selective disclosure field through
oneway() and checks that the result is identical
to the value in the certificate.  In this example,
he would begin by checking the age field, verifying that
oneway(19 . t092g...) == m029f..., then that
oneway(19 . nl82g...) == p9hj4..., etc.

Showing Protocol

a y b a b t u

the values of selective disclosure fields. Steve veri-
fies that the credentials are properly constructed and
challenges Alice’s ownership of them.

Remember that each credential is comprised of n/2
selective disclosure certificates and the signature on
the product of their hashes. Steve must verify the sig-
nature as well as that the n/2 certificates are equiv-
alent (the final step of the cut-and-choose protocol).

If Chaum’s blinded signatures were used in the is-
suing process, Steve verifies the credential signature
just as for any other RSA signature, by raising the
signature to the issuer’s public exponent (modulo its
public modulus) and checking that the value equals
the product of certificate hashes.

If Laurie’s alternative blinding technique was used
without the option of returning the credential to the
issuer for conventional signing (as mentioned in sec-
tion 3.2.4), Steve forwards the product of hashes and
the signature to the issuer for verification.

Steve also checks that the preimages Alice sent for
each selective disclosure field specify the same value

for each certificate in the row and that they hash to
the values in the certificates. This means that he
must run oneway() on n/2 preimages for every se-
lective disclosure field of every credential which Alice
wishes to reveal.

Next Steve verifies that the presented rows came from
the same credential set by verifying that the creden-
tial ID is the same for all certificates in a column.

Finally, Steve challenges Alice’s ownership of the set
by means of the public key included in each creden-
tial.

4.4.1 Credential re-use

All the credentials issued during the issuing process
have the same credential IDs so that Alice can prove
they belong together in the set. These IDs are dif-
ferent for each instance of the issuing protocol, how-
ever. Alice loses some privacy if she shows credentials
from the same set more than once, since the people
she shows them to could compare the credential IDs
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and determine that they were dealing with the same
person.

For maximum privacy, then, Alice should go through
the issuing protocol with her issuers multiple times
and obtain many instances of her credential set. After
showing any credential from her set, she discards that
entire instance of the set. Credentials from differ-
ent instances of the issuing protocol can’t be linked,
except by the attribute values Alice reveals during
the showing process. That is, Alice can obviously be
traced if she always reveals the SSN field of her cre-
dentials, since that attribute is unique to her. But if
she reveals only that her hair is brown to both Steve
and Sam, they can’t tell whether they were dealing
with the same person.

4.5 Preventing Credential Pooling

There are several ways Alice might try to pool her
credentials with Bob to obtain services neither could
obtain alone, or to get an issuer to sign an untrue
credential.

Alice could attempt to create a Credential Set Re-
quest with fake uninspected columns. Abusing the
non-interactive cut and choose protocol, Alice can
spend as long as she wishes constructing different
Credential Set Requests in which half the columns of
the credential matrix have bogus certificates. Each
attempt has a 1 in (n choose n/2) chance that the
output of oneway() will select just the valid columns
of the matrix for inspection, leaving the issuer to sign
an untrue credential. She can perform this attack of-
fline, without interacting with any other entities. The
probability of success can be reduced to an acceptable
level by choosing a sufficiently large n.

Alice could try to piece together a bogus credential
one column at a time. She creates a CSR with a single
column containing bogus certificates. She throws it
away and starts over if oneway() selects that column
for inspection (which it will do with 50% probability).
After the issuers sign the credentials in the request,
she isolates the signature on just that certificate in
each credential. She repeats the process until she

has n/2 signatures, then multiplies them together to
obtain a signed fake credential. Isolating individual
signatures is the hard part, and she has no better
chance of success than someone trying to determine
the blinding factor applied to a document he has been
asked to sign.

Bob could tell Alice the Credential IDs for a Cre-
dential Set of his so that Alice can attempt to in-
clude those same Credential IDs in a CSR of her
own. However, she can’t determine before creating
the CSR what columns will be required for inspec-
tion by oneway(). As in the first example, she has
only a 1 in (n choose n/2) chance of success with each
attempt.

