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Abstract

We combine an algorithm for computing multiple exponentiations with different
representations of the exponents. Some variants rely on the fact that inversion of group
elements is fast. These algorithms are particularly suitable for computing double or
triple exponentiations in rational point subgroups of elliptic or hyperelliptic curves and
perform efficiently in memory constrained environments, especially with exponents in
the range from 160 to 256 bits. These methods can also be used for computing
single exponentiations in groups which admit an automorphism σ satisfying a monic
equation of small degree over the integers, such as trace zero varieties. We outline
a few applications of these algorithms. By construction, such methods provide good
resistance against side channel attacks (at least Simple Power Attacks).
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1 Introduction

A common operation in public-key cryptographic protocols is the computation of the
product of powers of two [ANSI] or three [El] elements of a group, the first case being the
more common and the paramount example being digital signatures. Furthermore, in some
algebraic structures the computation of a single exponentiation can be reduced to such a
product: If a cyclic group G admits an automorphism σ satisfying a monic equation over
the integers of degree d then ge can be computed as ge0 ·σ(g)e1 · · ·σd−1(g)ed−1 for suitable
integers e0, . . . , ed−1 which in many practical instances have size O(e1/d) (see [GaLaVa,
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SiCiQu]). In this context, too, the cases d = 2 and d = 3 are of particular practical
relevance because of trace zero varieties and XTR subgroups.

Clearly, such computations can be performed by computing the various powers sepa-
rately and then multiplying the results together. However, if the intermediate results are
not needed elsewhere, one can do much better. Shamir suggested [El] a simple yet effective
trick for speeding up this kind of operations which scans the bits of the exponents simul-
taneously. We extend the trick by using sliding windows across the representations of all
the exponents simultaneously: To our knowledge the first written report of this obvious
extension is [YeLaLe]. It has been recalled in [Mö] where it is compared to a different
multi-exponentiation algorithm called interleaved exponentiation. So far, this extension to
Shamir’s trick has been applied only to the usual binary representation of the exponents.

One of our main concerns is reducing the running time of multi-exponentiation while
keeping the memory requirements as small as possible. This is crucial for example when
implementing cryptographic protocols on smart cards.

Our results can be summarized as follows:

(1) We consider the algorithm from [YeLaLe] for performing double and triple exponen-
tiations in groups where inversion is slow and the inverses of the base elements are
not previously given. This algorithm is faster than other methods such as interleaved
exponentiation for exponents up to at least 256 bits.

(2) We propose and analyze variants of the algorithm which are better suited to groups
where inversion is cheap. To take advantage of this we rewrite the exponents using
signed digit representations, which were first introduced in [Bo]: In particular we con-
sider the non-adjacent form [Re, MoOl] and a new representation of pairs of integers
due to Solinas [So3].

Let n be the bit-lenght of the exponents. Our best algorithm performs double exponenti-
ations with 64 < n ≤ 354 by 9+3n/8 multiplications on average and about n squarings
(in fact, slightly less) and uses 12 precomputed values (including the bases). This is
either slightly better in performance than interleaved exponentiation or of comparable
time complexity while having smaller memory requirements. For n ≤ 64 it reverts to
Solinas’ method requiring 1 + n/2 multiplications on average, n squarings and using
4 precomputed values.

In particular, this shows the flexibility and adaptability of Solinas’ recently proposed
representation.

(3) To our knowledge Theorem 2.6 also complements existing literature in the case of
single exponentiations.

(4) We compare our variants of the multi-exponentiation method from [YeLaLe] to the
interleaved multi-exponentiation, thus extending Möller’s analysis.

We now proceed with the description of the algorithm from [YeLaLe].
Let G be a commutative group of order q ≈ 2n and d a (small) integer. Suppose we are

given elements g1, . . . , gd ∈ G and integers e1, . . . , ed and want to compute x :=
∏d

i=1 gei
i .
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Write

ei =
n−1∑
j=0

ei,j 2j (1)

with ei,j ∈ {0,±1}. The coefficients ei,j are called bits: unsigned bits if the value −1 is
not allowed, signed bits otherwise. In this paper, as it is now customary, 1̄ means −1 in
signed bit expansions of integers.

For the moment we assume that the chosen representation is the unsigned binary
one. Shamir’s trick is as follows: First precompute the 2d values

∏d
i=1 g

{0,1}
i . Then put

x =
∏d

i=1 g
ei,n−1

i by one table look-up. Finally, for j = n − 2, . . . , 1, 0, replace x by
x2 ·

∏d
i=1 g

ei,j

i by one squaring, one table look-up and one multiplication.
It is easily seen that Shamir’s method requires 2d−d−1 multiplications to prepare the

table, n squarings and on average (1 − 2−d)n multiplications, 2−d being the probability
that for a fixed j, ei,j is 0 for all i = 1, 2, . . . , d. If the exponents are written in a signed
binary representation, the table E can be formed from the products of the form

∏d
i=1 gki

i

with ki ∈ {0,±1}. However, if the cost of an inversion in the group G is negligible, which
is usually the main reason for adopting a signed binary representation, one only needs a
half of those values, i.e. those where the first nonzero ki equals 1. Then some products
are replaced by divisions.

This method can be improved by means of sliding windows [Kn] in the same way as
the square-and-multiply method. The resulting algorithm is as follows:

Algorithm 1.1 Multi-exponentiation with parallel sliding windows

Input: A window size w, integers e1, . . . , ed as in (1) and a set E of precomputed
elements of the group G of the form

∏d
i=1 gki

i including g1, . . . , gd (the set E depends
on w and on the chosen representation for the integers ei: see Remarks 1.2 (3–4) for
examples)
Output:

∏d
i=1 gei

i

Step 1. t← n and x← 1 ∈ G

Step 2. if (ei,t−1 = 0 for i = 1, 2, . . . , d) then {

(a) t← t− 1 and x← x2

} else {

(b) if t ≥ w then t← t− w else { w ← t and t← 0 }

(c) for i = 1, 2, . . . , d do fi ←
∑w−1

j=0 ei,t+j2j

(d) Let s be the largest integer s ≥ 0 such that 2s|fi for all i

(e) for i = 1, 2, . . . , d do fi ← fi/2s

(f) x←
(
x2w−s ·

∏d
i=1 gfi

i

)2s

}

Step 3. if t = 0 then return x else goto Step 2
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Remarks 1.2 (1) In the case d = 1 the above algorithm is the usual sliding window
exponentiation algorithm.

(2) At the beginning of Step 2 (c) fi is the integer represented by a string of w con-
secutive bits from the exponent ei. Now s is the largest non-negative integer such that
ei,t+u = 0 for all i and all u with 0 ≤ u ≤ s. The normalisation Step 2 (e) is performed
such that at least one of the integers fi is odd, in order to reduce the number of elements
of E without impacting the total number of operations done in Step 2 (f).

(3) If the chosen representation for the exponents is the standard binary one, then the
set E should consist of all elements of the form

∏d
i=1 gki

i such that 0 ≤ ki < 2w and at
least one of the ki is odd. Then Step 2 (f) is performed by means of one table look-up, one
multiplication and w squarings.

