
Validating Digital Signatures without TTP’s

Time-Stamping and Certificate Revocation

Jianying Zhou, Feng Bao, and Robert Deng

Institute for Infocomm Research
21 Heng Mui Keng Terrace

Singapore 119613
{jyzhou,baofeng,deng}@i2r.a-star.edu.sg

Abstract. In non-repudiation services where digital signatures usually
serve as irrefutable cryptographic evidence for dispute resolution, trusted
time-stamping and certificate revocation services, although very costly in
practice, must be available, to prevent big loss due to compromising of the
signing key. In [12], a new concept called intrusion-resilient signature was
proposed to get rid of trusted time-stamping and certificate revocation
services and a concrete scheme was presented. In this paper, we put
forward a new scheme that can achieve the same effect in a much more
efficient way. In our scheme, forward-secure signature serves as a building
block that enables signature validation without trusted time-stamping,
and a one-way hash chain is employed to control the validity of public-key
certificates without the CA’s involvement for certificate revocation. We
adopt a model similar to the intrusion-resilient signature in [12], where
time is divided into predefined short periods and a user has two modules,
signer and home base. The signer generates forward-secure signatures on
his own while the home base manages the validity of the signer’s public-
key certificate with a one-way hash chain. The signature verifier can check
the validity of signatures without retrieving the certificate revocation
information from the CA. Our scheme is more robust in the sense that
loss of synchronization between the signer and the home base could be
recovered in the next time period while it is unrecoverable in [12]. Our
scheme is also more flexible in the real implementation as it allows an
individual user to control the validity of his own certificate without using
the home base.

1 Introduction

Digital signature is a fundamental mechanism in security services such as au-
thentication and non-repudiation. A pair of private key and public key are used
in signature generation and verification, respectively. A digital signature of a
message can be used to verify the origin and integrity of that message. More-
over, it can be used to protect against the signer’s false denial of creating the
signature if the private key is only known to the signer.

The relationship between a public key and an identity of the owner of the
corresponding private key is usually established in the form of a public-key cer-
tificate that is issued by a trusted third party (TTP) called the certification

authority (CA). An expiry date specified in the certificate indicates its maxi-
mum lifetime that could be used to verify the digital signatures. In practice,
as the private key might be compromised before the corresponding public-key
certificate’s scheduled expiry date, additional security mechanisms are required
to prevent signature forgery with the compromised key.

1.1 Validity of Digital Signatures

Security requirements on digital signatures are different when they are used in
authentication and non-repudiation services, respectively. While authentication
services protect against masquerade, non-repudiation services provide evidence
to enable the settlement of disputes [21].

In authentication services, the signature verifier only needs to make sure
that both the signature and the public-key certificate are valid at the time of
verification, and does not care about their validity afterwards. In non-repudiation
services, however, the validity of a signature accepted earlier must be verifiable
at the time of dispute resolution even if the corresponding public-key certificate
has expired or been revoked. The scenarios illustrated in Figure 1 gives a clearer
view on this problem.

signature signature certificate dispute

Tv Tr TdTg

generation verification resolutionrevocation/expiry

Fig. 1. Validity of Digital Signatures

Suppose a signature is generated at time Tg. The authentication service ends
by time Tv, at which the validity of signature is checked. Success of authentica-
tion relies on whether the signature and the corresponding public-key certificate
are valid at Tv. Revocation or expiry of the certificate at time Tr, where Tr > Tv,
has no effect on the authentication service.

Suppose a dispute resolution takes place at time Td, where Td > Tr. Obvi-
ously, the certificate is invalid at Td. On the other hand, the signature has been
accepted as non-repudiation evidence at Tv, where Tv < Tr. If the signature is
treated as invalid at Td because of certificate revocation (or expiry), any party
can generate a signature and later deny it by revoking the certificate. Therefore,
it is critical to ensure that once a signature is accepted as valid evidence, it

remains valid even if the corresponding certificate is revoked or expires at a later
time.

A number of mechanisms exist for maintaining validity of digital signatures
as non-repudiation evidence. However, most of the existing mechanisms (e.g.,
[3, 6, 7, 23]) rely on supporting services from trusted third parties, e.g., time-
stamping [2] and certificate revocation [10, 17]. That means a transacting party
in an on-going session needs to establish extra connections with TTPs.

