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Abstract

This paper presents a variant of the new public key encryption of Cramer and Shoup based on
Paillier’s decision composite residuosity assumption, along with an efficient protocol for verifiable
encryption of discrete logarithms. This is the first verifiable encryption system that provides
chosen ciphertext security and avoids inefficient cut-and-choose proofs. This has numerous
applications, including fair exchange and key escrow. We also present efficient protocols for
verifiable decryption, which has applications to, e.g., confirmer signatures. The latter protocols
build on a new protocol for proving whether or not two discrete logarithms are equal that is of
independent interest. Prior such protocols were either inefficient or not zero-knowledge.
Keywords. Verifiable encryption, verifiable decryption, adaptive chosen ciphertext security,
public key encryption.

1 Introduction

A public key encryption scheme is a primitive that allows a sender to secretly transmit a message
to a receiver. However, in some applications, parties may be required to prove that a ciphertext en-
crypts a plaintext that satisfies a particular, application-dependent “validity” property, but without
revealing any additional information about the plaintext. The proving party may be the encryptor,
in which case we call this verifiable encryption, or she may be the decryptor, in which case we call
this verifiable decryption.

A typical application is one where a designated trusted third party makes available a public
encryption key but is otherwise only occasionally involved in the protocol. Using verifiable en-
cryption, the encryptor of a plaintext can assure the recipient of the ciphertext that the plaintext
is “valid,” so that should the trusted third party be invoked to decrypt the ciphertext, a “valid”
plaintext will be obtained. Using verifiable decryption, we can minimize the trust that must be
placed in the third party, and we can also use the third party to prove the “validity” of a plaintext,
without revealing the plaintext itself.

Example applications are digital payment systems with revocable anonymity (e.g., [12, 26]),
verifiable signature sharing (e.g., [27]), (publicly) verifiable secret sharing (e.g., [40]), escrow schemes
[35, 41], confirmer signatures (e.g., [13]), anonymous voting protocols (e.g., [7, 29]), group signature
and identity escrow schemes (e.g., [4, 31]), and fair exchange of signatures (e.g., [1, 3, 5]).
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In this paper we consider the problem of verifiable encryption of discrete logarithms. This is
basically a protocol that allows one player to encrypt a discrete logarithm of some group element
under the public key of a third party and prove to a second party that the ciphertext will indeed
decrypt as advertised. In most applications it is important that the encryption scheme provides
chosen ciphertext security [37], as the third party itself is basically a decryption oracle. This
requirement is often overlooked in the literature.

Up until now, the only known way to build a verifiable encryption protocol for discrete log-
arithms in conjunction with any known chosen ciphertext secure encryption scheme was via the
relatively inefficient cut-and-choose paradigm (e.g., [1, 10]). However, it was known [11, 32] how to
avoid the cut-and-choose paradigm if one was willing to accept a weaker form of security, namely
semantic security [28].

In this paper, we present a variant of the new public key encryption of Cramer and Shoup [22]
based on Paillier’s decision composite residuosity assumption [34], along with an efficient protocol
for verifiable encryption of discrete logarithms. This is the first such verifiable encryption system
that provides chosen ciphertext security and avoids inefficient cut-and-choose proofs. We note
that many of the example applications mentioned above rely on verifiable encryption of discrete
logarithms, and hence our construction almost immediately yields significantly better efficiency
and/or security properties for these applications.

In addition to verifiable encryption schemes, we consider verifiable decryption schemes. It
appears that such schemes have not been formally studied before. We present two types of schemes.
In the first, the decryptor is presented with a ciphertext and a plaintext, and states and proves
whether the ciphertext decrypts to the given plaintext. In the second, the decryptor is presented
with a ciphertext and a group element, and states and proves whether the ciphertext decrypts to
the discrete logarithm of the given group element.

Besides providing a very efficient mechanism for reducing the trust placed in and increasing
the accountability of the decryptor, these protocols can also be used to implement confirmer sig-
natures [17], as we shall discuss briefly. In fact, the resulting confirmer signature scheme is the
most efficient known scheme providing perfect convertibility of confirmer signatures into ordinary
signatures such as DSS or Schnorr.

We note that we do not rely on the random oracle model [6] in any of our proofs of security.
However, we also note that there are no previously known protocols which achieve our goals of
efficiency and security even using the random oracle model.

Technical contributions. One technical challenge in developing our schemes was to modify the
Cramer-Shoup encryption scheme so as to make it amenable to verifiable encryption and decryption.
Dealing properly with elements of order two in the group Z∗n2 turns out to be a rather subtle problem.
In designing our verifiable decryption schemes, we have developed some protocols of independent
interest. One is a zero-knowledge proof system for proving that that two discrete logarithms are
not equal, where the prover only needs to know one of the discrete logarithms. The simplest form of
the protocol works in a group of prime order group. These protocols have application in confirmer
signature schemes and in undeniable signature scheme to disavow/confirm signatures. We also
generalize our proof system to work in subgroups of Z∗n2 — maintaining zero-knowledge in this
setting turns out to be rather challenging.
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2 Preliminaries

2.1 Notation

Let a be a real number. We denote by bac the largest integer b ≤ a, by dae the smallest integer
b ≥ a, and by dac the largest integer b ≤ a + 1/2. For positive real numbers a and b, let [a]
denote the set {0, . . . , bac − 1} and [a, b] denote the set {bac, . . . , bbc} and [−a, b] denote the set
{−bac, . . . , bbc}.

Let a, b, and c be integers, with b > 0. Most of the time, we use least non-negative remainders,
i.e., c = a mod b is a − ba/bcb and we have 0 ≤ c < b. Sometimes, we have to compute balanced
remainders, i.e., c = a rem b is a− da/bcb and we have −b/2 ≤ c < b/2. Moreover, if b is odd, then
−(b− 1)/2 ≤ a rem b ≤ (b− 1)/2 for all a.

By neg(λ) we denote a function for which neg(λ) < 1/p(λ) holds for all polynomials p(λ) and
all sufficiently large λ.

We use notation introduced by Camenisch and Stadler [14] for the various zero-knowledge
proofs of knowledge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For instance,

PK{(a, b, c) : y = gahb ∧ y = gahc ∧ (u ≤ a ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers a, b, and g such that y = gahb and
y = gahc holds, where v < a < u,” where y, g, h, y, g, and h are elements of some groups G = 〈g〉 =
〈h〉 and G = 〈g〉 = 〈h〉. The convention is that the elements listed in the round brackets denote
quantities the knowledge of which is being proved (and are in general not known to the verifier),
while all other parameters are known to the verifier. Using this notation, a proof-protocol can be
described by just pointing out its aim while hiding all details.

2.2 Special honest-verifier Zero-Knowledge Protocols

A special honest-verifier zero-knowledge protocol is a protocol between a prover and a verifier,
where y is their common input and x is the prover’s additional input. The protocol is restricted
to three moves: in the first move the prover sends the verifier a “commitment” message t, in the
second move the verifier sends the prover a “challenge” message c, and in the third move the prover
sends the verifier a “response” message s. Finally there must exist a simulator that, on input y, any
“challenge” message c̃, outputs a “commitment” and “response” messages t̃ and s̃ such that the
distribution of the triple (t̃, c̃, s̃) is (statistically) indistinguishable from the one of triples (t, c, s)
stemming from real conversations of the prover and the verifier for which c = c̃. Note that the
existence of such a simulator implies that the protocol is (ordinary) honest-verifier zero-knowledge.

For particular types of proof systems, we shall give explicit, detailed definitions of special
honest-verifier zero knowledge, as appropriate.

While this notion of zero-knowledge is not sufficient for most applications, there exist a number
of generic constructions to turn a special honest-verifier zero-knowledge protocol into one that sat-
isfies stronger notions of zero-knowledge. The most important examples are probably the construc-
tions to obtain concurrent zero-knowledge protocols [23, 25, 15] or witness-hiding protocols [19].
In particular, the construction due to Damg̊ard achieves (concurrent) zero-knowledge virtually for
free [23].
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2.3 Secure Public-Key Encryption

Here, we recall the notion of a public-key encryption scheme. Actually, we need the notion of a
public-key encryption scheme that supports labels. A label is an arbitrary bit string that is input
to the encryption and decryption algorithms, specifying the “context” in which the encryption or
decryption operation is to take place.

A public key encryption scheme provides three algorithms:

• a probabilistic, polynomial-time key generation algorithm G that on input 1λ — where λ ≥ 0
is a security parameter — outputs a public-key/private-key pair (PK,SK). A public key PK
specifies a finite, easy-to-recognize message space MPK.

• a probabilistic, polynomial-time encryption algorithm E that takes as input a public key PK,
a message m ∈MPK, and a label L, and outputs a ciphertext ψ.

• a deterministic, polynomial-time decryption algorithm D that takes as input a private key SK,
a ciphertext ψ, a label L, and outputs either a message m ∈MPK, where PK is the public-key
corresponding to SK, or a special symbol reject.

Any public-key encryption scheme should satisfy a “correctness” or “soundness” property, which
loosely speaking means that the decryption operation “undoes” the encryption operation. For our
purposes, we can formulate this as follows. We call a public-key encryption scheme sound if for
all (PK,SK) ∈ G(1λ), for all m ∈ MPK, for all L ∈ {0, 1}∗, and for all ψ ∈ E(PK,m, L), we have
D(SK, ψ, L) = m.

This definition can easily be relaxed to allow for an incorrect decryption with negligible proba-
bility, but we do not pursue this matter here. For all encryption schemes presented in this paper, it
is trivial to verify this soundness property, and so we will not explicitly deal with this issue again.

We say that a ciphertext is valid w.r.t. a label L (and a key pair (PK,SK)) if the decryption
algorithm does not reject it and is invalid w.r.t. L otherwise.

Note that in this paper, we only work with finite message spaces.

2.4 Adaptive Chosen Ciphertext Security

Consider a public-key encryption scheme, and consider the following game, played against an arbi-
trary probabilistic, polynomial-time adversary.

1. Key-Generation Phase. Let λ ≥ 0 be the security parameter. We run the key-generation
algorithm of the public-key encryption scheme on input 1λ, and get a key pair (PK,SK). We
equip an encryption oracle with the public key PK, and a decryption oracle with the secret
key SK. The public-key PK is presented to the adversary.

2. Probing Phase I. In this phase, the attacker gets to interact with the decryption oracle in an
arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, specified by
the adversary. More precisely, in each round of this interaction, the adversary sends a query
(ψ,L) to the decryption oracle. A query is a pair of bit strings chosen in an arbitrary way by
the adversary. The decryption oracle in turn decrypts ψ with label L under the secret key
SK, and responds to the query by returning the decryption to the adversary.

3. Target-Selection Phase. The adversary selects two messages m0 and m1 from the message
space, along with a label L∗, and presents (m0,m1, L

∗) to the encryption oracle. The en-
cryption oracle selects a random σ ∈ {0, 1}, and encrypts mσ with label L∗ under PK. The
resulting encryption ψ∗, the target ciphertext, is presented to the adversary.
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4. Probing Phase II. This phase is as Probing Phase I, the only difference being that the de-
cryption oracle only responds to queries (ψ,L) with (ψ,L) 6= (ψ∗, L∗).

5. Guessing-Phase. The adversary outputs a bit σ̂.

The adversary is said to win the game if σ̂ = σ. We define the advantage (over random guessing)
of the adversary as the absolute value of the difference of the probability that he wins and 1/2.

A public key encryption scheme is said to be secure against adaptive chosen ciphertext attack if
for all polynomial time, probabilistic adversaries, the advantage in this guessing game is negligible
as a function of the security parameter.

3 The Encryption Scheme

3.1 Background

Let p, q, p′, q′ be distinct odd primes with p = 2p′ + 1 and q = 2q′ + 1, and where p′ and q′ are both
` bits in length. Let n = pq and n′ = p′q′. Consider the group Z∗n2 and the subgroup P of Z∗n2

consisting of all nth powers of elements in Z∗n2 .
Paillier’s Decision Composite Residuosity (DCR) assumption [34] is that given only n, it is hard

to distinguish random elements of Z∗n2 from random elements of P.
To be completely formal, one should specify specify a sequence of bit lengths `(λ), parameterized

by a security parameter λ ≥ 0, and to generate an instance of the problem for security parameter
λ, the primes p′ and q′ should be distinct, random primes of length ` = `(λ), such that p = 2p′ + 1
and q = 2q′ + 1 are also primes.