Further, note that, regardless of the representation chosen, in Step 2 (f) the first time
it is x = 1, so one multiplication can be saved and only s squarings are needed.

(4) The changes to Algorithm 1.1 required to work with the NAF are straightforward.
We now assume that inversion in the group is very fast or for free. The largest integer
representable by a w-bit number in NAF is (10 . . . 01)2 for odd w and (10 . . . 10)2 for even
w, and it is easy to see that this number is Tw = 2w+2−3−(−1)w

6 . Hence, there are

Iw =
2w+2 − (−1)w

3

integers in the interval [−Tw, . . . , Tw]. To form the set E it suffices to precompute all
elements of the form

∏d
i=1 gki

i such that |ki| ≤ Tw for i = 1, 2, . . . , d, at least one of the ki

is odd and the first nonzero element in the sequence k1, k2, . . . , kp is positive. There are
(Id

w − Id
w−1)/2 elements in E. Finally, in Step 2 (f) if the first nonzero fi is positive we

compute x =
(
x2w−s ·

∏d
i=1 gfi

i

)2s

otherwise we compute x =
(
x2w−s

/
∏d

i=1 g−fi
i

)2s

.

The above algorithm will be analysed in Section 2 in a few variants: this is the main
part of this paper. In Section 3 the optimal parameters for Algorithm 1.1 will be discussed
and the resulting time and space complexities will be compared against those of interleaved
exponentiation. Next, some applications will be outlined. A remark about security of
multi-exponentiation algorithms under side-channed attacks concludes the paper.
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encouragement and support. The author is grateful to Tanja Lange who drew the author’s attention to
Solinas’ work and proofread the manuscript. Many thanks also to Arjen Lenstra for kindly providing a
reprint of [YeLaLe].

Some computations have been performed using the maple computer algebra system [ChGeGo+].

2 Complexity analysis

In this section we compute the complexity of Algorithm 1.1 for different choices of the
representation of the exponents and with some additional restrictions.
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Definition 2.1 A column is defined as a d-tuple of digits e(t) = (e1,t, . . . , ed,t) of the rep-
resentation of integers (1) and the ordered sequence e(n−1), e(n−2), . . . , e(0) of such columns
is called joint representation of the d exponents e1, . . . , ed.

If e(n−1) 6= 0 then the joint representation is said to be proper and n is its length.
The number of nonzero colums in the joint representation is called its Hamming weight,

and its density is the ratio of the Hamming weight to the length.

For simplicity we require that the joint representation of the exponents e1, . . . , ed is
proper. This implies that at the first iteration of Step (2), substeps (b)–(f) are always
performed. To evaluate the number of squarings in the iterations one should not consider
those which can be avoided in the first iteration, which are w minus the expected first
value of s.

Algorithm 1.1 scans the joint representation of the d exponents e1, . . . , ed one column
at a time, starting with the column formed by the most significant digits in the chosen
representation. Step 2 is iterated until the joint representation has been scanned com-
pletely. At each iteration one column is read and the algorithm enters in one of two
possible distinct states:

S0. A zero column is found, so the scanning advances by one column (Step 2 (a)).

S1. A nonzero column is found and the scanning advances by w columns (Steps 2 (b)–(f)).

The number of multiplications (excluding squarings) performed by the algorithm equals
the number of times we are in the second state.

Let π be the probability that the column read in Step 2 is zero. After m iterations,
the expected number of columns scanned by the scanning process is (π + w(1 − π))m.
Suppose that for some m this number is n. The number of multiplications performed by
Algorithm 1.1 in Step 2 (d) is then (1− π)m− 1 (remember that the first multiplication
can be replaced by an assignment) i.e.

n · 1− π

π + w(1− π)
− 1. (2)

This is, with some adaptations, the approach followed in the next two subsections.
Before dealing with the particular instances of Algorithm 1.1 we are interested in, we

make a further definition and a remark.

Definition 2.2 Let e =
∑n−1

j=0 ej 2j be an integer. We say that an algorithm scans (gen-
erates, rewrites...) the bits ej right-to-left (resp. left-to-right) if it scans (generates,
rewrites...) them from the least significant ones to the most significant ones, i.e. first
e0, then e1, e2, etc. (resp. from the most significant ones to the least significant ones,
i.e. first en−1, then en−2, and so on).

Similar definitions hold for algorithms which deal with the colums of a joint represen-
tation of several integers.

Remark 2.3 Algorithm 1.1 processes the columns of the chosen joint representation of
the exponents left-to-right. However most recoding algorithms for producing signed binary
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representations, such as the Reitwiesner’s algorithm [Re] NAF and Solinas’ own algorithm
for the Joint Sparse Form, rewrite the exponents right-to-left. This is a general problem
with window methods. In most situations recoding and (multi-)exponentiation cannot be
interleaved, and the recoded representations must be stored explicitly.

2.1 Unsigned binary inputs

Here we assume that the exponents are written in (unsigned) base 2, i.e. that ei,j ∈ {0, 1}.
As noted in Remark 1.2 (2) in this case the set E should consist of all elements of the

form
∏d

i=1 gki
i such that 0 ≤ ki < 2w and at least one of the ki is odd. This set has

cardinality 2wd− 2(w−1)d. Half of the powers of the base elements gi can be computed via
squarings and all other elements via products.

The bits in each representation are assumed to be zero or one with equal probability
and independent from the adjacent bits, so π = 2−d.

To evaluate the number of squarings in the main loop of the algorithm we must deter-
mine the expected value of s at the first iteration. As all the bits are independent from
each other, s ≥ u with 1 ≤ u < w with probability 2−ud. Hence the expected value of s is∑w−1

u=1 2−ud = 1−2−d(w−1)

2d−1
.

We have thus proved the following result:

Theorem 2.4 Suppose that in Algorithm 1.1 the unsigned binary representation is used
for the exponents and that their joint representation has length n.

Then the set E has cardinality 2wd− 2(w−1)d and requires 2wd− 2(w−1)d− d operations
to be computed: of these at least d(2w−1 − 1) can be assumed to be squarings.

The expected number of multiplications in the algorithm is n 1
w+(2d−1)−1 − 1 and that

of the squarings is n− w + 1−2−d(w−1)

2d−1
.

Remark 2.5 In the case w = d = 2, the set E consists of the values ga
1gb

2 with 0 ≤ a, b ≤ 3
and at least one of a, b odd. To determine them one has to compute and store g2

1 and g3
1,

as well as g2
2 and g3

2. This requires 2 squarings and 2 multiplications. Computing the
remaining 8 values requires 8 further multiplications.

2.2 Using the NAF

A non-adjacent (binary) form, or representation (abbreviated as NAF) is a signed binary
representation of an integer e =

∑n−1
j=0 ej2j with ej ∈ {0,±1} and ejej−1 = 0. Each integer

admits a NAF, which is uniquely determined and is the signed binary representation of
minimal Hamming weight and of expected density 1/3 (see [MoOl] and [ArWh] for proofs
of these facts).

Similar situations have been considered already but only for single NAF’s (i.e. d = 1)
and not joint representations. In the paper [EǧKo], of which we use some arguments in
this subsection, windows are not allowed to slide and only the probability that a certain
fixed window is zero is considered there. The adoption of sliding windows leads to an
algorithm of better complexity. Hence, even in the case p = 1 our results will complement
existing literature.
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Theorem 2.6 Suppose that in Algorithm 1.1 the exponents are input in NAF, and that
their joint representation is n bits long.