– It may need to connect with a time-stamping authority (TSA) for trusted
time-stamping on a signature.

– It may need to connect with a CA for certification revocation information.

Obviously, this is less efficient for on-line transactions, and sometimes infeasible
for a mobile device to support simultaneous connections.

There exist two mechanisms that validate digital signatures without trusted
time-stamping and certificate revocation, one-way sequential link signatures [22]
and intrusion-resilient signatures [12]. However, the first mechanism is only lim-
ited to B2B applications, where the transacting parties usually have a regular
business relationship, and both sides maintain a long-term transaction log. The
second mechanism is fragile in real applications as loss of synchronization be-
tween the signer and the home base can cause the signer unable to generate
valid signatures any more. A brief review of these mechanisms will be given in
Section 2.

1.2 Our Results

In this paper, we propose a new scheme for validating digital signatures as non-
repudiation evidence. We adopt a model similar to the intrusion-resilient signa-
ture in [12] and achieve the same effect (i.e., validating signatures without relying
on trusted third parties for time-stamping and certificate revocation) in a much
more efficient way. In our scheme, forward-secure signature serves as a build-
ing block that enables signature validation without trusted time-stamping. A
one-way hash chain is employed to control the validity of public-key certificates
without the CA’s involvement for certificate revocation. A user has two mod-
ules, signer and home base as in [12], but they function differently. The signer
generates forward-secure signatures on his own while the home base manages
the validity of the signer’s public-key certificate with a one-way hash chain.

When the signer requests a new public-key certificate, the home base gener-
ates a one-way hash chain and keeps the root hash value confidential, then sends
the last chained hash value to the CA to be embedded into the certificate. The
maximum lifetime of the certificate is divided into predefined short periods, each
of which is related to a chained hash value. At the beginning of a time period,
the signer obtains the corresponding hash value from the home base to refresh
the validity of his certificate.

The signer also updates his forward-secure signing key at the beginning of
a time period and generates forward-secure signatures. A valid forward-secure

signature can only be generated with the signing key related to the time period
in which the signature is generated. In other words, forward-secure signatures
are time-related, and their validity can be preserved without relying on a trusted
time-stamping service.

Signing key update is a one-way function, and the compromise of the current
signing key will not lead to the compromise of past signing keys. However, it will
result in the compromise of future signing keys, thus the forgery of signatures
in future time periods. In our scheme, a one-way hash chain is used to control
the validity of the signer’s public-key certificate. The certificate may expire at
the end of the current time period thus invalidating all future signing keys if
the home base destroys the hash chain root and stops releasing hash values. The
signature verifier can check the status of such a certificate without retrieving the
revocation information from the CA or a designated directory.

Our scheme is more robust in the sense that loss of synchronization between
the signer and the home base could be recovered in the next time period while it is
unrecoverable in [12]. Our scheme is also more flexible in the real implementation
as it allows an individual user to control the validity of his own certificate without
using the home base.

2 Previous Work

Here we give a brief review of two existing mechanisms that validate digital
signatures without trusted time-stamping and certificate revocation, and point
out their limitations and weaknesses.

2.1 One-Way Sequential Link Signature

One-way sequential link mechanism provides a solution for maintaining validity
of digital signatures generated in transactions between two parties without the
TTP’s intervention for time-stamping and certificate revocation [22]. The main
idea is to link all digital signatures generated by a transacting party in a way
that any change to the link will be detected. The transacting party can revoke
his signing key by sending the first and the latest digital signatures in the link
to the trading partner for counter-signing. With the trading partner’s approval,
the transacting party can deny digital signatures that are generated with his
revoked key but are not in the counter-signed link.

Suppose two parties A and B are going to do a series of transactions, and
A needs to generate signatures on messages X1, X2, · · · , Xi. A can establish a
one-way sequential link of his digital signatures sA1

, sA2
, · · · , sAi

as follows.

sA1
= SA(X1, n1)

sA2
= SA(X2, H(sA1

), n2)
· · ·

sAi
= SA(Xi, H(sAi−1

), ni)

Here, H is a collision-resistant one-way hash function. n1, · · · , ni are incremental
sequential numbers or local time stamps serving as an index of the one-way
sequential link, which could be used to facilitate dispute resolution. Suppose A’s
public-key certificate is CA. When B receives sAk

, B needs to make the following
checks before accepting and saving it.

