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Abstract

In [Bih02] Biham introduced the notion of a key-collision attack. In this work we show how to extend
Biham’s key-collision technique to attack RMAC [JJV02] (we do so in the form of a “trade-off attack”
against multiple users). We also present related-key attacks against the RMAC. These attacks work by
exploiting a “unique” interaction between different instances of the mode’s keys (and not some related-
key weakness of the underlying block cipher). Because of the resource requirements of these attacks,
these attacks are mainly of theoretical interest.
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1 Introduction

Jaulmes, Joux, and Valette’s RMAC construction [JJV02] is a new randomized message authentication
scheme. Similar to Petrank and Rackoff’s DMAC construction [PR97] and Black and Rogaway’s ECBC
construction [BR00], the RMAC construction is a CBC-MAC variant in which an input message is first
MACed with standard CBC-MAC and then the resulting intermediate value is enciphered with one additional
block cipher application. Rather than using a fixed key for the last block cipher application (as DMAC and
ECBC do), RMAC enciphers the last block with a randomly chosen (but related) key. Consequently, RMAC
directly exposes the underlying block cipher to related-key attacks [Bih93]. We are interested in attacks that
do not exploit some related-key weakness of the underlying block cipher, but some property of the RMAC
mode itself.

The observation we make is that if two users each tag a large number of messages, then with relatively high
probability they will each tag a message with the same randomly chosen final key. When this occurs we say
that the two users’ keys “interact.” This key interaction enables a Biham-style key-collision attack [Bih02]
(which we present as a “trade-off” attack against multiple users). For purposes of this discussion, assume
that the key length of RMAC’s underlying block cipher is equal to the underlying block cipher’s block
length l. The RMAC tagging algorithm uses two keys for a total key length of α = 2l; the RMAC tag length
is also α.

Table 1 describes the resources for our trade-off attack in more detail. In the standard setting (an
adversary attacking one user) there is an attack against RMAC requiring the user to tag O(2α/2) messages
of the attacker’s choice. For our trade-off attack, we require O(2α/4) users to each tag O(2α/4) messages
of the attacker’s choice. After the users do this, the attacker will be able to forge a message from one of
those users. The resources required for our trade-off attack (with respect to the number of users attacked
and the number of messages tagged per user) are between the number of users necessary to obtain a total
key collision, O(2α/2), and the resources necessary to mount a standard attack against one user. This is
why we call our attack a “trade-off attack:” the trade-off is between the number of users attacked and the
number of messages an attacker must force each user to tag. As Table 1 shows, if an attacker tried to use the
standard attack to attack O(2α/4) users, then the attacker would need each user to tag O(23α/8) messages,
which is more than for our trade-off attack. We argue that there may be situations where it is easier for an
attacker to force O(2α/4) users to each tag O(2α/4) messages than for the attacker to force a single user to
tag O(2α/2), or even O(23α/8), messages.

The attacks we describe can be converted to a Biham-style key-collision attack [Bih02] against a single
user by “simulating” a set of other users. In this case the attack requires O(2α/4) chosen message requests
for that one user and O(23α/4) offline computations. Details will appear in the full version of this paper.

2 RMAC

Terminology and notation. Formally, a message authentication scheme consists of three algorithms: a
key generation algorithm, a tagging algorithm, and a verification algorithm. The key generation algorithm
generates a random key. The tagging algorithm, on input a key and a message, outputs a tag (or MAC) for
that message. The verification algorithm, on input a key, a message, and a candidate tag, returns accept if
the candidate tag is a valid tag for the message and returns reject otherwise.

When presenting pseudocode, we use ← to denote assignment from right to left, we use ⊕ to denote the
xor operation, and we use ‖ to denote concatenation.

RMAC. We now describe the RMAC construction in more detail. The RMAC construction is parameterized
by choice of an underlying block cipher F . Let k denote the block cipher’s key length, let l denote the block
cipher’s block length, and let FK(B) denote the application of block cipher F on an l-bit block B with a
k-bit key K. The RMAC algorithm uses a total of α = 2k bits of key and produces a tag of length l + k.
Before using the RMAC algorithm, a user first picks two random k-bit keys K1 and K2.

Let RMACK1,K2(M) denote the application of the RMAC tagging algorithm on a message M using keys
K1 and K2. We assume that the length of M is a multiple of the block size. Pseudocode for the RMAC
tagging algorithm is presented below (see also Figure 1):

RMACK1,K2(M)
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Figure 1: The RMAC tagging algorithm with keys K1,K2 on input M1‖M2‖ · · · ‖Mn. The underlying block
cipher is denoted F . The randomness R is chosen anew on each invocation. The resulting tag is T‖R.