The set E has cardinality (Id
w − Id

w−1)/2 where Iw = 2w+2−(−1)w

3 .
The number of squarings in the main loop of the algorithm is between n−w and n−1,

with an heuristically expected value n − w +
(

4
3

)d 1−2−d(w−1)

2d−1
. In the cases d = 1, 2 and 3

respectively, the expected number of multiplications is n · 1−π(d)

w−(w−1)π(d) − 1 where

π(1) =
4 (2w − (−1)w)

7 · 2w − 4 · (−1)w
, π(2) =

16 (4w − 1)
43 · 4w + 24 · (−2)w − 16

and

π(3) =
64 (2w + (−1)w)(8w − (−1)w)

253 · 16w + 397 · (−8)w + 324 · 4w + 80 · (−2)w − 64
.

(3)

In particular for d = 1 the expected number of multiplications is n · 1
w+ 4

3(1−(− 1
2)

w) − 1.

Remark 2.7 In the case w = d = 2, the set E consists of the values ga
1gb

2 with either
0 < a ≤ 2 and −2 ≤ b ≤ 2 where at least one of a, b odd, or a = 0 and b = 1. A chain for
obtaining all the elements to be precomputed is{

g1, g2, g1g2, g1g
−1
2 , g1g

2
2, g1g

−2
2 , g2

1g2, g2
1g

−1
2

}
.

This requires 6 multiplications or multiplications with the inverse.

The remainder of this subsection is devoted to the proof of Theorem 2.6.

Definition 2.8 A joint representation of integers in NAF will be called a joint NAF.

Definition 2.9 Let e = (e1, . . . , ed) be a d-tuple of n-bit integers so that (1) is proper.
The bit-reversing ê of e is the d-tuple formed by the numbers êi =

∑n−1
j=0 ei,(n−1)−j 2j.

In order to avoid ambiguity, we only define bit-reversing for proper joint representa-
tions. The mapping which associates to a proper joint NAF its bit-reversing induces a
bijection between the set of proper joint NAF’s of d integers of n bits and the set of joint
NAF’s (not necessarily proper) of d integers of n bits, at least one of the integers being
odd. Hence the expected number of windows made by Algorithm 1.1 on n-bit proper joint
NAF’s of d integers equals the expected number of windows formed by a sliding window
algorithm which scans from right to left joint NAF’s of d integers of n bits, at least one
odd. The parity condition amounts to the fact that at the first iteration a nonzero column
is found, exactly as in the original algorithm.

Consequently we will consider an algorithm which forms sliding windows on joint
NAF’s from left to right, and we will model it as a Markov chain: At each iteration one
column is read and the algorithm enters in one of d + 1 possible distinct states, defined
by the number of nonzero entries in the colums:

S ′0. A zero column is found, so the scanning advances by one column.

S ′k (for 1 ≤ k ≤ d). A column is found with exactly k nonzero entries and
the scanning advances by w columns.

(∗)
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To determine the transition probability from state S ′` to state S ′k we need a few pre-
liminary results.

We begin with a review of Reitwiesner’s algorithm for recoding the unsigned binary
representation of a number e =

∑n−1
j=0 bj2j into a NAF

∑n
j=0 ej2j . For j = 0, 1, . . . , n− 1,

the digit ej of the NAF is a function of the values of bj+1, bj and of the j-th carry cj ,
which is equal to one if the NAF of the truncated number e =

∑j−1
i=0 bi2i is one bit longer

than its unsigned binary representation. At the beginning c0 = 0. The recoding is then
done as shown in Table 1 – where we also write the admissible following state according
to the value of ei+2 and the corresponding output – and at the end en = cn−1. If en 6= 0
then the NAF is longer than the original representation. Since in the unsigned binary

State Input Output Next State (and ei+1)
( bi+1 bi )2 ci ei ci+1 if bi+2 = 0 if bi+2 = 1

s0 ( 0 0 ) 0 0 0 s0 (0) s4 (0)
s1 ( 0 0 ) 1 1 0 s0 (0) s4 (0)
s2 ( 0 1 ) 0 1 0 s0 (0) s4 (0)
s3 ( 0 1 ) 1 0 1 s1 (1) s5 (1̄)
s4 ( 1 0 ) 0 0 0 s2 (1) s6 (1̄)
s5 ( 1 0 ) 1 1̄ 1 s3 (0) s7 (0)
s6 ( 1 1 ) 0 1̄ 1 s3 (0) s7 (0)
s7 ( 1 1 ) 1 0 1 s3 (0) s7 (0)

Table 1: States of Reitwiesner’s Algorithm

representation each bit assumes a value of zero or one with equal probability and there
is no dependency between any two bits, it is clear that all admissible transitions from a
state s` to a state sk occur with probability 1

2 . It is straightforward to write down the
corresponding transition probability matrix P . The resulting limiting probabilities for the
states s0, . . . , s7 are thus [EǧKo] given by the vector

v =
[

1
6

,
1
12

,
1
12

,
1
6

,
1
6

,
1
12

,
1
12

,
1
6

]
whose components add up to 1 and which satisfies P · v⊥ = v⊥. (Here the symbol ⊥
denotes matrix transposition.) From this it is immediate, upon summing the probabilities
for states s1, s2, s5 and s6, to obtain the known result that the expected Hamming weight
of a NAF is 1

3 . The fact which is more relevant to us here is that states s0, s3, s4 and s7,
which all output a zero, occur with equal probabilities, and that in two cases another zero
will be output by the next state, whereas in the other two a nonzero bit will be output.
We have thus proved the following lemma.

Lemma 2.10 The probability that in a NAF the digit immediately to the left of a 0 is
another 0 is 1

2 and that it is 1 or −1 is in each case 1
4 .

We now generalize this by determining the probabilities that a bit ej,i+w which is w places
to the left of ej,i is zero or one, depending on the value of ej,i and w.
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Lemma 2.11 If ej,i = 0, then ej,i+w = 0 with probability πw,0 and ej,i+w 6= 0 with
probability πw,∗, where

πw,0 =
2w+1 + (−1)w

3 · 2w
and πw,∗ = 1− πw,0 =

1
2
πw−1,0 =

2w − (−1)w

3 · 2w
. (4)

Since a nonzero bit is always followed by a zero, we also have that if ej,i 6= 0, then
ej,i+w = 0 with probability πw−1,0 and ej,i+w 6= 0 with probability πw−1,∗.

Proof. Clearly πw,0 + πw,∗ = 1. By Lemma 2.10 we have π1,0 = π1,∗ = 1
2 and


πi+1,0 = πi,∗ +

1
2
πi,0 = 1− 1

2
πi,0

πi+1,∗ =
1
2
πi,0.

Now (4) follows easily by induction.

We are now in the position to model the right-to-left scanning process as a Markov
chain with the states S ′0, . . . ,S ′d defined above in (∗). Denote by τ`,k the transition prob-
ability from state S ′` to state S ′k.