1. B verifies A’s signature sAk
.

2. B checks that CA has not expired and is not marked as revoked in B’s
transaction log.

3. B checks that sAk
is linked properly in the one-way sequential link associated

with CA.

Similarly, B can also establish a one-way sequential link of his digital signa-
tures sB1

, sB2
, · · · , sBj

for transactions conducted with A.
Suppose A wants to revoke his CA while the latest signatures in the one-way

sequential links of A and B are sAi−1
and sBj−1

, respectively. A can send B a
request

sAi
= SA(revoke, sA1

, sAi−1
, H(sAi−1

), nAi
)

and B can reply with an approval

sBj
= SB(approve, sA1

, sAi
, H(sBj−1

), nBj
)

and mark CA as revoked. Then, A is only liable to the signatures appeared in
the link starting from sA1

and ending at sAi
, and can deny any other signatures

intended for B and associated with CA. If needed, B can also terminate his
one-way sequential link in the same way.

Limitation 1: One-way sequential link mechanism is only limited to B2B appli-
cations, where the transacting parties usually have a regular business relation-
ship. Each party should maintain a long-term transaction log, and cooperation
is needed in approving the other party’s revocation request.

Limitation 2: One-way sequential link mechanism only supports certificate re-
vocation by the transacting parties themselves. In some applications, however,
a transacting party’s certificate may need to be revoked by its manager to ter-
minate the power of signing.

2.2 Intrusion-Resilient Signature

Intrusion-resilient signature was proposed in [12] for the purpose of getting rid
of trusted time-stamping and certificate revocation in validating digital signa-
tures. The provably-secure scheme presented in [12] is refined in mathematics.
However, a weakness exists in the scheme from the implementation viewpoint.
We reason that the theoretical merit of the scheme does not lead to the practical
implementation.

The scheme in [12] takes the model where each user (signer), besides securely
storing his signing key SKU , has a secret key SKB stored in his home base,

which is used for updating the private signing key. There are two operations in
updating the signing key, key update and key refresh. Time is divided into T
short periods. Key update is conducted once at the end of each period while key

refresh may be done multiple times within each period.
The operation of key refresh brings fragility to the scheme in practical appli-

cation of the scheme. In this operation, the secret SKB stored at the home base is
refreshed with a randomly chosen number r, i.e., SKB := refreshbase(SKB, r).
The r and old SKB are then destroyed by the home base. The new SKB is
sent to the user, which is used to refresh the signing key SKU , i.e., SKU :=
refreshuser(SKU, SKB). This is equivalent to requiring a sort of synchronous
status between SKU and SKB. The “synchronization” might be broken due to
various possibilities, such as the user misses the SKB sent to him or an attacker
succeeds somehow to conduct refresh operation with the home base. In that
case, the SKU held by the user and the SKB stored at the home base are not
consistent, and the synchronization can never be recovered as the home base has
erased r and old SKB. As a result, the signing key cannot be updated correctly
any more, and the corresponding public key has to be given up for ever. Our
scheme does not suffer from this fragility in the sense that even if the update
message from the home base to the user is lost or intercepted, it only affects the
current period but not the periods after the current period.

Key-insulated signature [8] employs a model similar to the above intrusion-
resilient signature scheme. However, its security is weaker in some sense. If the
signer’s current signing key is compromised, and the current key update infor-
mation is also intercepted by an attacker, signatures of both the current and
the subsequent periods could be forged. Moreover, efficiency is another concern
because the length of public key grows linearly with the number of key-insulated
periods. This is also true to master key stored in the home base for signing key
update.

There is a common weakness in both the intrusion-resilient and key-insulated
signature schemes which did not deal with signature forgery once the signing key
is compromised in the current time period. Although it might be a short time
period that an adversary can forge signatures, the insecure window could leave
the validity of all signatures generated in such a period in question. We will
further discuss this problem in our scheme.