The primes p′ and q′ are called Sophie Germain primes and the primes p and q are called safe
primes. It has never been proven that there are infinitely many Sophie Germain primes. Neverthe-
less, it is widely conjectured, and amply supported by empirical evidence, that the probability that
a random `-bit number is Sophie Germain prime is Ω(1/`2). We shall assume that this conjecture
holds, so that we can assume that problem instances can be efficiently generated.

Note that Paillier did not make the restriction to strong primes in originally formulating the
DCR assumption. As will become evident, we need to restrict ourselves to strong primes for
technical reasons. However, it is easy to see that the DCR assumption without this restriction
implies the DCR assumption with this restriction, assuming that strong primes are sufficiently
dense, as we are here.

We can decompose Z∗n2 as an internal direct product

Z∗n2 = Gn ·Gn′ ·G2 ·T,

where each group Gτ is a cyclic group of order τ , and T is the subgroup of Z∗n2 generated by
(−1 mod n2). This decomposition is unique, except for the choice of G2 (there are two possible
choices). For any x ∈ Z∗n2 , we can express x uniquely as x = x(Gn)x(Gn′)x(G2)x(T), where for
each Gτ , x(Gτ ) ∈ Gτ , and x(T) ∈ T.

Note that the element h = (1 + n mod n2) ∈ Z∗n2 has order n, i.e., it generates Gn, and that
ha = (1 + an mod n2) for 0 ≤ a < n. Observe that P = Gn′G2T.

3.2 The Scheme

For a security parameter λ ≥ 0, ` = `(λ) is an auxiliary parameter.
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The scheme makes use of a keyed hash scheme H that uses a key hk, chosen at random from
an appropriate key space associated with the security parameter λ; the resulting hash function
Hhk(·) maps a triple (u, e, L) to a number in the set [2`]. We shall assume that H is collision
resistant, i.e., given a randomly chosen hash key hk, it is computationally infeasible to find two
triples (u, e, L) 6= (u′, e′, L′) such that Hhk(u, e, L) = Hhk(u′, e′, L′).

Let abs : Z∗n2 → Z∗n2 map (a mod n2), where 0 < a < n2, to (n2 − a mod n2) if a > n2/2, and
to (a mod n2), otherwise. Note that v2 = (abs(v))2 holds for all v ∈ Z∗n2 .

We now describe the key generation, encryption, and decryption algorithms of the encryption
scheme, as they behave for a given value of the security parameter λ.

Key Generation. Select two random `-bit Sophie Germain primes p′ and q′, with p′ 6= q′, and
compute p := (2p′ + 1), q := (2q′ + 1), n := pq, and n′ := p′q′, where ` = `(λ) is an auxiliary
security parameter. Choose random x1, x2, x3 ∈R [n2/4], choose a random g′ ∈R Z∗n2 , compute
g := (g′)2n, y1 := gx1 , y2 := gx2 , and y3 := gx3 . Also, generate a hash key hk from the key space of
the hash scheme H associated with the security parameter λ. The public key is (hk, n, g, y1, y2, y3).
The secret key is (hk, n, x1, x2, x3).

In the rest of the paper, let h = (1 + n mod n2) ∈ Z∗n2 , which as discussed above, is an element
of order n.

Encryption. To encrypt a message m ∈ [n] with label L ∈ {0, 1}∗ under a public key as above,
choose a random r ∈R [n/4] and compute

u := gr , e := yr1h
m , and v := abs

(
(y2y

Hhk(u,e,L)
3 )r

)
.

The ciphertext is (u, e, v).

Decryption. To decrypt a ciphertext (u, e, v) ∈ Z∗n2 ×Z∗n2 ×Z∗n2 with label L under a secret key
as above, first check that abs(v) = v and u2(x2+Hhk(u,e,L)x3) = v2. If this does not hold, then output
reject and halt. Next, let t = 2−1 mod n, and compute m̂ := (e/ux1)2t. If m̂ is of the form hm for
some m ∈ [n], then output m; otherwise, output reject.

This scheme differs from the DCR-based schemes presented in [22], because in our situation,
special attention must be paid to the treatment of elements of order 2 in the Z∗n2 , as these can cause
some trouble for the proof systems we discuss in the next sections. Because of these differences,
the above encryption scheme does not exactly fit into the general framework of [22], even though
the basic ideas are the same. We therefore analyze the security of the scheme starting from first
principles, rather than trying to modify their framework.

Before presenting the security analysis, we remark on one of the more peculiar aspects of the
scheme, namely, the role of the abs(·) function in the encryption and decryption algorithms. If one
left this out, i.e., replaced abs(·) by the identity function, then the scheme would be malleable, as
(u, e, v) is an encryption of some message m with label L, then so is (u, e,−v). This particular type
of malleability [30, 38] is in fact rather “benign,” and would be acceptable in most applications.
However, we prefer to achieve non-malleability in the strictest sense, and because this comes at a
marginal cost, we do so.

Theorem 1. The above scheme is secure against adaptive chosen ciphertext attack provided the
DCR assumption holds, and provided H is collision resistant.
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The rest of this section is devoted to the proof of Theorem 1.
Let us fix a value of the security parameter λ, which fixes ` = `(λ), and let us fix an adversary

A. Let ψ∗ = (u∗, e∗, v∗) denote the target ciphertext, and L∗ the associated label.
We prove this theorem by analyzing a sequence of modifications to the environment in which

the adversary runs. We refer to the attack game run with the original environment as Game 0,
and to the attack game run with subsequent modifications to the environment as Games 1, 2, etc.
Each of these games are best viewed as operating on the same underlying probability space. The
value of the random variable σ is identical in each game, but the output σ̂ of the adversary may
vary among games. We define the event Ti, for i ≥ 0, as the event that the σ = σ̂ in Game i.

Game 1. This is the same as Game 0, except for the following modification to the decryption oracle.
If the decryption oracle is invoked in Probing Phase II with a ciphertext/label pair ((u, e, v), L) such
that (u, e, L) 6= (u∗, e∗, L∗) but Hhk(u, e, L) = Hhk(u∗, e∗, L∗), then the decryption oracle rejects
the ciphertext.

Let F1 be the event that a ciphertext is rejected in Game 1 using the above rejection rule. It is
clear that Games 0 and 1 proceed identically until F1 occurs; more precisely, the events T1 ∧ ¬F1

and T0 ∧ ¬F1 are identical. Therefore,

|Pr[T1]− Pr[T0]| ≤ Pr[F1]. (1)

Moreover, we have
Pr[F1] ≤ AdvCRHFA′(λ), (2)

where AdvCRHFA′(λ) denotes the success probability that a particular adversary A′ has in finding
a collision in H for the given value of the security parameter λ. The running time of A′ is about
the same as that of A. Indeed, given a hash key hk, adversary A′ simply runs Game 1, using the
given value of hk in the key generation algorithm, and when F1 occurs, A′ outputs (u, e, L) and
(u∗, e∗, L∗).

Game 2. This game is the same as Game 1, except for the following modification to the decryption
oracle. If the decryption oracle is invoked in Probing Phase II with a ciphertext (u, e, v) such that
v2 = (v∗)2 and v 6= v∗, then the decryption oracle rejects the ciphertext.

Let F2 be the event that a ciphertext is rejected in Game 2 using the above rejection rule, but
would not have been rejected for any other reason. It is clear that Games 1 and 2 proceed identically
until F2 occurs; more precisely, the events T2 ∧ ¬F2 and T1 ∧ ¬F2 are identical. Therefore,

|Pr[T2]− Pr[T1]| ≤ Pr[F2]. (3)

Moreover, we have
Pr[F2] ≤ AdvFactorA′′(λ), (4)

where AdvFactorA′′(λ) denotes the success probability that a particular algorithm A′′ has in fac-
toring a number n as generated by the encryption algorithm for the given value of the security
parameter λ. The running time of A′′ is about the same as that of A. Algorithm A′′ takes the given
number n, constructs the remaining components of the public key, and then lets adversary A run
in Game 2. If and when event F2 occurs, we have v2 = (v∗)2, v 6= v∗, abs(v) = v, and abs(v∗) = v∗.
This implies that v 6= ±v∗. It follows that if v/v∗ = (a mod n2), then gcd(a, n) splits n.

Game 3. This game is the same as Game 2, except for the following modification to the encryption
oracle. Instead of computing e∗ and v∗ as in the encryption algorithm, we compute them using the
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secret key, as follows:

e∗ := (u∗)x1hmσ

v∗ := abs
(
(u∗)x2+Hhk(u

∗,e∗,L∗)x3

)
This modification is purely conceptual, since the values of e∗ and v∗ computed by the encryption

oracle in Game 3 are identical to those computed in Game 2. Therefore,

Pr[T3] = Pr[T2]. (5)

Game 4. Now we further modify the encryption oracle. Let r∗ denote the value of r generated
by the encryption oracle. Then, instead of computing u∗ as gr

∗
, the encryption oracle in this game

chooses a random ū ∈ P, and sets u∗ := ū2.
We claim that

|Pr[T4]− Pr[T3]| = O(2−`). (6)

To see this, observe that ū2 is uniformly distributed over Gn′ . Also, observe that with probability
1−O(2−`), g is a generator for Gn′ , and that the distribution of r∗ is O(2−`)-close to the uniform
distribution on [n′]. It is an easy exercise to show that the bound (6) follows from these observations.

Game 5. We again modify the encryption oracle. Instead of choosing ū at random from P, the
encryption oracle chooses ū at random from Z∗n2 ; otherwise, the computation is identical to that of
Game 4.

It is clear that any significant difference between Pr[T5] and Pr[T4] leads immediately to an
effective statistical test for distinguishing P from Z∗n2 . More precisely, there exists an adversary
A′′′, whose running time is roughly the same as that of A, such that

|Pr[T5]− Pr[T4]| ≤ AdvDCRA′′′(λ), (7)

where AdvDCRA′′′(λ) denotes the advantage that A′′′ has in distinguishing P from Z∗n2 for the given
value of the security parameter λ.

Game 6. We again modify the encryption oracle. This time, we replace u∗ by a random element
of GnGn′ such that u∗(Gn) has order n.

We claim that
|Pr[T6]− Pr[T5]| = O(2−`). (8)

To see this, note that in Game 5, u∗ is uniformly distributed over GnGn′ , and so u∗(Gn) has order
n with probability 1−O(2−`). The bound (8) follows immediately.

Game 7. Now we modify the key generation algorithm. Instead of choosing x1, x2, x3 at random
from [n2/4], we choose them at random from [nn′].

Since the uniform distribution on [n2/4] is O(2−`)-close to the uniform distribution on [nn′], it
follows immediately that

|Pr[T7]− Pr[T6]| = O(2−`). (9)

Game 8. Now we modify the decryption oracle. In this game, in addition to rejecting a ciphertext
(u, e, v) ∈ Z∗n2 ×Z∗n2 ×Z∗n2 with label L if u2(x2+Hhk(u,e,L)x3) 6= v2, the decryption oracle also rejects
this ciphertext if u /∈ Gn′G2T.

In this game, the decryption oracle leaks no information about the value of x1 modulo n. ¿From
this, and the fact that u∗(Gn) has order n and e∗ = (u∗)x1hmσ , it follows that A’s output σ̂ is
independent of σ. Therefore,

Pr[T8] = 1/2. (10)

8



Let F8 be the event that in Game 8, some ciphertext (u, e, v) with label L is rejected using the
special rejection rule introduced in Game 8, but would not have been rejected for any other reason,
i.e., the special rejection rules introduced in Games 1 and 2 do not apply, and u2(x2+Hhk(u,e,L)x3) =
v2.

It is clear that Games 7 and 8 proceed identically until F8 occurs. More precisely, the events
T8 ∧ ¬F8 and T7 ∧ ¬F8 are identical. Therefore,

|Pr[T8]− Pr[T7]| ≤ Pr[F8]. (11)

Let κ = κ(λ) denote an upper bound on the number of decryption oracle queries made by A
for the given value of the security parameter λ. We assume this bound holds, regardless of the
environment in which A runs. We claim that

Pr[F8] ≤ κ · 2−`. (12)

To prove (12), we argue as follows. Let x̄2 and x̄3 denote the values of x2 and x3, respectively,
modulo n. Similarly, let x̄′2 and x̄′3 denote the values of x2 and x3, respectively, modulo n′.