Parse M into l-bit blocks M1‖M2‖ · · · ‖Mn

C0 ← 0
For i = 1 to n do

Ci ← FK1(Mi ⊕ Ci−1)
R ← random k-bit value
T ← FK2 ⊕ R(Cn)
Return (T, R)

The RMAC verification algorithm, RVERK1,K2(M, (T, R)), returns accept if (T, R) is a valid tag for M and
returns reject otherwise; the verification algorithm is defined in the natural way.

3 The Multi-User Attack Model

The standard notion of security for message authentication schemes is that of unforgeability [BKR94]. For-
mally, consider an adversary A attacking a message authentication scheme (such as RMAC). We represent
the legitimate user of a message authentication scheme with a “tagging oracle” RMACK1,K2(·) (where K1,K2

are randomly chosen keys). The tagging oracle is a “black box” that takes a message as input and uses the
keys K1,K2 to compute and return the RMAC tag of the message. We give adversary A access to this
tagging oracle so that she can obtain an RMAC tag for any message of her choice. (Note that A only has
input-output access to the tagging oracle; she cannot access the keys K1,K2.) A query to the tagging oracle
corresponds to A forcing a user to tag a message of A’s choice. We also give A access to a verification oracle
RVERK1,K2(·, ·). The verification oracle represents the original user’s intended correspondent. Adversary A
“wins” if she can find a message-tag pair (M, (T, R)) such that RVERK1,K2(M, (T,R)) returns accept and A
never queried the oracle RMACK1,K2(·) with input M . Intuitively, a scheme is unforgeable if the probability
that any adversary with reasonable resources “wins” is “small.”

The RMAC construction motivates a new definition of security for message authentication schemes. The
motivation for this new definition will become clearer once we present our attacks. For now, it suffices to
mention that because each application of the RMAC tagging algorithm uses a different key for the last
block cipher application (i.e., K2 ⊕R where R is randomly chosen for each message), there is a chance that
different users of RMAC (with different keys) will “interact.” Consider, for example, two users using the
RMAC tagging algorithm. The first user might use keys K1 and K2. The second user might use keys K ′

1

and K ′
2. Even if K2 6= K ′

2, there is a chance that the two users will use the same key for the last block cipher
application (by picking random R, R′ such that K2 ⊕R = K ′

2 ⊕R′). Moreover, assuming each user tags
enough messages, the probability that two users will interact in this way is much higher than the probability
that two users will randomly select the same pair of master keys.

4



F

⊕

Mn

F

KU
1

⊕

KU
2 R

T R

F

⊕

Mn

F

KV
1 = KU

1

⊕

KV
2 = KU

2 ⊕D

T D ⊕R

Figure 2: The RMAC known-difference related-key attack (Section 4). The figure on the left shows how
user U constructs a tag (T, R) for a message M in response to an adversary’s query. The figure on the right
suggests why user V will accept (T,D ⊕R) as a tag for message M .

Under the standard notion of unforgeability one cannot model attacks that play off the interaction
between different users. This is because an adversary in the standard model is restricted to attacking one
user at a time. In our new model we give an adversary access to multiple tagging oracles and corresponding
verification oracles. The keys for each tagging oracle-verification oracle pair are chosen uniformly at random
from the set of all possible keys. The adversary’s goal is to make any of the verification oracles accept
a message that was not tagged by its corresponding tagging oracle. This model corresponds nicely to an
observation about real-world security requirements for message authentication schemes. First note that a
message authentication scheme (or any cryptographic scheme) will often be used by many different users
simultaneously, albeit each user will probably use different keys. Consider, for example, Internet users
who use SSL. Clearly an adversary with access to all simultaneous SSL connections should not be able to
efficiently break any user’s SSL connection with high probability. Our model captures this requirement.

4 Known-Difference Related-Key Attack

We begin with a known-difference related-key attack against two users using the RMAC message authenti-
cation scheme. Let U and V denote the two users and let KU

1 ,KU
2 be user U ’s keys and let KV

1 ,KV
2 be user

V’s keys. Assume for this attack that KU
1 = KV

1 . Assume also that the adversary knows the difference D
between KU

2 and KV
2 ; i.e., the adversary knows D = KU

2 ⊕KV
2 . Although this attack may seem somewhat

unrealistic (requiring that the two users share the same first key and that the attacker knows a priori the
difference between the second keys), it motivates the attacks in the following subsections.