Suppose that a zero column is read. Then no window is being formed and at the next
iteration the scanning algorithm will read the next column to the left. The probability
τ0,k that this column contains exactly k nonzero entries is

(
d
k

)
1
2k .

On the other hand suppose that a column c with exactly ` 6= 0 nonzero entries has
been read. The bit-reversing of the numbers represented by this column and the next
w − 1 columns at its left are the exponents f1, . . . , fd in Step 2 (c). The next column
checked by the right-to-left scanning process, say c′, will be then that which is exactly w

places to the left of c. Now τ`,k is the probability that c′ has exactly k nonzero entries
(where 0 ≤ k ≤ d). For some integer r, in exactly r of the positions occupied by the `

nonzero digits in c there will be nonzero bits in the respective positions in c′, and in the
positions of the remaining `− r nonzero bits in c there will be zeros in c′. Therefore, to
exactly k − r of the zero bits in c will correspond nonzero bits in c′, and to the other
d− `− (k − r) zeros of c will correspond zeros in c′. Finally

τ`,k =
∑

r : 0≤r≤`
0≤k−r≤d−`

(
`

r

)(
d− `

k − r

)
π r

w−1,∗π
`−r
w−1,0π

k−r
w,∗ π

d−`−(k−r)
w,0

=
∑

r : 0≤r≤`
k+`−d≤r≤k

(
`

r

)(
d− `

k − r

) (
1− 2πw,∗

)r2`−rπ `−r
w,∗ π k−r

w,∗
(
1− πw,∗

)d−`−(k−r)

=
min{`,k}∑

r=max{0,k+`−d}

(
`

r

)(
d− `

k − r

)
2`−rπ `+k−2 r

w,∗
(
1− πw,∗

)(d−`−k)+r(1− 2πw,∗
)r

.
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Put

Td = (τ`,k)d
`,k=0 =


1/2d τ1,0 τ2,0 · · · τd,0(
d
1

)
/2d τ1,1 τ2,1 · · · τd,1
...

...
...

. . .
...(

d
d−1

)
/2d τ1,d−1 τ2,d−1 · · · τd,d−1

1/2d τ1,d τ2,d · · · τd,d

 .

The limiting probabilities σ0, . . . , σd of the algorithm being in state S ′0, . . . ,S ′d respectively
satisfy

∑d
k=1 σk = 1 and Td · (σ0 · · · σd)′ = (σ0 · · · σd)′. Hence, upon putting

Ud =



1 1 1 · · · 1
d/2d τ1,1 − 1 τ2,1 · · · τd,1(
d
2

)
/2d τ1,2 τ2,2 − 1 · · · τd,2
...

...
...

. . .
...

d/2d τ1,d−1 τ2,d−1 · · · τd,d−1

1/2d τ1,d τ2,d · · · τd,d − 1


,

we have Ud·(σ0 · · · σd)⊥ = (1, 0, . . . , 0)⊥. Hence, provided that Ud is invertible, (σ0 · · · σd)⊥ =
U−1

d · (1, 0, . . . , 0)⊥ and in particular σ0 is the value in the top left corner of U−1
d .

We are interested in Ud only in the cases d = 1, 2 and 3. Upon putting α = 2w and
β = (−1)w we obtain

U1 =
(

1 1
1
2

α+2β
3α − 1

)
, U2 =


1 1 1
1
2

4α2+αβ+4β2

9α2 − 1 4(α−β)(α+2β)
9α2

1
4

(α−β)(α+2β)
9α2

(α+2β)2

9α2 − 1

 and

U3 =


1 1 1 1
3
8

(2α+β)(2α2−αβ+2β2)
9α3 − 1 4(α3−β3)

9α3
4(α−β)2(α+2β)

9α3

3
8

2(α3−β3)
9α3

(α+2β)(2α2−αβ+2β2)
9α3 − 1 2(α−β)(α+2β)2

9α3

1
8

(α−β)2(α+2β)
27α3

(α−β)(α+2β)2

27α3
(α+2β)3

27α3 − 1

 .

The above matrices have been written down using simple maple [ChGeGo+] code. Within
the same software environment it is immediate to verify that for d = 1, 2 and 3 the matrix
Ud is indeed invertible and to compute σ0, i.e. the value of π in the introductory part of
this section. We thus obtain the values π = π(d) given in equation (3), Theorem 2.6.

To estimate the value of s at the first iteration of the main loop, we proceed heuris-
tically. [EǧKo, Theorem 1] states that the probability that a length u bit section of a
number in NAF is zero is 4

3

(
1
2

)u. For u = 1, . . . , w − 1 we apply this result to the u

least significant bits used to form each of the integers f1, . . . , fd in Step 2 (c) at the first
iteration of the loop of Algorithm 1.1. We then proceed as in the proof of Theorem 2.4,
the only difference consisting in the multiplicative factor

(
4
3

)d.
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2.3 Using the JSF

The Joint Sparse Form has been introduced by Solinas [So3] to make Shamir’s trick more
effective for elliptic curves. It applies however to all groups where inversion is essentially
for free. It has been defined only for pairs of integers: accordingly we will restrict ourselves
to the case d = 2 in this subsection.

We shall also assume that w = 2: this assumption fits naturally with the defining
properties of the JSF, and by a good stoke of luck this brings the highest improvement
over the methods studied before for exponents in the range in which we are interested. In
fact using Algorithm 1.1 with the JSF and w = 2 results in a method which is better than
those described earlier even for bit lengths of the exponent for which the optimal window
length for said methods is larger than 2 (see Subsection 3.1 for more precise statements).

In this subsection we prove the following theorem.

Theorem 2.12 Suppose that in Algorithm 1.1 Solinas’ JSF is used for the exponents,
and w = d = 2. Assume further that the JSF of the exponents has length n.

The expected number of multiplications in the main loop of the algorithm is 3
8n, and

the heuristically expected number of squarings is n− 2 + 1
2 = n− 3

2 .
The set E consists of the 10 elements ga

1gb
2 with: (i) a = 0 and b = 1; (ii) a = 1 and

−2 ≤ b ≤ 2; (iii) a = 2 and b ∈ {±1,±3} and (iv) a = 3 and b = ±2. A chain for
precomputing all the 10 required values other than g1 and g2 is{

g1, g2, g1g2, g1g
−1
2 , g1g

2
2, g1g

−2
2 ,

g2
1g2, g2

1g
−1
2 , g2

1g
3
2, g2

1g
−3
2 , g3

1g
2
2, g3

1g
−2
2

} (5)

requiring 10 multiplications or divisions.

We assume that the reader is acquainted with the results in Solinas’ cited technical
report, from which we recall however a few important facts. One of the most important
properties of the JSF is that its joint Hamming weight i.e. the number of nonzero columns
in a joint representation of two integers, is minimal among all (un)signed joint binary
representations of the same pair of integers. The average density of the JSF is 1/2 – which
gives the heuristical estimate of the squarings in the main loop – whereas that of the joint
unsigned binary representation and of the joint NAF is 3/4 and 5/9 respectively. It is
natural then to expect that using the JSF in Algorithm 1.1 would lead to an improvement
over the complexities of the other two cases even if w > 1.

The JSF is uniquely determined by the following properties:

(JSF-1) Of any three consecutive columns, at least one is zero.