Let us condition on fixed values of

n, g, x1, x̄
′
2, x̄

′
3, hk,

as well as fixed values of the coin tosses of A. In this conditional probability space, the public key
is fixed, A’s queries to the decryption oracle in Probing Phase I, as well as the responses of the
decryption oracle. To see why responses of the decryption oracle are fully determined, observe that
all ciphertexts (u, e, v) with u /∈ Gn′G2T are rejected, and that the decryption oracle squares u in
all computations involving u; thus, the response of the decryption oracle is determined by x̄′2 and
x̄′3, which are fixed. Also, in this conditional probability space, it is determined whether or not
A invokes the encryption oracle, and if so, A’s inputs to the encryption oracle. However, by the
Chinese Remainder Theorem, the values of x̄2 and x̄3 in this conditional probability space are still
uniformly and independently distributed over [n].

In this conditional probability space, consider a particular invocation of the decryption oracle in
Probing Phase I with a ciphertext (u, e, v) and label L. Suppose that u /∈ Gn′G2T. Let ū = u(G′

n)
2,

ū′ = u(Gn)2, and H = Hhk(u, e, L). Note that ū 6= 1, and so ū has order p, q, or n. Now, we have

u2(x2+Hhk(u,e,L)x3) = (ū)x̄2+Hx̄3(ū′)x̄
′
2+Hx̄′3 .

It follows that u2(x2+Hhk(u,e,L)x3) is uniformly distributed over a particular coset in Gn′Gn of the
subgroup generated by ū. Since v2 is fixed in this conditional probability space, it follows that
u2(x2+Hhk(u,e,L)x3) = v2 with probability at most 2−`.

Now suppose that in this conditional probability space A invokes the encryption oracle with
particular messages m0 and m1, and a label L∗. Let us further condition on fixed values of σ
and u∗. This determines the value of e∗, and also the value of H∗ = Hhk(u∗, e∗, L∗). Let us also
further condition a fixed value of x̄2 + H∗x̄3 modulo n. This determines the value v∗. In the
resulting conditional probability space, the output of the encryption oracle, as well as all queries
and responses of decryption oracle queries in Probing Phase II are completely determined.

In this conditional probability space, consider a particular invocation of the decryption oracle
in Probing Phase II with a ciphertext (u, e, v) and label L, such that (u, e, v, L) 6= (u∗, e∗, v∗, L).
Suppose that u /∈ Gn′G2T, and that the special rejection rules introduced in Games 1 and 2 do
not apply. We consider two cases.
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Case 1: (u, e, L) = (u∗, e∗, L∗). We must have v 6= v∗, since (u, e, v, L) 6= (u∗, e∗, v∗, L). Since
the special rejection rule in Game 2 does not apply, we must have v2 6= (v∗)2, which implies that
u2(x2+Hhk(u,e,L)x3) 6= v2.

Case 2: (u, e, L) = (u∗, e∗, L∗). Since the special rejection rule in Game 1 does not apply,
we must have H 6= H∗. By the definition of H, this implies that H 6≡ H∗ (mod p) and H 6≡
H∗ (mod q). This in turn implies that in this conditional probability space, the distribution of
x̄2 + Hx̄3 modulo n is uniform. It follows that u2(x2+Hhk(u,e,L)x3) is uniformly distributed over a
particular coset in Gn′Gn of the subgroup generated by ū. Since v2 is fixed in this conditional
probability space, it follows that u2(x2+Hhk(u,e,L)x3) = v2 with probability at most 2−`.

The above arguments show that the event F8 occurs for a particular decryption query with
probability at most 2−`. The bound (12) now follows.

Putting together (1)-(12), we have

|Pr[T0]− 1/2| ≤ AdvCRHFA′(λ) + AdvFactorA′′(λ) + AdvDCRA′′′(λ) + κ · 2−` +O(2−`).

Theorem 1 now follows immediately.

3.3 Extensions to Threshold Decryption

Our scheme can easily be transformed to provide threshold decryption, where it comes in handy
that the knowledge of the factorization of n is not required for decryption. This allows one to
reduce the trust assumption for the TTP. This can be done either along the lines in [39], which
requires a random oracle security argument, or along the lines in [16], which does not require that
argument, but for which the decryption protocol is less efficient.

4 Verifiable Encryption

Loosely speaking, verifiable encryption for a relationR is a protocol that allows a prover to convince
a verifier that the ciphertext is an encryption under a given public key of a value w such that
(δ, w) ∈ R for a given δ.

Asokan et al. [1, 2] present a protocol for verifiable encryption for the case where w is a ho-
momorphic pre-image of δ and Camenisch and Damg̊ard [10] present a protocol that works for
any relation R that has a three-move honest-verifier zero-knowledge proof of knowledge where the
verifier sends as a second message a random challenge. Both these protocols work for any secure
public key encryption scheme. However, they are based on the cut-and-choose paradigm and hence
are rather impractical.

In this section we present an efficient verifiable encryption protocol for discrete logarithms
in conjunction with the encryption scheme presented in the previous section. We then discuss
extensions of this protocol.

4.1 Definition of Verifiable Encryption

Previous definitions [1, 2, 10] for verifiable encryption did not distinguish between the processes of
encryption and and of proving that the “right thing” was encrypted. In fact, the protocols proposed
in these papers generate the ciphertext as “by-product” of the proof. Thus, with these protocols
it is for instance not possible to later on prove statements about the generated ciphertext to other
verifiers without resorting to the inefficient general zero-knowledge proof techniques. Similarly,
efficient verifiable decryption seems not to be achievable for these schemes.
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We are interested in a two-stage method where the encryptor first generates a ciphertext and
then proves properties about the ciphertext. This is more modular and seems to be an attractive
feature for a cryptographic primitive. Before stating the formal definition of verifiable encryption,
we begin with a high level discussion of what we are after, along with some auxiliary definitions.

Let (G, E ,D) be a public key encryption scheme, and suppose we have generated a key pair
(PK,SK).

A verifiable encryption scheme proves that a ciphertext encrypts a plaintext satisfying a certain
relation R. The relation R is defined by a generator algorithm, G′, which on input 1λ outputs a
description Ψ = Ψ[R,W,∆] of a binary relation R on W ×∆. We require that the sets R ,W , and
∆ are easy to recognize (given Ψ). For δ ∈ ∆, an element w ∈ W such that (w, δ) ∈ R is called a
witness for δ. The idea is that the encryptor will be given a value δ, a witness w for δ, and a label
L, and then encrypts w under L, yielding a ciphertext ψ. After this, the encryptor may prove to
another party that ψ decrypts under L to a witness for δ. In carrying out the proof, the encryptor
will of course need to make use of the random coins that were used by the encryption algorithm:
we denote by E ′(PK,m, L) the pair (ψ, coins), where ψ is the output of E(PK,m, L) and coins are
the random coins used to compute ψ.

In such a proof system, the (honest) verifier will output 0 or 1, with 1 signifying “accept.”
We of course shall require that the proof system is sound, in the sense that if a verifier accepts a
proof, then with overwhelming probability, ψ indeed decrypts under L to a witness for δ. However,
it is convenient, and adequate for many applications, to take a more relaxed approach: instead
of requiring that ψ decrypts under L to a witness, we only require that a witness can be easily
reconstructed from the plaintext using some efficient reconstruction algorithm. Such an algorithm
recon takes as input a public key PK, a relation description Ψ[R,W, δ], an element δ ∈ ∆, and a
message m ∈MPK ∪ {reject}, and outputs w ∈W ∪ {reject}.

We need to make some technical “compatibility” requirements: we say that an encryption
scheme, a relation generator, and a reconstruction algorithm as above are mutually compatible if
for all λ ≥ 0, all (PK,SK) ∈ G(1λ), and all Ψ[R,W,∆] ∈ G′(1λ), we have

• W ⊂MPK, and

• for all (w, δ) ∈ R, we have recon(PK,Ψ, δ, w) = w.

The first requirement simply says that witness “fit” into the message space, and the second require-
ment simply says that the reconstruction routine does not modify valid witnesses.

We shall also require that the proof system is special honest-verifier zero knowledge. To formu-
late this more precisely below, we let Trans(PK,Ψ, δ, ψ, L, c, w, coins) denote the transcript seen by
a verifier that uses a fixed challenge c.

Definition 1. A proof system (P,V), together with mutually compatible encryption scheme
(G, E ,D), relation generator G′, and reconstruction algorithm recon, form a verifiable encryption
scheme, if the following properties hold.

Correctness: for all (PK,SK) ∈ G(1λ), for all Ψ[R,W,∆] ∈ G′(1λ), for all (w, δ) ∈ R, for all
L ∈ {0, 1}∗, for all (ψ, coins) ∈ E ′(PK, w, L),

Pr[x← V(PK,Ψ, δ, ψ, L)P(PK,Ψ,δ,ψ,L,w,coins) : x = 1] = 1− neg(λ).
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Soundness: for all adversaries (A∗, P∗),

Pr[ (PK,SK)← G(1λ);Ψ[R,W,∆]← G′(1λ);
(δ, ψ, L, aux )← A∗(PK,SK,Ψ);
x← V(PK,Ψ, δ, ψ, L)P∗(aux);
m← D(SK, ψ, L);
w ← recon(PK,Ψ, δ,m) :
x = 1 ∧ (w, δ) /∈ R ] = neg(λ).

Special honest-verifier zero knowledge: There exists a simulator Sim such that for all adver-
saries (A∗, B∗, C∗), we have

Pr[ (PK,SK)← G(1λ);Ψ[R,W,∆]← G′(1λ);
(w, δ, L, aux )← A∗(PK,SK,Ψ), where (w, δ) ∈ R;
(ψ, coins)← E ′(PK, w, L);
c← B∗(aux , ψ);
b← {0, 1};
if b = 0

then α← Trans(PK,Ψ, δ, ψ, L, c, w, coins)
else α← Sim(PK,Ψ, δ, ψ, L, c);

b̂← C∗(aux , ψ, α) :
b = b̂ ] = 1/2 + neg(λ).

The above definitions are fairly traditional. Our formulations of soundness and special honest-
verifier zero knowledge are basically of the “computational” variety, but where we have taken the
notion of “computational” one step further: instead of universally quantifying over the inputs to
the verifier (respectively, simulator), we quantify “computationally.” This is technically convenient,
and is adequate for most applications.

Also, the above definitions assume that the key for the encryption scheme are generated by a
trusted party. However, it is possible to define verifiable encryption in a setting where the keys are
not generated by a trusted party; the definitions in this case are a bit more complicated and subtle,
and we do not present them here. Nevertheless, our protocols require only slight modification to
remain secure in this setting.

4.2 Verifiable Encryption of a Discrete Logarithm

Let (hk, n, g, y1, y2, y3) be a public key of the encryption scheme provided in §3. Recall that the
message space associated with this public key is [n].

Let Γ be a cyclic group of order ρ generated by γ. We assume that γ and ρ are publicly known,
and that ρ is prime. Let W = [ρ] and ∆ = Γ, and let R = {(w, δ) ∈ W × ∆ : γw = δ}. The
“discrete logarithm” relation R is the relation with respect to which we want to verifiably encrypt.

We shall of course require that n > ρ (in fact, we will make a stronger requirement). The
reconstruction routine recon will map a plaintext m ∈ [n] to the integer (m remn) mod ρ, i.e.,
it computes the balanced remainder of m modulo n, and then computes the least non-negative
remainder of this modulo ρ.

Setup. Our protocol requires the auxiliary parameters n, which must the product of two safe
(l + 1)-bit primes p = 2p′ + 1 and q = 2q′ + 1, and g and h, which are two generators of Gn′ ⊂ Z∗n,
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where n′ = p′q′; Gn′ is the subgroup of Z∗n of order n′, and l = l(λ). The requirement that p and q

be safe primes is not essential [24], however, it simplifies our presentation.
One may view n, g, and h as additional components of the public key of the encryption scheme,

or as system parameters generated by a trusted party. Depending on the setting, we may simply
put n := n and g := g. In any event, the prover should not be privy to the factorization of n.