The adversary begins by having U tag a message M . Let (T,R) be the resulting tag; i.e., (T,R) ←
RMACKU

1 ,KU
2
(M). Since KV

2 = KU
2 ⊕D, user V will accept (T,D ⊕R) as a tag for message M ; i.e.,

RVERKV
1 ,KV

2
(M, (T,D ⊕R)) will accept. See Figure 2. The query (M, (T,D ⊕R)) to the RVERKV

1 ,KV
2
(·)

oracle is considered a valid forgery because the adversary forces the user V to accept a message that was not
tagged by one of the party’s involved in V’s session.

5 Unknown-Difference Related-Key Attack

Consider again the scenario in which an adversary is attacking the RMAC usage of two users U and V.
As before, let KU

1 ,KU
2 and KV

1 ,KV
2 respectively denote the two users’ pairs of keys. Again assume that

KU
1 = KV

1 . Unlike in Section 4, however, assume that the adversary does not know the difference D between
the keys KU

2 and KV
2 .

To mount a variant of the attack in Section 4, an adversary must first learn the difference between the
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keys KU
2 and KV

2 . One way to learn this difference is shown in the following pseudocode. As discussed in
Section 3, the following adversary is given access to the tagging oracles RMACKU

1 ,KU
2
(·) and RMACKV

1 ,KV
2
(·)

and the corresponding verification oracles RVERKU
1 ,KU

2
(·, ·) and RVERKV

1 ,KV
2
(·, ·).

Adversary
M, M ′ ← any two distinct messages
For i = 1 to 2k/2 do // have U ,V tag M 2k/2 times

(TUi , RUi ) ← RMACKU
1 ,KU

2
(M)

(TVi , RVi ) ← RMACKV
1 ,KV

2
(M)

For each pair of indices i, j ≤ 2k/2 such that TUi = TVj
(T, R) ← RMACKU

1 ,KU
2
(M ′)

RVERKV
1 ,KV

2
(M ′, (T, RUi ⊕RVj ⊕R)) // forgery attempt

The above adversary begins by having both U and V repeatedly tag some message M . After each user
generates approximately 2k/2 tags, we expect at least one collision between the last block cipher key used
by U and the last block cipher key used by V. That is, we expect to find two indices i, j ≤ 2k/2 such that
KU

2 ⊕RUi = KV
2 ⊕RVj . The adversary detects this collision by looking for indices i, j such that TUi = TVj .

When a collision TUi = TVj occurs due to the above internal key collision, the adversary learns that the
difference between the two keys KU

2 and KV
2 is RUi ⊕RVj . The adversary can use its knowledge of this

difference to mount the attack in Section 4.
Assuming that the underlying block cipher is a family of independent random functions, after 2k/2 tagging

requests per user we expect approximately 2k−l additional collisions TUi = TVj at random (not due to the
above internal key collision). Thus we expect that an adversary may have to perform 2k−l forgery attempts
before it successfully forges a message. Provided that the underlying block cipher’s key size k is not much
larger than its block size l, an adversary will succeed after only a few forgery attempts.

6 Trade-Off Attack

We shall now describe a trade-off attack against RMAC in which the attacker does not a priori know any
information about the relationship between different users’ keys. This attack is a “trade-off attack” because,
under our multi-user setting, the attack trades-off the number of users the attacker must attack with the
number of messages the attacker must force each user to MAC. This attack extends the attacks of Section 4
and Section 5.

Consider the adversary shown in the following pseudocode. For this attack, we assume the adversary
has tagging and verification oracle access to 2k/2 different users (where each user’s keys are independently
chosen at random). Let RMACKu

1 ,Ku
2
(·) and RVERKu

1 ,Ku
2
(·, ·) represent the uth user’s tagging and verification

oracles. As stated in Section 3, the adversary wins if it can force any of the users to accept a message which
that user did not previously tag. To simplify the exposition, we present the attack in two phases; it should
be clear that, if desired, the two phases can be interwoven.

Adversary
Phase One:

M ← any message
For u = 1 to 2k/2 do // for each of 2k/2 users

For i = 1 to 2k/2 do // have user u tag M 2k/2 times
(Tu

i , Ru
i ) ← RMACKu

1 ,Ku
2
(M)

Phase Two:
For each pair of distinct users u, v and for each pair of indices i, j
such that Tu

i = T v
j

M ′ ← a message not previously tagged by user v
(T, R) ← RMACKu

1 ,Ku
2
(M ′)

RVERKv
1 ,Kv

2
(M ′, (T, Ru

i ⊕Rv
j ⊕R)) // forgery attempt
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Number of Users Messages per User

Standard Attack 1 2α/2

Standard Attack 2α/4 23α/8

Trade-Off Attack 2α/4 2α/4

Total Key Collision 2α/2 —

Table 1: Comparison of attacks against RMAC; α is both RMAC’s total key length and RMAC’s total tag
length.