(JSF-2) Adjacent nonzero bits have the same sign. In other words, ei,j+1ei,j = 0 or 1.

(JSF-3) If ei,j+1ei,j 6= 0 then e3−i,j+1 6= 0 and e3−i,j = 0.

Solinas provides proofs for existence and uniqueness of the JSF, as well as an algorithm
for determining it. His algorithm generates the JSF right-to-left. Analysing it Solinas
considers three states which he simply calls A, B and C. In state C this algorithm
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outputs a zero column. In states A or B it outputs nonzero columns. The transition
probabilities between these states are explicitly given: we return to this later.

Property (JSF-1) suggests that the representation is particularly suitable for an im-
plementation of Algorithm 1.1 with a window width w = 2. As already announced we
restrict ourselves to this case in the sequel. Further, this choice also simplifies the com-
plexity analysis, by the following observation: Algorithm 1.1 scans a joint representation
left-to-right in order to form windows, but we are lucky that a similar algorithm which
scans the input right-to-left generates the same windows. This is easy to see, as by prop-
erty (JSF-1) there can be at most two consecutive nonzero columns, which must be
preceded and followed by zero columns or by the boundaries of the representation. Thus
consecutive nonzero columns always belong to one window regardless of the direction in
which we are scanning the joint representation.

Hence to estimate the number of nonzero windows (which corresponds to the number
of multiplications performed by Algorithm 1.1) we scan our input right-to-left so that we
can mimic the procedure we followed in Subsection 2.2. In Solinas’ algorithm State A is
always followed by State B, State B by State C, and there are the following transition
probabilities: P(C 7→ A) = 1/4, P(C 7→ B) = 1/2 and P(C 7→ C) = 1/4. We thus
consider a Markov chain with three states, which correspond to those in Solinas’ algorithm,
as follows:

S∗0 . A nonzero column is output by State A of Solinas’ algorithm: this column will be
the second column in a “square” window when read left-to-right, as the next state in
Solinas’ algorithm is always State B.

S∗1 . A nonzero column is output by State B of Solinas’ algorithm: this column will be
the first column in a window when read left-to-right, whereas the second column is
non-zero if we are coming from state A or zero if we come from State C.

S∗2 . A zero column is output by State C of Solinas’ algorithm.

The number of times we enter in S∗1 corresponds to the number of windows formed and thus
to the number of multiplications performed by our algorithm. The transition probability
matrix is

T =
(
P(S∗i 7→ S∗j )

)2

i,j=0
=

 0 1 0
0 0 1

1/4 1/2 1/4


which yields limiting probabilities

π0 =
1
8
, π1 =

3
8

and π2 =
1
2
.

Hence the expected number of multiplications performed by Algorithm 1.1 is 3
8n = 0.375n

with n-bit inputs. This is better than the two variants described earlier, which for w =
d = 2 attain 3

7n and 11
27n multiplications respectively.
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According to the defining properties of the JSF, the admissible nonzero colums
(
e1,j
e2,j

)
and windows

( e1,j e1,j−1
e2,j e2,j−1

)
with both columns non zero that, up to sign, can be found are[

0
1

]
,

[
1
0

]
,

[
1
±1

]
,

[
0 1
±1 0

]
,[

1 0
0 ±1

]
,

[
1 0
ε ε

]
with ε = ±1, and

[
1 1
±1 0

]
,

thus proving the statements about E .

3 Comparisons and applications

The algorithm which we explained above is particularly suitable for the computation
of double exponentiations in memory constrained environments, such as smart cards or
mobile phones, as it requires a relatively small amount of precomputations. In some
protocols such as the DSA or the ECDSA one needs to compute products ge1

1 ge2
2 where

g1 is fixed but g2 varies. In this case the amount of operations is further reduced, as the
smaller powers of g1 can be simply stored within the system.

3.1 Optimal parameters for d = 2 and 3

First of all, it is important to know for which values of the parameter w the algorithms
run fastest, given the bit length n of the inputs and the number d of the exponents. For
simplicity we ignore the number of squarings performed in the main loop and we consider
it only for d = 2 and 3.

Suppose first d = 2. Table 2 summarizes the cardinality of E and the sum of the
number of operations needed to build it with the expected number of multiplications in
the main loop of the algorithm. This performance parameter (similar to that used for
instance in [Mö]) is a natural way of comparing exponentiation algorithms. In fact, it is
easy to adapt these values to the relative costs of squarings by adding cs n, where cs is
the cost of a squaring relative to that of a multiplication.

In the column for the JSF there is of course no entry for w = 3.

w Unsigned
#E and # Ops

NAF
#E and # Ops

JSF
#E and # Ops

1 3
3
4
n 4 1 +

5
9
n 4 1 +

1
2
n

2 12 9 +
3
7
n 8 5 +

11
27

n 12 9 +
3
8
n

3 48 45 +
3
10

n 48 45 +
32
117

n

Table 2: Cardinality of E and number of operations for d = 2
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Remark 3.1 Using the unsigned binary representation, the optimal choice of w is w = 1
for n ≤ 28, and w = 2 for 28 ≤ n ≤ 280. In particular, for the range of exponents which
interests us most the parameter w = 2 is optimal.

With the NAF the thresholds are n = 27 and n = 14040
47 = 298.72 respectively.

The JSF brings us a surprise. The parameter w = 1 is optimal for n ≤ 64, a remark-
ably high value. Furthermore, using the JSF with w = 2 is better than using the NAF with
either w = 2 or 3 for n ≤ 354. In this range, using the JSF yields the better algorithm
already for n ≥ 4.

Table 3 collects the analogous data for d = 3: Note that the JSF, being defined only
for d = 2, is not represented.

w Unsigned
#E and # Ops

NAF
#E and # Ops

1 7 3 +
7
8
n 13 9 +

19
27

n

2 56 52 +
7
15

n 49 45 +
131
297

n

3 448 444 +
7
22

n 603 599 +
1082
3645

n

Table 3: Cardinality of E and number of operations for d = 3

Remark 3.2 In the case d = 3 the thresholds are higher, as intuition suggests. Using
the unsigned binary representation, the optimal choice of w is w = 1 for n ≤ 120, and
w = 2 for 121 ≤ n ≤ 2640. In the NAF case, w = 1 is optimal for n ≤ 137 and w = 2 for
138 ≤ n ≤ 3841.

If w = 1, the NAF leads to better performance as long as n > 35, if w = 2 the NAF
will always yield a better algorithm. However, if w = 3, the much larger constant term
in the complexity when using the NAF has a price: for n ≤ 7264 it is better to use the
unsigned binary representation.