Let k = k(λ) and k′ = k′(λ) be further security parameters, where 2−k(λ) and 2−k
′(λ) are

negligible functions ({0, 1}k is the “challenge space” of the verifier and k′ controls the quality of
the zero-knowledge property). We require that 2k < min{p, q, p′q′, p, q, p′, q′, ρ} holds. Finally, we
require that ρ < n2−k−k

′−3 holds, i.e., that logγ δ “fits into an encryption”. (If this condition is
not meet, the value logγ δ could be split into smaller pieces, each of which would then be verifiably
encrypted. However, we do not address this here.)

The protocol. The common input of the prover and verifier is: the public key (hk, n, g, y1, y2, y3),
the augmented public key (n, g, h), a group element (δ), a ciphertext (u, e, v), and a label L. The
prover has additional inputs m = logγ δ and r ∈R [n/4] such that

u = gr, e = yr1h
m, and v = abs ((y2y

Hhk(u,e,L)
3 )r) .

1. The prover chooses a random s ∈R [n/4] and computes k := gmhs. The prover sends k to the
verifier.

2. Then the prover and verifier engage in the following protocol.

(a) The prover chooses random

r′ ∈R [−n2k+k
′−2, n2k+k

′−2], s′ ∈R [−n2k+k
′−2, n2k+k

′−2], m′ ∈R [−ρ2k+k′ , ρ2k+k′ ].

The prover computes
u′ := gr

′
, e′ := yr

′
1 h

m′
, v′ := (y2y

Hhk(u,e,L)
3 )r

′
, δ′ := γm

′
, and k′ := gm

′
hs

′
.

The prover sends u′, e′, v′, δ′, and k′ to the verifier.

(b) The verifier chooses a random challenge c ∈R {0, 1}k and sends c to the prover.

(c) The prover replies with r̃ := r′ − cr, s̃ := s′ − cs, and m̃ := m′ − cm (computed in Z).

(d) The verifier checks whether the relations

u′
2 = u2cg2r̃, e′

2 = e2cy2r̃
1 h

2m̃, v′
2 = v2c(y2y

Hhk(u,e,L)
3 )2r̃,

δ′ = δcγm̃, k′ = kcgm̃hs̃, and − n/4 < m̃ < n/4

hold. If any of them does not hold, the verifier stops and outputs 0.

3. If v = abs v the verifier outputs 1; otherwise she outputs 0.

Using notation from [14] we denote the sub-protocol of step 2 as

PK{(r,m, s) : u2 = g2r ∧ e2 = y2r
1 h

2m ∧ v2 = (y2y
Hhk(u,e,L)
3 )2r ∧

δ = γm ∧ k = gmhs ∧ −n/2 < m < n/2} .
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Proof of Security. We prove the following theorem about the above system. Given this theorem,
one can apply the standard constructions (e.g., [23]) to turn the sub-protocol used in Step step:subpk
into an efficient one that is zero-knowledge w.r.t. any verifier, and can thus obtain a verifiable
encryption system that satisfies computational zero-knowledge.

Theorem 2. Under the strong RSA assumption, the above system is a verifiable encryption scheme.

Proof. The correctness and special honest-verifier zero knowledge properties are easy to verify, and
we leave this to the reader.

It remains to consider soundness.
If the success-probability of the prover is non-negligible, then there is a knowledge extractor that

produces (in time polynomial in λ and with non-negligible probability) two answers (r̃(1), s̃(1), m̃(1))
(r̃(2), s̃(2), m̃(2)) from the prover on two different challenges c(1) and c(2) w.r.t. the same u′, e′, v′, δ′,
and k′. W.l.o.g., suppose that c(2) > c(1). Let ∆r = r̃(1)− r̃(2), ∆s = s̃(1)− s̃(2), ∆m = m̃(1)− m̃(2),
and ∆c = c(2) − c(1) > 0. From the verification equations one can derive the following equations:

u2∆c = g2∆r e2∆c = y2∆r
1 h2∆m v2∆c = (y2y

Hhk(u,e,L)
3 )2∆r

δ∆c = γ∆m k∆c = g∆mh∆s

Under the strong RSA assumption we can assume that ∆c | ∆s and ∆c | ∆m (we will investigate
this claim later). By construction we have |∆c| < min{p, q, p′q′, p, q, p′, q′, ρ} and hence ∆c is
invertible modulo any of those primes. Let ĉ = ∆c−1 mod nn′. As u2 has order dividing nn′, we
get u2 = g2∆rĉ, i.e.,

u = w1g
∆rĉ (13)

for some w1 of order 2. Similarly, we get

e = w2y
∆rĉ
1 h∆m/∆c (14)

v = w3(y2y
Hhk(u,e,L)
3 )∆rĉ (15)

δ = γ∆m/∆c (16)

for some w2 and w3 of order 2. It is not hard to see that from v = abs v and from Eqns. (13)-(15) it
follows that decryption of the triple (u, e, v) will provide the integer m̄ := ∆m/∆c mod n modulo
n (note that due to the squarings in the decryption algorithm, all the wi disappear).

We claim that for m̌ = (m̄ remn) mod ρ we have δ = γm̌, i.e., that (u, e, v) is an encryption
of logγ δ. As |m̃1|, |m̃2| < n/4 and ∆c | ∆m, we must have |∆m/∆c| < n/2. Hence ∆m/∆c =
((∆m/∆c mod n) remn) = m̄ remn and therefore δ = γ∆m/∆c = γm̌.

It remains to prove that ∆c | ∆m holds under the strong RSA assumption. The following
arguments are along the lines those found in [21, 24]. We show that if ∆c - ∆m, then with
probability at least about 1/2, we can compute a non-trivial root of g. Now, g is a random element
of order n′, and as a random number mod n is of this form with probability about 1/4, we can use
the prover to compute a non-trivial root of a random number mod n with non-negligible probability.

Let us modify the encryption scheme slightly. Let g be element of order n′ as usual, but let us
compute h = ga, for a randomly chosen from a sufficiently large range, e.g., from [n2]. This is a
negligible change in the distribution of h. We have

k∆c = g∆m+a∆s .
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Let us now condition on fixed values of the prover’s view and fixed values of the two challenges
used by the knowledge extractor. So in particular, we now view ∆c, ∆m, and ∆s as fixed, and
we assume that ∆c - ∆m. Let us write a = a2n

′ + a1, where 0 ≤ a1 < n′. In this conditional
probability space, the value a1 is also fixed, but the distribution of a2 is statistically close to the
uniform distribution on [4n].

Now, consider the congruence

∆m+ a∆s ≡ 0 (mod ∆c) .

This congruence holds if and only if

∆m+ a1∆s+ a2n
′∆s ≡ 0 (mod ∆c) .

Now, in the conditional probability space, all terms in the above congruence are fixed, except for
a2. We want to bound from above the probability that this equation holds. We may as well assume
that ∆c - ∆s, because if ∆c | ∆s, then because we are assuming that ∆c - ∆m, the congruence
will never hold. Since gcd(∆c, n′) = 1, it follows that the solutions a2 to the above congruence are
uniquely determined modulo ∆c/d′, where d′ = gcd(∆c,∆s) ≤ ∆c/2. Since the distribution of a2

is statistically close to the uniform distribution on a very large range, it follows that the congruence
holds with probability at most about 1/2.

It is left to show that if ∆c - (∆m + a∆s), then a non-trivial root of g can be computed. Let
d = gcd (∆c, (∆m+ a∆s)) < 2k < min{p, q, p′q′, p, q, p′, q′, ρ}. There are integers α and β such
that d = α∆c+ β(∆m+ a2∆s) and we have

gd = (kβgα)∆c

and so g = w(kβgα)∆c/d for some w with wd = 1. As d < p′, q′, the order of w is either 1 or 2. So
either w = ±1 or gcd(w−1, n) splits n. In the latter case we have factored n and can therefore also
compute a root of g. In the former case we can compute such a root as follows. If ∆c/d is even,
then (kβgα)∆c/d ∈ Gn′ and, because g ∈ Gn′ , we must have w = 1 (since −1 /∈ Gn′). If ∆c/d is odd
then g = (wkβgα)∆c/d. In both cases we have found a root of g.

4.3 Extensions

It is straightforward to extend the above verifiable encryption scheme to a verifiable encryption
scheme that encrypts a (subset of a) representation of a group element with respect to several bases.
Further, all of these protocols can be easily adapted to the case where the order of the group Γ is
not known, i.e., a subgroup of of Z∗N for an RSA-modulus N , provided the order is not divisible by
any small primes.

5 Proving the Inequality of Discrete Logarithms

Our protocol for verifiable decryption (below) requires that one party proves to another party
whether or not two discrete logarithms are equal, where one of the discrete logarithms might not
be known to the prover (that is, in the case the discrete logarihtms are not equal). There are well-
known, efficient, special honest-verifier zero-knowledge proof systems for proving that two discrete
logarithms are equal (see [18]), so we focus on the problem of proving that two discrete logarithms
are unequal. We discuss an efficient protocol for this problem separately as it is of independent
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interest and as the algebraic setting here is simpler than the one in which we use it on the next
section.

Let G = 〈g〉 be a group of prime order q. The prover and verifier have common inputs g, h, y, z ∈
G, where g and h are generators for G, and logg y 6= logh z. The prover has the additional input
x = logg y. The prover and verifier then engage in the following protocol.

1. The prover chooses r ∈R Zq, computes the auxiliary commitment C = (hx/z)r, and sends C
to the verifier.

2. The prover executes the protocol denoted

PK{(α, β) : C = hα
(1
z

)β ∧ 1 = gα
(1
y

)β}
with the verifier.

3. The verifier accepts if it accepts in step 2, and if C 6= 1; otherwise, the verifier rejects.

Note that in an actual implementation, the value C may be sent to the verifier as part of the
first message in the sub-protocol in step 2.

Theorem 3. The above protocol is a special honest-verifier proof system for proving that logg y 6=
logh z.

Proof. Correctness of the protocol is by inspection.
Consider the protocol’s soundness. If a prover can make an honest verifier accept with non-

negligible probability, then using standard rewinding arguments, there exist values α and β such
that the equations

C = hα
(1
z

)β 1 = gα
(1
y

)β (17)

hold. From the second equation of (17) one can conclude that

α ≡ β logg y (mod q) .

Substituting β logg y for α in the first equation of (17), we get C = (hlogg y/z)β. Since the verifier
accepts only if C 6= 1, this implies that hlogg y/z 6= 1, i.e., that logg y 6= logh z.

To see that the protocol is special honest-verifier zero knowledge, note that in an actual run of
the protocol with an honest prover, C is a random element of G. Thus, the simulator can simply
generate C at random, and then use the simulator for the proof in step 2.

Let us discuss related work. Independently of our work, Bresson and Stern [9] provide a protocol
to prove that two discrete logartithms are not equal that is similar to ours. However, their protocol
is about a factor of two less efficient than ours and is only computationally sound. Let us finally
note that the (efficient) protocol proposed by Michels and Stadler [33] to prove whether or not
two discrete logarithms are equal is not zero-knowledge because it reveals the value hx (which the
simulator cannot compute, but a (dishonest) verifier can if he chooses h such the he knows logg h).
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6 Verifiable Decryption

In this section we provide a protocol that allows the decryptor to prove that she decrypted correctly.
In particular, we provide a protocol that allows the decryptor to prove whether or not a given
ciphertext decrypts to a given plaintext. We then extend the protocol to one for proving whether
or not a given ciphertext decrypts to the discrete logarithm of a given group element. These
protocols allow one, for instance, to lessen the trust placed in a third party in scenarios such as
fair exchange. The second protocol enables, for instance, confirmer signatures scheme with perfect
signature conversion (c.f. [13]), as we will show as well. In fact, the resulting confirmer signature
scheme is an order of magnitude more efficient than the ones with the same properties known to
date.

6.1 Definition of Verifiable Decryption

Verifiable decryption is a protocol between a prover, knowing the decryption key, and a verifier,
who as the result of the protocol either rejects or learns whether or not a given ciphertext decrypts
under a given label to a plaintext that satisfies a given relation.