3 A New Signature Validation Scheme

Here we propose a new scheme that validates digital signatures without the
TTP’s intervention for time-stamping and certificate revocation. The objective
of our new scheme is to remove the limitations and weaknesses existing in the
previous mechanisms.

3.1 Forward-Secure Signature

Forward-secure signature serves as a building block that enables signature val-
idation without trusted time-stamping. In a forward-secure signature scheme,

time is divided into predefined short periods, and the public key is fixed while
the corresponding signing key is updated at the beginning of each period with
a public one-way function. Several schemes have been proposed in the past few
years [1, 4, 11, 14–16, 19].

Definition A forward-secure digital signature scheme is a quadruple of algo-
rithms, (FSkeygen, FSsign, FSupdate, FSverify), where:

FSkeygen, the key generation algorithm, is a probabilistic algorithm which
takes as input a security parameter k and returns a pair (SK1, PK),
the initial signing key and the public key; (PK may be registered with
the CA.)

FSsign, the signing algorithm, takes as input the signing key SKj for the
current time period j and the message M to be signed and returns a
pair <j, sign>, the signature of M for time period j;

FSupdate, the signing key update algorithm, takes as input the signing
key for the current period SKj , returns the new signing key SKj+1 for
the next period and erases the past signing key SKj ; (The signing key
update in each time period is illustrated in Figure 2.)

FSverify, the verification algorithm, takes as input the public key PK, a
message M , and a candidate signature <j, sign>, and returns 1 if <j,
sign> is a valid signature of M or 0, otherwise.

Suppose a signer A’s signing key SKj is compromised at the time period j.
Others cannot derive the past signing key SKp from SKj (p<j) as FSupdate is
a one-way function. In addition, others cannot use the compromised key SKj to
forge a valid signature of a time period other than j as the verification will fail
if p 6= j is used as an input of FSverify for verifying a signature generated with
SKj . Therefore, even if the current signing key SKj is compromised, the validity
of signatures generated before the time period j is not affected. In other words,
forward-secure signatures of the past time periods could be validated without
trusted time-stamping and certificate revocation.

However, as FSupdate is a public function, once SKj is compromised, others
can derive the future signing key SKf from SKj (f>j), thus can forge valid
signatures of the future time period f . Therefore, once SKj is compromised, A
needs to inform the CA to revoke the corresponding certificate. Meanwhile, the
signature verifier needs to get the revocation information from the CA to check
the validity of the certificate.

A new mechanism is required for validating forward-secure signatures without
the CA’s intervention for certificate revocation.

3.2 Refreshable Certificate

The refreshable certificate is an extension of the standard public-key certificate.
The maximum lifetime of such a certificate is divided into short periods. The

signer A is allowed to refresh the validity of his own certificate under the control
of his home base, and the signature verifier can check the validity of A’s certificate
without retrieving the revocation information from the CA.

Role of Home Base A home base serves as a manager who has authority over
a group of signers. It plays a role different from the CA.

– A home base is only recognized by the signers under his management, and
manages the validity of their certificates.

– The CA is a more widely recognized trusted third party, and issues public-
key certificates for a larger population.

A home base is not required to be trusted by or connected with any entity
other than the signers under his management. Therefore, the cost for estab-
lishment of a home base is much lower than that of the CA, and the bottleneck
problem related to a home base is much less serious than to the CA. Co-operation
with a home base in signature generation is not a weakness, but an advantage,
in our scheme. As the home base acts as a manager of those signers, it can ter-
minate a signer’s power of signing at the end of current time period if needed
(e.g. because of change of job).

Generation of Certificate Generation of a refreshable certificate involves
three parties: the signer A, A’s home base, and the CA.

Step 1. Actions by the signer A:

1. Generate a pair of keys: private key SKA and public key PKA.
2. Send PKA to his home base over an authenticated channel 1.

Step 2. Actions by A’s home base:

1. Define the maximum lifetime of A’s certificate as T time periods and the
starting valid date as D, and select the length of each time period as L. (The
refreshing points are denoted as D1 = D + L,D2 = D + 2 ∗ L, · · · , DT =
D + T ∗ L and illustrated in Figure 2.)