3.2 Comparison with interleaved exponentiation

Recently a multi-exponentiation algorithm called interleaved exponentiation has been de-
scribed by Möller [Mö]. The algorithm is better understood in terms of exponent recording,
so that it becomes clear that it is nothing but the naive left-to-right multi-exponentiation
algorithm applied to a different representation of the exponents. Suppose that the expo-
nents e1, . . . , ed are written as

ei =
n−1∑
j=0

ei,j 2j (6)

where the coefficients ei,j are allowed to vary in a set larger than {0,±1}. Then the
following algorithm computes x :=

∏d
i=1 gei

i .
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Algorithm 3.3 Left-to-right interleaved multi-exponentiation

Input: Group elements g1, . . . , gd of which some powers have been precomputed and
exponents ei =

∑n−1
j=0 ei,j 2j

Output:
∏d

i=1 gei
i

Step 1. x← 1 ∈ G

Step 2. for j = n− 1 ... 0 do {

(a) x← x2 [Skip at first iteration]

for i = 1 ... d do {

(b) if ei,j 6= 0 then x← x · gei,j

i } }

Step 3. return x

This algorithm becomes efficient if a careful choice of the recoding of the exponents
is done, which must balance the need for a low density of the representations against the
work done in the precomputation stage: this should allow Step 2 (b) to be done always
with a table access and a single multiplication (or multiplication with the inverse).

A left-to-right sliding window algorithm with a window width w corresponds to a re-
coding e =

∑n−1
j=0 ej 2j where the coefficients ej satisfy 0 ≤ ej < 2w, are either zero or

odd, and of any consecutive w of them only one is nonzero. It is very well known that this
representation has density 1/(w + 1). We call this recoding the width w sliding window
recoding, or wSWR for short. The same density is achieved by a similar method using a
window sliding right-to-left. We note that such recodings operate on the binary represen-
tations of the exponents, so recoding from left to right can be done online, i.e. during the
exponentiation proper, without the need to store the recoded representation.

Cohen’s flexible window exponentiation algorithm [CoMiOn1, Co] which was also pro-
posed independently by Solinas [So1, So2] consists in the application of Algorithm 3.3
with d = 1 to the wNAF of the exponent. The wNAF of the integer e is a representation
e =

∑n−1
j=0 ej 2j where the integer coefficients ej satisfy the following two conditions:

(wNAF-1) Either ej = 0 or ej is odd and |ej | ≤ 2w.

(wNAF-2) Of any w + 1 consecutive coefficients ej+w, . . . , ej at most one is nonzero.

It is also called width-(w +1) NAF and it must not be confused with the generalized NAF
or GNAF [ClLi], which is a signed recoding of a radix-r representation of integers for
arbitrary r.

Every integer admits a wNAF which is uniquely determined. In the cited papers by
Solinas and by Cohen et al. there are algorithms for computing it and the density of the
representation is 1/(w + 2) The special case w = 1 is the usual NAF. This immediately
leads to an exponentiation algorithm requiring about n/(w + 2) multiplications for an
n-bit exponent. The recoding algorithms work right-to-left and cannot be used online.

Assume that the exponents e1, . . . , ed have approximately the same bit-lenght n:
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d = 2 d = 3

n Algorithm 1.1
#E and # Ops (w)

Algorithm 3.3
#E and # Ops (w)

Algorithm 1.1
#E and # Ops (w)

Algorithm 3.3
#E and # Ops (w)

56 12 33 (w=2) 8 35 (w=3) 7 52 (w=1) 12 53 (w=3)

64 12 36.43 (w=2) 8 39 (w=3) 7 59 (w=1) 12 59 (w=3)

80 12 42.43 (w=2) 8 47 (w=3) 7 73 (w=1) 12 71 (w=3)

86 12 45.86 (w=2) 8 50 (w=3) 7 78.25 (w=1) 12 75.50 (w=3)

96 12 50.14 (w=2) 8 55 (w=3) 7 87 (w=1) 12 83 (w=3)

128 12 63.86 (w=2) 8 71 (w=3) 56 111.86 (w=2) 12 107 (w=3)

160 12 77.57 (w=2) 8 87 (w=3) 56 126.67 (w=2) 12 131 (w=3)

192 12 91.28 (w=2) 8 103 (w=3) 56 141.60 (w=2) 24 138.20 (w=4)

240 12 111.86 (w=2) 16 111 (w=4) 56 164 (w=2) 24 167 (w=4)

256 12 118.71 (w=2) 16 117.40 (w=4) 56 171.47 (w=2) 24 176.60 (w=4)

Table 4: Complexity of multi-exponentiation using unsigned representations

d = 2 d = 3

n
Algorithm 1.1

(JSF)
#E and # Ops (w)

Algorithm 3.3
(wNAF)

#E and # Ops (w)

Algorithm 1.1
(NAF)

#E and # Ops (w)

Algorithm 3.3
(wNAF)

#E and # Ops (w)

56 4 29 (w=1) 8 29.40 (w=3) 13 48.40 (w=1) 12 44.60 (w=3)

64 4 33 (w=1) 8 32.60 (w=3) 13 54.03 (w=1) 12 49.40 (w=3)

80 12 39 (w=2) 8 39 (w=3) 13 65.29 (w=1) 12 59 (w=3)

86 12 41.25 (w=2) 8 41.40 (w=3) 13 69.52 (w=1) 12 62.60 (w=3)

96 12 45 (w=2) 8 45.40 (w=3) 13 76.55 (w=1) 12 68.60 (w=3)

128 12 57 (w=2) 16 57.66 (w=4) 13 99.07 (w=1) 24 87 (w=4)

160 12 69 (w=2) 16 68.33 (w=4) 49 115.57 (w=2) 24 103 (w=4)

192 12 81 (w=2) 16 79 (w=4) 49 129.69 (w=2) 24 119 (w=4)

240 12 99 (w=2) 16 95 (w=4) 49 150.86 (w=2) 24 143 (w=4)

256 12 105 (w=2) 16 100.33 (w=4) 49 157.91 (w=2) 24 151 (w=4)

Table 5: Complexity of multi-exponentiation using signed representations

If inversion in the group is not for free, we recode online the exponents as wSWR’s.
Algorithm 3.3 requires then d squarings and d(2w−1 − 1) multiplications in the precom-
putation stage and dn

w+1 − 1 multiplications and about n squarings in the main loop (note
that the first multiplication is just a variable assignment). In Table 4 we add the number
of operations in the precomputation stage to the number of multiplications in the main
loop of the algorithms.

If inversion in the group is cheap, we write the exponents as wNAF’s. Algorithm 3.3
needs d squarings and d(2w−1 − 1) multiplications for the precomputations and dn

w+2 − 1
multiplications and about n squarings in the main loop. Table 5 collects the complexity
data for these algorithms which exploit signed representations.

Remarks 3.4 (1) We observe that rewriting for the wNAF with w > 1 may impact
memory requirements and/or performance more than recoding for the NAF and possibly
also for the JSF. This results from the internal representation of the wNAF. Either a
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wNAF is stored as a sequence of (nonzero) coefficient-exponent pairs (at most dn/we
pairs) making the details of Algorithm 3.3 much more complicated, or as a length n vector
of w bit-numbers.

On the other hand a signed binary representation requires just two bits per coefficient
and there is a very simple way of writing down the NAF in software. Let e =

∑n−1
j=0 bj2j

be an integer in base 2. Let r := 3e =
∑n+1

j=0 rj2j the base 2 representation of 3e. Then
(r − e)/2 =

∑n
j=0(rj+1 − bj+1)2j (assume bn = bn+1 = 0) is a signed binary representa-

tion of e and the coefficients ej := rj+1− bj+1 ∈ {0,±1} also satisfy ejej+1 = 0. It can be
easily proved [ClLi] that this method is essentially the same as Reitwiesner’s algorithm.