We adopt the notation and terminology in §4.1. In addition, for mutually compatible encryption
scheme encryption scheme (G, E ,D), relation generator G′, and reconstruction algorithm recon, we
define the function f that for all (PK,SK) ∈ G(1λ), all Ψ[R,W,∆] ∈ G′, all ψ,L ∈ {0, 1}∗, and all
δ ∈ ∆

f(Ψ, δ, ψ, L,SK) =

{
1 (recon(PK,Ψ, δ,D(SK, ψ, L)), δ) ∈ R
−1 otherwise.

The (honest) verifier in a verifiable decryption protocol will output either a value ±1, indicating
that this is the value of f , or the value 0, indicating that the proof is invalid.

A difficulty in defining soundness for verifiable decryption is that for many public key encryption
schemes (including ours and, e.g., the El-Gamal based Cramer-Shoup one [20]), it is not well defined
whether or not a ciphertext is valid given only the public key. More precisely, there are ciphertexts
that can be both valid and invalid, depending on the actual value of the secret key. Hence, it
is in principle possible that the decryptor/prover could change her mind about such ciphertexts,
which seems inappropriate. In the following definition, we assume that the public and secret key
are generated by a trusted party which allows us to define soundness in terms of the secret key
and public key rather than only the public key. As for verifiable encryption, the definitions for
the setting where the keys are not generated by a trusted party are a bit more complicated and
subtle, and we do not present them here. However, also in here our protocols require only slight
modification to remain secure in this setting.

Definition 2. A proof system (P,V), together with mutually compatible encryption scheme
(G, E ,D), relation generator G′, and reconstruction algorithm recon, form a verifiable decryption
scheme, if the following properties hold.

Correctness: For all (PK,SK) ∈ G(1λ), for all Ψ[R,W,∆] ∈ G′(1λ), for all δ ∈ ∆, for all ψ,L ∈
{0, 1}∗,

Pr[x← V(PK,Ψ, δ, ψ, L)P(PK,Ψ,δ,ψ,L,SK) : x = f(Ψ, δ, ψ, L, SK)] = 1− neg(λ) .
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Soundness: For all adversaries (A∗, P∗),

Pr[ (PK,SK)← G(1λ);Ψ[R,W,∆]← G′(1λ);
(δ, ψ, L, aux )← A∗(PK,SK,Ψ);
x← V(PK,Ψ, δ, ψ, L)P∗(aux) :
x = −f(Ψ, δ, ψ, L, SK) ] = neg(λ) .

Special honest-verifier zero knowledge: There exists a simulator Sim such that for all adver-
saries (A∗, B∗), we have

Pr[ (PK,SK)← G(1λ);Ψ[R,W,∆]← G′(1λ);
(δ, ψ, L, c, aux )← A∗(PK,SK,Ψ);
b← {0, 1};
if b = 0

then α← Trans(PK,Ψ, δ, ψ, L, c,SK)
else α← Sim(PK,Ψ, δ, ψ, L, c, f(Ψ, δ, ψ, L,SK));

b̂← B∗(aux , α) :
b = b̂ ] = 1/2 + neg(λ) .

6.2 Verifiable Decryption of a Matching Plaintext

We give a protocol for the decryptor to prove whether or not a ciphertext (u, e, v) decrypts to a
message m with label L, i.e., using this protocol she can show that she did correctly decrypt. This
is a special case of verifiable decryption in which the relation R is equality, and the reconstruction
routine returns its last input as its output.

For our encryption scheme in §3, this proof corresponds to proving whether or not the two
equations

u2(x2+Hhk(u,e,L)x3)/v2 = 1 and (e/ux1)2/h2m = 1 (18)

hold (assuming that the public test abs(v) = v is satisfied). If the ciphertext is invalid, one or both
of the two statements do not hold. If the ciphertext is valid but decrypts to another message, the
first statements holds but the second one does not.

Proving that both of these equations hold is a fairly straightforward application of known
techniques.

To prove that at least one of the equations does not hold, we can use the “proof of partial
knowledge” technique of [19], combined with the technique developed in §5. However, because
in the present setting the group has non-prime order we can not prove the relationship among
the secrets in the same way as in §5 and, more importantly, the resulting protocol would not be
zero-knowledge. The former problem can be solved using an auxiliary group Gn′ ⊂ Z∗n as we did in
Section 4. We consider the latter problem. Depending on the values of the secret keys x1, x2, and
x3, the left hand sides of the equations (18), and thus the auxiliary commitments to be provided
in the protocol, lie in different (sub-)groups, i.e., in Gn, Gn′ , or GnGn′ . As the simulator does
to know the values of x1, . . . , x3, it can not simulate these auxiliary commitments. We solve this
problem using the fact that for all elements a ∈ GnGn′ we have

a 6= 1 ⇔ (an ∈ Gn′ ∧ an 6= 1) ∨ (a ∈ Gn ∧ a 6= 1) .

Thus, to prove that (at least) one of the equations (18) does not hold, we prove that either(u2(x2+Hhk(u,e,L)x3)

v2

)n
6= 1 (19)
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or (u2(x2+Hhk(u,e,L)x3)

v2

)n
= 1 and

u2(x2+Hhk(u,e,L)x3)

v2
6= 1 (20)

or ((e/ux1)2

h2m

)n
= (e/ux1)2n 6= 1 (21)

or ((e/ux1)2

h2m

)n
= 1 and

(e/ux1)2

h2m
6= 1 (22)

holds. Now, whenever one of the four cases applies it is always well defined in which group the left-
hand sides of the inequalities lie and we can apply the ideas underlying the protocol in Section 5.
We remark that the case where the statements (19-21) are false but the statement (22) is true
corresponds to the case, where the ciphertexts is a valid encryption of a message different from m.

We are now ready to describe the protocol between the decryptor and a verifier. Their com-
mon input is (hk, n, g, y1, y2, y3), (n, g, h), (u, e, v),m, L and the additional input to the decryptor is
(x1, x2, x3). The triple (n, g, h) is an auxiliary parameter as in the one previous section. (As we
assume here that n is generated by a trusted party as well, i.e., that the decryptor is not provided
with n’s factorization; also, n and n could be identical.) In the following description we assume
that all the messages the prover sends to the verifier prior to the execution of one of the possible
PK protocols will in fact be bundled with the first message of that PK protocol. Here we provide
the proof-protocols only by high-level notation; deriving the actual protocols is easily derived from
it (cf. also the the verifiable encryption protocol presented in §4 and its high-level notation).

1. If m 6∈ [n] or the ciphertext is malformed, (e.g., if v 6= abs(v)), the verifier outputs −1, and
the protocol stops.

2. If (u, e, v) is a valid ciphertext with label L and decrypts to m, the decryptor sends 1 to the
verifier, and then engages in the protocol denoted

PK{(x1, x2, x3) : y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧ v2 = u2x2u2Hhk(u,e,L)x3 ∧ e2

h2m
= u2x1}

with the verifier.

3. If (u, e, v) is an invalid ciphertext w.r.t. the label L or decrypts to some message different
from m, then the decryptor sends −1 to the verifier. They proceed as follows.

(a) The decryptor chooses a1 ∈R [n/4], a2 ∈R [n2/4], a3 ∈R [n/4], and a4 ∈R [n2/4], along
with b1, b2, b3, b3 ∈R [n/4].
She then computes C1 := ga1hb1 , C2 := ga2hb2 , C3 := ga3hb3 , and C4 := ga4hb4 .
She chooses C1 ∈R Gn′ , C2 ∈R Gn, C3 ∈R Gn′ , and C4 ∈R Gn.
Furthermore,

(Case 1) if u2n(x2+Hhk(u,e,L)x3) 6= v2n, she sets C1 := (ux2+Hhk(u,e,L)x3/v)2na1 ,

(Case 2) else if u2(x2+Hhk(u,e,L)x3) 6= v2, she sets C2 := (ux2+Hhk(u,e,L)x3/v)2a2 ,

(Case 3) else if (ux1/e)2 6∈ 〈h〉, she sets C3 := (ux1/e)2na3 ,

(Case 4) else (ux1/e)2 6= h2m, and she sets C4 := (ux1hm/e)2a4 .

The decryptor sends C1, C2, C3, C4, C1, C2, C3, and C4 to the verifier.
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(b) The decryptor and the verifier carry out the protocol denoted

PK
{

(x1, x2, x3, a1, . . . , a4, b1, . . . , b4, r1, . . . , r4 s1, . . . , s4) :[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C1 = u2nr1(
1
v
)2na1 ∧ C1 = ga1hb1 ∧ 1 = (

1
C1

)x2(
1
C1

)Hhk(u,e,L)x3gr1hs1
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C2 = u2r2(
1
v
)a2 ∧ C2 = ga2hb2 ∧ 1 = (

1
C2

)x2(
1
C2

)Hhk(u,e,L)x3gr2hs2
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C3 = u2nr3(
1
e
)2na3 ∧ C3 = ga3hb3 ∧ 1 = (

1
C3

)x1gr3hs3
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C4 = u2r4(
hm

e
)2a4 ∧ C4 = ga4hb4 ∧ 1 = (

1
C4

)x1gr4hs4
]}

,

where r1, . . . , r4, s1, . . . , s4 are temporary secrets (i.e.,

r1 = a1(x2 +Hhk(u, e, L)x3), s1 = b1(x2 +Hhk(u, e, L)x3),
r2 = a2(x2 +Hhk(u, e, L)x3), s2 = b2(x2 +Hhk(u, e, L)x3),
r3 = x1a3, s3 = x1b3,

r4 = x1a4, s4 = x1b4,

(computed in Z)). (To derive the actual protocol one has to apply the techniques by
Cramer et al.[19] for realizing the ∨’s.)

(c) The verifier checks that C2
1 6= 1, C2

2 6= 1, C2
3 6= 1, and C2

4 6= 1.

The computational load of the prover and the verifier is about one to four times the load in the
protocol for verifiable encryption described in the previous section (depending on whether step 2
or step 3 gets carried out).

Theorem 4. Assuming factoring is hard, the above scheme is a verifiable decryption scheme (for
matching plaintexts).

Proof. Correctness is trivial, and we leave this to the reader.
We now show that the protocol is special honest-verifier computational zero-knowledge by pro-

viding a simulator.
First the simulator executes step 1 of the protocol as the decryptor would, that is, if m 6∈ [n] or

if the ciphertext is malformed the simulator stops. The simulator queries an oracle to determine
whether or not ψ decrypts to m. If it does, it sends the verifier 1 it simulates step 2 by the simulator
for the PK -protocol of step 2. If does not, it simulates step 3 as follows. First the simulator sends
the verifier −1. Then it chooses b1, b2, b3, b3 ∈R [n/4]. It then computes C1 := hb1 , C2 := hb2 ,
C3 := hb3 , and C4 := hb4 . It chooses C1 ∈R Gn′ , C2 ∈R Gn, C3 ∈R Gn′ , and C4 ∈R Gn. Next it
invokes the simulator for the PK -protocol of step 3. This concludes the simulator.
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It remains to show that the simulator indeed works. It is clear that the simulation of steps 1
and 2 works. Consider step 3.

Note that in the real run as well as in the simulation the pairs (C1, C1), . . . , (C4, C4) are inde-
pendently distributed. Moreover they obviously have the same distribution in the simulation as in
the real run except for one the pair for which the prover replaces the Ci.

We consider the cases where the prover replaces C1 and C2, respectively. The remaining two
cases are analogous.

Case 1. Here u2n(x2+Hhk(u,e,L)x3) 6= v2n holds and the prover replaces C1. Note that
(u(x2+Hhk(u,e,L)x3)/v)2n ∈ Gn′ and (u(x2+Hhk(u,e,L)x3)/v)2n 6= 1. Thus (u(x2+Hhk(u,e,L)x3)/v) gen-
erates Gn′ (or we could factor n) and C1 = (ux2+Hhk(u,e,L)x3/v)2na1 is a random element of Gn′ as
a1 is chosen at random from the appropriate interval. Also, as b1 is chosen independently of a1, C1

is a random element from Gn′ . Hence C1 and C1 have the same distribution in the run with the
real prover as in the simulation.