2. Select a random number r, and generate a one-way hash chain H i(r) =
H(Hi−1(r)) (i = 1, 2, · · · , T), where H0(r) = r.

3. Send (A,PKA, D,HT (r), T, L) to the CA.

Step 3. Actions by the CA:

1. Authenticate the certificate request with A’s home base in an out-of-band
method to ensure the request is authorized by the home base 2.

1 Suppose the signer A has registered with his home base. The authenticated channel
can be established with a password-based protocol (e.g., [5, 20]).

2 On-line authentication could be performed if a secure channel exists between A’s
home base and the CA.

2. Challenge A for a signature to ensure A holds the corresponding private key.
3. Generate a certificate CertA = SCA(A,PKA, D,HT (r), T, L) 3.
4. Issue CertA to A (via A’s home base).

Compared with a standard public-key certificate, CertA contains the extra
data (HT (r), T, L) 4. They will be used to control the validity of CertA.

H (r)
T-1

Hash Value Release:

D

H (r)
T-2

H (r)
i

H (r)
i-1

H (r)

D 1 D j-1 D

0

j D T-1 D T... ...Refreshing Point:

SK SK SK SK SKSigning Key Update: T1 2 j j+1

Fig. 2. Hash Value Release and Signing Key Update

Use of Certificate At the starting valid date D, A retrieves HT−1(r) from
his home base to initialize the validity of CertA

5, which then has an expiry
date D1 = D + L. Suppose the next refreshing point of CertA is Dj . A retrieves
Hi(r), where i = T − (Dj − D)/L = T − j, from his home base, and attaches
(Hi(r), i) to each signature generated in the period between Dj−1 and Dj

6.
(The hash value release at each refreshing point is illustrated in Figure 2.)

Note that it is entirely up to A for retrieving the hash value from his home
base at a refreshing point. For example, if A does not generate any signature in
the period between Dj−1 and Dj , A does not need to retrieve H i(r). But later
if A wants to generate signatures in the period between Dj and Dj+1, A can
directly retrieve H i−1(r). On the other hand, the home base has the full control
on the validity of A’s certificate. If A’s authorization on signing with SKA must
be revoked for some reasons such as change of job or key compromise, the home
base can stop releasing the next hash value.

Suppose A released (H i(r), i); the current time is Dv; a signature verifier B
holds the CA’s public verification key. B can take the following steps to check
the status of CertA.

3 For simplicity, other less related information is omitted in CertA.
4 CertA should also include an identifier of the hash function used to generate and

verify the hash chain.
5 The home base could select an optimal technique in the computation-storage trade-

off of hash chain traversal [18].
6 (Hi(r), i) need not be a part of message to be signed. Instead, it is only the data

that will be stored or transmitted together with the signature.

1. B verifies the CA’s signature on (A,PKA, D,HT (r), T, L). If valid, B is
sure that A’s public key is PKA. The starting valid date is D, the maximum
lifetime is T ∗ L, the refreshing time period is L, and the last hash value in
the one-way hash chain is HT (r).

2. B checks that 0 ≤ i < T and HT−i(Hi(r)) = HT (r). If true, B believes that
Hi(r) is a valid hash value in the one-way hash chain ended with HT (r).

3. B checks that Dv ≤ D +(T − i) ∗L. If true, B concludes that CertA is valid
now, and remains valid until Dj = D + (T − i) ∗ L.

In such a way, the validity of CertA can be controlled by releasing the corre-
sponding hash value when A generates digital signatures. B can check the status
of CertA without retrieving the revocation information from the CA. Thus, the
CA is exempted from certificate revocation.

3.3 Signature Validation

With the forward-secure signature and refreshable certificate, we can validate
digital signatures without relying on the trusted third parties for time-stamping
and certificate revocation.

Suppose a signer A wants to generate a signature in the period j − 1, i.e.,
between refreshing points Dj−1 and Dj . A’s corresponding signing key is SKj . A
forward-secure signature on message M is denoted as FSsign(M,SKj) = <j, s>.
If A is sure that SKj is not compromised at the end of this period, A performs
FSupdate and retrieves H i(r) and H i−1(r), where i = T − j for j ≤ T − 1, from
his home base 7. Then A attaches <H i(r), Hi−1(r), i> to the signature.