The intuition behind the above attack is that if two users u and v collide on their first keys Ku
1 and Kv

1 ,
then the adversary will be able to mount the attack in Section 5. In more detail: given 2k/2 users, we expect
two users u and v to share the same first key Ku

1 = Kv
1 . After tagging 2k/2 messages each, we expect to

find two indices i and j such that Ku
2 ⊕Ru

i = Kv
2 ⊕Rv

j . We detect this collision by looking for users u, v
and indices i, j such that Tu

i = T v
j . For the attack as presented in the above pseudocode, we expect to find

approximately one such collision.
Unfortunately, the signal-to-noise ratio of this attack (as compared to the attack in Section 5) is greatly

reduced; we expect up to approximately 22k−l +2k collisions Tu
i = T j

j at random. Since a low signal-to-noise
ratio is handled by brute forcing through the noise, a small signal-to-noise ratio only mean an inversely
proportional large cost for the second phase of the attack. If we tolerate a cost of approximately 2k oracle
queries for the second phase of the attack (recalling that RMAC uses two keys for a total key length of 2k),
then the above attack works for k up to l.

Why is this a “trade-off attack?” The most interesting aspect of this attack is the unexpected
interaction between users’ keys in RMAC and the corresponding trade-off between the number of users
attacked and the number of messages each user must tag. For simplicity of exposition, we let α = 2k and
make the reasonable assumption that k = l. The value α is the total key length (and the total output length)
of the RMAC message authentication scheme scheme.

Before discussing the trade-off, we first describe a more “standard” attack against RMAC. Consider an
adversary attacking one user’s use of RMAC. The adversary forces the user to repeatedly tag messages of
the form $‖X where X is some fixed sequence of blocks and $ represents a sequence of random blocks chosen
anew for each of the adversary’s chosen-plaintext requests. After the user tags on the order of 2α/2 such
messages, we expect a total collision between two α-bit tags generated by the user. This total collision
implies an internal collision in the internal state of RMAC’s CBC iteration. An adversary can then exploit
the techniques from [PvO95] to forge a message: assume that A‖X and B‖X were the two messages that
generated colliding tags. Then a tag generated for any message A‖Y , Y 6= X, will be a valid tag for B‖Y .

The requirements for the “standard” attack in the above paragraph are as follows: an adversary must be
able to obtain oracle access to one user and the adversary must be able to force that user to tag approximately
2α/2 messages of the attacker’s choice. The attacker itself must exert on the order of 2α/2 work. Now consider
our “trade-off attack” against RMAC. The requirements for this attack are as follows: an adversary must
be able to obtain access to 2α/4 users and the adversary must be able to force all 2α/4 users to tag 2α/4

messages of the attacker’s choice. As with the attack in the previous paragraph, the attacker itself must
exert on the order of 2α/2 work. The trade-off occurs because the attacker, rather than having to force one
user to tag 2α/2 messages, can force 2α/4 users to tag 2α/4 messages each. The resources required for our
trade-off attack lie between the resources required to mount the standard attack in the above paragraph and
the number of users we need before we expect a total key collision between two users.

To paint a more complete spectrum, we can also extend the “standard” attack to the multi-user setting
as follows. Assume an adversary attacks 2α/4 users and that the adversary has each user tag 23α/8 messages
using the “standard” strategy. Then we expect to find a total tag collision in the tags generated by one of
those users; i.e., the standard attack will succeed against one of the 2α/4 users attacked. As Table 1 shows,
when both the trade-off attack and the standard attack are applied in the multi-user setting against 2α/4

users, the trade-off attack requires less chosen-plaintexts per user than the standard attack.

Why is this important? The existence of this trade-off attack raises several concerns about the RMAC
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design (and about any scheme that selects a new related key upon every invocation). In particular, we show
that because RMAC uses a large number of keys, different RMAC users can “interact” in a very unusual
way. While it is true that for any cryptographic scheme there is a slight probability that two users will
randomly select the same set of keys, the problem with users accidentally using the same key is compounded
when a cryptographic scheme (like RMAC) uses a different key upon each invocation. We also note that
RMAC’s design makes it vulnerable to scheme-level related-key attacks (Sections 4–5) and potential related-
key attacks against the underlying block cipher [Bih93].

7 Key-Collision Attacks

The trade-off attack in the previous section can be converted to a Biham-style key-collision attack [Bih02]
against a single user in which the adversary forces that user to tag approximately 2α/4 messages and the
adversary performs approximately 23α/4 offline computations. Details will appear in the final version of this
paper.
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