Case 2. As the above case does not apply, i.e., (u(x2+Hhk(u,e,L)x3)/v)2n = 1 we have that
(ux2+Hhk(u,e,L)x3)/v)2 ∈ Gn. Again, (ux2+Hhk(u,e,L)x3)/v)2 generates Gn (or we could factor n) and
C2 = (ux2+Hhk(u,e,L)x3/v)2a2 as a1 is chosen at random. For the same reason as in Case 1, C2 is a
random element from Gn′ and C2 and C2 have the same distribution in the run with the real prover
as in the simulation.

These facts together with the fact that all the PK -protocols used as sub-protocols are special
honest-verifier zero-knowledge (showing the latter is standard and left to the reader), imply that
the verifiable decryption protocol is special honest-verifier zero-knowledge. Note that we have used
in an essential way the fact that we quantify “computationally” over the inputs to the simulator:
the inputs that cause the simulator to fail are assumed to be hard to find.

In the remainder we prove soundness. To this end, we present an algorithm that uses algorithms
A∗ and P∗ and takes as input n and n. We then show that if A∗ and P∗ violate the soundness
property with non-negligible probability then the algorithm outputs a factorization of either n
or n with non-negligible probability. The first probability is w.r.t. the coin tosses of G, A∗, P∗,
and V while the second probability is w.r.t. the random choice of n and n (drawn from the same
distribution as induced by G) and the coin tosses of the factoring algorithm.

We choose a random g′ ∈R Z∗n and we set g := g̃2, choose a random r ∈R [n2] and set h := gr.
We choose random x1, x2, x3 ∈R [n2/4], choose a random g′ ∈R Z∗n2 , and compute g := (g′)2n,
y1 := gx1 , y2 := gx2 , and y3 := gx3 .

Now we run A∗ and P∗ on input PK = ((n, g, y1, y2, y3), (n, g, h)) and SK = (x1, x2, x3). By
standard rewinding techniques we can produce two accepting conversations for either the PK pro-
tocol in step 2 or the one in step 3 (for different challenges but the same first message), depending
on whether m = D(1λ,SK, ψ, L) for (m,ψ,L) provided by A∗. We consider the two cases.

Case I. First assume that m 6= D(1λ,SK, ψ, L) but that V ’s output is 1. Let (u, e, v) := ψ. In
this case we get two accepting conversations of the PK protocol in step 2 and hence two answers

(x̃(1)
1 , x̃

(1)
2 , x̃

(1)
3 ) and (x̃(2)

1 , x̃
(2)
2 , x̃

(2)
3 )

for the two different challenges c(1) and c(2) but with the same first message (here we use the same
notation for the protocol variables as for the PK protocol in the previous section). W.l.o.g., suppose
that c(2) > c(1). Let ∆x1 = x̃

(1)
1 − x̃

(2)
1 , ∆x2 = x̃

(1)
2 − x̃

(2)
2 , ∆x3 = x̃

(1)
3 − x̃

(2)
3 , and ∆c = c(2) − c(1).
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From the verification equation of the PK protocol one can derive the following equations:

y1
∆c = g∆x1 , y2

∆c = g∆x2 , y3
∆c = g∆x3 , (23)

v2∆c = u2∆x2u2Hhk(u,e,L)∆x3 , and (24)

(
e2

h2m
)∆c = u2∆x1 . (25)

As n is the product of two safe primes p and q, we have |∆c| < min{p, q, p′q′} and hence ∆c is
invertible modulo n′n. We know xi such that yi = gxi and therefore it follows from (23) that

∆c xi ≡ ∆xi (mod n′) for i = 1, . . . , 3 . (26)

Now, D(1λ,SK, ψ, L) 6= m means that least one of the four statements (19-22) must be true and
therefore at least one of the two statements

u2(x2+Hhk(u,e,L)x3) 6= v2 or (e/ux1)2 6= h2m (27)

holds. We consider these two cases:

Case 1. If u2(x2+Hhk(u,e,L)x3) 6= v2 we must have that u2∆c(x2+Hhk(u,e,L)x3) 6= v2∆c =
u2∆x2+Hhk(u,e,L)∆x3 (from Equation (24) and because ∆c is invertible modulo nn′) and there-
fore also

∆c(x2 +Hhk(u, e, L)x3) 6≡ ∆x2 +Hhk(u, e, L)∆x3 (mod n′n) ,

as the order of u2 divides n′n. From (26) if follows that

∆c(x2 +Hhk(u, e, L)x3) ≡ ∆x2 +Hhk(u, e, L)∆x3 (mod n′) .

Therefore ∆cx2 −∆x2 + (∆cx3 −∆x3)Hhk(u, e, L) must be a non-zero multiple of n′ and we
can factor n.

Case 2. If u2x1 6= ( e
hm )2 we can, similarly as in case 1, conclude that u2∆cx1 6= u2∆x1 from Equa-

tion (25) and and that ∆cx1−∆x1 is a non-zero multiple of n′ which again allows us to factor
n.

Case II. It remains to consider the case when V ’s output is −1 but m = D(1λ,SK, ψ, L) holds.
Let (u, e, v) := ψ. Thus we have

v2 = u2(x2+Hhk(u,e,L)x3) and u2x1 = (
e

hm
)2 . (28)

As usual we obtain two accepting conversation of the PK protocol in step 3 and thus two answers

(x̃(1)
1 , x̃

(1)
2 , x̃

(1)
3 , ã

(1)
1 , . . . , ã

(1)
6 , b̃

(1)
1 , . . . , b̃

(1)
4 , r̃

(1)
1 , . . . , r̃

(1)
4 , s̃

(1)
1 , . . . , s̃

(1)
4 )

and

(x̃(2)
1 , x̃

(2)
2 , x̃

(2)
3 , ã

(2)
1 , . . . , ã

(2)
4 , b̃

(2)
1 , . . . , b̃

(2)
4 , r̃

(2)
1 , . . . , r̃

(2)
4 , s̃

(2)
1 , . . . , s̃

(2)
4 )
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for the two different challenges c(1) and c(2) but with the same first message (here we use the same
notation for the protocol variables as for the PK protocol in the previous section and left out an
intermediate step that deals with the ∨’s (c.f. [19])). W.l.o.g., suppose that c(2) > c(1). Let

∆xi = x̃
(1)
i − x̃

(2)
i (i = 1, . . . , 3); ∆ai = ã

(1)
i − ã

(2)
i (i = 1, . . . , 4);

∆bi = b̃
(1)
i − b̃

(2)
i (i = 1, . . . , 4); ∆si = s̃

(1)
i − s̃

(2)
i (i = 1, . . . , 4);

∆ri = r̃
(1)
i − r̃

(2)
i (i = 1, . . . , 4); ∆c = c(2) − c(1) .

From the verification equation of the PK protocol one can derive that

y1
∆c = g∆x1 , y2

∆c = g∆x2 , and y3
∆c = g∆x3 , (29)

hold and either

C∆c
1 = u2n∆r1(

1
v
)2n∆a1 , C∆c

1 = g∆a1h∆b1 , and 1 = (
1
C1

)∆x2+Hhk(u,e,L)∆x3g∆r1h∆s1 (30)

or

C∆c
2 = u2∆r2(

1
v
)2∆a2 , C∆c

2 = g∆a2h∆b2 , and 1 = (
1
C2

)∆x2+Hhk(u,e,L)∆x3g∆r2h∆s2 (31)

or

C∆c
3 = u2n∆r3(

1
e
)2n∆a3 , C∆c

3 = g∆a3h∆b3 , and 1 = (
1
C3

)∆x1g∆r3h∆s3 (32)

or

C∆c
4 = u2∆r4(

1
e
)n∆a4 , C∆c

4 = g∆a4h∆b4 , and 1 = (
1
C4

)∆x1g∆r4h∆s4 (33)

hold. We know xi such that yi = gxi and therefore it follows from (29) that

∆c xi ≡ ∆xi (mod n′) for i = 1, . . . , 3 . (34)

We next consider the implications of the cases when the equations (30), the equations (31), the
equations (32), or the equations (33) hold in conjunction with (29).

Case 1. Consider the case where Equations (29) and (30) hold. From the last two equations of (30)
we get

g∆a1(∆x2+Hhk(u,e,L)∆x3)h∆b1(∆x2+Hhk(u,e,L)∆x3) = g∆c∆r1h∆c∆s1 .

Therefore

∆a1(∆x2 +Hhk(u, e, L)∆x3) = ∆c∆r1 (35)

must hold (in Z); otherwise (with overwhelming probability) either α or α− rβ is a non-zero
multiple of n′ where

α := ∆a1(∆x2 +Hhk(u, e, L)∆x3)−∆c∆r1 ,

β := ∆c∆e1 −∆b1(∆x2 +Hhk(u, e, L)∆x3) ,
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and r is the random number we chose at the beginning of the factoring algorithm to compute
h. This allows us to factor n.

Because n is the product of two safe primes and we have |∆c| < min{p, q, p′q′} and it follows
from C2

1 6= 1 (which is checked by the verifier in step 3c) that C∆c
1 6= 1. Therefore, from the

first equation of (30) it follows that u2n∆r1 6= v2n∆a1 , and by Eq. (35) and the fact that u2n

and v2n have order dividing n′, we have

u2n∆a1(∆x2+Hhk(u,e,L)∆x3) 6= v2n∆c∆a1 ,

and hence

u2n(∆x2+Hhk(u,e,L)∆x3) 6= v2n∆c . (36)

From (36) and the first equation of (28) we have

u2n(∆x2+Hhk(u,e,L)∆x3) 6= v2n∆c = u2n∆c(x2+Hhk(u,e,L)x3) .

Because the order of u2n divides n′ we can further conclude that

∆x2 +Hhk(u, e, L)∆x3 6≡ ∆c(x2 +Hhk(u, e, L)x3) (mod n′) .

From (34) if follows that

∆x2 +Hhk(u, e, L)∆x3 ≡ ∆c(x2 +Hhk(u, e, L)x3) (mod n′) ,

which is a contradiction to the previous equation and hence this case cannot occur.

Case 2. We consider the case where Equations (29) and (31) hold. Similarly as in case 1, we can
derive that

u2(∆x2+Hhk(u,e,L)∆x3) 6= v2∆c = u2∆c(x2+Hhk(u,e,L)x3)

holds (or we factor n with non-negligible probability). Because the order of u2 divides n′n we
can further conclude that

∆x2 +Hhk(u, e, L)∆x3 6≡ ∆c(x2 +Hhk(u, e, L)x3) (mod n′n) .

From (34) if follows that

∆x2 +Hhk(u, e, L)∆x3 ≡ ∆c(x2 +Hhk(u, e, L)x3) (mod n′) .

Therefore ∆cx2 −∆x2 + (∆cx3 −∆x3)Hhk(u, e, L) must be a non-zero multiple of n′ and we
can factor n.

Case 3. Similarly as in case 1, from the Equations (29) and (32), one can derive that

u2n∆x1 6= e2n∆c (37)

holds (or we factor n with non-negligible probability). From the second equation of (28) and
hn = 1 if follows that u2nx1 = e2n and u2n∆cx1 = e2n∆c, and from (37), that

u2n∆cx1 6= u2n∆x1 and finally that ∆cx1 6≡ ∆x1 (mod n′)

as u2n has order dividing n′. The latter, however, is a contradiction to Eqn. (34) and thus
this case cannot occur.
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Case 4. Similarly as before, from the Equations (29) and (33) one can show that

u2∆x1 6= (
e

hm
)2∆c (38)

holds (or we factor n with non-negligible probability). From the second equation of (28) and
from (38) we get u2∆cx1 6= u2∆x1 . Similarly as in case 2, it follows that ∆cx1 − ∆x1 is a
multiple of n′ and we are again able to factor n.

6.3 Verifiable Decryption of a Discrete Logarithm

We now describe how the protocol provided in the previous section can be modified to obtain a
protocol for verifiable decryption of a discrete logarithm. The setting and notation are as in §4.2;
in particular, we make use of the same reconstruction routine.