By releasing H i(r) and H i−1(r), the signer A is liable for all signatures gen-
erated with forward-secure signing keys SKp for p ≤ j (i.e., signatures generated
before the refreshing point Dj). But A can deny all signatures generated with
SKf for f > j (i.e., signatures generated after the refreshing point Dj) if Hi−2(r)
and its pre-images in the hash chain are not released.

Suppose a signature verifier B receives <M, j, s,H i(r), Hi−1(r), i> from A.
B makes the following checks to conclude whether the signature and the related
information could serve as valid non-repudiation evidence.

1. B verifies A’s signature by checking the output of FSverify(M, j, s, PK). If
true, B believes that <j, s> is A’s signature on M generated during the time
period j − 1, i.e., between refreshing points Dj−1 and Dj .

2. B further verifies the status of CertA with <Hi(r), i> as described before.
If true, B believes that CertA is valid until the refreshing point Dj .

3. With Hi−1(r), B concludes that A is committed being responsible for all
signatures generated between refreshing points Dj−1 and Dj . Thus B can
accept <j, s,H i(r), Hi−1(r), i> as valid non-repudiation evidence.

7 To reduce the delay between signature generation in the period j − 1 and release of
Hi−1(r) at the beginning of the period j, the refreshing period L may need to be
defined short. Alternatively, A may release H i−1(r) in the period j−1 if A is willing
to undertake the risk of compromise of SKj .

Suppose SKj is compromised, and A has released H i−1(r) in the period
j − 1. Although an adversary can derive SKj+1 from SKj and CertA is valid
in the corresponding period j (i.e., between refreshing points Dj and Dj+1),
the adversary cannot forge valid signatures in the period j as long as A has
not released H i−2(r) which is a part of non-repudiation evidence in the above
signature validation process.

The above signature validation process shows that signature generation and
verification are not necessary to be taken in the same period. Instead, given
a forward-secure signature being generated in an arbitrary period, the verifier
simply makes sure that the certificate is not only valid in the period that the
signature was generated but also valid in the next period.

The clocks of the signer and the verifier may not be strictly synchronized
to the real time, and a relative time could be used in our scheme. The signer
A can generate a signature with SKj in a relative time period j − 1 while the
actual time may not be the one between Dj and Dj+1. The verifier can check
the validity of the signature without referring to the actual time of signature
generation and verification 8. Therefore, the time information related to such a
forward-secure signature cannot be used to prove the actual time of signature
generation.

Even if the clocks of the signer and the verifier are synchronized to the
real time, the time information still cannot be used to prove that a forward-
secure signature was actually generated within that time period. The signer can
always use the signing key corresponding to a specific time period to generate
a back-dated forward-secure signature (if the signer keeps the signing keys of
the previous periods) or a post-dated forward-secure signature. Therefore, if
the evidence on the time of signature generation is required in non-repudiation
services, trusted time-stamping is necessary.

3.4 Optimization for Individual Users

In the above signature validation scheme, the home base acts as a manager of a
group of signers for controlling the validity of their public-key certificates. This
is especially useful in an enterprise environment, where each staff’s power of
signing is authorized by his manager.

If a signer is an individual user who takes the full responsibility on the va-
lidity of his own certificate, our scheme could be optimized to enable signature
validation without using the home base. In such a case, the hash chain root r
will be generated by the signer instead of his home base. Then it is up to the
signer whether to release a hash value to refresh the validity of his certificate.

There is an advantage on the use of a separate secret r to protect the signing
key SKi for an individual signer A. The system remains secure as long as either r
or SKi is not compromised. If SKi is compromised, A could destroy r then CertA

8 In practice, however, it is safer for the verifier to synchronize his clock to the real
time, and only accept signatures while the corresponding certificate has not reached
its maximum lifetime.

will expire shortly at the next refreshing point. Similarly, if r is compromised, A
could destroy SKi and stop using it for signing.

The hash chain root r and the signing key SKi are different in two aspects.

– The signing key might be used at any time while the hash chain root is needed
only at the refreshing points. That means SKi should be highly available in
a system while r could be kept “off-line”.