5 Revocable anonymity

In revocable anonymity, the server and a quorum of
authorities can agree to discover additional informa-
tion about the presenter of a credential.

Revocable anonymity can be implemented by requir-
ing that a field of a credential be a piece of encrypted
personally identifying information. For instance, Al-
ice could encrypt her social security number using
the public keys of several different government agen-
cies. To prove the field’s validity to an issuer as
required during the Credential Set issuing protocol,
Alice sends the issuer the SSN and random padding
used during encryption. The issuer verifies the value
by encrypting with the same keys Alice used and en-
suring the values are equal.

6 Performance

Here are some size and performance estimates for is-
suing and showing a CSR with 3 credentials, using
n = 256 columns and Chaum-style blinding. We
assume each certificate in the matrix is 1k bytes in
length, and has 8 selective disclosure fields whose ac-
tual values are relatively short. The random strings
used in commit() are each 16 bytes.
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The entire CSR contains 3 ∗ 256 = 768 certificates
totalling 768k bytes. Their blinded hashes (which
populate the certificate matrix) will each be approx-
imately as large as the modulus of the issuer’s sign-
ing key. For a 1024 bit key, this would come to
768 ∗ 128 = 96k bytes. Each certificate requires
8∗16 = 128 bytes to store its selective disclosure ran-
dom strings, for a total of another 768 ∗ 128 = 96k
bytes. Including the rest of the CSR overhead (in-
cluding the identity document, random strings, blind-
ing factors, etc.), the client needs to store about a
megabyte of data for the CSR and all its auxiliary
information.

During the issuing protocol, Alice will need to send
each issuer the CSR and half the certificates for his
row, which comes to a little over half a megabyte of
network traffic. To verify the CSR, each issuer must
verify, hash and blind the revealed certificates for his
row, and sign the unrevealed columns. Checking the
selective disclosure fields (assuming they examine all
8) requires 128 ∗ 8 = 3k calls to oneway() per issuer.
Hashing, blinding and signing require an additional
128 calls to oneway(), 128 blinding operations (each
consisting of a modular multiplication and exponen-
tiation), and another 128 multiplications plus a single
signing operation to generate the signature. To un-
blind each signature, Alice must then perform 128
modular divisions.

During the issuing protocol, assuming Alice wants to
show Steve all three of her credentials, Alice has to
send 3∗128 = 384 certificates plus the three credential
signatures, for a little over 384k bytes of network traf-
fic. If she discloses all the selective disclosure fields
in each credential, she’ll also have to send him the
384 ∗ 8 = 3k random values totalling 3k ∗ 16 = 48k
bytes. Steve will have to call oneway() for each of
the 3k fields, then once for each certificate. Verifying
the signature on each credential requires him to do
128 modular multiplications and one modular expo-
nentiation using the issuer’s public key.

This is a rather expensive system by today’s stan-
dards, especially when using credential sets only once
as we recommend. Personal computers with broad-
band network connections shouldn’t have too much

trouble with the storage and computational require-
ments, but they’re probably prohibitive for embedded
systems such as PDAs and smart cards.

7 Conclusions and future work

The non-interactive cut and choose protocol and no-
tion of a Certificate Set Request are new primitives,
and may find application in other areas of public key
cryptography.

Though credential sets can be rather expensive com-
putationally, they achieve their goal of protecting
users’ privacy while solving the problem of credential
pooling. Our credentials individually behave much
like traditional X.509v3 certificates, making it feasi-
ble to adapt existing certificate systems to work with
credential sets. Work has begun on a simple free soft-
ware implementation of the system presented here.
We plan to make it available as a completely patent-
free solution.

We sincerely hope that our work will encourage the
spread of free privacy-protecting security systems.
The work of Camenisch and Lysyanskaya is also
promising, though quite a different approach from
our own. Our systems prevent one of the major forms
of credential misuse, making privacy attainable with-
out compromising security.
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