We need to modify the protocol from the previous section only for the cases where the ciphertext
is valid. That is, instead of proving that the ciphertext decrypts (or does not decrypt) to a given
message, the decryptor now has to prove that it decrypts (or does not decrypt) to a value m such
that (m remn) ≡ logγ δ (mod ρ). This corresponds to proving whether or not the three equations

u2(x2+Hhk(u,e,L)x3)/v2 = 1 or (e/ux1)2n = 1 or δ = γ(logh2 (e/ux1 )2 remn) (39)

hold. Note that logh2(e/ux1)2 exist if and only if (e/ux1)2n = 1. The first two statements of (39)
can be handled as in the previous section. The last one can be handled by proving knowledge of a
secret, say m, that (1) equals the encrypted message modulo n, (2) equals (or doesn’t equal) logγ δ
modulo q, and (3) lies in the interval [−(n−1)/2, (n−1)/2]. The first two properties can be proved
under the strong RSA assumption using additional parameters (n, g, h) as in the previous section.
We discuss proving the last one. Different from the interval-proof used for verifiable encryption,
this interval-proof needs to be exact, i.e., if we allowed for the same sloppiness, then the prover
could for instance add a multiple of n to m and then show that (u, e, v) does not (or does) decrypt
to logγ δ.

Boudot [8] presents several protocols to prove that in integer m lies exactly in an interval [a, b].
One protocol uses the fact that x ∈ [a, b] is equivalent to b− x ≥ 0 and x− a ≥ 0 and that one can
show that an integer is positive by proving knowledge of four values the squares of which sum up to
the considered integer (in Z), again under the strong RSA assumption using additional parameters
(n, g, h). Lagrange proved the an integer can always be represented as four squares and Rabin and
Shallit [36] provide an efficient algorithm for it.

We note that in our case the interval is symmetric and it therefore suffices to prove that
((n− 1)/2)2 −m2 ≥ 0 holds, which is more efficient.

With these observations one can derive the following protocol for verifiable decryption of a
discrete logarithm from the protocol presented in the previous section.

The common input of the decryptor and the verifier is (hk, n, g, y1, y2, y3), (n, g, h), (u, e, v), δ, L
and the additional input to the decryptor is (x1, x2, x3).

1. If δ 6∈ Γ or the ciphertext is malformed (e.g., if v 6= abs(v)), the verifier outputs −1, and the
protocol stops.

In case (u, e, v) is a valid ciphertext w.r.t. label L, the prover decrypts it, thereby obtain m,
and computes integers w1, . . . , w4 such that

∑4
i=1wi = (n− 1)2/4−m2 (c.f. [36]).
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2. If (u, e, v) indeed decrypts to logγ δ with label L, i.e., if δ = γm remn, the decryptor sends 1
to the verifier, chooses t1, . . . , t5 ∈R [n/4], computes

W1 := gw1ht1 ,W2 := gw2ht2 ,W3 := gw3ht3 ,W4 := gw4ht4 , and M := gmht5 ,

and sends W1, W2, W3, W4, and M to the verifier.

The prover and the verifier engage in the protocol

PK{(x1, x2, x3,m,w1, . . . , w4, t1, . . . , t5, s) :
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

v2 = u2x2u2Hhk(u,e,L)x3 ∧ e2 = u2x1h2m ∧
W1 = gw1ht1 ∧ W2 = gw2ht2 ∧ W3 = gw3ht3 ∧ W4 = gw4ht4 ∧

M = gmht5 ∧ g(n−1)2/4 = MmWw1
1 Ww2

2 Ww3
3 Ww4

4 hs ∧
δ = γm} ,

where s is a temporary secret (i.e., s = −t5m−
∑4

i=1witi).

3. If (u, e, v) is an invalid ciphertext w.r.t. the label L or decrypts to some message m such that
δ 6= γm remn, then the decryptor sends −1 to the verifier. They proceed as follows.

(a) The decryptor chooses a1 ∈R [n/4] a2 ∈R [n2/4], a3 ∈R [n/4], and a4 ∈R [ρ], along with
b1, . . . , b3, t1, . . . , t5 ∈R [n/4].
She computes C1 := ga1hb1 , C2 := ga2hb2 , C3 := ga3hb3 , and C4 := ga4hb4 .
She computes W1 := ht1 , W2 := ht2 , W3 := ht3 , W4 := ht4 , and M := ht5 .
She chooses C1 ∈R Gn′ , C2 ∈R Gn, C3 ∈R Gn′ , and C4 ∈R Γ.
Furthermore,

(Case 1) if u2n(x2+Hhk(u,e,L)x3) 6= v2n, she sets C1 := (ux2+Hhk(u,e,L)x3/v)2na1 ,

(Case 2) else if u2(x2+Hhk(u,e,L)x3) 6= v2, she sets C2 := (ux2+Hhk(u,e,L)x3/v)2a2 ,

(Case 3) else if (ux1/e)2 6∈ 〈h〉, she sets C3 := (ux1/e)2na3 ,

(Case 4) else δ 6= γm remn, and she sets C4 := (γm/δ)2a4 ,

Wi := gwihti (i = 1, . . . , 4), and
M := gmht5 .

The decryptor sends C1, C2, C3, C4, C1, C2, C3, and C4 to the verifier.
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(b) The decryptor and the verifier carry out the protocol denoted

PK
{

(x1, x2, x3, a1, . . . , a4, b1, . . . , b4, r1, . . . , r4 s1, . . . , s5, t1, . . . , t5, w1, . . . , w4,m) :[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C1 = u2nr1(
1
v
)2na1 ∧ C1 = ga1hb1 ∧ 1 = (

1
C1

)x2(
1
C1

)Hhk(u,e,L)x3gr1hs1
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C2 = u2r2(
1
v
)a2 ∧ C2 = ga2hb2 ∧ 1 = (

1
C2

)x2(
1
C2

)Hhk(u,e,L)x3gr2hs2
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C3 = u2nr3(
1
e
)2na3 ∧ C3 = ga3hb3 ∧ 1 = (

1
C3

)x1gr3hs3
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

e2 = u2x1h2m ∧
W1 = gw1ht1 ∧ W2 = gw2ht2 ∧ W3 = gw3ht3 ∧ W4 = gw4ht4 ∧

M = gmht5 ∧ g(n−1)2/4 = MmWw1
1 Ww2

2 Ww3
3 Ww4

4 hs5 ∧

C4 = γr4(
1
δ
)a4 ∧ C4 = ga4hb4 ∧ 1 = (

1
C4

)mgr4hs4
]}

,

where r1, . . . , r4, s1, . . . , s4 are temporary secrets (i.e.,

r1 = a1(x2 +Hhk(u, e, L)x3), s1 = b1(x2 +Hhk(u, e, L)x3),
r2 = a2(x2 +Hhk(u, e, L)x3), s2 = b2(x2 +Hhk(u, e, L)x3),
r3 = x1a3, s3 = x1b3,

r4 = ma4, s4 = mb4,

s5 = −t5m−
4∑
i=1

witi.

(computed in Z)). (To derive the actual protocol one has to apply the techniques by
Cramer et al.[19] for realizing the ∨’s.)

(c) The verifier checks that C2
1 6= 1, C2

2 6= 1, C2
3 6= 1, and C4 6= 1.

Theorem 5. Under the strong RSA assumption, the above scheme is a verifiable decryption scheme
(for discrete logarithms).

Proof. One needs to prove soundness, correctness and special honest-verifier zero-knowledge w.r.t.
an oracle f ′(δ, ,SK, ψ, L) that replies with 1 if δ = γm̂ where m̂ = D(SK, ψ, L) remn, or with −1
otherwise.

The following proof is very similar to the one of Theorem 4.
Correctness is by inspection.
We now show that the whole protocol is special honest-verifier computational zero-knowledge

by providing a simulator.
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First the simulator executes step 1 of the protocol as the decryptor would, that is, if δ 6∈ Γ or
v 6= abs(v) it indicate this to the verifier, sends the verifier −1, and stops. Otherwise, the simulator
chooses random m,w1, . . . , w4 ∈R [−n/2, n/2].

If f ′(δ,SK, ψ, L) = 1, it simulates step 2 as follows. the simulator chooses t1, . . . , t5 ∈R [n/4]
and computes W1 := ht1 , W2 := ht2 , W3 := ht3 , W4 := ht4 , and M := ht5 . Then is sends the
W1, . . . ,W4, and M to the verifier and finally invokes the simulator for the PK -protocol of step 2.

If f ′(δ,SK, ψ, L) = 1, it simulates step 3 as follows. The simulator chooses b1, b2, b3, b3 ∈R
t1, . . . , t5[n/4]. It then computes C1 := hb1 , C2 := hb2 , C3 := hb3 , and C4 := hb4 . W1 := ht1 ,
W2 := ht2 , W3 := ht3 , W4 := ht4 , and M := ht5 . It chooses C1 ∈R Gn′ , C2 ∈R Gn, C3 ∈R Gn′ ,
and C4 ∈R Γ. Next it invokes the simulator for the PK -protocol of step 3. This concludes the
simulator.

The argument that this simulation actually works is rather similar to the one given in the proof
of Theorem 4.

In the remainder we prove soundness. To this end, we present an algorithm that uses algorithms
A∗ and P∗ and takes as input n and (n, z). We show that if A∗ and P∗ violate the soundness
property with non-negligible probability then the algorithm outputs either a non-trivial root of z or
the factorization of n. with non-negligible probability. The first probability is w.r.t. the coin tosses
of G, A∗, P∗, and V while the second probability is w.r.t. the random choice of n and n (drawn
from the same distribution as induced by G), as well as the random choice of z, and the coin tosses
of the SRSA-breaking algorithm. Assume that z is a random element of order n′. (As a random
number mod n is of this form with probability about 1/4, this assumption degrades the success
probability of our SRSA-breaking algorithm by this factor.)

We set g := z, choose a random r ∈R [n2] and set h := gr. We choose random x1, x2, x3

∈R [n2/4], choose a random g′ ∈R Z∗n2 , and compute g := (g′)2n, y1 := gx1 , y2 := gx2 , and
y3 := gx3 .

Now we run A∗ and P∗ on input PK = ((n, g, y1, y2, y3), (n, g, h)) and SK = (x1, x2, x3). By
standard rewinding techniques we can produce two accepting conversations for either the PK pro-
tocol in step 2 or the one in step 3 (for different challenges but the same first message), depending
on whether δ = γm̂ where m̂ = D(SK, ψ, L) remn, for (δ, ψ, L) provided by A∗. We consider the
two cases.

Case I. First assume that δ 6= γm̂ or reject = D(SK, ψ, L) remn but that V ’s output is 1. Let
(u, e, v) := ψ. We can now get two accepting conversations of the PK protocol in step 2 and hence
two answers

(x̃(1)
1 , x̃

(1)
2 , x̃

(1)
3 , m̃(1), w̃

(1)
1 , . . . , w̃

(1)
4 , t̃

(1)
1 , . . . , t̃

(1)
5 , s̃(1))

and

(x̃(2)
1 , x̃

(2)
2 , x̃

(2)
3 , m̃(2), w̃

(2)
1 , . . . , w̃

(2)
4 , t̃

(2)
1 , . . . , t̃

(2)
5 , s̃(2))

for the two different challenges c(1) and c(2) but with the same first message (here we use the same
notation for the protocol variables as for the PK protocol in the previous section). W.l.o.g., suppose
that c(2) > c(1). Let ∆x1 = x̃

(1)
1 − x̃

(2)
1 , ∆x2 = x̃

(1)
2 − x̃

(2)
2 , ∆x3 = x̃

(1)
3 − x̃

(2)
3 , ∆m = m̃(1) − m̃(2),

∆w1 = w̃
(1)
1 − w̃

(2)
1 , . . ., ∆w4 = w̃

(1)
4 − w̃

(2)
4 , ∆t1 = t̃

(1)
1 − t̃

(2)
1 , . . ., ∆t5 = t̃

(1)
5 − t̃

(2)
5 , ∆s = s̃(1) − s̃(2),

and ∆c = c(2)−c(1). From the verification equation of the PK protocol one can derive the following
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equations:

y1
∆c = g∆x1 y2

∆c = g∆x2 y3
∆c = g∆x3 (40)

v2∆c = u2∆x2u2Hhk(u,e,L)∆x3 (41)

e2∆c = u2∆x1h2∆m (42)