There exists an alternative to the NAF with the same Hamming weight and which can
be computed from left to right [JoYe1] by a simple algorithm. However this representation
dispenses with the non-adjacency property: Hence, for w = d = 2, the set of precomputa-
tions E consists of the values ga

1gb
2 with either 0 < a ≤ 3 and −3 ≤ b ≤ 3, at least one of

a, b odd or a = 0 and b = 1 or 3, a total of 20 values. For this reason and by virtue of the
fact that the density of the corresponding joint representation cannot be better than that
of the JSF, we do not consider its usage here.

(2) Another possibility is given by using a radix-r representation in Algorithm 3.3,
where r is a small power of 2, say r = 2w. This is very simple, exponents are scanned left-
to-right r bits at a time, thus online, and all blocks of multiplications happen only every
w squarings. On the other hand its performance is clearly poorer than using the wSWR.
A better alternative would be to use the GNAF, which is a signed radix-r recoding [ClLi]:
With it the density of the nonzero digits decreases from r−1

r of the radix-r representation
to r−1

r+1 , hence it leads to an multi-exponentiation algorithm requiring dn 2w−1
w(2w+1) multiplica-

tions and about n squarings to compute the product of d powers with n-bit exponents. This
is too worse than the wSWR for w > 2 and the wNAF for w > 1. However there is an
alternative recoding achieving the same densities and which operates left-to-right [JoYe2].

(3) Only implementation can decide which of the algorithms is best for each purpose
if the number of operations is similar. It seems to us, however, that Algorithm 1.1 with
the JSF should be preferable to Algorithm 3.3 for double exponentiations with exponents
from 160 to 256 bits in memory constrained environments. For triple exponentiations
Algorithm 3.3 seems always preferable with unsigned representations (using the wSWR)
and n ≥ 128 or with signed representations (using the wNAF).

3.3 Applications

In this subsection we show just a few possible applications of the above multi-exponentiation
algorithms.

3.3.1 Elliptic and hyperelliptic curves

Here, as well as in the next paragraph, we shall use additive terminology (and shall speak,
for example, of a scalar product r · P instead of an exponentiation P r).

The first obvious application of the Algorithms described in this paper is to electronic
signature schemes based on the discrete logarithm problem in the rational point group



18 Roberto M. Avanzi

of an elliptic curve (ecc) or of the Jacobian variety of an hyperelliptic curve (hec) over a
finite field.

In the ecc case we observe that mixed coordinate systems can be used [CoMiOn2],
because our algorithms are based on alternating sequences of several squarings and single
multiplications exactly as the methods proposed by Cohen et al. The difference is that
we compute here directly the double scalar product, whereas Cohen et al. compute the
two scalar products separately. For the fixed base scalar multiplicatio they use essentially
a comb method and for the variable base scalar product the flexible window algorithm.
The two results are then added together.

It is a simple exercise to verify that the number of finite field operation required by
Algorithm 1.1 with the JSF and their method is extremely close for n = 160, 192 and
224 (a difference of at most 1%!). However the method by Cohen et al. requires a lot of
precomputed powers of the fixed base to be stored in ROM with the system (62 values in
the case n = 160) whereas the requirements by our method are minimal.

3.3.2 Trace zero varieties

Trace zero varieties are abelian varieties constructed essentially by Weil Descent from other
varieties, such as elliptic curves [Na, Fr] or Jacobians of hyperelliptic curves [La1, La2].

Construction and security parameters. We start with an elliptic curve (resp. hy-
perelliptic curve of genus g) defined over a prime field Fp where p2 (resp. p2g) has the order
of magnitude of the desired group size. We also assume that the characteristic polynomial
of the Frobenius endomorphism is known. Next, we consider the group of rational points
of the elliptic curve (resp. ideal class group) over the finite field extension Fp3 and consider
the elements defined by the property that its elements D are of trace zero, i.e. they satisfy
(σ2 + σ + 1)(D) = 0. In general for a genus g curve considered over Fpd the elements of
trace zero form a subgroup as they are the kernel of a homomorphism. Therefore they
form an abelian subvariety of dimension g(d − 1), which is called the trace-zero variety.
We shall denote it by G in the sequel and call G0 the subgroup of large prime order ` in
which we actually implement the cryptographic primitives.

For cryptographic applications we must take into account the existence of efficient
index calculus attacks for solving the discrete logarithm problem in abelian varieties of
dimension at least 4: Gaudry actually describes his low genus variant [Ga] only for the
Jacobian of hyperelliptic curves, but it should apply almost invaried to arbitrary varieties
with given group law and dimension at least 4. To keep us on the secure side we assume
that it is so. For dimension 4 Gaudry’s algorithm has complexity O(p2) but Robert Harley
observed [Ga] that the complexity is O(p

8
5 ) under the assumption that the factorization of

polynomials can be done in polynomial time, which is true in practice. On the other hand
the best attack known up to date to the discrete logarithm problem for genus up to 3 is
given by Pollard’s rho method with complexity O(

√
`) = O(p2). Its implied constants are

better than in index calculus, but we should not ignore speed-ups arising from efficiently
computable endomorphism: The Frobenius can be computed in our situation with relative
ease, but not for free, and has order 3, so a speed-up of the index calculus by a factor 9
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is expected, whereas Pollard’s rho probably does not gain the factor
√

3.
We require security comparable to that of an elliptic curve over a finite field of about

2160 elements. The rough equation p8/5 ≈
√

2160 implies p ≈ 250 and thus ` ≈ 2200 for the
trace zero variety: This is probably paranoid, whereas ` ≈ 2160 appears to be too small.
We shall then presume that a trace zero variety with ` ≈ 2180 points over Fp and p ≈ 245

satisfies our security requirements.
For the same reasons varieties of dimension larger than 4 should be avoided. So

g(d − 1) ≤ 4 limits considerably the choices for g and d. As observed by Lange [La2] an
extension of degree d = 3 is “large enough to keep a large part of the group order”. In
what follows we consider only the case 2 for simplicity.

Performance advantages in cryptographic applications. The main performance
advantages of trace-zero varieties come from the fast arithmetic in the extension field
(where explicit closed formulae can be given for multiplication and squaring: if furthermore
the polynomial defining the extension field is chosen carefully one can even use short
convolutions [Bl, AvMi]) and by the presence of the automorphism σ of small degree.

The latter fact enables one to speed-up even single exponentiations by means of multi-
exponentiation algorithms. Instead of using single scalars to compute r ·D for a point or
ideal class D, Lange considers a pair (r0, r1) of scalars bounded by some quantity which
is O(p2), and computes the double scalar product r0 ·D+r1 ·σ(D). For r0 and r1 suitably
bounded (see [Na, La2]) all such double scalar products are distinct.

One observes at once that a variant of Shamir’s trick can be used and the result
is that the number of doublings (squarings in the multiplicative terminology) needed in
cryptographic operations is roughly halved. Further savings can be achieved by the use
of Algorithms 1.1 and 3.3, depending on the parameters.

All the usual cryptographic protocols can be adapted to this new setting, in particular
those for key exchange and electronic signatures.