– The signing key usually has a length of 1024 bit or above while the hash
chain root can be as short as 128 bits. That implies SKi is usually beyond
the human’s capability to memorize while r might be memorized.

Consequently, the signer A could protect r in a way different from SKi. A
might remember r and manually input r at the time of refreshing CertA. After
the hash value needed for refreshing is generated, r will be erased from the
local computer system thus minimizing the possibility of compromise caused by
system break-in.

There might be other ways to protect r “off-line” in a temper-proof hardware
while keeping SKi “on-line” in a local system.

3.5 Comparison

Our signature validation scheme removes the limitations of the one-way sequen-
tial link mechanism in [22]. It is not restricted to B2B applications. It is especially
useful in B2C applications where the number of customers are much more than
the number of merchants.

Suppose a merchant does 1000 transactions with 1000 customers, and gener-
ates one signature in each transaction within a time period (e.g., one day). With
our new signature validation scheme, the merchant only needs to retrieve one
hash value from his home base for generating 1000 signatures, and the customers
do not need to make any connection to the CA when verifying the merchant’s
signatures and certificate. In comparison, if a certificate revocation list (CRL) is
used, each customer needs to retrieve the CRL from the CA in order to verify
the merchant’s signatures and certificate. The operation cost is at least 1000
times higher than our scheme.

Many of customers in B2C applications are likely individual users, then our
scheme even supports validation of signatures generated by such customers with-
out using the home base. This allows for a more flexible implementation of
our signature validation scheme compared with the intrusion-resilient signature
in [12].

The requirement on the synchronization between the signer and the home
base in our signature validation scheme is much weaker than in [12]. Loss of
synchronization in [12] is fatal and unrecoverable. In our scheme, however, un-
availability of a hash value from the home base only causes the signer unable
to generate signatures in one time period. The signer’s power of signing can be
recovered when receiving the next hash value in the next time period.

Actually, temporary unavailability of a hash value from the home base is a
feature of our signature validation scheme. It allows the home base (manager) to
temporarily disable the signer’s power of signing for some reason (e.g., on leave),
and restore the signer’s power later if necessary 9. Therefore, our scheme is more
robust with enriched functions in the real implementation.

There is a risk of signature forgery in [12] if the current signing key is com-
promised but has not expired yet. It may leave the validity of all signatures
generated in the current period in question. Such a risk is handled in our scheme
by requiring the singer to postpone releasing the hash value of the next period
(which serves as a part of non-repudiation evidence) until the current signing key
expires. That means a delay might be introduced in signature validation, though
the delay could be reduced by defining a short refreshing period L. Therefore, our
scheme will not completely replace instant and trusted time-stamping and cer-
tificate revocation services which are still useful for high value transactions that
cannot tolerate any risk of signature forgery and delay of signature validation.

4 Conclusion

Maintaining validity of digital signatures is of significant importance in non-
repudiation services. The conventional approach is to rely on trusted third par-
ties to provide time-stamping and certificate revocation services, both of which
are very costly in practice. Intrusion-resilient signature is a new concept pro-
posed in [12] to get rid of time-stamping and certificate revocation in signature
validation. The scheme is secure but has some weaknesses which may affect its
robustness, efficiency, and flexibility in practical implementation.

In this paper, we proposed a new approach for signature validation. It achieves
the same effect (i.e., validating signatures without trusted time-stamping and
certificate revocation) in a much more efficient way, and overcomes the weak-
nesses in the existing schemes. In our scheme, forward-secure signature serves as a
building block that enables signature validation without trusted time-stamping.
A one-way hash chain is employed to control the validity of public-key certifi-
cates without the CA’s involvement for certificate revocation. Some attractive
features of our signature validation scheme include

– The signer’s power of signing can be temporarily disabled by the home base
and recovered later if necessary.

– Signatures generated by an individual user can be validated without using
the home base.

References

1. M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. Lecture
Notes in Computer Science 1976, Advances in Cryptology: Asiacrypt’00, pages
116–129, Kyoto, Japan, December 2000.

9 The manager should be careful when deciding to restore a signer’s power of signing
as this will also result in a recovery of the signer’s power in the past disabled periods.