W∆c
1 = g∆w1h∆t1 W∆c

2 = g∆w2h∆t2 W∆c
3 = g∆w3h∆t3 W∆c

4 = g∆w4h∆t4 (43)

M∆c = g∆mh∆t5 g∆c(n−1)2/4 = M∆mW∆w1
1 W∆w2

2 W∆w3
3 W∆w4

4 h∆s (44)

δ∆c = γ∆m (45)

Consider the equations (43) and (44). If ∆c does not divide all of ∆m, ∆w1, . . ., ∆w4, ∆t1,
. . ., ∆t5, and ∆s we can compute a root of g = z with probability 1/2 (see proof of Theorem 2 for
how). If ∆c does divide all of them, we compute m̂ = ∆m/∆c, ŵ1 = ∆w1/∆c, . . ., ŵ4 = ∆w4/∆c,
t̂1 = ∆t1/∆c, . . ., t̂5 = ∆t5/∆c, and ŝ = ∆s/∆c and we know that

M = mgm̂ht̂5 W1 = w1g
ŵ1ht̂1 W2 = w2g

ŵ2ht̂2 W3 = w3g
ŵ3ht̂3 W4 = w4g

ŵ4ht̂4 δ = γm̂

(46)

holds for some m, w1, w2, w3, and w4 such that m2 = 1 and w2
i = 1. Furthermore, we can rewrite

the second equation of (44) as follows

g(n−1)2/4 = agm̂
2+

∑
ŵ2

i hm̂t̂5+
∑
ŵi t̂i+ŝ (47)

for some a such that a2 = 1. In fact, a = 1 as, first, a must lie in 〈g〉 and, second, if a 6= ±1 then
gcd(a − 1, n) splits n. Let α := (n − 1)2/4 − m̂2 −

∑
ŵ2
i and β := m̂t̂5 +

∑
ŵit̂i + ŝ. As we set

h = gr, we can rewrite (47) as

gα = grβ (48)

If α 6= rβ (in Z) we can factor n. Let r = r1 + ord(g)r2. Note that we choose r random from [n2]
and that the adversary has no information about r2. Therefore α = (r1 + ord(g)r2)β and α 6= 0
can only happen with probability at most 1/n, which is negligible. Therefore we must have

(n− 1)2/4− m̂2 = ŵ2
1 + ŵ2

2 + ŵ2
3 + ŵ2

4 (in Z)

and thus (n− 1)2/4− m̂2 ≥ 0 which is equivalent to

−(n− 1)/2 ≤ m̂ ≤ (n− 1)/2 . (49)

Consider Equations (40-42). As n is the product of two safe primes p and q, we have |∆c| <
min{p, q, p′q′} and hence ∆c is invertible modulo n′n. By construction we know xi such that
yi = gxi and therefore it follows from (40) that

∆c xi ≡ ∆xi (mod n′) for i = 1, . . . , 3 . (50)

Now we can either have D(SK, ψ, L) = reject or δ 6= γ(m remn) where m = D(SK, ψ, L) =
logh2(e/ux1)2, i.e., one of the three statements

u2(x2+Hhk(u,e,L)x3)/v2 6= 1 or (e/ux1)2n 6= 1 or (
e

ux1
)2 6= h2m̂ (51)
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must hold (cf. (39)), where the last is equivalent to δ 6= γ(m remn) because Equation (49) and the
fact that −(n− 1)/2 ≤ (m remn) ≤ (n− 1)/2.

We consider these three cases:

Case 1. If u2(x2+Hhk(u,e,L)x3) 6= v2 we must have that u2∆c(x2+Hhk(u,e,L)x3) 6= v2∆c =
u2∆x2+Hhk(u,e,L)∆x3 (from Equation (41) and because ∆c is invertible modulo nn′) and there-
fore also

∆c(x2 +Hhk(u, e, L)x3) 6≡ ∆x2 +Hhk(u, e, L)∆x3 (mod n′n) ,

as the order of u2 divides n′n. From (50) it follows that

∆c(x2 +Hhk(u, e, L)x3) ≡ ∆x2 +Hhk(u, e, L)∆x3 (mod n′) .

Therefore ∆cx2 −∆x2 + (∆cx3 −∆x3)Hhk(u, e, L) must be a non-zero multiple of n′ and we
can factor n.

Case 2. If u2nx1 6= e2n we have that u2n∆cx1 6= e2n∆c. Because of (42) and hn = 1, we get

u2n∆cx1 6= u2n∆x1 and thus ∆cx1 6≡ ∆x1 (mod n′) ,

because u2n has order dividing n′. The latter, however, is a contradiction to Eqn. (50) and
thus this case cannot occur.

Case 3. From ( e
ux1 )2 6= h2m̂ is equivalent to e2

h2m̂ 6= u2x1 . Recalling that m̂∆c = ∆m we can
rewrite (42) as

e2∆c

h2∆m
=

( e

hm̂

)2∆c
= u2∆x1 and conclude that u2∆cx1 6= u2∆x1 .

Similarly to case 1, it follows that ∆cx1 −∆x1 is a multiple of n′ and we are again able to
factor n.

Case II. It remains to consider the case when V ’s output is −1 but δ = γ(D(SK,ψ,L) remn) holds.
Let (u, e, v) := ψ. Now all the three equations

u2(x2+Hhk(u,e,L)x3)/v2 = 1 (e/ux1)2n = 1 δ = γ(logh2 (e/ux1 )2 remn) (52)

must hold. As usual we obtain two accepting conversation of the PK protocol in step 3 and thus
two answers

(x̃(1)
1 , x̃

(1)
2 , x̃

(1)
3 , ã

(1)
1 , . . . , ã

(1)
6 , b̃

(1)
1 , . . . , b̃

(1)
4 , r̃

(1)
1 , . . . , r̃

(1)
6 , s̃

(1)
1 , . . . , s̃

(1)
5 , t̃

(1)
1 , . . . , t̃

(1)
5 , w̃

(1)
1 , . . . , w̃

(1)
4 , m̃

(1)
1 )

and

(x̃(2)
1 , x̃

(2)
2 , x̃

(2)
3 , ã

(2)
1 , . . . , ã

(2)
4 , b̃

(2)
1 , . . . , b̃

(2)
4 , r̃

(2)
1 , . . . , r̃

(2)
4 , s̃

(2)
1 , . . . , s̃

(2)
5 , t̃

(2)
1 , . . . , t̃

(2)
5 , w̃

(2)
1 , . . . , w̃

(2)
4 , m̃

(2)
1 )

for the two different challenges c(1) and c(2) but with the same first message (here we use the same
notation for the protocol variables as for the PK protocol in the previous section and left out an
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intermediate step that deals with the ∨’s (c.f. [19])). W.l.o.g., suppose that c(2) > c(1). Let

∆xi = x̃
(1)
i − x̃

(2)
i (i = 1, . . . , 3); ∆ai = ã

(1)
i − ã

(2)
i (i = 1, . . . , 4);

∆bi = b̃
(1)
i − b̃

(2)
i (i = 1, . . . , 4); ∆ri = s̃

(1)
i − r̃

(2)
i (i = 1, . . . , 4);

∆si = b̃
(1)
i − s̃

(2)
i (i = 1, . . . , 5); ∆ti = s̃

(1)
i − t̃

(2)
i (i = 1, . . . , 5);

∆wi = r̃
(1)
i − w̃

(2)
i (i = 1, . . . , 4); ∆m = m(1) − c(2);

∆c = c(2) − c(1) .

From the verification equation of the PK protocol one can derive that

y1
∆c = g∆x1 , y2

∆c = g∆x2 , and y3
∆c = g∆x3 , (53)

hold and either

C∆c
1 = u2n∆r1(

1
v
)2n∆a1 , C∆c

1 = g∆a1h∆b1 , and 1 = (
1
C1

)∆x2+Hhk(u,e,L)∆x3g∆r1h∆s1 (54)

or

C∆c
2 = u2∆r2(

1
v
)2∆a2 , C∆c

2 = g∆a2h∆b2 , and 1 = (
1
C2

)∆x2+Hhk(u,e,L)∆x3g∆r2h∆s2 (55)

or

C∆c
3 = u2n∆r3(

1
e
)2n∆a3 , C∆c

3 = g∆a3h∆b3 , and 1 = (
1
C3

)∆x1g∆r3h∆s3 (56)

or

C∆c
4 = γ∆r4(

1
δ
)∆a4 , C∆c

4 = g∆a4h∆b4 , 1 = (
1
C4

)∆mg∆r4h∆s4 (57)

e2∆c = u2∆x1h2∆m , M∆c = g∆mh∆t5 , g∆c(n−1)2/4 = M∆mW∆w1
1 W∆w2

2 W∆w3
3 W∆w4

4 h∆s5

(58)

W∆c
1 = g∆w1h∆t1 , W∆c

2 = g∆w2h∆t2 , W∆c
3 = g∆w3h∆t3 , and W∆c

4 = g∆w4h∆t4 .
(59)

hold. We know xi such that yi = gxi and therefore it follows from (29) that

∆c xi ≡ ∆xi (mod n′) for i = 1, . . . , 3 . (60)

We next consider the implications of the cases when the equations (54), the equations (55), the
equations (56), or the equations (57-59) hold in conjunction with (53). The first three cases appear
also in the proof of Theorem 4, while the last one is different:

Case 4. Similarly as in Case I above, from the Equations (58) and (59) we can derive that

e2∆c = u2∆x1h2∆cm̂ and − (n− 1)/2 ≤ m̂ ≤ (n− 1)/2 (61)

where m̂ = ∆m/∆c. Using Equations (60) and the fact that ∆c is invertible modulo nn′, we
get

e2 = u2x1h2m̂ ,
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and, because of the second equation of (61),

m̂ = (logh2 u2x1/e2 remn) (62)

Similarly as we did in case II in the proof of Theorem 4, one can derive from the last two
equations of (57) that

∆r4 = ∆a4m̂ (63)

holds (or one factors n and thus compute a non-trivial root of z). Now using (63) in the first
equation of (57)

C∆c
4 = γ∆a4m̂(

1
δ
)∆a4 and C4 = (

γm̂

δ
)â4 , (64)

where â4 := ∆a4/∆c (mod ρ). Because C4 6= 1 we must have that and because of (62)

δ 6= γ(logh2 u2x1/e2 remn) ,

which is a contradiction to the third equation of (52) and hence this case can not occur.

6.4 Application to Confirmer Signature Scheme

We apply the generic construction for a confirmer signature scheme by Camenisch and Michels [13]:
The signer chooses a public and secret key of any signature scheme and the confirmer chooses a
public and secret key of any encryption scheme. To sign a message, the signer uses the signing
algorithm to produce an ordinary signature on the message and then encrypts the signature under
the confirmer’s public key with the label containing the required additional information such as
the confirmation policy. This encryption becomes the confirmer-signature on the message. The
confirmer can confirm or disavow a confirmer-signature to a verifier as follows. She first decrypts the
confirmer-signature and, if decryption does not fail, checks whether the decrypted value constitutes
an (ordinary) signature on the message under the signer’s public key. If any of these checks failed,
she tells that the verifier that the signature is invalid; otherwise, she tells the verifier that it is
valid. Finally she proves to the verifier in zero-knowledge the correctness of her statement. To
convert a confirmer-signature into an ordinary one, the confirmer just publishes the decryption of
the confirmer-signature. Note that the resulting signature is one of the signature scheme selected
by the signer, that is, we have perfect convertibility (c.f. [13]).

Instantiation of this construction with our encryption scheme, our protocol for verifiable decryp-
tion of a discrete logarithm (together with a suitable method for converting it from special honest-
verifier zero-knowledge into real zero-knowledge), and the signature reduction technique [1, 27] for
discrete-logarithm-based signature schemes such as DSS or Schnorr gives us an efficient confirmer
signature scheme with perfect conversion w.r.t. these signature schemes. We note that the recovery
information produced by the signature reduction algorithm as well as the confirmation policy must
be included in label input to the encryption algorithm.

The resulting scheme can be proven secure in the model of Camenisch and Michels [13] and is an
order of magnitude more efficient than the previously known ones that provide perfect conversion
(the known schemes all apply the cut-and-choose paradigm to realize the confirmer’s proof of
correctness of her statement).
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