The Frobenius operates on G, and thus on G0, like the scalar multiple by a constant
s with s2 + s + 1 ≡ 0 mod `. For the verification of signatures, in place of the scalar
product r · D + u · E one is temped to write r ≡ r0 + r1s and u ≡ u0 + u1s mod ` and
to consider the quadruple product r0 ·D + r1 · σ(D) + u0 ·E + u1 · σ(E). The problem is
that the coefficients are not automatically bounded by kp2 where k is a small constant. In
the example above we did not have this problem because we started with a pair (r0, r1),
however for the verification of digital signatures one needs to start with the given value r.
To keep the coefficient reasonably bounded can be cumbersome, but without entering into
details we just assume for now that our example is good and that the bound is O(p2). In
this case we suggest the use of Algorithm 3.3 and the wNAF. The number of operations
in the precomputation stage is 0 if w = 1, otherwise it is 4 · 2w−1, plus an application
of σ (to the point E – we assume D is the fixed point of the system). In the main loop
there are about n = log2(p2) squarings and 4 n

w+2 − 1 multiplications. To determine the
optimal value of w we have thus to minimize the quantity φ(n, w) := 2w−1 + n

w+2 if w ≥ 2
and φ(n, 1) := n/3. Now φ(n, w) is the number of multiplications which are associated
to each n-bit wNAF-recoded exponent in a left-to-right (multi-)exponentiation, whereas
the number of squarings and the fact that one can save one multiplication right at the
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beginning does not depend on the number of exponents.
The total number of group operations is then about n + 4 φ(n, w) − 1. If w = 2 we

need to store 6 values, 14 if w = 3. If we choose w = 1 the complexity may be worse but
we need no precomputed values apart from D, σ(D), E and σ(E).

For worst case curves two of the coefficients, namely r1 and u1, are bound by p7/2

and the other two by p2 according to [La2]. In Algorithm 3.3 the exponents need not
be recoded in the same way. We choose to recode r0 and u0 as wNAF’s and r1 and u1

as w′NAF’s for two possibly different window widths w and w′. The average number of
group operations in this case is 7

4n + 2 φ(n, w) + 2 φ
(

7
4n, w′)− 1.

Let us consider signature verification using a trace zero variety arising from a genus
2 curve over a finite field of about 245 elements (here n = 90): It may be done, on well
behaved curves, with about 177 group operations, obtained for w = 3, and some divisions
with remainder of 180 bit integers. The minimum expected number of group operations
for worst case curves grows to 269, obtained with w = 3 and w′ = 4. For comparison,
using the ECDSA or hyperelliptic curve variants thereof of comparable security requires a
minimum of 229 group operations (see Table 4 with n = 160 and d = 2).

3.3.3 XTR

The XTR cryptosystem was initially proposed by Lenstra and Verheul [VeLe] and makes
use of the subgroup G of order p2 − p + 1 of the multiplicative group of the cyclotomic
extension Fp6/Fp. Let g be an element of F×

p6 of order q > 6 dividing p2 − p + 1. Since
q does not divide ps − 1 for s = 1, 2, 3 the subgroup generated by g cannot be embedded
in the multiplicative group of any proper subfield of Fp6 . Hence it appears that solving
the discrete logarithm problem in 〈g〉 is at least as difficult as solving it in the large field.
In the XTR cryptosystem elements from the field Fp6 are replaced by their traces over
Fp2 and Lenstra et al. show how one can work only with these – actually with triples
of traces – instead of using the original elements from the bigger field. This leads to
very efficient arithmetic even though it is definitely not straightforward to port the usual
exponentiation algorithms to this new setting. All this makes XTR interesting (both in
the usual meaning of the word and according to the Chinese curse...).

Recently, Lenstra and Stam [StLe] observed that one can also compute directly in an
efficient manner in the field Fp6 by using a suitable representation of the intermediate ex-
tensions. This allows the implementor to use all possible (multi-)exponentiation methods
without change.

Independently, Frey suggested a similar idea which we sketch here (the following text
is taken, abridged, from [AvLa]). Let σ be the Frobenius map x 7→ xp. One observes at
once that for z ∈ G the Frobenius satisfies zσ2−σ+1 = 1 and that G is the intersection of
the two trace zero varieties relative to both intermediate extensions, so that the elements
satisfy σ3 + 1 = 0 and also σ4 + σ2 + 1 = 0. The first relation immediately gives a simple
inversion formula: z−1 = σ3(z). The field Fp6 is then constructed as the composite of two
extensions of Fp: the first, Fp3 is given by an irreducible binomial X3 + a over Fp; the
second is Fp2 = Fp(

√
δ) where δ ∈ Fp \ (Fp)2. Ideally |δ| should be small (for instance

δ = −1: to allow this one needs −1 ∈ Fp \ (Fp)2 and therefore p ≡ 3 mod 4). Also δ = 2
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is a good option. The constant a should be small, too, to make polynomial reduction
inexpensive.

For z ∈ G write z = x + y
√

δ where x, y ∈ Fp3 . The map σ3 generates the group
Gal(Fp6/Fp3) of order 2, hence σ3(

√
δ) = −

√
δ and z−1 = x− y

√
δ is essentially for free.

One can then apply the considerations made in the previous paragraph about trace-
zero varieties also to XTR subgroups. In particular, single and double exponentiations
found in cryptographic protocols can be transformed into double and quadruple exponen-
tiations with exponents of halved bit length.

3.4 A security bit

Solinas’ original method may also lead to a reduction in security of the cryptosystem
under side channel attacks, as it can reveal information about the sequence of squarings
and multiplications exactly as the left-to-right binary exponentiation method. We restrict
our attention here to Simple Power Attacks (SPA). In fact, the positions of the zero
columns are given by the sequences of at least two squarings, and they are on average
n/2. There are several possibilities for the nonzero columns even though the types of
two consecutive nonzero columns are limited, so it might not be trivial to exploit this
information.

One can also try to apply a side channel attack to a cryptosystem where exponen-
tiation is done by means of Algorithm 1.1: Here a sequence of two squarings does not
necessarily mean that a zero column is found, as this is done also before multiplying by
the precomputed value corresponding to two nonzero adjacent columns.

We also suggest a way to make life more difficult to an attacker who wants to break a
cryptosystem based on Solinas’ idea by means of side channel attacks. The idea consists
in computing also g±2

1 and g±2
2 . In groups with fast or free inversion this is done just

by two squarings. Then one replaces randomly chosen squares in the representation as
follows

±
[
1 0
0 0

]
7→ ±

[
0 2
0 0

]
, ±

[
0 0
1 0

]
7→ ±

[
0 0
0 2

]
which amounts to including ±2 in the set of digits. In this way, the sequence of squarings
cannot give information about the bits in the original representations. One might think
that the trick just described increases the number of precomputations which need to be
done. In principle this is true, but in practice g1 is the fixed base point of the cryptosystem
so that g±2

1 can also be stored within the system and the implementor can decide to use
only the first substitution systematically, without employing the second substitution and
without having to make random choices: These choices are in a sense“automatically done”
by the representations of the integers.

However, our method proposed in Section 1 attains a better complexity anyway so we
believe that it is preferable.
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