2. C. Admas, P. Cain, D. Pinkas and R. Zuccherato. Internet X.509 public key in-
frastructure time-stamp protocol (TSP). RFC 3161, August, 2001.

3. S. G. Akl. Digital signatures: a tutorial survey. Computer, 16(2):15–24, February
1983.

4. M. Bellare and S. Miner. A forward-secure digital signature scheme. Lecture Notes
in Computer Science 1666, Advances in Cryptology: Proceedings of Crypto’99,
pages 431–438, Santa Barbara, California, August 1999.

5. S. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols se-
cure against dictionary attacks. Proceedings of 1992 IEEE Symposium on Security
and Privacy, pages 72–84, Oakland, California, May 1992.

6. K. S. Booth. Authentication of signatures using public key encryption. Communi-
cations of the ACM, 24(11):772–774, November 1981.

7. R. DeMillo and M. Merritt. Protocols for data security. Computer, 16(2):39–50,
February 1983.

8. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature schemes.
Lecture Notes in Computer Science 2567, Proceedings of 2003 International Work-
shop on Practice and Theory in Public Key Cryptography, pages 130–144, Miami,
January 2003.

9. L. C. Guillou and J. J. Quisquater. A paradoxical identity-based signature scheme
resulting from zero-knowledge. Lecture Notes in Computer Science 403, Advances in
Cryptology: Proceedings of Crypto’88, pages 216–231, Santa Barbara, California,
August 1988.

10. R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key infrastructure
certificate and CRL profile. RFC 2459, January 1999.

11. G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and verify-
ing. Lecture Notes in Computer Science 2139, Advances in Cryptology: Proceedings
of Crypto’01, pages 332–354, Santa Barbara, California, August 2001.

12. G. Itkis and L. Reyzin. SiBIR: Signer-base intrusion-resilient signatures. Lec-
ture Notes in Computer Science 2442, Advances in Cryptology: Proceedings of
Crypto’02, pages 499–514, Santa Barbara, California, August 2002.

13. ITU-T. Information technology – Open systems interconnection – The direc-
tory: Public-key and attribute certificate frameworks. ITU-T Recommendation
X.509(V4), 2000.

14. A. Kozlov and L. Reyzin. Forward-secure signatures with fast key update. Pro-
ceedings of 3rd Conference on Security in Communication Networks, Amalfi, Italy,
September 2002.

15. H. Krawczyk. Simple forward-secure signatures from any signature scheme. Pro-
ceedings of 7th ACM Conference on Computer and Communications Security,
pages 108–115, Athens, Greece, November 2000.

16. T. Malkin, D. Micciancio, and S. Miner. Efficient generic forward-secure signature
with an unbounded number of time period. Lecture Notes in Computer Science 2332,
Advances in Cryptology: Proceedings of Eurocrypt’02, pages 400–417, Amsterdam,
The Netherlands, April 2002.

17. M. Myers, R. Ankney, A. Malpani, S. Galperin and C. Adams. X.509 Internet
public key infrastructure on-line certificate status protocol (OCSP). RFC 2560, June
1999.

18. Y. Sella. On the computation-storage trade-offs of hash chain traversal. Lecture
Notes in Computer Science, Proceedings of 2003 Financial Cryptography, Gosier,
Guadeloupe, January 2003.

19. D. Song. Practical forward secure group signature schemes. Proceedings of 8th
ACM Conference on Computer and Communication Security, pages 225–234,
Philadelphia, November 2001.

20. T. Wu. The secure remote password protocol. Proceedings of 1998 Internet Society
Network and Distributed System Security Symposium, pages 97–111, San Diego,
California, March 1998.

21. J. Zhou. Non-repudiation in electronic commerce. Computer Security Series, Artech
House, 2001.

22. J. Zhou. Maintaining the validity of digital signatures in B2B applications. Lec-
ture Notes in Computer Science, Proceedings of 2002 Australasian Conference on
Information Security and Privacy, pages 303–315, Melbourne, Australia, July 2002.

23. J. Zhou and K. Y. Lam. Securing digital signatures for non-repudiation. Computer
Communications, 22(8):710–716, Elsevier, May 1999.

